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Despite a robust theoretical understanding of changes in the 
global hydrological cycle, it has been challenging to reduce 
the uncertainties in regional-scale hydrological projections1. 

Much of this uncertainty arises from scientific and observational 
gaps in describing the climate system and representing it in climate 
and Earth system models (collectively called ESMs here). Whereas 
long-term terrestrial warming is an expected outcome from increas-
ing greenhouse gas concentrations (Fig. 1a), precipitation changes 
are more uncertain at regional scales (Fig. 1b) which are critical for 
determining future water security. For example, in the Columbia 
River basin of the Pacific Northwest United States, 90% of CMIP5 
models project an increase in precipitation in response to warm-
ing. For a regional warming of approximately 2 °C, the multi-model 
mean change (the signal) is +3.5%, but the standard deviation 
across individual model projections (the noise) is 3%, yielding a low 
signal-to-noise ratio (S/N, indicated by stippling in Fig. 1b). In parts 
of the Upper Colorado River basin, CMIP5 models do not even 
agree on the sign of projected precipitation changes (indicated by 
hatching in Fig. 1b).

Although future changes in precipitation are important, long-
term changes in surface water availability (principally runoff; here 
runoff is precipitation minus evapotranspiration, ET) are arguably 
more relevant for future water security assessments. Warming in 
the western United States has been linked to an increased probabil-
ity of a decline in runoff due both to increased ET and to earlier 
snowmelt-driven runoff2–6. However, increased ET and increased 
precipitation might balance each other, especially for low to moder-
ate future warming scenarios7,8. As a result, uncertainty in projected 
runoff is even larger than uncertainty in precipitation in many 
regions (compare hatching in Fig. 1b and c).

Increased uncertainty in runoff relative to precipitation arises 
partly from uncertainties in representing the land surface partition-
ing of precipitation, runoff and ET, a dynamic often characterized by 
a metric called runoff efficiency—the fraction of precipitation that 
becomes runoff (Fig. 1d). Runoff efficiency generally shows more 

widespread projection uncertainty than precipitation or runoff  
(Fig. 1d). Exceptions are regions such as parts of the southwestern 
United States and other semi-arid regions where a combination of 
warming, snowpack declines and future vegetation greening com-
bine to robustly partition precipitation away from runoff towards 
ET9. Even so, many of the regions with robust declines in runoff effi-
ciency have average changes that fall within one standard deviation 
of the ensemble spread (Fig. 1d). In current streamflow forecasting 
systems, runoff efficiencies are often assumed to be constant, but 
several recent studies have identified changes in runoff efficiency as 
a risk to water resources10,11. Narrowing uncertainty in the change in 
runoff and runoff efficiency is thus crucial.

Uncertainty in hydroclimate projections has persisted over several 
generations of coupled climate models12, yet ESMs have progressed 
in resolution and process-level detail. Since the early 2000s, ESM 
land modelling schemes have evolved to include detailed hydrologi-
cal modelling approaches, incorporating more physically motivated 
parameterizations of processes for snow, vegetation and terrain influ-
ences, and towards greater capacity for representing subgrid hetero-
geneity in hydrologic processes13–16. The increasing realism of ESMs 
coupled with ever finer model resolution has led to the direct use of 
ESM hydrological fields as a basis for studying water security and 
climate change impacts17–20, which is likely to continue with CMIP6.

Yet ESMs have substantial regional biases in quantities such as 
temperature, precipitation, ET and runoff. These biases stem from 
errors in simulated atmospheric circulation and microphysics, 
coarse spatial resolution affecting orographic processes, and local 
hydrological and ecological processes. To make useful statements 
in the face of these biases, most ESM-based climate impact stud-
ies resort to using relative changes rather than absolute changes 
projected by ESMs18,21,22, or—historically more common—to down-
scaling and bias-correcting ESM climate outputs for indirect use in 
uncoupled hydrological model simulations23–25.

Critically, when using projected absolute or relative changes 
from an ESM, it is assumed—often without explicit testing—that 
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a model’s sensitivity to climate change is trustworthy despite biases 
in the mean states and fluxes26. In the context of runoff projections, 
there are at least two key sensitivities for which this assumption 
is typically made: the precipitation sensitivity of runoff (some-
times termed ‘runoff elasticity’; for example, ref. 27), defined as the  
per cent change in runoff induced by a 1% change in precipitation 
(ΔQ/ΔP); and the temperature sensitivity of runoff, defined as the 
per cent change in runoff for a 1 °C change in temperature (ΔQ/ΔT).

