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Precipitation in southern Africa displays a notable 
zonal gradient (south of about 15°S there is a 
dominant contrast between dry west and wet 

east) and is characterized by a pronounced annual 
cycle as well as high interannual variability (e.g., 
Lindesay 1988; Nicholson and Kim 1997; Nicholson 
et al. 2018). During austral summer the complex 
large-scale monthly precipitation pattern in southeast 
Africa is strongly guided by the Hadley circulation 
(Cook 2005) and movement of the associated main 
tropical cloud and rainband (Schneider et al. 2014; 
Nicholson 2018), also referred to as the south Indian 
Ocean convergence zone (Cook 2000; Hart et al. 2010; 

Barimalala et al. 2018). The main rainband of stron-
gest tropical precipitation reaches the southernmost 
climatological position across parts of Madagascar, 
Mozambique, Malawi, Zimbabwe, and Zambia in 
February (see Figs. ES2 and ES3 in the online supple-
mental material; Tyson and Preston-Whyte 2002; 
Reason 2017).

In February 2018, the main tropical rainband 
moved much farther south and led to anomalous 
high rainfall over central and southern Mozambique, 
Zimbabwe, and southern Zambia (Figs. 1a–f and 
Figs. ES1a–c), which resulted in significant socio-
economic impacts in the region (e.g., f looding was 
reported in parts of Lusaka, Zambia, and f loods 
in Manica province, Mozambique, triggered the 
country’s emergency response). This study addresses 
whether and to what extent anthropogenic climate 
change has altered the likelihood of this large-scale 
high precipitation event in February 2018 to occur by 
applying a multi-method event attribution approach 
(National Academies of Sciences, Engineering, and 
Medicine 2016; Otto 2017).

EVENT DEFINITION AND OBSERVA-
TIONAL RESULTS. First, to establish the spatial 
extent of the high precipitation event of interest, we 
use multiple high-resolution gridded satellite-era 
products. Figures 1a–c (and Figs. ES1a–c) show Feb-
ruary 2018 total precipitation in such three analyses 
commonly used for monitoring of droughts and 
f loods. Furthermore, Figs. 1d–f show the strong 
positive precipitation anomalies in February 2018, 
with variable spatial extents in different datasets in 
subtropical southern Africa (south of 15°S). To get 
a detailed spatial definition of this large-scale event 
to envelop the large anomalies in monthly precipita-
tion (above 150 mm), we define the region “MZZ” as 

ON HIGH PRECIPITATION IN MOZAMBIQUE,  
ZIMBABWE, AND ZAMBIA IN FEBRUARY 2018

Neven S. Fučkar, Friederike E. L. Otto, Flavio Lehner, Izidine Pinto,  
Emma Howard, Sarah Sparrow, Sihan Li, and David Wallom

This multi-method study of high precipitation over parts of Mozambique, Zimbabwe, and parts  

of Zambia in February 2018 indicates decreased likelihood of such events due to climate change,  

but with substantial uncertainty based on the used observations and models.
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encompassing provinces where significant positive 
anomalies are present in at least two of the satellite-
era analyses shown in Figs. 1d–f: Gaza, Inhambane, 
Manica, and Sofala provinces in Mozambique; all of 

Zimbabwe; and Southern and Lusaka provinces in 
Zambia (red contour in Figs. 1d–f), covering about 
0.78 M km2.

