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This paper gives a survey of the theories (Part I) and phenomena (Part II) of cosmic mag-
netism, extending from geomagnetism over solar and sunspot magnetism to stellar and inter-
stellar magnetic fields. The theoretical treatment is purely classical and Maxwelliam. Most
cosmic fluids, being highly ionized, are excellent conductors; this implies that the displacement
current can always be neglected. The fundamental equations of hydromagnetism are the electro-
magnetic field equations together with the hydrodynamic equation, both containing coupling
terms between magnetic field and motion. Among other theoretical developments, the
“‘dynamo’’ theory which ascribes the cosmic magnetic fields to amplifying processes in the
moving fluid is described and it is shown that it is well suited to represent the observed phe-
nomena of the generation and maintenance of cosmic magnetic fields.
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BASIC DYNAMICAL NOTIONS

MAGINE a race of intelligent beings who

lived on a planet covered with a highly
viscous atmosphere. If their astronomers dis-
covered the phenomena of turbulence, so im-
portant in astrophysics, there would at once
arise an argument of the learned as to the
fundamental nature of these effects. Can they
be described in terms of classical, continuum
physics? Do they, instead, involve molecular
actions that are not readily set in evidence in
experiments performed in the laboratory? Or
do they perhaps involve modifications of the
basic physical laws through terms that are
significant only in large dimensions and become
negligible on the scale of the laboratory?

In our terrestrial environment we are
altogether familiar with the phenomena pre-
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sented by turbulence. We are convinced that
they are fully describable in terms of the con-
tinuum equations of classical hydrodynamics, in
spite of the fact that an actual mathematical
analysis of even the simplest forms of turbulence
is of formidable complexity. The trend in the
explanation of hydromagnetic phenomena has
been similar. The magnetic fields of the earth,
sunspots, numerous stars, and the interstellar
gaseous medium are becoming amenable to an
understanding and to mathematical treatment
along the lines of conventional physics, specifi-
cally classical continuum physics. As we proceed
it will appear more clearly why it is so difficult,
often next to impossible, to duplicate these
large-scale phenomena in the laboratory. The
reasons lie in certain dimensional conditions,
not in any fundamental deficiency of the classical
field equations. One cannot produce visible
light by a magnetron,—but this does not indicate
any shortcomings of Maxwell’s equations.

With the exception of highly rarefied gases
where classical continuum theory sometimes
fails, we can base our interpretation on the
classical laws that hold for a moving, electrically
conducting fluid in which there exist electro-
magnetic fields. The equations of motion of the

fluid are the conventional Navier-Stokes
equations,
av 1 1
—=—_Vp—VU+»Vv+4+-J XB. (1)
dt P P

Here p, #, U, » have usual meaning of density,
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HYDROMAGNETISM. I.

pressure, gravitational potential, and kinematic
viscosity; the last term on the right is the
ponderomotive force which the electromagnetic
field exerts on the fluid; it will be discussed
presently. The behavior of the electromagnetic
field is given by the usual Maxwell equations;
in this review we shall, as a rule, use rationalized
mks units. A detailed dimensional analysis?
shows that in all geophysical and astrophysical
forms of hydromagnetism the displacement
current is altogether negligible; also negligible
are all purely electrostatic effects. By the same
token all relativistic effects of order higher than
v/c are negligible. Under these conditions we
can use the electromagnetic field equations in
the simple form
B

VXE=——o,
a¢

VXB=yu]J, (2)

where of course the magnetic field obeys the
subsidiary condition V-B=0. Now the fluid is
assumed electrically conducting; on moving
relative to the electromagnetic field it produces
a motional induction. We can therefore write
the current as

J=0E+4ovXB, (3)

where the second term on the right is the
motional induction term. The last terms in
Egs. (1) and (3), respectively, represent the
coupling between the field and fluid motion;
if these terms are not small the fluid and field
are no longer separate dynamical entities; we
must think of the combination fluid-field as a
single dynamical system. The ponderomotive
force term in Eq. (1) can be written, by Eq. (2),

1 1
F=-]JxXB=—(VXB)XB. 4)
P up

We can furthermore eliminate B: Taking the
curl of the second of Egs. (2), and using Eq. (3)
and the first of Egs. (2), we obtain

dB
-g‘= VX(VXB)+VmV2B (5)
2

Here use has been made of the vector identity,
VXVXB=—V?B,
'W. M. Elsasser, Phys. Rev. 95, 1 (1954).
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valid since V-B=0; the quantity
Vm=1/ue (6)

will be designated as the magnetic viscosity. On
using the last expression (4) for the pondero-
motive force in Eq. (1), we are left with a set of
equations containing the vectors v and B only;
the basic equations of field-motion are now
given by the combination of Egs. (1) and (5).
We have tacitly assumed that u and p are
constant throughout; this simplification will be
maintained in most of the subsequent discussion.
Rewriting Eq. (3) by means of Egs. (2) and
(6) as
1mVXB=E+vXB, (7

we next investigate the order of magnitude of
each of the three terms in Eq. (7). Let L, T, V
stand for the order of magnitude of a length,
time, and velocity, respectively. We see from
the first Eq. (2) that E may, in order of magni-
tude, be replaced by VB. Thus the two terms on
the right of Eq. (7) are both of the order VB.
But the left side is of order (v,./L)B. If we keep
V and v, constant we can make the left-hand
side of Eq. (7) arbitrarily small by going to
sufficiently large linear dimensions. We introduce
the two dimensionless constants,

R=LV/V, Rm=LV/me (8)

where » is the ordinary kinematic viscosity of
the fluid, ». is its magnetic viscosity defined by
Eq. (6). The guantity R is the well-known
Reynolds number. The frictional term »V?v in
Eq. (1) is of order 1/R compared to the dynami-
cal acceleration terms. It is well known that the
condition for the appearance of turbulence in a
fluid is that R be numerically large. We designate
R,. as the magnetic Reynolds number. We find
that the left-hand side of Eq. (7) is of order
1/R,, compared to the right-hand side. Thus if
R, is numerically large, as it is in fluids of cosmic
dimensions, the two terms on the right of Eq. (7)
cancel very nearly and the actual electric
currents corresponding to a given magnetic field
can become very small. This result is purely
dimensional, characteristic of large linear exten-
sions; it does require that conductors be in
motion, but has nothing to do with their being
fluid. If we apply the same considerations to
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Eq. (5) we find that the dissipative term »,V’B
is of the order 1/R,, compared to the two other
terms. This is in complete analogy to the
behavior of the frictional term in the hydro-
dynamic Eqgs. (1) and thus affords a justification
for the names given v, and R,. But, it is useful
to emphasize that the analogy between these
quantities and the corresponding mechanical
ones is rather incomplete. R, for instance is not
a measure of the transition between laminar
and turbulent flow in hydromagnetic motion.
If a magnetic field exists in a conducting fluid,
the ponderomotive forces Eq. (4) are such that
they tend to keep the lines of force from being
contorted; they therefore give a certain stiffness
to the fluid which some authors have chosen to
designate as ‘‘magnetic viscosity,” a use of this
term radically different from the one adopted
here. We shall later on deal briefly with such
mechanical effects of the field and their influence
on the stability of fluid motion. The afore-
mentioned complications of terminology do not
appear so long as we are dealing with purely
kinematical problems, that is with the differential
Eq. (5) in which the velocity field is assumed to
be given.

We can give a simple physical interpretation
to the magnetic Reynolds number, R,,: Consider
an electric conductor in which a system of
currents is flowing. In the absence of electro-
motive forces such currents will decay ex-
ponentially. We can find the decay time by
familiar methods; we can estimate it, for
instance, from Eq. (5) on setting v=0, which
shows that the decay time is of the order
r=L?/v,. Hence we may write, from Eq. (8),

R,=+V/L=+1/T, (9)

where T refers to the mechanical motions of
the fluid; it is the time required by a fluid
particle to travel a distance equivalent to the
extension L of the conductor. The fact that
R,, is numerically large for bodies of cosmic
dimensions thus corresponds to very large
spontaneous decay times of electric currents and
magnetic fields compared to the mechanical
periods. The fluid can undergo extensive internal
deformation during a time in which the spon-
taneous decay of the electromagnetic fields is
quite small. This is the essential feature of
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cosmic hydromagnetism; it can clearly not be
duplicated in the laboratory where electro-
magnetic decay times rarely exceed the order of
milliseconds.

To wvisualize conditions of cosmic hydro-
magnetism, let us obtain some numerical
estimates. For the earth’s fluid metallic core we
may estimate? ¢=10°% mks, which is one-tenth
of the conductivity of ordinary iron, giving
vm~1. If we take V~0.01 cm/sec and L~10*
km we get R,,~10% For the sun, Cowling® has
shown that the free decay time of a current
system covering the entire sun is of the order of
10" years which, by Eq. (9), clearly corresponds
to extremely large values of R,. Sunspots are
often of the same size as the earth; we may
further estimate »,~10 from Cowling’s data.
Velocities of the order of 1 km/sec occur, giving
R,,~10°. Generally speaking, the conductivity
of the highly ionized gases making up cosmic
matter is good; it does not fall below that of
metals by many powers of ten. Hence, with
velocities of a few km/sec and the large linear
dimensions of cosmic bodies we obtain extremely
large values of R,.