Previous studies have quantified regional runoff sensitivities in 
CMIP models, demonstrating wide inter-model spread in sensitivi-
ties but consistency in model behaviour across emissions scenar-
ios and model generations19,28. In uncoupled configurations, land 
models have received ample scrutiny and tuning in an operational 
context, such as the National Land Data Assimilation System29,30. 
However, calibration of an uncoupled land model to present-day 
observations does not always guarantee more reliable results in 
coupled simulations (owing to the strong influence of coupling on 
simulated climate31) or in out-of-sample cases (for example, future 
climate). Realistic behaviour of physically based fully coupled mod-
els would thus offer advantages32. To the best of our knowledge, 
no systematic effort has been made to assess the credibility of the 
regional runoff sensitivity in coupled ESM simulations. Runoff sen-
sitivities in ESMs are rarely explicitly tuned, offering an opportunity 
to develop an observational constraint independent of calibration 
efforts. Such a constraint should be grounded in hydrological the-
ory and would ideally operate similarly on multiple time scales (for 

example, interannual and decadal), thus adhering to established 
rules of observational or emergent constraints that rely on the fluc-
tuation–dissipation theorem33.

In this Perspective, we aim to explore regional runoff sensitivity 
biases in ESMs, highlight their importance for runoff projections 
and illustrate the potential for reducing uncertainty in future runoff 
projections. We advocate for caution when using ESMs for regional 
runoff projections and for incorporating sensitivity metrics in land 
surface model evaluation and development.

Our study focuses on three river basins in the western United 
States, motivated by their contrasting hydroclimate regimes and the 
availability of high-quality observations (see Methods). The Upper 
Colorado River and the Northern Sierras, for example, straddle a 
latitude at which future precipitation changes are highly uncertain, 
yet the two basins have different vulnerability of the snowpack 
to warming, owing to their different elevations34. In contrast, the 
Columbia River covers a higher latitude in the northwestern United 
States, at which there is a stronger climate model consensus that pre-
cipitation will increase with warming. Despite the regional focus, we 
argue that the framework for understanding model biases in runoff 
sensitivity presented hereafter has implications for and applicability 
to global modelling efforts.

Model mean and sensitivity biases
Biases of factors of 2–3 are common among state-of-the-art ESMs 
for water year (October–September) absolute precipitation and 
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Fig. 1 | Projected changes in temperature, precipitation, runoff and runoff efficiency. a, Temperature change; b, precipitation change; c, runoff change;  
d, runoff efficiency change. The maps show the differences of water-year mean in 2000–2058 relative to 1950–2008 (corresponding to approximately 2 °C 
warming across the study basins, outlined in blue) from the CMIP5 model projections under a high-emissions scenario (RCP 8.5). Hatching indicates where 
<67% of the models agree on the sign of change. Stippling indicates where the multi-model mean change signal is less than one standard deviation of the 
inter-model spread of the 2000–2058 mean (signal-to-noise S/N <1).
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runoff in the three focal basins over the historical period of 1950–
2008 (Fig. 2a,c,e; see Methods for data and model description). 
The covariances in relative precipitation and runoff look similar to 
observations (Fig. 2b,d,f), which might instil confidence in the mod-
els’ representation of runoff sensitivities. A closer look, however, 
shows that even in relative space, the models display a wide range of 
relationships between precipitation and runoff (as measured by the 
regression coefficient; insets in Fig. 2), some clearly different from 
the observed relationship. Despite the focus on precipitation and 
runoff here, it is important to keep in mind that in basins like the 
Colorado, where ET is approximately 85% of precipitation, small 
model biases in ET can have large consequences for biases in run-
off. Since ET is difficult to observe, it has become common practice 
to use temperature as a proxy for ET when developing multivariate 
models for runoff sensitivity.

We characterize runoff sensitivities using multiple linear regres-
sion of the form Q = a∆P + b∆T + c(∆P∆T) +e, where a and b are 
estimates of the precipitation and temperature sensitivity, respec-
tively, ∆P and ∆T are precipitation and temperature anomalies, 
(∆P∆T) is an interaction term and e is the residual (see Methods). 
We do not present this formulation as an authoritative definition 
of runoff sensitivities, and we acknowledge that other formulations 
are valid and informative35, including theoretical frameworks that 
provide an energetics perspective and incorporate interannual stor-
age36, results from sensitivity experiments with offline land surface 
model simulations37,38 and factual–counterfactual simulations with 
atmosphere–land-only models39. Because our goal is to demonstrate 
the bias and spread of sensitivities in coupled ESMs, the choice of 
sensitivity metric does not alter the study’s findings as long as the 
definition is physically reasonable and applied consistently across 
models and observations. There are other known uncertainties in 
estimating runoff sensitivities, such as the regression itself relating to 
the length of record for which the sensitivity is calculated, the obser-
vational datasets used, and internal climate variability. Generally, all 
of these sources of uncertainty are important, and it is worth not-
ing that formulating a unified and robust method to estimate runoff 
sensitivities is an active area of research36,39,40. Key methodological 
uncertainties are tested and discussed in Supplementary Section 1.

