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Abstract The frequency and intensity of heat waves in the United States is projected to increase in the
21st century. We investigate dry and humid heat waves in a pair of high‐resolution model simulations
that constrain large‐scale atmospheric circulation, to isolate the thermodynamic impacts on characteristics
of present and future heat waves over the United States. The two kinds of heat waves show differences in
mean intensity, amplitude, duration, and frequency over the Southeast, Northeast, andMidwest, while their
characteristics are largely similar in the drier central and western United States. In a warmer climate,
relative humidity is projected to decrease during dry heat waves, whereas it remains unchanged during
humid heat waves. However, the overall increase in daily maximum temperature intensifies the heat stress
during future humid and dry heat waves across all regions. With large‐scale circulation constrained, these
simulations emphasize the importance of thermodynamic drivers in determining future heat
wave characteristics.

1. Introduction

Heat waves, generally defined as persistent hot conditions above a certain threshold, severely impact
socio‐ecological systems by affecting human health and productivity by exerting stress on energy, agricul-
tural yields, and ecosystems (Auffhammer et al., 2017; Bobb et al., 2014; Burke et al., 2015; Coffel et al., 2017;
Lesk et al., 2016; Rastogi et al., 2019). Upward trends in the frequency, intensity, and duration of heat waves
are already evident globally as well as in the United States (Cloutier‐Bisbee et al., 2019; Perkins et al., 2012;
Shiva et al., 2019; Smith et al., 2013; Tebaldi &Wehner, 2018). These observed changes in the characteristics
of heat waves have been attributed to global warming and are projected to prevail or intensify in response to
a projected increase in global temperatures (Diffenbaugh & Ashfaq, 2010; Dosio et al., 2018; Jaeger
et al., 2008; Jones et al., 2018; Jones et al., 2015; King et al., 2018; Schoetter et al., 2015). The presence of high
humidity levels during heat waves can further exacerbate physiological heat stress and pose severe risks to
human health (Fischer & Knutti, 2013; Glaser et al., 2016) by reducing the human body's ability for evapora-
tive cooling and by limiting heat tolerance (Dunne et al., 2013; Sherwood & Huber, 2010).

Heat wave characteristics are defined by a combination of dynamic (i.e., atmospheric circulations) and ther-
modynamic factors (e.g., moisture and heat fluxes). Heat waves are often associated with summertime
high‐pressure systems and blocking patterns. The buildup and entrainment of dry and hot air can cause
dry heat waves, while the advection of hot and humid air from nearby water bodies can result in more humid
heat waves. The thermodynamic characteristics of heat waves depend on land‐atmosphere interactions as
land surface processes play an important role in amplifying or dampening a heat wave by influencing the
partitioning of available energy between sensible and latent heat fluxes (Fischer et al., 2007; Miralles
et al., 2014; Raghavendra et al., 2019; Russo et al., 2017). When soil moisture is abundant, higher evaporation
results in conversion of more energy to latent heat, reducing sensible heat and therefore limiting air tem-
perature rise. Conversely, under limited soil moisture conditions, more energy is partitioned toward sensible
heat, causing warm and dry conditions (Cheng et al., 2019; Lee et al., 2016; Lorenz et al., 2010; Ukkola
et al., 2018). The projected increase in radiative forcing may result in enhanced surface drying and an
increase in atmospheric moisture following the Clausius‐Clapeyron relationship (Donat et al., 2017; Lee
et al., 2016). Further, changing frequency and intensity of precipitation events are expected to increase the
length of dry intervals between heavier precipitation events; this could limit soil moisture recharge and
reduce evaporative cooling in a warming climate (Dai et al., 2017; Pendergrass & Knutti, 2018). Such changes
in the thermodynamic characteristics have the potential to alter the character of future heat waves.
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There is ample evidence regarding the influence of land‐atmospheric interactions on the temperature ampli-
fication during heat waves (Lee et al., 2016; Teuling et al., 2010). For instance, reduced evaporative cooling as
a result of soil moisture depletion enhanced the intensity and duration of record‐breaking European heat
waves (Lorenz et al., 2010; Teuling et al., 2010). Similarly, soil moisture availability has been known to influ-
ence the relationship between latent‐sensible heat flux partitioning and heat wave frequency over the cen-
tral United States (Lee et al., 2016). Likewise, Cheng et al. (2019) demonstrated a strong soil
moisture‐temperature coupling in relatively dry regions of the south‐southwestern United States that inten-
sifies in a warmer climate, whereas the moisture‐abundant regions of the north‐northeastern United States
show a weaker coupling that also remains largely unchanged in a warmer climate. Overall, these studies
highlight the importance of land‐atmosphere interactions during heat waves and associated changes
with warming.