We utilize three long-term gridded in situ datasets 

Fig. 1. The top panels show February 2018 total precipitation in the southern Africa from (a) UCSB CHIRPS 
v2.0 (0.05° resolution, available from 1981; Funk et al. 2015), (b) UR TAMSAT (4-km resolution, available from 
1987; Maidment et al. 2014), and (c) NASA TRMM 3B43 (0.25° resolution, available from 1998; Huffman et al. 
2010). The second-row panels show the associated February 2018 precipitation anomaly (with respect to the 
1998–2018 climatology) from (d) CHIRPS v2, (e) TAMSAT v3, and (f) TRMM 3B43, and outline the MZZ region 
(red contours). (g)–(i) CRU TS v4.03 (0.5° resolution), GPCC v2018 (0.5°/1° resolution), and NOAA PREC/L 
(0.5°/1° resolution) February total precipitation averaged over the MZZ region as a function of NASA GISS 
global mean surface temperature (GMST: Hansen et al. 2010), respectively, and Gaussian or GPD (using the 
highest 20% values) scale fits. The red lines show fit mean µ, µ+σ, and µ+2σ as function of GMST (4-yr running 
mean). (j)–(l) The return time plots of February MZZ precipitation with Gaussian, GPD (using the top 20%), 
and Gaussian scale fits (current/2018 climate in red vs 1901 climate in blue) in CRU TS v4.03 (Harris et al. 2014), 
GPCC v2018 (Schneider et al. 2018), and NOAA PREC/L (Chen et al. 2002), respectively (green lines show the 
2018 event level in different long-term precipitation datasets). The red and blue lines show the mean and 95% 
confidence interval (CI; based on 1000-member bootstrap) for Gaussian or GPD scale fits.
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to determine the return time of the February 2018 
total precipitation averaged over the MZZ region. 
February 2018 MZZ precipitation in the Climatic 
Research Unit (CRU) TS v4.03 (177 mm), the Global 
Precipitation Climatology Centre (GPCC) v2018 
(230 mm), and NOAA’s Precipitation Reconstruc-
tion over Land (PREC/L) (173 mm) appears to be 
less intense than in three used satellite-era datasets 
[Fig. ES1: 333 mm in the Climate Hazards Infrared 
Precipitation with Stations (CHIRPS2), 284 mm in 
Tropical Applications of Meteorology using Satel-
lite and Ground‐Based Observations (TAMSAT3), 
and 287 mm in the Tropical Rainfall Measuring 
Mission (TRMM) 3B43] since it has the 35th rank 
(out of 118 years), the 15th rank (out of 119 years), 
and the 21st rank (out of 72 years), respectively. The 
generalized Pareto distribution (GPD; Coles 2001) is 
a well-established choice for statistical modeling of 
extreme occurrences over high thresholds (Davison 
and Smith 1990). We utilize the GPD as a limiting 
high-tail distribution of precipitation and in the 
widest range it is commonly fit in the top 20% of 
distribution. However, February 2018 MZZ precipi-
tation levels in CRU TS and NOAA PREC/L are just 
barely in the top 30%, and at these observed levels a 
more suitable fit is the Gaussian distribution. Hence, 
to get the return period of this event in CRU TS and 
NOAA PREC/L (GPCC) we fit a Gaussian distribu-
tion (a GPD to the top 20% values) whose parameters 
scale with a 4-yr smoothed NASA GISS global mean 
surface temperature (GMST) [for scale fit methodol-
ogy see, e.g., Philip et al. (2018), Otto et al. (2018a), 
and the supplement]. Only NOAA PREC/L shows a 
statistically significant negative linear trend (95% 
confidence level) of −3.6 mm (0.1°C of GMST)−1 with 
p = 0.007 (Figs. 1g–i), while it has a temporal trend of 
−5.2 mm decade−1 with p = 0.012. The mean return 
time of the event in CRU TS, GPCC, and NOAA 
PREC/L is 5, 20, and 9 years, respectively (Figs. 1j–l), 
so for the event definition we use a combined (and 
rounded) return time of 10 years (i.e., having 10% 
chance of occurring in a year). The 2018 versus 1901 
probability (or risk) ratio in CRU TS and NOAA 
PREC/L based on a Gaussian scale fit with GMST is 
0.63 [95% confidence interval (CI): 0.18, 1.45] and 0.27 
(95% CI: 0.08, 0.71), respectively, while in GPCC based 
on a GPD scale fit with GMST is 0.40 (95% CI: 0.02, 
48.68), where the 95% confidence interval is estimated 
from 1000-member nonparametric bootstrap. This 
probability ratio (PR) is the ratio between the occur-
rence probability (reciprocal return time) of the event 
under 2018 conditions (i.e., today’s climate) divided 
by the occurrence probability under 1901 conditions 

(i.e., a historical climate approximately close to pre-
industrial conditions).

MODELING RESULTS. We use large (≥10 mem-
bers) and very large (>100 members) ensemble simu-
lations with comprehensive (i.e., general circulation) 
climate models to assess whether and to what extent 
anthropogenic climate change modified the likeli-
hood of this event following established methodology 
(e.g., Philip et al. 2018; van der Wiel et al. 2017; van 
Oldenborgh et al. 2017). To verify that we are using a 
suitable model for event attribution we assess whether 
it can reproduce key statistical aspects of the observed 
distribution; to that end we focus on the coefficient of 
variation σ/µ (the standard deviation over the mean) 
from long-term in situ observations. The value of σ/µ 
in CRU TS, GPCC, and NOAA PREC/L is 0.41 (95% 
CI: 0.34, 0.49), 0.44 (95% CI: 0.35, 0.53), and 0.35 (95% 
CI: 0.27, 0.45), respectively, so we require of models 
to have the mean coefficient of variation between 
0.27 and 0.53 (Fig. ES4). We use as event definition 
the return period of 10 years in today’s climate for a 
February total precipitation averaged over the MZZ 
region instead of a specific precipitation level to ad-
just for mean biases across climate models (e.g., Otto 
et al. 2018b). In other words, for each model the 10-yr 
return time corresponds to a slightly different total 
precipitation level.