The three basins show distinct runoff sensitivities in observa-
tions (Fig. 3), with the Colorado showing a stronger temperature 
sensitivity (−11.1%/°C [5–95% confidence interval of regression: 
−18.1, −4.2]) than the Columbia (−3.1%/°C [−7.5, 1.3]) and the 
Northern Sierras (−4.3%/°C [−8.4, −0.2]). The precipitation sensi-
tivity is more similar across basins, ranging from 1.1% per 1% change 
in precipitation [0.9, 1.3] in the Columbia to 1.2%/ % [1.0, 1.5]  
in the Colorado and 1.3%/% [1.3, 1.4] in the Northern Sierras.

The CMIP5 models exhibit a wide range of runoff sensitivities 
with regard to both temperature and precipitation (Fig. 3). Although 
observational estimates of runoff sensitivities contain uncertainty 
themselves, there are a number of ESMs that display sensitivities 
that are significantly higher or lower (and outside the uncertainty 
range) than estimated from observations, leading to the conclusion 
that systematic biases in runoff sensitivities are indeed present in 
the CMIP5 model archive.

A key reason to pay attention to a model’s runoff sensitivities 
to temperature and precipitation is the potential for biases to offset 
one another. An illustrative example is model 9 in the Colorado, 
which has a positive temperature sensitivity (meaning that runoff 
increases with temperature, which is counter to theory and obser-
vations37,41), but also an overestimated precipitation sensitivity  
(Fig. 3a). Nonetheless, this model produces a runoff change under 
future climate change that lies close to the middle of the CMIP5 dis-
tribution (not shown). Thus, although this model appears to be rep-
resentative of the CMIP5 multi-model mean—and therefore close 
to what is often considered our best estimate of the future—it is so 
for unrealistic reasons.

The case for caring about runoff sensitivity
Together with the local climate, runoff sensitivities are the key 
parameter that determines surface water availability, which in turn 
gives rise to the diversity of ecosystems found across river basins 
today. A central goal of ESM development is to increase accuracy in 
projections of future changes in regional temperature and precipita-
tion; it is thus critical to develop confidence in the translation of 
projected climate into projected hydrology. It is instructive to obtain 
a first-order estimate of the extent to which runoff sensitivity biases 
may influence ESM projections of changes in hydrology, and con-
sequently, future surface water availability. We tackle this question 
by comparing the projected CMIP5 runoff with projections con-
strained by observed runoff sensitivities.

We first investigate whether model-simulated changes in runoff 
can be explained solely by combining changes in precipitation and 
temperature with each model’s precipitation and temperature sen-
sitivities42,43. The premise here is that sensitivities derived from his-
torical interannual variability are similar to the (a priori unknown) 
sensitivities acting on longer timescales relevant to climate change 
projections. To this end, each model’s ‘simulated’ change in runoff 
(∆Qm), for a future 40-year period that is 2 °C warmer than his-
torical (1950–2008; see Supplementary Table 1), is plotted against a 
‘predicted’ change in runoff constructed as dΔQm

I
= am∆Pm + bm∆T, 

where am and bm are each model’s historical runoff sensitivities for 
precipitation and temperature, respectively, ∆Pm is each model’s 
future precipitation change in %, and ∆T the temperature change 
(2 °C; Fig. 4).

In all three regions, the simulated and predicted runoff changes, 
∆Qm and dΔQm

I
, align well with explained variances of 0.69, 0.77 and 

0.9 (all p <0.05) across the 19 CMIP5 models (Fig. 4a,c,e). Thus, 
historical runoff sensitivities are important first-order drivers of 
future runoff changes, given a particular future temperature and 
precipitation. Evidence is accumulating that in certain regions, 
the vegetation response to both warming and elevated CO2 can 
be an important driver of changes in the surface water availability, 
through its control on the partitioning of precipitation into runoff 
and ET44–50. To account for such a potential effect, we conduct an 
additional evaluation that expands the regression model for dΔQm

I
 

to include a term for global CO2 concentration. We find that the 
prediction skill improves in two out of the three basins (Fig. 4a,c,e), 
consistent with the increased fidelity of offline ET calculations with 
inclusion of CO2 effects47,50.

