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Figure IV-69. Summary of earth parameters determined or used in this study.
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Figure III-16. Viscous Decay Spectrum (Uy(rg, 1) v.s.1) for a uniform 107 poise
earth with Vpy, everywhere zero. The surface load is assumed redistributed at 1 = 0.
Elastic and density profiles were taken to correspond to the HB, model (see Figure
[11-13). This model is designated Model #1 in Table IV-1 and is also described there.
Notice that the decay of the n = 4 and 5 harmonics are faster than the lower order
harmonics after about 4000 years. Total displacement U{r) is the sum of this dis-
placement U (r., 1) and the elastic displacement, Ug(rg, 1), which is not shown.
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Figure I1I-8. The response of a homogeneous viscous sphere with an inviscid core
to surface loading (at 1 = 0) with a P, harmonic. Surface displacement from ultimate
equilibrium Ag — U,(r;) and negative core displacement — Ui(r.) is shown. The surface
displacement from equilibrium for the case of a homogeneous viscous sphere with no
inviscid core is also shown for comparison. Boundary conditions were, at any instant:
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Figure IV-26. The decay spectra for various earth models compared to geological data.
The order number of a load harmonic is plotted versus its decay time for each model. A
uniform viscous half-space would be an approximately straight line with a slope of +1
(see equation III-17). A thin channel has a spectrum which also plots on an approxi-
mately straight line but with a slope of —0.5. (see equation III-25). Lines are ap-
proximately straight because decay time is plotted versus order number rather than wave
number. The low-order number values were computed using the full spherical self-
gravitating viscoelastic earth model. Below n = 7 self-gravitation and sphericity become

important. - is the factor by which isostatic adjustment is reduced by the lithosphere’s
(24

rigidity. The most important points to be drawn from this diagram are: (1) McConnell’s
Fennoscandian data require either a very thick lithosphere or an upper mantle low
viscosity channel (probably require some low viscosity channel); (2) The Fennoscandian
data require a lower mantle of < 10 poise viscosity, and (3) Greenland and Lake
Bonneville require a lithosphere with flexural rigidity less than about .5 x 107* N-m.
A low viscosity channel 4 x 10% p and 75 km thick would have a diffusion constant of
3.6 km:/year (see equation I'V-19).
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Figure IV-52. Schematic portrayal of uplift behavior of deep flow (uniform viscosity)
and channel flow models. Note that the behavior of peripheral areas (curves marked C)
are diametrically opposite to one another.
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0 7,000 (Canadian ice cap sized) with square edges
A /-"”z‘?;i"h . . A =
0.00 = ———=== was placed on an infinite viscous channel of

the indicated thickness overlain by a litho-

sphere with flexural rigidity 50 x 10%% N-m

(ie. an $8km elastic layer with Youngs

modulus 8.34 x 10! dynes/cm?) for 20,000

years and then removed. The time of removal

. Fy Lithosphere 50 x 1023 N-m is_as_sumcd to be 10,000 years before present.

40001 S P Load Cycle 20.000yrs Uplift profiles are given every 1000 years

Ol BGOOLm 1022 p from 10,000 BP to present. The deep flow

e — phenomena of peripheral uplift followed by

! ; el S subsidence are evidenced in the last case

-60.00————— where the ‘channel thickness is equal to that
10,000 : o

of the entire mantle. For convenience the

channel diffusivities are also given in km?,
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Figure IV-50. Uplift cross-sections at various times after the sudden removal of a

heuristic Canadian-sized glacial load that has attained isostatic equilibrium on a uni-
27 . " A % .

form 10-" poise mantle (Model #1). A trough associated with the restriction of flow

1o

the mantle by buoyant forces at the core-mantle boundary is apparent outside the

positive peripheral uplift. The initial viscous uplift is not as rapid as might be thought
from the figure since there is about 140 m of immediate elastic uplift following load re-
moval. This initial elastic uplift is recovered as uplift proceeds and acts to slow the rate

of

uplift observed.
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Figure IV-1. Perspective view of the worldwide isostatic adjustment predicted by Model
#1! (1{)23 p mantle) to follow the Wisconsin load redistribution (§1V.A.4).  Continents
are dotted.  Uplift contours are every 100 m starting at zero. Times for each figure
are in thousands of years BP. This figure shows the uplift in formerly glaciated areas,
the sinking of the loaded ocean basins and an initial uplift of Australia followed by
sinking. indicating that the continents can act as temporary depositories for mauntle
material squeezed out from under the loaded oceans,
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TIDAL RECORDS EASTERN SEABOARD
QUEBEC MAINE CHESAPEAKE BAY GEORGIA FLORIDA
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records and Great Lakes
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Figure IV-42. Present rate of submergence of east coast of North America inferred by
Walcott from data of Hicks and Shofnos (1965) and Dohler and Ku (1970). Data are tied
into uplift data for Great Lakes, and the rate of submergence profile is drawn by
inference from the history of sinking. A recent eustatic rise of sea level of 1.5 mm/year
is assumed. The figures, reproduced with the author’s permission, are from R. . Walcott,

w® oz P ' g 1A - 074 - 10T ks tha A mmariaan (tannhieical Tlnian



— RATE OF UPLIFT [mm/yr]

-

/ i
{ |/ LMIToF

/ sauapg |
/| EDGEDicE | LI
HAe < f"\.m{FT F FILTERED

SQUARE EDGED GLACIAL
LOAD WHOSE BORDER 1S
45 LONGITUDE CIRCLE

i
LOW VALUES OF WISCONSIN
SEA LEVEL (-130m) DBSERVED
BY EMERY AND GARRISON
(SEE FIGURE IV-24}

\J LimiT OF 1000%8 o

- pERIPHERALBY

u

The effect of filtering in smearing the heuristic Canadian glacial lpqd
e sudden removal of the heuristic

{ North America.

Figure IV-51.
and the extent of positive uplift 1000 years after th
T Canadian ice load of Figure IV-50 are shown on a2 map 0

MODEL NO. 1

— Geologically Observed
Present Rate of Uplift
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I¥ North)

Figure IV-57a. The rate of sinking inferred from present tidal trends along the east
coast of the United States is compared to the rate of uplift predicted by Model #1' at
T'Moder = Oand =2 K.BP. The present rise of eustatic sea level is assumed to be 2 mm/
year. The observed rate of uplift curve is from Dohler and Ku (1970) and Hicks and
Shofnos (1965) via Walcott (1970) and 1s shown in Figure IV-42, The calculated curves
are plotted for locations shown in Figure IV-54. Inshore and offshore locations are
plotied and connected by a line. It can be seen that agreement between the predicled
rate of uplift (particularly al Tyede = —2 KBP) and that observed is strikingly good.
The agreement both in magnitude and shape is nearly perfect if the geological curve is
shifted down .4 mm/year suggesting the present rate of rise of eustatic sea level is about
2.4 mm /year. Conventions for the figures that follow are the same as for this figure.
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Figure IV-69. Summary of earth parameters determined or used in this study.
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