What now is the consequence of the fluid’s
being able to move a great deal while the
magnetic field decays but very little? The effects
may be visualized by means of a fundamental
integral formula, due to Cowling. To derive
it we apply Stokes’ theorem to the first equation
(2) and on using Eq. (7) obtain

9B,
—do= —fE-ds
at

~ [ wxB)-ds—v.. [ (7xB)-d5. (10

In the first integral on the left we can put 8/9¢
in front of the integral sign if the contour is
considered fixed in space. On the other hand, leta
surface and its contour move bodily with the
fluid, sweeping out a disk-shaped volume during
time dt (Fig. 1). Consider the flux passing
through the small strip which forms the edge
of this disk. If we write v=dr/dt we can express
2 W. M. Elsasser, Revs. Modern Phys. 22, 1 (1950).

3T. G. Cowling, Monthly Notices Roy. Astron. Soc.
105, 166 (1945).
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Fic. 1. Contour.

S(t) S(t+dt)

this flux as
f(drxds)-B= —dtf (vXB)-ds.

From this we may conclude that

a d
—anda—f(vXB)'ds=—-fB,,dcr, 11)
ot dt

where on the right there appears the substantial
derivative, referring to the flux crossing a surface
that moves beodily with the fluid. To justify Eq.
(11) we notice that the first integral represents
the change of flux due to 8B/d¢ for a surface
fixed in space. The second integral must then
represent the change in flux for fixed B due to
the displacement of the surface. That this is so
follows at once if we apply to Fig. 1 the formula
S B.do=0, whose validity for any closed surface
fixed in space results from V-B=0. Finally,
substituting Eq. (11) into Eq. (10) we have

d
——fB,.da=v,,,f(V)<B)-ds,
a

where the right hand is of order 1/R,. For an
ideal conductor (R,= «) we have

d
—ando'=0.
dt

Equations (12) and (13) are, by the way, also
valid for compressible fluids, no assumptions
about incompressibility having been made in
the derivation. The result may be stated in more
physical terms by saying that in an ideal fluid
conductor the magnetic lines of force are carried
along bodily with the fluid; they are ‘frozen’
into the fluid. One can show that Cowling's
integral (13) is equivalent to the differential

(12)

(13)
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equation (5) if in the latter we drop the
dissipative term. It is possible to integrate
these equations for the ideal conductor with
respect to time and to obtain expressions for
the field at time ¢ in terms of the field at time
t=0 and of the finite deformation which the
fluid has undergone.*

For a fluid of finite conductivity, the right-
hand side of Eq. (12) represents a ‘‘slippage’
of the lines of force through the fluid; this is
expressed alternatively in the last term of Eq.
(5) as a “diffusion” of the field. It follows from
well-known principles that this operates in such
a way as to smooth out contortions of the field
lines; generally speaking the effect of the
diffusive terms is to decrease the field energy.
In deriving Eqs. (12) and (13) we have made no
use of the hydrodynamic equations of motion;
these results pertain essentially to electro-
dynamics as applied to deformable large-scale
conductors.

Return now to the basic hydromagnetic
equations (1) and (5). In these there appear
coupling terms which produce an interaction
between the velocity field v and the magnetic
field B. The energy-conservation law can be
derived in the conventional fashion, but energy
is not conserved for each of the separate fields;
energy can indeed be transferred from the fluid
motion to the magnetic field and conversely.
This can conveniently be demonstrated by means
of Cowling’s flux-conservation theorem (13)
which tells us that the lines of force are deformed
by the motion of the fluid. The simplest kind of
deformation that leads to amplification of the
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F16. 2. Amplification of magnetic field by a
linear velocity shear normal to field.

4S. Lundquist, Phys. Rev. 83, 307 (1951); Arkiv
Fysik 5, No. 15 (1952).
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magnetic field consists in a velocity-shear field
normal to the local magnetic field. This is
illustrated in Fig. 2 where we assume the velocity
in the x-direction, the velocity profile being
shown on the left. Assume that the fluid is set
in motion at t=0 and that at that time the
magnetic field is homogeneous and in the
y-direction, as shown by the dashed lines. After
some lapse of time the field-lines have been
deformed into the shape indicated by the heavy
lines. An x-component of B has been created;
its energy is superadded to the energy of the
original field. The total energy content of the
magnetic field has increased at the expense, of
course, of work done by the kinetic energy of
the fluid. It is apparent that the process of
Fig. 2 is capable of a great many variations,
depending on the complexity of the geometry
assumed for the fluid motion or the original
field.

This brings us to the central problem of
hydromagnetism, namely, the generation and
maintenance of the observed cosmic magnetic
fields by the motion of fluid conductors. The
simple amplifying device of Fig. 2 provides no
more than a hint that the observed fields can be
so explained. The outlook for this type of
explanation is quite favorable, as we shall show
in these pages. Let us for the moment confine
ourselves to the remark that any alternative
sources of cosmic magnetic fields are unlikely
to be effective. Barring extravagant, speculative
assumptions there are two types of causes for
such magnetic fields which may readily be
conceived ; one is ferromagnetism and the other
consists in an emf producing electric currents in
the cosmic conductors. Ferromagnetism is hardly
of interest as a cause of solar and stellar magnetic
fields, but it has in former times been advanced
as an explanation for the earth’s field. It is
known at present that the earth’s field originates
essentially in the fluid, metallic core, and the
existence of ferromagnetic materials under the
physical conditions prevailing in the core is
altogether improbable.

The idea of an impressed emf causing currents
in a cosmic conductor seems at first more
attractive. In the earth, thermoelectric forces
caused by a temperature difference between
polar and equatorial regions at the same depth,
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would give rise to current systems that generate
a toroidal magnetic field (the term will be
explained in the following). It has recently been
proposed that the observed field is a combination
of such effects with hydromagnetic induction,?
though notions about thermoelectricity in the
deep interior of the earth are of necessity rather
qualitative.

When we come to rarefied, ionized gases one
is inclined to have recourse to any emf that can
be produced by the difference in inertia of the
positive and negative ions (differential diffusion
of plasma in gravitational and other fields).
The theory of effects of this type has been
developed® and there exist laboratory experi-
ments verifying their existence in ionized gases
and even in mercury.” These effects are rather
minute, in the laboratory at least, and require
careful shielding of the earth’s field and other
external magnetic fields.

We come now to a general criticism of the
hypotheses involving an emf in cosmic fluids.
The efficiency of any such mechanism must be
compared with the efficiency of the purely
inductive, hydromagnetic amplification, and in
this comparison the emf loses out: First, the
hydromagnetic amplifying processes are purely
kinematical; they are indeed independent of
the material constants of the medium. The
equivalent of Eq. (13) in differential form is
obtained by dropping the last term in Eq. (5);
thus

B
—=VX (vXB),
at

(14)

and this approximation is the better, the larger
the linear dimensions involved. The dimensional
character of this relation is simple enough. If
we write the integral of Eq. (14) symbolically
B(t)=FB(o0), where F is a linear operator, then
F depends only on the nondimensional combina-
tion VT/L which shows that for a system of
given dimensions L, the time required for
amplification can be made as short as one
pleases by increasing the velocities sufficiently.

8S. K. Runcorn, Trans. Am. Geophys. Union 35, 49
O Biermann and A, Schiiiter, Z. Naturforsch. 5a, 65
(1950): Phys. Rev. 82, 863 (1951).

7 Burhorn, Griem, and Lochte-Holtgreven, Nature 172,
1054 (1953); Physik. 137, 175 (1954).
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This is not of course an argument indicating
that systematic amplification from very small
beginnings does actually occur. Leaving the
discussion of this problem for later and assuming
that systematic processes of amplification do
occur, we may at once conclude that the time
required to reach some sort of saturation field
is of order V/L, where V is representative of the
prevailing fluid velocities.

Consider next the magnetic fields produced
by an impressed emf. Let us represent this
effect by means of a term oE* on the right of
Eq. (3). This gives rise to a term VXE* on the
right of Eq. (5). In order to have a very simple
model useful for dimensional arguments, let us
now assume that the mean effect of the induction
term VX (vXB) for a sufficiently irregular
velocity field can be assimilated to a turbulent
mixing process. Following a mode of thought
common in hydrodynamics we introduce a
turbulent magnetic diffusivity »,' which will
be of the order of R,va, thus large compared to
vm- We then write in place of Eq. (5)

B
—=y,'V: B4+ VXE?
ot

(15)

We do not of course imply that Eq. (15) repre-
sents faithfully the dynamical processes, but it
will be adequate for order-of-magnitude
estimates. Now in a solid body the growth of a
magnetic field under an impressed emf would
also be described by Eq. (15) except that for
vs' we would have to write »,=1/us, as given
by Eq. (6). The time of growth of the field to
saturation is inversely proportional to »,. In
the turbulent case where »,’ =R, v, we see from
Egs. (6) and (8) that 1/v.’~1/LV. The rise-
time is reduced by a factor 1/R,, as compared to
the case of a solid conductor; it is, on the simple
model, of the same order as the rise-time of
inductive hydromagnetic amplification discussed
in connection with Eq. (14). On the other hand,
the stationary value of the field produced by
an emf, as obtained by setting 8B/4t=0 in Eq.
(15), is also inversely proportional to »,’, thus
the saturation field corresponding to the im-
pressed currents ¢s reduced by a factor of order
1/R.., again compared to a solid conductor. This
justifies our previous contention that the physical
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preconditions of hydromagnetism, namely, me-
chanical motions in large fluid conductors, favor
intrinsic inductive amplification of magnetic
fields over the effects of impressed electromotive
forces.