When split into contributions from temperature changes and 
precipitation changes, it becomes evident that in the Colorado, 
changes in temperature and precipitation explain almost equal but 
opposing amounts of the future changes in runoff, as well as similar 
fractions of variance across models (Fig. 4a; the latter being consis-
tent with CMIP3 simulations in ref. 42). Being less temperature-sen-
sitive than the Colorado, both the Columbia and Northern Sierras 
show that precipitation changes are more important for explaining 
the model spread in simulated runoff changes (Fig. 4c and e).

Future changes in runoff can thus be estimated from model-
simulated temperature and precipitation changes combined with 
observed runoff sensitivities ao and bo, such that dΔQo ¼

I
 ao∆Pm + 

bo∆T (‘observationally constrained’; Fig. 4b). When compared to 
the simulated changes ∆Qm, they provide an estimate of the poten-
tial uncertainty reduction and improved accuracy that might be 
achievable if model runoff sensitivity biases were alleviated. We 
do not include an observational constraint on the CO2 sensitivity 
here, owing to limited experimental observations of its magnitude51. 
Whereas the simulated and predicted multi-model mean runoff 
changes in the Colorado are similar (about −5%), the observation-
ally constrained runoff change is −17.2%, owing to higher tempera-
ture sensitivity and lower precipitation sensitivity in observations 
compared with the models (Fig. 3a). Note that both the simu-
lated and predicted runoff changes have wide probability density  
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Fig. 2 | Absolute and relative bias in precipitation and runoff in Earth system models. a, Water-year runoff as a function of water-year precipitation for 
the Upper Colorado from observations (grey/black) and CMIP5 models (colours). b, Same as a, but values relative to their respective 1950–2008 mean 
(%). Circles denote individual water years, and solid lines are linear fits to the data. Probability density functions of the water-year data are given on the 
panel sides; their magnitude is arbitrary, but they are relative to each other. The inset shows a histogram of the linear fit slopes from models; the black line 
gives the observed value. c, d, Same as a, b, but for the Columbia. e, f, Same as a, b, but for the Northern Sierras.
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functions (PDFs) that encompass the observationally constrained 
estimates. However, relative to the full spread (39.6 percentage 
points), the observationally constrained approach reduces the 
uncertainty in future runoff projections to 17 percentage points, 
which is a 57% reduction (Fig. 4b). Including the uncertainty in 
the observational runoff sensitivities themselves (Methods) still 
results in a reduction of the ΔQ uncertainty by 30% to 27.8 percent-
age points. The reduced uncertainty also strengthens the declining  
signal for Colorado runoff.

In the Columbia, temperature- and precipitation-related changes 
cancel out such that the simulated and predicted multi-model mean 
runoff changes are similar (1.4% and −0.1%), while the observation-
ally constrained runoff change is −2.4%. In the Northern Sierras, 
simulated and predicted runoff changes are −0.6% and −0.4%, 
while the observationally constrained runoff change is −5.4%. The 
spread in future runoff projections is reduced by 45% (22%, when 
observational uncertainty is taken into account) and 53% (47%) 
in the two basins, respectively, when observed sensitivities (with 
observed uncertainties) are applied.

Caveats and limitations
The estimates above assume that historical sensitivities would not 
change substantially with other environmental changes that are 
expected to accompany climate change, an assumption that appears 
to hold for these basins and warming levels, but has been suggested 
to be more generally true28,42,52 (see also Supplementary Fig. 2 for a 
global map). However, there are good reasons to expect sensitivities 
to change with climate. For example, the possible role of vegetation 
response to CO2 increases in precipitation partitioning has been 
mentioned before. For the basins here, sensitivity experiments with 
models in which the plant physiological response to CO2 is isolated 
(with little to no concomitant warming) reveal that under increased 
CO2, more precipitation gets partitioned towards runoff because 
of higher water-use efficiency in plants, although regional differ-
ences and model uncertainty are large (Supplementary Section 2 
and Supplementary Fig. 3; see also ref. 46). For the Columbia, these 
particular model simulations suggest that plant physiological effects 
will partition precipitation towards runoff, thus indeed leading to 
notable changes in runoff sensitivities, whereas for the Colorado 
they suggest no such changes. Scenario-driven simulations (for 

example, under RCP8.5, thus including increased CO2 and warm-
ing), on the other hand, consistently indicate that plants over the 
western United States will consume a greater fraction of precipita-
tion in the future than in the present, thereby partitioning precipita-
tion away from runoff and leading to absolute runoff declines48. The 
key point is that model runoff sensitivities are mediated to a non-
negligible degree by active areas of model development such as the 
structural assumptions made about vegetation processes and plant 
responses to anthropogenic forcing.