First, we use weather@home2 (w@h2)—the region-
al atmosphere–land model HadRM3P with a southern 
African domain (50-km resolution) nested in the 
global atmosphere–land model HadAM3P (CMIP3 
generation)—through the distributed computing 
system climateprediction.net (Guillod et al. 2017). In 
this study, we utilize 658 members of actual (factual/
historic) February 2018 HadRM3P simulations (using 
observed SST, sea ice, greenhouse gases, and aerosol 
forcings), and 658 members of natural (counterfactual) 
February 2018 simulations that uses pre-industrial 
SSTs and sea ice (Schaller et al. 2016) as well as green-
house gases and aerosols. The σ/µ value in both actual 
and natural HadRM3P ensemble simulations is 0.39. 
Direct comparison of these two ensembles, without 
using a scale fit with GMST, yields a PR of 1.21 (95% 
CI: 0.80, 1.83) for the event of interest with the return 
period of 10 years in 2018 actual climate (Fig. 2a, where 
the 95% CI is estimated by a 1000-member bootstrap).

Then we turn our attention to six fully coupled 
climate models (CMIP5 and CMIP6 generations), 
all with adequate σ/µ, and analyze their historical 
ensemble simulations (see the supplement for model 
details and Fig. ES4). We fit a GPD that scales with 
4-yr smoothed GMST to the top 20% of February 
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MZZ precipitation to obtain the following 2018 versus 
1901 probability ratios for the adjusted precipitation 
levels that match the return time of 10 years in 2018 
(Figs. 2b–g):

1)	 16 ensemble members of EC-Earth2.3 (σ/µ = 
0.32): PR = 0.94 (95% CI: 0.27, 2.05).

2)	 30 ensemble members of CSIRO-Mk3.6 (σ/µ 
= 0.50): PR = 0.78 (95% CI: 0.51, 1.27).

3)	 10 ensemble members of MIROC6 (σ/µ = 
0.38): PR = 0.74 (95% CI: 0.41, 4.58).

4)	 40 ensemble members of CESM1-CAM5 (σ/µ 
= 0.41): PR = 0.68 (95% CI: 0.36, 1.01).

5)	 20 ensemble members of GFDL-CM3 (σ/µ = 
0.36): PR = 0.66 (95% CI: 0.21, 1.07).

6)	 10 ensemble members of CNRM-CM6.1 (σ/µ 
= 0.48): PR = 0.51 (95% CI: 0.26, 1.48).

SYNTHESIS AND CONCLUSIONS. We per-
formed a multi-method event attribution using three 
satellite-based and three long-term station-based 
monthly precipitation analyses along with seven 

Fig. 2. (a) The return time plot of actual (658 runs) and natural (1749 runs) HadRM3P (weather@home2) simula-
tions for this high total precipitation event in February 2018 averaged over the MZZ region (with 10-yr return 
time). The red and blue shadings show the 95% CI (based on 1000-member bootstrap). (b)–(g) The return 
time plots of 16-member EC-Earth2.3 1901–2018, 30-member CSIRO-Mk3.6 1901–2018, 10-member MIROC6 
1901–2014, 40-member CESM1-CAM5 1920–2018, 20-member GFDL-CM3 1920–2018, and CNRM-CM6.1 
1901–2014 simulations, respectively (a GPD scale fit used the highest 20% of February values to estimate the 
probability ratios). The red and blue lines show the mean and 95% CI (based on 1000-member bootstrap) for 
GPD scale fits. (h) Synthesis (purple bar) of the results of our multi-method approach as the probability ratio 
with 95% uncertainty interval based on the unweighted average (geometric means) of three used long-term 
observations (lime bars) and seven available climate models (orange bars).
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climate models to examine the change in likelihood 
of the February 2018 high precipitation averaged over 
the MZZ region in southern Africa due to anthropo-
genic forcings. The overall PR result is illustrated by 
the purple “synthesis” bar in Fig. 2h, which shows the 
unweighted average (based on geometric means) of 
0.63 (95% CI: 0.22, 2.11). The mean PR—indicating 
that such a high precipitation event has most likely 
become 37% less probable—is consistent with the 
expected poleward expansion of the Hadley cells and 
drying over southern Africa due to the global climate 
change (e.g., Ma et al. 2018; Munday and Washing-
ton 2019); however, the 95% CI of PR is substantial. 
More specifically, the PR could be ≥1 and thus en-
compasses the possibility of no significant change or 
even an increase in the probability of this event. In 
this attribution study, we do not aim to discriminate 
between the daily processes leading to such a large-
scale monthly event. While extreme precipitation 
in the MMZ region is sometimes associated with 
intense tropical cyclones from the Indian Ocean, 
such as Idai in March 2019 and Eline in February 
2000, this was not the case in February 2018, as no 
tropical cyclones made landfall that month [Météo 
France Regional Specialized Meteorological Center 
(MFR/RSMC) La Reunion]. Based on CHRIPS2 
daily data February 2018 high total precipitation 
arose from 12 heavy large-scale daily rainfall events 
over the MZZ region. Furthermore, an analysis of 
tropical low tracks (Howard et al. 2019) in the ERA5 
(Hersbach et al. 2018) and MERRA-2 (Gelaro et al. 
2017) reanalyses shows that about 55% of this high 
daily precipitation occurred in association with an 
eastward migration of continental tropical lows into 
Mozambique during 8–13 February 2018 and 16–22 
February 2018.
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