We are thus led to concentrate our attention
upon mechanisms of inductive amplification, as
expressed by Eq. (14). Two types of processes
have been considered as conducive to cosmic
magnetic fields by amplification. One of them
is turbulence. If an interaction between fluid
motion and the magnetic field exists and if it
were possible to ignore dissipation altogether,
then one could apply the principles of statistical
mechanics to such a frictionless hydromagnetic
system. If one argued in this way, he would
readily be led to the conclusion that the statisti-
cal equilibrium of mutual energy transfer be-
tween motion and field corresponds to equi-
partition of the energy, expressed by

[Pvﬂjkv =B/ u ]

Now, however, turbulence is a dissipative
process and certainly far from thermodynamical
equilibrium. Thus we must not take the equi-
partition condition (16) too seriously, but it is
found valuable as a guide in unravelling the
complex observed phenomena. There is one
thing we may infer from this argument, namely
that, assuming statistical disorder of the fluid
motion, the field energy, if much below equi-
partition to begin with, is likely to increase on
the average. It would suffice for this to start
with some very small stray fields which would
then progressively increase as time goes on.
Any field thus produced would have essentially
random characteristics. There is good evidence
for a very strong random component of the
earth’s field, for instance, and so the model of
statistical amplification has its range of validity.
On the other hand, some of the features of
cosmic magnetic fields seem to be rather stable.
Among these is the earth’s main dipole, the
sunspot cycle, and the characteristics of magnetic
stars, stationary or periodic. It is hard to conceive
of these as produced by purely random amplifi-
cation without some ordering principle of the
motion. In a technical generator, a dynamo, the
current is ordered by virtue of the mechanical
design embodying insulators, commutators, ete.

(16)
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In a hydromagnetic dynamo the conductor is
simply connected, and thus an equivalent
ordering agency can be based only on purely
dynamical properties of the fluid motion. It
would be impossible, of course, to have a fluid
dynamo for R,<1, since then the field would
have decayed before amplification could take
place. The dynamo problem presents itself
naturally in two stages: First, we may consider
the kinematical problem that arises when v is
assumed given and fields satisfying Eq. (5) are
sought. In this way we may demonstrate the
fundamental possibility of fluid dynamos, but
hardly their occurrence in nature. When the
magnitude of the induced field approaches
equipartition, the ponderomotive forces which
the field exerts upon the fluid become comparable
to the purely mechanical forces. We are then
confronted with a problem of genuine hydro-
magnetic dynamics. Clearly, the joint solution
of Egs. (1) and (5) in any but the simplest
cases will prove exceedingly difficult.

We now turn to a survey of the results so far
obtained in applying the basic equations of
hydromagnetism to specific problems. A few
rather special theoretical developments that
are closely related to astrophysical or geophysical
observations will be mentioned in Part 1I.

HYDROMAGNETIC WAVES

Conventional sound waves in a fluid are
longitudinal and are based on the existence of a
finite compressibility. In an incompressible fluid
of classical hydrodynamics no genuine wave
motion -exists. This is altered when a strong
magnetic field prevails in the fluid. It was
discovered by Alfvén in 1942% that purely
transverse waves are then possible. We shall
here assume incompressibility, V.v=0, and
postulate the fact that the waves are transverse.

To derive the equations for Alfvén waves we
make use of some well-known vector identities.
We have for the induction term in Eq. (5), since

V-B=V.-v=0,
VX (¥XB)=(B-V)v—(v:-V)B. a7

For the ponderomotive force [Eq. (4)] we can

8 H. Alfvén, Cosmical Electrodynamics (Oxford Univer-
sity Press, London, 1950).
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write

(VXB)XB=(B-V)B—3V(B*).  (18)

We now linearize the hydromagnetic equations
by setting

B=B¢-+b, b, v small,

meaning that we neglect squares and products
of b and v. We assume the large, static field B,
homogeneous, that is independent of =x,y,3.t.
With these assumptions the expressions (17)
and (18) reduce to

VX (vXB) = (By V)v,

(VXB)XB=(Bo-V)b—V(Bs-b), (19)

but the last gradient term vanishes because of
the assumed transversality of b. Furthermore,
dv/di=09v/dt, since we neglect second-order
terms in v. We assume absence of dissipation,
v=1,=0 and, on substituting Eq. (19) into the
hydromagnetic Egs. (1) and (5), obtain

av 1 1 ab
—=—(Bo:V)b—-Vp, —=(B;-V)v.
I up P dt

Let now By be in the z-direction. Then these
equations reduce to the simple form

v Bydb b av
—=——— —=By—, (20)
0t updz Ot 0z

where we have omitted the Vp term for a readily
apparent reason: Equations (20) do not contain
d/dx, 8/dy; they correspond to waves travelling
in the z-direction independent of x and v, that is,
plane waves. Clearly, for any such waves Vp
must also be in the z-direction. But the vectors
v and b are always perpendicular to 2; hence we
must have Vp=0. (A closer analysis shows that
Vp is of the second order in the small quantities
v, b.) By cross elimination Eq. (20) yields the
wave equations,

b
dz? -

=Bo*/v/ue. (21)

The velocity of propagation of the transverse
Alfvén waves is thus, ¢=By/(up). There is no
dispersion.
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We further notice that by Eq. (20) the vectors
v and b are parallel; if we choose a plane of
polarization, then the motion as well as the
perturbation magnetic field lie in this plane. As
remarked by Alfvén, this type of wave motion is
closely analogous to the familiar waves traveling
along a taut string. The magnetic field B,
generates the longitudinal tension which must
exist in the string to make transverse waves
possible. If the fluid is displaced normally to the
direction of B, the magnetic field lines follow
this displacement, by virtue of the flux-conserva-
tion law, Eq. (13). The ponderomotive forces
thus set up tend to return the field lines to
their straight configuration, but they overshoot,
and oscillate. Assuming a harmonic wave in
which both v and b have a factor expi(kz—wt),
where w/k=¢, we readily verify from Eq. (20)
that b®=pup1?, in other words we have at any
instant equipartition of the perturbation energy
between the motion and the perturbation field.
This must also hold for any linear superposition
(Fourier integral) of such waves since the
individual harmonic components are orthogonal
to each other.

The physical importance of waves in a fluid
arises from the fact that they permit transport
of energy at a rate in excess of the mean velocity
of the fluid itself. In an incompressible, non-
magnetic fluid there exists no genuine wave
motion and the energy of a local disturbance
remains captive: it can only be convected along
with the fluid. In a highly compressible fluid
the energy of a local disturbance can be radiated
away in the form of sound waves, but the
efficiency of this process is usually small. If a
strong magnetic field exists in the fluid we have
for Alfvén waves, v=>0/4/(up) and c=Bo/+/ (up),
hence v/c=5b/B,, and from b<<B, there follows
9<K¢. Any perturbation whose energy density is
small compared to the energy density of the
over-all field is rapidly propagated along the
field lines; this propagation can be in either
direction, since the wave equations (21) admit
solutions of the form

v=v(z—ct), b=b(z—ct),
or else of the form
v=y9(z+ct), b=b(z+ci).
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Parker® has shown that when the energy of B,
is large compared to any perturbation energy,
all perturbations can be represented as linear
superpositions of Alfvén waves, the terms
omitted in this representation being small of
higher order in b/B,. It appears then that the
presence of a strong magnetic field is a necessary
and sufficient condition for any local perturbation
to migrate faster than convectively. A ‘‘strong’
field here means one in which the energy of the
homogeneous component of the field is well
above the equipartition value expressed in Eq.
(16). So far as empirical conditions are concerned,
there is evidence that the field in the earth’s
core is above the equipartition value, but the
consequences of this fact in terms of wave
motion have not yet been evaluated. In a
sunspot with a field of, say 0.2 mks (2000 gauss)
and a velocity of, say 1 km/sec, we have equi-
partition for a density, po=3X10-5 g/cm?. This
corresponds to a level well below the photosphere.
For higher levels, the velocity of Alfvén waves
is, under the assumptions made, given numeri-
cally by ¢=+/(po/p) km/sec. It has been indi-
cated by a number of authors that Alfvén waves
should be of importance in the observed regions
of sunspots.

We mention briefly some other theoretical
work on hydromagnetic waves. As Walén!® has
pointed out, the hydromagnetic Eqs. (1) and
(5) admit also of wave solutions of finite ampli-
tude, that is for an arbitrary value of b/B,. The
necessary condition for this is found to be
equipartition of the wave energy, that is,
?=upv?, These waves are particular integrals of
the hydromagnetic equations; they are no
longer arbitrarily superposable as is the case
for waves of infinitesimal amplitudes; waves
traveling in the same direction can be superposed,
but a linear superposition of waves of finite
amplitude traveling in opposite directions is in
general no longer a solution of the hydro-
magnetic equations, Since for b~B, the waves
travel with a wvelocity comparable to v, the
velocity of turbulent elements, the observation
of waves of finite amplitude would be a difficult
matter.