As model development continues, it is not immediately clear 
whether increased complexity in the treatment of land ecosystems will 
decrease or increase model runoff sensitivities, or affect their station-
arity. Having a baseline from which to explore these changes will be 
valuable. Still, the sensitivity biases explored here are typically larger 
than the uncertainty in future changes of the sensitivities themselves, 
attesting to the usefulness of an observational constraint on present-
day sensitivities, despite our imperfect stationarity assumption.

Another caveat to linear prediction of ΔQ based on historical 
sensitivities and future precipitation and temperature changes is 
the lack of temporal and spatial discrimination. Runoff sensitivi-
ties vary by season and sub-basin43,53, and small-scale spatial pat-
terns of precipitation and temperature changes may alter the annual 
and basin-wide estimate of sensitivities and runoff changes54. Thus 
extrapolation into different climates is not recommended without 
robust process-level understanding and physically based model-
ling35,55. Changes to land cover, whether human-induced or natural, 
also have the potential to change runoff sensitivities56,57. Finally, a 
notable concern is that the simulated climate may be highly unre-
alistic (for example, precipitation overestimated by a factor of 2–3), 
necessitating the assumption that sensitivities under such condi-
tions are informative about true sensitivities as well. Given the 
dependence of runoff efficiency on surface climate27,58, this assump-
tion should be scrutinized.

Moving forward
A model’s runoff sensitivity emerges as a property of the coupled 
system, since it is not tuned in any CMIP5 ESM development. 
This raises the question: “Why do models have such different 
runoff sensitivities?” Strikingly, the answer seems to be unknown. 
Although it is unlikely that a single culprit can be identified that 
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causes runoff sensitivity biases across CMIP5 models, some com-
mon relationships can help to lead the way to diagnosing bias and 
eventually to improving models. Across the CMIP5 models, there 
is a weak correlation between temperature bias and runoff sensitiv-
ity to temperature (r = −0.31, −0.44* and −0.55* for the Colorado, 
Columbia and Northern Sierras; *p <0.05)—that is, warmer mod-
els have a stronger temperature sensitivity—suggesting that biases 
in surface radiation balance could be a common cause of biases 
in temperature and temperature sensitivity59. Also, wetter mod-
els tend to have a weaker precipitation sensitivity, although this 
relationship is weak across models and not present in all basins. 
Recent research49 identified model biases in canopy light use, inter-
ception loss and root water uptake processes as key drivers of bias 
in surface water partitioning, with implications for the future run-
off changes that are associated directly with CO2. Another recent 
study found regional relationships between model biases in pre-
cipitation (P) and projected changes in P − ET, enabling an obser-
vational constraint on the absolute future change in P − ET via 
observed precipitation60, similar to another study tackling the same 
question by means of a constraint directly from observed runoff61. 

Unsurprisingly, these results indicate that biases in model compo-
nents other than the land surface model might also contribute to 
biases in runoff sensitivities.

Although not addressed in this study, model interdependency62 
is another potential issue typically not accounted for in most CMIP5 
studies which exploit the multi-model ensemble of opportunity63; 
seven out of 19 ESMs used here have fundamentally similar land 
model components (CLM; see Supplementary Table 1).

Biases in hydrological sensitivities are an important source of 
uncertainty in future projections of surface water availability when 
taken directly from ESMs, as shown here by the nearly linear rela-
tionship between each model’s sensitivities and its future runoff. 
The observational constraint discussed here, although conceptual 
in nature, follows guiding principles from the emergent constraint 
literature33. In the basins of the western United States, projected run-
off uncertainty could in principle be reduced by up to about 50% 
if model runoff sensitivity biases were eliminated, which suggests 
consequent improvements in our ability to project runoff changes. 
Information on sensitivity biases and their ramifications for runoff 
projections are typically not included in ESM-based water security or 
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climate change impact assessments, yet would provide valuable per-
spective for decision makers reliant on climate change information64.

These results argue strongly for including sensitivity metrics in 
coupled land model benchmarking and intercomparison projects—
for example, the International Land Model Benchmarking (ILAMB) 
project65,66—to support improving the fidelity of ESM land model 
components and potentially ESM performance more comprehen-
sively67. Other examples of such metrics include the ‘efficiency space’ 
of joint evaporation and runoff behaviour68,69, the snow albedo feed-
back70,71 or land–atmosphere moisture feedbacks72. Together with 
new benchmarking methods based on information theory73, such 
metrics allow one to track biases and improvements in land sur-
face models over time. In all of these efforts, uncertainties in the 
definition of a particular sensitivity metric arising from different  
methods, length of record, or datasets need to be considered.

Conclusions
We have highlighted present-day biases in runoff sensitivities in 
ESMs and their implications for the runoff component of future 
water security assessments, which are increasingly based directly 
on ESM output. At present, caution is warranted when using ESMs 
directly for regional hydroclimate impact and water security assess-
ments. Coordinated model development efforts between the cli-
mate and hydrology communities are strongly encouraged, in the 
expectation that this would increase the accuracy of runoff and its 
sensitivity in coupled models, thereby increasing their utility for 
projecting regional surface water availability directly and making 
observational constraints as presented here obsolete. Focusing on 
the bias in sensitivity as well as bias in the mean state is critical, and 
this perspective has illustrated several evaluation metrics to support 
these efforts that are ready for deployment.
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Methods
Observations. For observed streamflow (hereafter termed runoff, consistent with 
the variable used from ESMs), monthly records from 1950 to 2008 are used for 
the gauges at Lee’s Ferry, Arizona, an outlet control point for the Upper Colorado 
River basin (source: Bureau of Reclamation; go.nature.com/2pcnglb), at The 
Dalles, Oregon, the outlet control point for the drainage area of the Columbia 
River (source: Bonneville Power Administration; go.nature.com/2osfnYh), and a 
four-gauge index in the Northern Sierras (source: California Department of Water 
Resources; https://cdec.water.ca.gov/), summing the American River at Folsom, 
the Feather River at Oroville, the Sacramento River at Bend Bridge and the Yuba 
River near Smartville. The flows are naturalized; that is, major flow alterations 
due to human diversions and water management are removed empirically from 
the actually gauged flow. This yields an estimate of the natural flow, making it 
more interpretable with respect to climate information such as precipitation and 
temperature, and more directly comparable to ESM output (CMIP5-generation 
models typically do not represent human diversions or water management). We 
considered using the Global Runoff Data Centre (GRDC) database but found the 
lack of flow naturalization in those data to compromise our analysis; however, for 
analysis of less impaired basins, the GRDC data might be feasible. We use gridded 
monthly mean precipitation and temperature data from the Livneh dataset74 as 
primary observational datasets owing to length of record and coverage of the 
Columbia basin, with other datasets being tested in Supplementary Section 1. 
The Livneh forcing dataset is created through the interpolation of ground-based 
measurements (see refs. 74,75 for more details). Observational datasets are spatially 
aggregated over the watershed upstream of the respective gauge location (that 
is, spatially averaged and multiplied by the drainage area). The observational 
uncertainty is non-zero, but typically the smallest of a list of uncertainty sources 
(see Supplementary Section 1).

Earth system models. We use the following monthly mean output variables 
from all ESMs in the CMIP5 archive that provide the experiments ‘piControl’ 
(preindustrial control simulation with perpetual 1850 external forcing), 
‘1pctCO2’ (branched from piControl, but with an increase in CO2 concentration 
of 1% per year—that is, a doubling after 70 years), ‘historical’ (typically 
1850 to 2005, with best estimates of all forcings as per CMIP5 protocol) 
and ‘rcp85’ (from 2006 onwards, with a strong increase in greenhouse gas 
concentrations as per CMIP5 protocol): total runoff (‘mrro’), precipitation (‘pr’), 
evapotranspiration (converted from latent heat flux ‘hfls’; ET), and surface air 
temperature (‘tas’), conservatively regridded to a common 1° × 1° horizontal 
resolution. Streamflow for the different basins is calculated as runoff aggregated 
over the same watersheds as used for observations after mapping the watershed 
shapefile to 1° × 1° (performing calculations on each ESM’s native grid did not 
alter the results notably), similar to ref. 18. From all available ESMs, we select 
the ones for which we were able to balance P − ET with runoff within 3% in 
the long-term mean of piControl over the watersheds considered. It is unclear 
why some models appear to be unbalanced in terms of runoff = P − ET, but we 
speculate that either additional runoff terms from these models are missing in 
the CMIP5 calculation of ‘mrro’ or substantial drift exists in storage terms such 
as soil moisture or lakes. Application of our criterion leaves 19 CMIP5 models 
(listed in Supplementary Table 1).

Thus, for the purpose of this study, the term runoff is interchangeable with  
P − ET. This assumes no significant role for interannual basin storage, an 
assumption supported by the fact that dynamically routed streamflow and basin-
aggregated runoff are typically not significantly different in terms of their long-
term mean or their autocorrelation; they also exert almost perfect correlation 
on interannual timescales (Supplementary Fig. 4). Further, for the basins in this 
study, simulated interannual variability in land water storage is typically at least an 
order of magnitude smaller than interannual variability in runoff (Supplementary 
Table 2), although lag-1 autocorrelation in observed streamflow time series has 
been argued to be indicative of storage influence36,76. Overall, storage variability 
is unlikely to affect our conclusions significantly, an assessment supported by 
observations and hydrologic modelling77, but a comprehensive exploration of this 
issue is beyond the scope of this paper.