® E. N. Parker, Phys. Rev. 99, 241 (1955).
10 C. Walén, Ark. Mat. Astron. Fysik 30A, No. 15
(1944); 31B, No. 3 (1944) ; 33A, No. 18 (1946).
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Ferraro'! and Roberts!!* have derived the for-
mulas that govern the reflection and refraction of
Alfvén waves at the boundary of two media of
different densities. Lehnert!? has investigated the
propagation of these waves in the presence of a
Coriolis force and finds that there exist two circu-
larly polarized modes which travel with different
velocities. Dungey'?** and Roberts'?® have inves-
tigated the attenuation of hydromagnetic waves.
de Hoffman and Teller'® have analyzed hydro-
magnetic shock waves; further study of such
waves originates from Helfer® and Liist.!®
Bafiosi® has given a general classification of
hydromagnetic waves, while retaining all terms
compatible with linearization of the basic
equations.

The papers quoted above deal with wave
motion mainly under astrophysical conditions.
The relatively small hydromagnetic effects that
can be produced in the laboratory have also
been investigated. Lundquist!” has studied
solutions of the linearized hydromagnetic equa-
tions with special regard to the feasibility of
laboratory experiments on waves; he performed
one experiment with torsional hydromagnetic
waves in a tank filled with mercury in the
presence of a strong magnetic field. Liquid
sodium is better suited than mercury for hydro-
magnetic laboratory experiments owing to its
high electrical conductivity and low density.
Lehnert!® has done extensive experimentation
with torsional waves in a cylindrical vessel
filled with liquid sodium. He has also carried
through the theoretical analysis in detail, ob-
taining on the whole a satisfactory agreement
between experiment and theory. Even with a
favorable substance such as sodium, damping
effects play an important role under laboratory
conditions. In conclusion we might mention that
Anderson® has computed the small perturbation

1y, C. A. Ferraro, Astrophys. J. 119, 393 (1954).

la P H. Roberts, Astrophys. J. 121, 720 (1955).

2 B, Lehnert, Astrophys. J. 119, 647 (1954); 121, 481
(1?3‘5‘]).‘ W. Dungey, J. Geophys. Research 59, 323 (1956).

1 P, H. Roberts, Astrophys. J. 122, 315 (1955).

BEF, de Hoffman and E. Teller, Phys. Rev. 80, 629
L Helfer, Astrophys. J. 117, 177 (1953).

1 R. Liist, Z. Naturforsch. 8a, 277 (1953).

i: A. Bafios, Jra Phys. Rev. 97, 1435 $1955).

S. Lundquist, Phys. Rev. 76, 1805 (1949).

18 B, Lehnert, Phys. Rev. 94, 815 (1954).
1 N, S. Anderson, J. Acoust. Soc. Am. 25, 529 (1953).
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effects owing to the influence of the earth’s
magnetic field upon compressional sound waves
traveling in a conductor such as sea water.

TURBULENCE AND INSTABILITY

We now turn to the problems of hydromag-
netic turbulence. Their importance in connection
with any satisfactory theory of hydromagnetism
will be obvious from what has preceded. In a
turbulent medium we may expect amplifying
processes based on a velocity shear, as in Fig. 2,
to occur with a certain frequency, on statistical
grounds. This question has been investigated by
Batchelor.®® He bases his ideas on statistical
relationships derived from the magnetic induc-
tion Eq. (5). The formal structure of this
equation is not new; it may be shown? to be
completely analogous to the Helmholz equation
valid in ordinary hydrodynamics for the vor-
ticity, say o:

dw

-a—=VX (VXw)+rVo.
t

(22)

Now a good deal is known about the behavior
of o from experiments in wind tunnels. Batchelor
uses the similarity of Eqgs. (5) and (22) to infer
the behavior of magnetic fields in a turbulent,
conducting medium; to quote him: “It is well
known in the subject of turbulence that on the
average particles of the fluid tend to diffuse
apart and that this process lengthens lines which
move with the fluid. Lines of vorticity do not
move with the fluid exactly when »s0, but
inasmuch as they do so approximately, they
tend to lengthen.” If the same argument is
applied to the magnetic field lines one may
conclude that on starting with a small rms value
of the field this value will increase as a result
of the stretching of the field lines. The analogy
with the vortex lines seems trustworthy enough
when the magnetic field is so small that the
ponderomotive forces exerted by it are negligible
(it is to be remembered that these are quadratic
in the field strength). One may also infer that
owing to the linear character of the differential
equations involved the rate of increase with time

# G. K. Batchelor, Proc. Roy. Soc. (London) 201, 405
(1950).

n'W. M. Elsasser, Phys. Rev. 69, 106, 70, 202 (1946);
72, 821 (1947).
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of the field is exponential, a conclusion first
indicated by Schliiter and Biermann.? Another
highly plausible assumption is that, given this
rapid amplification for small fields, the equi-
librium of hydromagnetic turbulence corresponds
to the equipartition law, Eq. (16). Batchelor's
contention, however, that for the largest-size
eddies the associated magnetic fields must
remain below equipartition, seems open to
question. There are, moreover, limitations to
the dynamical analogy between w and B: For
a given velocity field in ordinary turbulence the
dynamical forces on the fluid are

(v-V)v=0Xv—1V(v?),

whereas in hydromagnetic turbulence the forces
are given by the sum of this expression and the
ponderomotive forces, Eqs. (4) or (18). These
formulas are by no means symmetrical in o
and B.

The further, detailed structure of the turbulent
spectrum depends no doubt on the relative
magnitude of the ‘‘viscosities” » and »,. In
ordinary turbulence the smallest eddy size
(short-wave cutoff of the spectrum) is that for
which the viscous forces become comparable
to the inertial forces. It is plausible that in
hydromagnetic turbulence, if equipartition at
least of the smaller eddies is assumed, the short-
wave cutoff, of the turbulent spectrum is given
by the larger one of the two quantities, » and
vm {Batchelor’s much more radical conclusion
that there can be no magnetic amplification at
all for »,>w» does not seem acceptable without
further justification). Elsasser! has estimated
the ratio v/, for ionized cosmic gases based on
simple gas-kinetic considerations and finds that
if the gas is assumed to be hydrogen,

v/vm=2-10"4a/p, (23)

where « is the degree of ionization, p the density
in mks units. In interstellar gases with their low
density, the value of v/», is very large; that is,
the effect of magnetic diffusivity (e.g., the
Joule’'s heat generated) is entirely negligible
compared to the effects of mechanical viscosity.
In the far interior of stars, on the other hand,
if hydromagnetic fields are present, energy

% A. Schliiter and L. Biermann, Z. Naturforsch. 5a, 237
(1950).
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dissipation is almost exclusively by electro-
magnetic means.

The kinematical properties of a field of
turbulence can be expressed in terms of corre-
lations between the velocities of fluid particles
some distance apart. This method has been
developed in ordinary nonmagnetic turbulence,
expecially by von Karman and Howarth; it has
been systematically extended to the hydro-
magnetic case by Chandrasekhar.® Further work
is due to Lundquist® and an extension of
Chandrasekhar’s theory to compressible fluids to
Krzywoblocki.?® Finally, Lehnert?® has studied
the free decay of hydromagnetic turbulence
subject to the influence of an external, homogene-
ous magnetic field. He finds that in the presence
of such a field the turbulent regime can remain
neither homogeneous nor isotropic. It develops
strongly axisymmetrical properties in that the
Fourier components along the direction of the
field are damped out preferentially, On the
other hand, this influence of the magnetic field
is counteracted, in a rotating system, by a
Coriolis force, provided the axis of rotation is
inclined relative to the magnetic field. On the
basis of his theoretical developments Lehnert
is able to give an explanation of the inhibition
of turbulence in mercury by a magnetic field
observed in the experiments to be reported
presently.

Such experiments were first carried out by
Hartmann?” who let mercury flow down a
channel of rectangular cross section. He found
that under conditions of a turbulent regime the
pressure difference required between the ends
of the channel, in order to maintain a constant
rate of total flow, decreases when the magnetic
field is increased. It is readily understandable
that the presence of a magnetic field should
reduce the amount of turbulence observed; the
forces produced by the field give the fluid an
added stiffness, which is equivalent to an
increase in the effective eddy viscosity. Some-

#S. Chandrasekhar, Proc. Roy. Soc. (London) 204,
435; 207, 306 (1951); see also a forthcoming paper by the
same author in Proc. Roy. Soc. (London) (to be published).

2 5. Lundquist, Arkiv Fysik 5, No. 15 (1952).

%M. Z. E. Krzywoblocki, Acta Phys. Austriaca 6,
157, 250 (1952/3).

28 B, Lehnert, Quart. Appl. Math, 12, 321 (1955).

27J. Hartmann, Kgl. Danske Videnskab. Selskab.
Mat.-fys. Medd. 15, No. 6 (1937); F. Lazarux, #bid.,
15, No. 7 (1937).
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what similar experiments in a rectangular
channel, shaped as a horizontal ribbon, were
carried out more recently by Murgatroyd.?®
Again, the onset of turbulence depends on the
strength of the magnetic field and can be
expressed empirically in terms of certain non-
dimensional parameters, in general agreement
with the theoretical work available. Even at
the highest Reynolds numbers that could be
obtained (R=10%) turbulence could be success-
fully suppressed by a sufficiently strong magnetic
field. Finally, Lehnert® observed a regime of
eddying motions developed in mercury between
a stationary and a rotating cylinder. The torque
between the two cylinders, for a given angular
velocity, increases with increasing field strength.
This is in the opposite direction to what one
would expect on the assumption of a mere
suppression of turbulence. In fact, in one set of
experimental conditions an appreciable decrease
of the torque was observed when the field was
introduced. The magnetic fields used by the
authors quoted above were of the general order
of 10 000 gauss.