We use the Community Earth System Model Large Ensemble (CESM LE78), 
a single-model 40-member ensemble from 1920 to 2100 under historical and 
RCP 8.5 forcing, to illustrate the potential uncertainty in a given ESM’s sensitivity 
estimate due to internal climate variability, absent any model differences. A 1,800-
year long ‘piControl’ simulation with the same model is also used.

Finally, we investigate seven ESMs from the Coupled Carbon Cycle Climate 
Model Intercomparison Project (C4MIP79) for which a particular set of three 
sensitivity experiments is available: (1) plant physiology sees constant preindustrial 
CO2 concentrations, as in piControl, but the radiation scheme sees a CO2 increase 
of 1% per year, as in 1pctCO2 (CMIP5 technical name ‘esmFdbk1’; here called 
‘CO2rad’), (2) plant physiology sees a CO2 increase of 1% per year, but the 
radiation scheme sees preindustrial CO2 concentrations (‘esmFixClim1’; here called 
‘CO2phys’), (3) plant physiology and radiation scheme both see a CO2 increase 
of 1%/year (‘1pctCO2’). These simulations are used to assess to what extent plant 
physiological responses under elevated CO2 contribute to changes in surface water 
partitioning in the study basins. The simulations are the same as in ref. 46.

Runoff sensitivity definitions. Runoff sensitivities are difficult to calculate 
from observations directly40, being subject to similar challenges as observation-
based calculations of transient climate sensitivity: short observational record, 
system-internal variability, conflation of driving factors, potential nonlinearities 
and measurement uncertainty (see, for example, ref. 35 for a discussion). Some 
studies focus on precipitation sensitivity alone or use bivariate regression models 
to describe joint precipitation and temperature sensitivities35,36,80–83, others use 
hydrological or land surface model sensitivity experiments, in which inputs of 
precipitation and temperature are systematically perturbed to assess that specific 
model’s sensitivity37.

We characterize runoff sensitivities using multiple linear regression of 
the form Q = a∆P + b∆T + c(∆P∆T) +e, where a and b are estimates of 
the precipitation and temperature sensitivity, respectively, ∆P and ∆T are 
precipitation and temperature anomalies (ΔP ¼ P��P

�P
I

; ΔT ¼ T � �T
I

; overbars 
denote long-term mean), (∆P∆T) is an interaction term and e is the residual. 
This approach considers the possibility of interdependency between precipitation 
and temperature (see, for example, refs. 84,85 for similar concepts), although c 
was not found to be significant here. The sensitivities are calculated on water 
year basis for the period 1950–2008 (water year = Oct–Sep; total volumes 
for precipitation, and mean values for temperature) for observations and the 
concatenated ‘historical’ and ‘rcp85’ simulations. Calculations based on water 
years aim to minimize the influence of storage carry-over effects; in the western 
United States in particular, the water year is closely tied to the annual cycle of 
snow accumulation and melt.

Several methodological uncertainties in estimating runoff sensitivities are 
explored in Supplementary Section 1. A key uncertainty is length of record, which 
is generally described by the confidence interval on the regression coefficients 
in above equation. We propagate this uncertainty to the observational constraint 
in Fig. 4 by populating a PDF of ΔQ using plausible combinations of runoff 
sensitivities from observations (in addition to the single value obtained from the 
observed regression coefficients ao and bo; see green PDF in Fig. 4). Specifically, 
1,000 combinations of ao and bo are randomly chosen from a joint PDF of ao and 
bo, which is based on the 5–95% confidence intervals on ao and bo. These 1,000 
combinations are used to estimate 1,000 dΔQm

I
, representing an observationally 

constrained ΔQ that includes uncertainty on the observational constraint itself  
(see wider green range in Fig. 4).

Data availability
All data used in this study are publicly available. The CMIP5 simulations are 
available through PCMDI, the CESM simulations are available on earthsystemgrid.
org, and the observational data are available through the respective institutions. 
Post-processed data can be obtained from the corresponding author.

Code availability
Code to produce the figures is available from the corresponding author.

References
	74.	Livneh, B. et al. A spatially comprehensive, hydrometeorological data  

set for Mexico, the U.S., and Southern Canada 1950–2013. Sci. Data 2, 
150042 (2015).

	75.	Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P. & Nijssen, B. A 
Long-term hydrologically-based data set of land surface fluxes and states for 
the conterminous United States. J. Clim. 15, 3237–3251 (2002).

	76.	Milly, P. C. D. & Dunne, K. A. Macroscale water fluxes 2. Water and energy 
supply control of their interannual variability. Water Resour. Res. 38, 
24-1–24-9 (2002).