Let us return now to the theory. The diffi-
culties in the treatment of any hydromagnetic
problem are the same as those of more con-
ventional hydrodynamics: by and large only
linear problems are open to exhaustive mathe-
matical analysis. There are few of these in
hydrodynamics; one such class is represented by
highly viscous, laminar flow, slow enough so
that the (v- V)v terms in the equations of motion
may be neglected. The Poiseuille and Stokes
formulas of viscous flow are familiar examples.
The technique can be extended to the slow,
laminar flow of a viscous, conducting fluid in a
homogeneous external magnetic field. The case
of viscous flow between two parallel infinite
plates has been treated by Stuart® and the case
of laminar flow in a rectangular pipe by
Shercliff.3

As a rule, of course, the equations of hydro-
magnetism are essentially nonlinear. Lineariza-
tion of such a system of differential equations

28 W, Murgatroyd, Phil. Mag. 44, 1348 (1953).
( ;’slg). Lehnert, Arkiv Fysik. 5, 69 (1952); Tellus 4, 63
1 .
( ;“J.) T. Stuart, Proc. Roy. Soc. (London) 221, 189
1954).
( at ].) A. Shercliff, Proc. Cambridge Phil. Soc. 49, 136
1953).

WALTER M. ELSASSER

means the application of perturbation theory.
The solutions of any perturbation problem are
of two types, either oscillatory about an equi-
librium or stationary state, indicating that the
state is stable, or else increasing in amplitude
as time goes on, indicating that the original state
was unstable. The use of this method in classical
hydrodynamics is well known, for instance for
the determination of the transition between the
laminar and the turbulent regime which occurs
when certain wave modes of the laminar flow
become unstable. For a periodically damped
viscous flow Rayleigh developed a perturbation
technique that permits one to compute the first
appearance of the well-known Bénard cells of
convection in a viscous fluid under the influence
of a temperature gradient. Chandrasekhar ex-
tended these techniques to the hydromagnetic
case in a series of remarkable papers (reviewed
by Chandrasekhar®®). They discuss stability
problems of a conducting fluid in the presence
of magnetic fields as well as of Coriolis forces,
corresponding to the actual situation in astro-
physics. The calculations bear out in a quanti-
tative form the notion that a magnetic field has
an inhibiting effect on the onset of convective
motion; moreover, they lead to other quanti-
tative predictions which could not easily have
been foreseen intuitively. It is rather difficult
to give an adequate account of these beautiful
investigations within the confines of a brief
review such as this where lack of space prevents
us from exhibiting the analytical procedures;
we can therefore only give a rough enumeration
of the results.

The first group of these papers® deals with
the onset of cellular convection of the Bénard
type. In a nonconducting fluid such convection
sets in when the so-called Rayleigh number (a
nondimensional combination containing the
coefficients of heat conduction and viscosity, the
temperature gradient, and the fourth power of
the depth of the layer) exceeds a certain critical
value, in the neighborhood of 1000. If the fluid
is an electrical conductor and a magnetic field
is applied the critical Rayleigh number, R,
becomes a function of another nondimensional

3 S, Chandrasekhar, Monthly Notices Roy. Astron. Soc.
113, 667 (1953).

3 S, Chandrasekhar, Phil. Mag. 43, 501, 1317 (1952);
45, 1177 (1954).
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parameter, Q=B%d?/pr (where d is the depth
of the layer); asymptotically, for large numerical
values of Q and R, they are proportional to each
other. The theoretical predictions have just
received a splendid quantitative experimental
verification by Nakagawa.?

Next, Chandrasekhar®® studied the stability
of a viscous conducting fluid enclosed between
rotating cylinders and subjected to a magnetic
field. Again, the onset of rotational instability
(leading eventually to turbulence) depends on
the magnitude of the parameter Q; the inhib-
ition of instability increases, of course, with in-
creasing Q, the effect being more pronounced
here than in the case of thermal instability.
The same mathematical technique as is used
to analyze the effect of a magnetic field may
be employed to determine the effect on con-
vective stability of a Coriolis force.?® The ef-
fect of rotation is a stabilizing one, the critical
Rayleigh number increasing as function of a
nondimensional parameter T"=4w?d*/»*. Asymp-
totically, for large numerical values, R, becomes
proportional to T%. Still more complicated is the
case where a magnetic field and a Coriolis force
act simultaneously upon the convective layer;
Chandrasekhar® presents extensive numerical
results of such calculations. Some rather curious
phenomena appear as a result of the competition
of these two effects. Perhaps it is best to let
the author himself speak: “For a value of Q
slightly less than 1000 the wave number of the
cells which appear at marginal stability will
suddenly decrease from ¢=18.2 to a=3.4. In
other words, if we start with an initial situation
in which T has the value 10¢ and no magnetic
field is present and gradually increase the
strength of the magnetic field, then at first the
cells which appear at marginal stability will be
elongated; but when the magnetic field has
increased to a value corresponding to Q=1000,
cells of two very different sizes will appear
simultaneously: one set which will be highly
elongated and another set which will be much
less elongated. As the magnetic field increases
beyond this value, the critical Rayleigh number

3#Y. Nakagawa, Nature 175, 417 (1955).

388, Chandrasekhar, Proc. Roy. Soc. (London) 216,
293 (1953).

(1305 g) Chandrasekhar, Proc. Roy. Soc. (London) 217, 306
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will actually begin to decrease. However, for
sufficiently large Q the inhibition due to the
magnetic field will predominate and will take
control of the situation. This is an unexpected
sequence of events and I do not know if one
could have predicted it.”

In the problems of stability just discussed the
fluid is considered as incompressible, apart from
those wvariations of density (usually small)
required to produce convective motion. We
encounter a different type of stability problems
in astrophysics when dealing with highly rarefied
gases, as in the envelopes of stars or in inter-
stellar gas clouds. Here the fluid can change
its shape rather freely; instability then indicates
that an equilibrium configuration will go over
into another one which usually is rather radically
different from the first. Thus Jeans has shown
that ‘a very large homogeneous gas cloud is
unstable under the mutual gravitational attrac-
tion of its parts and will collapse into lumps, a
fact fundamental for cosmogonic speculation. A
given perturbation in such a gas is unstable
when its wavelength exceeds the value ¢(x/Gp)?,
where ¢ is the velocity of sound in the gas and G
the gravitational constant. Chandrasekhar®” has
shown that this stability criterion remains
unaffected by the presence of either a Coriolis
force or a magnetic field.

Consider a rarefied gas in which there prevails
a very strong magnetic field (e.g., in the envelope
of a magnetic star or in the atmosphere above a
sunspot). Now all mechanical forces acting on the
fluid other than the ponderomotive force, Eq.
(4), derive from a scalar potential; hence
hydrostatic equilibrium can prevail only when
Eq. (4) is also the gradient of a scalar. The
differential equation,

(VXB)XB=Vyg, (24)

represents a necessary condition for hydrostatic
equilibrium in the presence of a magnetic field.
Following Lundquist** who first studied such
hydromagnetic equilibrium fields we may trans-
form Eq. (24) by means of the identity (18)
which gives

(B-V)B=Vy, (25)

with ¢ = ¢+3B% It may readily be proved, by

#7 8. Chandrasekhar, Astrophys. J. 119, 7 (1954).
3 S. Lundquist, Arkiv Fysik. 2, No. 35 (1950).
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the way, that the only solution of Eq. (25) for
V¢ =0 is a homogeneous field, B=const. On the
other hand, there do exist nontrivial solutions of
Eq. (24) for Vp=0. These were extensively
investigated by Liist and Schhiiter®® who satisfy
Eq. (24) by setting VXB=aB with « some
scalar function. They assume spherical sym-
metry and find that solutions exist for which the
magnetic field is entirely confined to a shell
between two concentric spheres. A general
solution consists of a set of such spherical shells.
The fluid within any single shell can rotate as a
whole without affecting the other shells. A
somewhat simpler case has been integrated by
Dungey® referring to an atmosphere, the closed
lines of force being confined to a slab bounded
by parallel planes, gravity being normal to
these planes.

A problem which has received considerable
attention is that of the stability of a cosmic
magnetic field having the shape of a cylinder of
infinite length. Lundquist! found that a cylinder
having a helical twist of the field lines will, under
certain conditions, become unstable relative to a
bending motion normal to the cylinder axis.
Chandrasekhar and Fermi% consider such a
cylinder as a model of a spiral arm of a galaxy.
There are three forces acting in a radial direction,
normal to the cylinder axis, namely, the gas
pressure, the magnetic force, and gravity. Using
numerical values for the spiral arm in which
we are located one finds that the gas pressure is a
relatively small fraction of the two other forces,
so that the equilibrium of the interstellar gas in
our spiral arm depends essentially on a balance
of the magnetic forces which tend to expand the
gas laterally, and gravity. If there were no
magnetic field the gas would have collapsed to
the center of the arm and would no doubt have
long since been converted into stars. Thus the
presence of interstellar gas is in itself a strong
theoretical argument in favor of a galactic field
(about 6X10¢ gauss to balance gravity) whose
existence has been deduced from astronomical

observations on the polarization of star light.

(see Part II). Chandrasekhar and Fermi proceed

3 R. Liist and A. Schliiter, Z. Astrophys. 34, 263 (1954).

4 J. W. Dungey, Monthly Notices Roy. Astron. Soc.
113, 180 (1953).

4§, Chandrasekhar and E. Fermi, Astrophys. J. 118,
113, 116 (1953).
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to investigate the stability properties of a long
magnetic cylinder in detail. Such a cylinder is
unstable for all periodic transverse deformations
of the boundary whose wavelength exceeds a
certain critical value. This value depends on
the field strength, the magnetic field having
again a stabilizing influence. Now the spiral
arms of the galaxy show every sign of dynamical
instability, but in the absence of a magnetic
field the calculated lifetime of such a system could
not exceed some 10% years, which is obviously
too short. The assumption of a magnetic field
of the aforementioned magnitude can be shown
to raise this lifetime to some 10° years which is
satisfactory.

We have omitted from our review a number of
theoretical investigations dealing with the modifi-
cations of shape, and of the mechanical oscil-
lations of stars brought about by an internal
magnetic field. This work seems primarily of
purely astronomical interest. As Chandrasekhar®?
has remarked, a magnetic field decreases the
oscillatory stability of a star and hence lengthens
the fundamental period of oscillation. The
periods -of magnetic variables (see Part II) are
as a rule very much longer than one would
calculate for a nonmagnetic star. If this lengthen-
ing was to be attributed entirely to the internal
field, this field would in some cases have to be
very strong indeed (of the order of hundreds of
thousands of gauss).

DYNAMO MODELS

We have yet to come to grips with the one
problem which, while rather arduous and
frustrating from the purely mathematical view-
point, is clearly basic for hydromagnetism,
namely, the question how the observed cosmic
magnetic fields are actually created by amplifi-
catory processes. This is the hydromagnetic
dynamo problem. Expressed in mathematical
form it is essentially nonlinear; no amount of
effort will exhibit the governing features in a
linearized approximation. This being so one
cannot but rely on intuitive, semiquantitative
arguments and one must probably continue to
do so for some time to come. We have already
encountered the process of statistical amplifi-
cation of magnetic fields in a turbulent regime,
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but many of the observed fields are too regular
by far to be explained by random motions.
Some writers have suggested that cosmic
magnetic fields are the remnants of a primeval
field created by some remote cosmogonic
process. This idea is, of course, based on the
very long calculated lifetimes, far exceeding the
age of the universe, in conductors of sufficient
size (a star, an interstellar gas cloud, etc.). It
is true that the origin of the galactic magnetic
fields is still quite obscure. Apart from this case
the assumption of a survival of primeval fields
must be viewed with very great caution since,
as we have mentioned before, the lifetime of
magnetic fields in a fluid is determined, not by
molecular constants but by the rate of turbulent
mixing, and this might reduce the computed
lifetimes by many powers of ten. The interior
regions of the stars are highly quiescent and the
question as to whether a magnetic field could
remain there for a time comparable to the age of
the star is a rather intriguing one. It does,
however, have little direct application to the
case of stellar magnetism most immediately
observed, namely, the magnetic fields on the sun,
particularly in sunspots. While the interior of
the sun is in all likelihood highly quiescent, it is
surrounded by a convective shell. This is known
as the hydrogen convection zone, so named
because as one descends in the layer the tempera-
ture rises to the point where hydrogen is ulti-
mately completely ionized. The progressive
ionization of hydrogen with depth leads to an
increase in the specific heat which can be shown
to engender convective instability. The exact
depth of this layer is not known, but it may
amount to about 15-209, of the solar radius.
There can be no doubt that mixing in this layer
is intense enough to prevent any magnetic
field from surviving for more than a short time
unless maintained by a suitable mechanism.
Objections have been raised against hydro-
magnetic dynamos on general, as it were,
philosophical grounds. They are usually based
on a too rigid interpretation of the conservation
of magnetic flux, as expressed, for instance, by
Cowling’s integral theorem, Eq. (13). One must
be careful in reasoning about the concept of
magnetic “‘lines of force.”” As McDonald® has

#K. L. McDonald, Am. J. Phys. 22, 586 (1954).
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shown in detail, the condition V-B=0 does not
entail that the lines return upon themselves,
or else go to infinity. They can be ‘‘ergodic,”
that is, of infinite length in a finite volume;
they can begin or terminate in any ‘“singular”
point or line of the field defined by B=0. Again,
Cowling’s conservation theorem for the com-
ponent of the flux normal to any surface does not
imply that the amount of flux in a given volume
is constant; it can be increased indefinitely by
the type of shear motion shown in Fig. 2, or its
generalizations to be discussed presently. This
was emphasized by Alfvén®; on the other hand,
as Bondi and Gold* point out, the internal
deformation of an ideally conducting fluid, while
leading to amplification, does not give rise to a
stationary mechanism because in the absence of
dissipation the lines of force get ‘‘tangled up”
without limit. A dynamo theory must therefore
take account of the diffusive smoothing of the
field as an essential part of the model.

The first quantitative study of a dynamo
mechanism was made by Cowling.*® He uses a
greatly simplified geometrical model, assuming
that the lines of force of the magnetic field as
well as the trajectories of the fluid particles are
confined to the meridional planes. The field
created then always remains in the meridional
planes. Cowling was able to prove rigorously that
under these conditions a stationary dynamo
cannot exist. It is likely that this result is a
special case of a more general one which says
that no dynamo is possible when the fluid
motion is essentially two-dimensional, that is
when the particles lying in a certain surface
always remain on that surface. While this latter
statement cannot as yet be rigorously proved
it can at least be made highly plausible.*® It is
analogous to certain arguments in turbulence
theory where it is highly plausible, although
apparently it has not been rigorously proved,
that a fluid with a similar constraint to two-
dimensional motion cannot become turbulent.

It appears, therefore, that highly symmetrical
patterns of fluid motion are not favorable for

4 H. Alfvén, Tellus 2, 74 (1950).

4 H. Bondi and T. Gold, Monthly Notices Roy. Astron.
Soc, 110, 607 (1950).

4% T, G. Cowling, Monthly Notices Roy. Astron. Soc.
04, 39 (1934),

4 See a forthcoming review of the author to appear in
Revs. Modern Phys.
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dynamos since they will tend to result in essen-
tially two-dimensional flows. One can state in
physical terms the conditions that tend to
invalidate the symmetry restrictions and that
correspond to the observed hydromagnetic fields.
The basic principles seem to be the simultaneous
presence of comvection and rotation in a cosmic
fluid. Convection is probably nonspecific; it is
merely the usual agency whereby intense and
rapid motions in the interior of a cosmic fluid are
set up. Now, if convection alone was active
the hydrodynamic regime would be that of
Bénard cells; the fluid particles would describe
closed curves confined to planes, and no dynamo
would result. If the system rotates, the paths of
the fluid particles are twisted into three-dimen-
sional shapes by the action of the Coriolis force;
we shall presently study this mechanism in some
detail. Observation indicates that most magnetic
stars are rapidly rotating objects (see Part II).

Consider now a spherical shell filled with
fluid that is in radial convection (e.g., by heat
developed on the inside) while at the same time
rotating about an axis through the center of the
figure. We shall think of the convection as an
irregular, eddying motion where some fluid
particles move radially outward, others inward.
Now under the action of the Coriolis force, which
expresses nothing but the conservation of angular
momentum, a particle moving away from the
axis of rotation decreases its angular velocity
about this axis, a particle moving toward the

® 0

F16. 3. Generation of toroidal field in a nonuniformly
rotating fluid sphere.

WALTER M.

ELSASSER

axis increases its angular velocity. We may
conclude, without going here through the mathe-
matical analysis, that in a stationary convective
regime there exists a mean gradient of angular
velocity, in such a way that the angular velocity
decreases as we go away from the axis of rotation.