	77.	Rosenberg, E. A., Clark, E. A., Steinemann, A. C. & Lettenmaier, D. P. On the 
contribution of groundwater storage to interannual streamflow anomalies in 
the Colorado River basin. Hydrol. Earth Syst. Sci. 17, 1475–1491 (2013).

	78.	Kay, J. E. et al. The Community Earth System Model (CESM) large 
ensemble project: a community resource for studying climate change in the 
presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 
1333–1349 (2015).

	79.	Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to 
carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

	80.	Vogel, R. M., Wilson, I. & Daly, C. Regional regression models of annual 
streamflow for the United States. J. Irrig. Drain. Eng. 125, 148–157 (1999).

	81.	Risbey, J. S. & Entekhabi, D. Observed Sacramento basin streamflow response 
to precipitation and temperature changes and its relevance to climate impact 
studies. J. Hydrol. 184, 209–223 (1996).

	82.	Fu, G., Charles, S. P. & Chiew, F. H. S. A two-parameter climate elasticity of 
streamflow index to assess climate change effects on annual streamflow. Water 
Resour. Res. 43, 1–12 (2007).

	83.	Sankarasubramanian, A., Vogel, R. M. & Limbrunner, J. F. Climate 
elasticity of stream flow in the United States. Water Resour. Res. 37, 
1771–1781 (2001).

	84.	Nowak, K., Hoerling, M., Rajagopalan, B. & Zagona, E. Colorado River basin 
hydroclimatic variability. J. Clim. 25, 4389–4403 (2012).

Nature Climate Change | www.nature.com/natureclimatechange

https://cdec.water.ca.gov/
http://www.nature.com/natureclimatechange


PerspectiveNAtURe ClIMAte CHAnge

	85.	Harding, B. L., Wood, A. W. & Prairie, J. R. The implications of climate 
change scenario selection for future streamflow projection in the Upper 
Colorado River basin. Hydrol. Earth Syst. Sci. 16, 3989–4007 (2012).

Acknowledgements
We thank A. Pendergrass, S. Swenson, E. Wahl, C. Milly, L. Gudmundsson, S. Seneviratne,  
M. Hoerling, J. Barsugli and N. Addor for discussions, and A. Swann for discussion and 
for providing the C4MIP simulations. This work benefited from discussions at a 2018 
workshop on Colorado River climate sensitivity held at NOAA in Boulder, USA. We 
acknowledge the efforts of all those who contributed to producing the simulations and 
observational datasets. The National Center for Atmospheric Research is sponsored by 
the US National Science Foundation (NSF). F.L. is supported by NSF AGS-0856145, 
Amendment 87, by the Bureau of Reclamation under Cooperative Agreement 
R16AC00039, and the Regional and Global Model Analysis (RGMA) component of the 
Earth and Environmental System Modeling Program of the US Department of Energy’s 
Office of Biological & Environmental Research (BER) via NSF IA 1947282. A.W. is 
supported by the Bureau of Reclamation (CA R16AC00039), by the US Army Corps 
of Engineers (CSA 1254557). A.W. and J.A.W. are supported by the NASA Advanced 
Information Systems Technology program (award ID 80NSSC17K0541). D.M.L is 
partially supported by NSF INSPIRE grant (NSF-EAR-1528298) and by the RUBISCO 
Scientific Focus Area (SFA), which is sponsored by the Regional and Global Climate 

Modeling (RGCM) Program in the Climate and Environmental Sciences Division of the 
Office of Biological and Environmental Research in the US Department of Energy Office 
of Science. J.A.V. is supported by grant 80NSSC17K0541 from the NASA AIST program.

Author contributions
F.L. and A.W.W. conceived the study. F.L. conducted all analyses, constructed the figures 
and led the writing. All authors contributed to the interpretation of the results and the 
writing of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41558-019-0639-x.

Correspondence should be addressed to F.L.

Peer review information Nature Climate Change thanks Qiuhong Tang and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Climate Change |  www.nature.com/natureclimatechange

https://doi.org/10.1038/s41558-019-0639-x
https://doi.org/10.1038/s41558-019-0639-x
http://www.nature.com/reprints
http://www.nature.com/natureclimatechange

	The potential to reduce uncertainty in regional runoff projections from climate models

	Model mean and sensitivity biases

	The case for caring about runoff sensitivity

	Caveats and limitations

	Moving forward

	Conclusions

	Online content

	Fig. 1 Projected changes in temperature, precipitation, runoff and runoff efficiency.
	Fig. 2 Absolute and relative bias in precipitation and runoff in Earth system models.
	Fig. 3 Runoff sensitivities.
	Fig. 4 Runoff projections and their relationship to runoff sensitivities.