Assume now that a magnetic field, whose lines
of force are originally in the meridional planes,
exists within this nonuniformly rotating fluid.
The. lines of force, being attached to the fluid
particles, will be deformed in the manner shown
in Fig. 3. It appears from the last of these
diagrams that the final result may be represented
as the superposition of two fields, the ‘‘primary”’
whose lines of force are in the meridional planes,
designated as poloidal, and the ‘‘secondary’ or
induced field whose lines of force are circles
about the axis, designated as toroidal.*” This
amplificatory mechanism® can be expressed in
terms of our basic equations (5). In polar
coordinates we have, since v has only one
component, v,,

B, 9B,
VBl — [ VBT,
ot ot
aB, i[9 J
z"‘['—(n’wBr}‘}'._('U¢BO)]+Vm[V2B]w (26)
ot ridr ad

where i, is a unit vector in the ¢ direction and
where, as is well known, the components of
V2B in curvilinear coordinates differ from the
expression V2B,, etc. (They are given, for
instance, on p. 116 of Morse and Feshbach.*)
If we set v,=0 the last equation can be inte-
grated at once, providing B,, By are fixed; the
toroidal field B, then increases linearly with time.
This amplifying mechanism is clearly an appli-
cation of the basic velocity-shear model of Fig. 2.
It constitutes the first step toward a dynamo,
but in itself is not a dynamo as we may see
from the fact that the primary, poloidal field
B,, By itself decays exponentially. If the ex-

47 Poloidal and toroidal fields, explained here only for
rotationally symmetrical fields, are defined more generally
in terms of spherical harmonics by Egs. (30), (31) below.
They are the transverse (divergence-free) solutions of the
vector wave equation, V2A-+%2A=0; they correspond to
the M and N vectors in the terminology of Stratton
[Electromagnetic Theory (McGraw-Hill Book Company,
Inc., New York, 1941){

48 Morse and Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company Inc., New York, 1953).
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ponential solutions of the first two Egs. (26)
are inserted into the last equation, we find that
the toroidal field B, does also ultimately decay,
after an initial amplification, The whole system
might be compared to a radioactive family
consisting of a long-lived mother substance and a
daughter substance of high-energy output. If we
start with the pure mother substance the energy
output of the system will increase until the
equilibrium amount of the daughter substance
has accumulated, but thereafter the output will
diminish gradually as the amount of mother
substance becomes exhausted. The formation of
the toroidal field in the earth as described by
Eq. (26) leads to a number of theoretical
problems, both electrodynamical and geophysical
which have been investigated in considerable
detail by Bullard.® One significant feature of the
toroidal field is that it vanishes in an insulator
or vacuum surrounding the conducting sphere;
it will therefore not show up in measurements
at the earth’s surface.

We have not yet, however, arrived at a
dynamo model; to obtain one we must find a
process which maintains the primary, poloidal
field whose existence, up to now, has been
postulated. Cowling’s result quoted above may
readily be extended to say that no rotationally
symmetrical fluid motion can possibly amplify
the poloidal field if the existing field is any
rotationally symmetrical linear combination of a
poloidal and a toroidal field. We notice here a
rather remarkable topological asymmetry: the
amplification of the toroidal field from the
poloidal primary is a rotationally symmetrical
process, but there exists no reverse to it. It
therefore becomes necessary to consider motions
that no longer are symmetrical about the axis
of rotation: e kydromagnetic dynamo must be
essentially three-dimensional. We therefore search
for a pattern of fluid motion with suitable
asymmetry that is to be superposed upon the
nonuniform rotation generating the toroidal
field. Clearly, this desired pattern cannot essen-
tially depend on the magnetic viscosity v, since
the latter merely tends to smooth out existing
features of the magnetic field but does not create
new ones. We should therefore be able to describe

9 E. C. Bullard, Proc. Roy. Soc. (London) 197, 433;
199, 413 (1949).
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the process in a first approximation by Eq. (14).
This equation admits of an arbitrary scale
transformation for the length L, provided only
we change the scales of V and T correspondingly.
Thus, if motions of this type can be found at all,
it should be possible to construct them on an
arbitrarily small scale. This suggests at once that
we look to the local convective eddies as provid-
ing the required mechanism. Parker® has shown
that not only can the local eddies do this, but
that there are dynamical reasons for the effective
pattern. The essential dynamical feature is again
rotation, the action of the Coriolis force upon
the local motions. Let us conceive of thé con-
vective regime as consisting of a series of streams
of fluid rising radially outward while the re-
maineder of the fluid sinks correspondingly. Now
consider one such rising stream. At its lower
end there must be lateral convergence and at its
upper end divergence of the fluid. Assume for
example’s sake an eddy at the pole where the
stream would be in the direction of the earth’s
axis. As the fluid converges it will be deflected
(to the right in the northern hemisphere) at the
same time it rises and the net result will be a
spiralling motion (Fig. 4). At the top of the
stream the fluid diverges and the Coriolis force,
acting now in the opposite sense will ‘‘uncoil”
the spiral again. If the convective stream is not
along the earth’s axis the geometry of the
spiralling motion will be somewhat more
complicated.

Consider the deformation of the toroidal
magnetic field by such a spiral. This is shown in
Fig. 5 where the axis of the convective stream
is assumed normal to the field lines. We see how
the field lines are lifted and at the same time un-
dergo a circular twist. If the twist is of the order

F1c. 4. Coriolis effect
on locally converging and
rising eddy of fluid.

% E. N. Parker, Astrophys. J. 122, 293 (1955).
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F1G. 5. Creation of a
magnetic loop normal to
initial toroid field by
P means of the type of local
motion depicted in Fig. 4.

of 90° the result is apparent from Fig. 5: a closed
loop of magnetic force in a plane perpendicular to
the original lines has been created. The detailed
mathematical analysis has been carried out by
Parker. It shows that the actual configuration
of the field lines is slightly more complicated,
but the complications will vanish if averaged
over a number of adjacent eddies. The individual
loops will coalesce in a manner to be described
presently. The right sign for amplification of
the poloidal field (regenerative feedback) is
achieved when a rising current is coupled with
the circulation resulting from influx (cyclonic
circulation—in a projection upon the equatorial
plane the sense of rotation is the same as that
of the earth). Clearly, then, the reverse sign
(resulting in degenerative feedback) will apply
when a sinking motion is coupled with an influx.
In order to apply this model to the formation of a
hydromagnetic dynamo it is necessary, therefore,
to introduce a special postulate, namely, that
the convective motions are asymmetrical with
respect to rising and sinking eddies. For anyone
acquainted with the remarkable asymmetries
of motion found in geophysical hydrodynamics
(e.g., in the atmosphere) this will hardly appear
a startling assumption. A number of possibilities
offer themselves for producing such an
asymmetry, but in view of their more or less
speculative character it is hardly interesting to
enumerate them. Now we notice that the
formation of loops suitable for feedback takes
place only when the angle of rotation of the
eddy is less than 180° and is, in fact, not too
far from 90°. To understand that this can be so
we must take into account the mechanical forces
that counteract eddy formation. The most
important among these is the ponderomotive
force set up by the deformation of the toroidal
magnetic field. We have reason to assume that
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this field is quite strong; indeed, the theory
shows that the toroidal field will in general be
appreciably stronger than the poloidal field
inside the fluid; this is due to the facility with
which the toroidal field is amplified by non-
uniform rotation.® If we assume that there is a
geometrical or dynamical difference, or both,
between rising and sinking convective eddies,
then it is fairly easy to account for a differential
effect upon the twisting of the magnetic lines of
force that would make one type of feedback
loop preponderate. In a familiar, crude picture,
the lines of force act like so many rubber strings
that oppose deformation, the force being propor-
tional to the square of the field strength B by
Eq. (4); thus it is easily conceivable that the
effect is sensitive to relatively small differences
in the dynamics of the upgoing and downgoing
eddies. A detailed analysis of such a differential
effect would be rather difficult as the result
depends on a great many parameters.

There arises of course the question of the
stability of such a dynamo. Now when the
toroidal field becomes too strong its mechanical
forces will stop the required twist of the eddies;
they will in fact ultimately stop any convection.
The much more difficult question is what happens
when the field becomes weak. If we assume that
the average twist of the eddies is less than 90°,
then a decrease of the field should lead to an
intensification of the feedback loops and hence
ultimately of the field itself. The conclusion
seems inevitable that a stable dynamo regime is

F1G. 6. Coalescence
of loops to regenerate
poloidal dipole field.




HYDROMAGNETISM. I.

possible only when the toroidal field is strong
enough to reduce the mean twisting of the
convective eddies induced by the Coriolis force
to an angle of less than 90°.

So far we have only discussed individual
feedback loops. The final step of the feedback
process consists in allowing these loops to
coalesce (Fig. 6) so as to form an over-all
poloidal field. Parker® has carried out the
pertinent analysis. To make the problem
tractable he assumed first that the magnetic
loops are numerous so that they can be repre-
sented by a smoothed-out rate of appearance
which will be a continuous function of the
coordinates. It is convenient to represent the
poloidal field by its vector potential where, in
the usual way,

By = VXA. @n

Clearly, in case of rotational symmetry of the
poloidal field, A has only one component, A4,;
we shall write A for short. In terms of 4 a local
feedback loop appears as a “hill” of A. (This
model is in contradiction with the usual assump-
tion V-A=0, but the difficulty disappears as
soon as we average over circles of latitude.)
Hence the assumptions regarding the feedback
mechanism can be expressed by stating that
there are sources of A proportional to the
strength of the toroidal field, say B (short for
B,) with a proportionality factor I' that measures
the rate of creation of loops. Taking into account
dissipation of the poloidal field, we arrive at the
equation,
34

— — V24 =T (r8)B.
ot

(28)

Rewriting the least of Eqgs. (26) in terms of 4
and writing v for v, it becomes

aB

—— V2B = (V) X (VA). (29)
ot

Equations (28), (29) constitute the dynamo
equations. Note that the gradients in Eq. (29)
refer to differentiation in meridional planes;
also, the symbol V? has a meaning slightly
different from the conventional one [designating
here the operation—curl curl applied to a vector
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component as discussed in connection with the
foregoing Eq. (26)]. The dynamo equations
embody our physical assumptions regarding the
amplificatory feedback cycle; they are linear and
their degree of complexity is not such that their
integration would be entirely out of reach of
conventional techniques.

In order to obtain a simple poloidal field
from Eq. (28), Parker assumes I'B =const inside
a sphere of radius R <a, where a is the radius of
the earth’s core, and T'B=0 for R<r<a. This
permits a rigorous solution of Eq. (28) by the
conventional method of development into normal
modes comprising spherical harmonics and Bessel
functions. For reasons of symmetry only dipole,
octupole, and higher terms of odd order will be
present. The result of the calculation is that for
R=a the ratio of the rms values of octupole and
dipole fields at the surface of the core is near
0.15 (corresponding to about 0.045 at the surface
of the earth). If R becomes even slightly smaller
than @, this ratio decreases very rapidly; there
is hence no serious difficulty of explaining by
this model the preponderance of the dipole in
the earth’s poloidal field. We note finally that
the dynamos here described are not stationary
generators, strictly speaking; they are only
stationary in the mean since the individual eddies
must appear and then die out after having
twisted the toroidal field lines by a suitable
amount.

A different approach to the terrestrial dynamo
problem was suggested by Bullard,® elaborated
by Takeuchi and Shimazu® and most exten-
sively by Bullard and Gellman.® The approach
is kinematical; that is, a definite velocity field
is assumed, but not justified by dynamical
arguments. If we set dB/dt=0 and take v as
given, our basic Eq. (5) may be considered as an
eigenvalue problem in B with suitable boundary
conditions at the surface of the conducting
sphere. The method used for integrating Eq. (5)
is that of expressing B as well as v in terms of a
series of orthogonal vector modes of the
sphere.?#” Designating any toroidal mode by a
vector T, any poloidal mode by S, these modes
are defined as follows: Let ¥,,»=P,™(cos#)cosm ¢

8t H, Takeuchi and Y. Shimazu, J. Phys. Earth 1, 1, 57
(1952); J. Geophys. Research 58, 47 (1953).

% E. Bullard and H. Gellman, Trans. Roy. Soc. (London)
247,213 (1954).
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(or else sinm ) be a spherical surface harmonic.
The component of a toroidal mode are

T,"(r)oY,»
(Tnm)ﬂ = R ’
rsind Jde¢

T.m(r)aY,»
, (30)
o0

(Tnm)r =0,

(Tnm)qo: -

4

and the components of the poloidal modes are

n(n+1)
(Snm)rz—‘_"“snm(r) Ynmr
Y
198S.»(r) aY ™
(Sam)g=———— , (31)
r or ad
1 34S.»(r)av,m
(Sn"‘),,,= )

rsind  Or 3,

where T',”(r) and 5,m(r) are as yet undetermined
functions of r.

A fluid motion must now be assumed which
should be as simple as possible but must be
such as to lead to a feedback process. Bullard
found that the simplest such fluid motion
consists of a linear combination of two normal
modes, one of them being of the type T,
representing a nonuniform rotation about the
earth’s axis; the radial function of this was
conveniently taken as a simple algebraic func-
tion T'(r) =r*(1—7r)?, which rises to a maximum
and vanishes at the surface of the sphere. The
second velocity mode must clearly be one that
lacks rotational symmetry, since otherwise no
dynamo could result. Bullard finds that a suitable
choice is S¢?, where again he assumes a convenient
algebraic expression for the radial dependence.
Physically speaking, S,? represents a system of
four radial streams, alternately ascending and
descending, centered about four equidistant
points on the equator. This mode does not in
itself produce feedback from the toroidal into
the poloidal field. The necessary asymmetrical
twist of the field lines is brought about by the
combination of this mode with the nonuniform
circulation T;. The total fluid motion is then
T+ €Ss?, where ¢ is an adjustable parameter.

Next, the magnetic field is developed into a
series of normal modes of the above type. If this
development is substituted into the differential
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equation (5), assuming stationarity, we obtain
an infinite system of coupled differential equa-
tions for the radial functions S,™(r) and T',»(»).
In order to solve this system approximately one
breaks off the spherical harmonic series after
a finite number of terms; this leaves one with a
finite system of differential equations. The
aforementioned authors solved this system
numerically—Bullard and Gellman®? in particu-
lar—by using the large electronic computing
facilities of the British National Physical
Laboratory. The lowest magnetic mode appear-
ing in the solution is of course the poloidal
dipole S;. There are three magnetic modes with
n=2, one of them is the toroidal field of rota-
tional symmetry about the earth’s axis. (The
lowest harmonic component of the toroidal field
is a quadrupole as may be seen by inspection
of Fig. 3: the field has opposite sign in the two
hemispheres.) There are three magnetic modes
with =3 and five modes with n=4, We cannot
describe here the very elaborate calculations
carried out in order to determine the relative
magnitudes and the shape of the radial eigen-
functions in this scheme. There is one quite
serious drawback to this particular approach to a
dynamo theory: the solution of the induction
equation (5) for the stationary case by the
method outlined would prove the existence of
stationary dynamos only if it was ascertained
that the spherical-harmonic series, which
formally solves the differential equations, con-
verges. The numerical evidence is that con-
vergence if any is very slow; efforts to prove
convergence have so far failed.

We now return to the more physically moti-
vated feedback process enbodied in the dynamo
equations (28), (29). Parker® showed that
these equations possess wave-type solutions, the
dynamo waves. Consider a spherical shell thin
enough so that we may neglect curvature and

)
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F1G. 7. Schematic of dynamo waves.
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approximate it by a slab bounded by two parallel
planes. Introduce a Cartesian system of co-
ordinates whose x-axis points east, the y-axis
north, and the sz-axis upwards, normal to the
bounding planes. Let now

B=Boewt%, A=Apgot-t,  (32)

In introducing these into Eqgs. (28) and (29) we
shall assume I' =const and Vo X VA4 =~A,, where
v is another constant. The last equality corre-
sponds, say, to a uniform velocity shear, dv./dz
=const., combined with a linear variation of
Ao, say 8A./dy=const., which latter represents
a poloidal field in the z-direction. On substitution
into Eqgs. (28) and (29) we obtain the charac-
teristic equation (condition that the determinant
of the system vanish) in the usual way, giving

tw+vakt= (Ty)3,

There are no solutions such that « and % are
both real. Thus the waves are exponentially
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increasing, or exponentially damped, with respect
to both ¢ and y; if we let w=w:-iw, we find

k= Vm-é[: (I"Y)&‘I-wg —_ iwlj‘}

representing a wave exponentially increasing in
amplitude while it travels to the south. Figure
7, while not corresponding faithfully to the wave
solution (32), (33), exhibits the physical essen-
tials of the dynamo waves in terms of alternating
strands of toroidal fields together with alternating
sets of poloidal feedback loops. In the dynamo
waves the toroidal and poloidal field have a
phase shift of 90° relative to each other. Parker
has pointed out that such waves are rather
closely akin to what we observe in the solar
convective zone during a sunspot cycle where
the magnetic field migrates systematically from
higher to lower heliographic latitudes. Thus the
dynamo waves seem at least the beginning of an
ulterior theory of the sunspot cycle; we shall
revert to them when we discuss the observations
on solar magnetic fields in Part II.

(33)

Practical Aids for Physics Teachers

My Most Successful Experiment in Teaching Physics

All old teachers have “tricks of the trade'” which seem
to make for success. In the hope of spurring others to
recount their experiences, I shall describe my own most
successful experiment in teaching physics.

About a month before the end of the academic year the
students in my course in general physics would be briefed
on the “Information Please’” climax of the course to be
held at the last lecture period. They were asked to hand in,
a week before the end of the course, five written guestions
on the physics of daily life. These should not be mathe-
matical, “catch questions,” nor impossibly difficult (e.g.,
“explain gravitation), and not directly answered in their
text. The ideal question would be one about which the
student had thought and in whose answer he was really
interested. It is obvious that the search for good questions
required reviewing and thinking over the entire course and
might well be the most worthwhile exercise of the entire
year. A good proportion of the questions submitted over
the years were interesting—some of them exceedingly
interesting.

These 500 or more questions were read—preferably by
the assistants in the course—and the best 25 placed in a
sealed envelope.

On coming to the last lecture the students would find
the stage all set, with a Master of Ceremonies, a Registrar,
and four comfortable chairs for the ‘‘Guest Artists.”

These were filled by the four best students of the year as
their names were announced.

The Master of Ceremonies would then open the sealed
envelope and read the first question: John Smith wants to
know “why are clouds white and the sky blue?"” The
Registrar at once noted that John Smith’s question was
one of those accepted, and this fact gave him an additional
point (or similar small credit) on his semester’s grade.

The question was first passed to our ‘‘guest artists,”
and if they were unable to answer it I would take a try
at it myself. In the, possibly, one question in four, which
none of us could answer satisfactorily in my opinion, John
Smith got en additional point—amid echoing cheers! This
put a premium on ingenious and carefully thought-out
questions.

The interest of the students was always greatly aroused.
In case this was put on a few days before the end of the
course they would talk of nothing else in the remaining
class sessions, and these practically had to be devoted to
rehashing the whole matter. In view of the remarkable
and continuing interest of the public in radio and T.V.
quiz programs it would seem quite natural to take a leaf
from the books of the program arrangers, and this is, of
course, just what has been done here.

L. R. INGERSOLL
University of Wisconsin