Following the Clausius‐Clapeyron relationship, the near‐surface specific humidity is projected to rise glob-
ally with an increase in air temperature. Regionally, changes in relative humidity (RH) are more uncertain
(Byrne & O'gorman, 2016; Sherwood et al., 2010). Several studies have examined the role of humidity during
heat waves using heat stress indices (Coffel et al., 2019; Fischer & Knutti, 2013; Raymond et al., 2017; Russo
et al., 2017; Sherwood, 2018): Raymond et al. (2017) found that wet‐bulb temperature (WBT) extremes coin-
cide more frequently with specific humidity extremes than with temperature extremes over the eastern and
parts of western United States during the 1981–2015 period. Dahl et al. (2019) and Russo et al. (2017) pro-
jected an increase in the maximum apparent temperature (ATmax) and an enhanced human exposure to
extreme heat events by the end of the 21st century. Coffel et al. (2019) showed that the effect of warming
onWBT extremes can be counteracted by an enhanced drying on that day, resulting in a relative dampening
of extreme WBT globally. However, the commonly used heat stress indices such as WBT or apparent tem-
perature often include nonlinear relationships between temperature and RH and are amplified by an
increase in temperature even when RH remains unchanged. Therefore, use of such indices limit our ability
to isolate the role of humidity during a heat wave.

Most previous studies discussed above are based on general circulationmodels (GCMs) from the 5th phase of
the Coupled Model Intercomparison Project (CMIP5) that conducted simulations at a relatively coarse reso-
lution and do not resolve all local‐scale processes and feedbacks (Ashfaq et al., 2016). Moreover, synoptic
conditions, which are important for the occurrence of heat waves (e.g., blocking), are often not well repre-
sented in GCMs (Rasmijn et al., 2018). Finally, the simultaneous changes in dynamic and thermodynamic
processes in fully coupled GCMs limit our ability to disentangle factors that drive future changes in heat
wave characteristics and therefore complicate the process‐based attribution of projected changes in heat
waves (Wehrli et al., 2018).

Here we attempt to overcome some of the methodological and modeling limitations in earlier studies, spe-
cifically the simulation of synoptic conditions during heat waves, the identification of dominant factors that
drive future changes in heat waves, and the isolation of the role of humidity during the heat waves. We use a
pair of high‐resolution numerical model simulations (Liu et al., 2017) and a methodology that enables the
isolation of moisture‐related impacts on heat waves. The large‐scale atmospheric circulation in the simula-
tions is spectrally nudged toward reanalysis data under both present‐day and future climate boundary con-
ditions. This makes the synoptic scale in the simulations reflective of the reanalysis forcing, allowing for a
more realistic representation of the atmospheric conditions suitable for the occurrence of heat waves.
Further, this setup keeps large‐scale circulation similar in the two experiments, resulting in reoccurrence
of present‐day real‐world atmospheric events (e.g., historic heat waves) in a future warmer climate, and
enables isolation of thermodynamically driven changes in the characteristic of the heat waves.

2. Materials and Methods
2.1. Model Simulations

We use a pair of 13 year simulations conducted with the Weather Research Forecasting (WRF) model
Version 3.4.1 (Skamarock et al., 2008) over a domain covering the contiguous United States and parts of
Canada and Mexico detailed in Liu et al. (2017). In brief, each model simulation is conducted at a 4 km hor-
izontal grid spacing (1,360 × 1,016 longitude‐latitude grid points) with 51 vertical levels and extends from 1
October 2000 to 30 September 2013. The control simulation (WRF‐CTRL) is driven by 6‐hourly 0.7°
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ERA‐Interim data (Dee et al., 2011). The climate change experiment follows the pseudo global warming
(PGW) approach (WRF‐PGW), which is driven by modified ERA‐Interim boundary forcing that includes a
climate perturbation based on the climate change signal (2071 to 2100 minus 1976 to 2005) from the mean
of 19 CMIP5 models under the Representative Concentration Pathway 8.5. The perturbation is applied to
horizontal wind fields, geopotential, temperature, specific humidity, sea surface temperature, sea level pres-
sure, sea ice, and soil temperature, but not soil moisture. Overall, the dominant climate change signal is a
general warming and moistening of the atmosphere, whereas circulation changes are minimal. Within
the domain, these simulations use spectral nudging toward ERA‐Interim for the scales on the order of
2,000 km and greater, reproducing present‐day specific synoptic weather events in both the control and per-
turbed simulations (supporting information Figure S1) (Liu et al., 2017). Thus, the simulations highlight
future thermodynamically driven changes.

These simulations were previously used by Raghavendra et al. (2019) to evaluate heat waves over Florida.
Here, we use these simulations to evaluate heat wave characteristics over the conterminous United States.
We use daily maximum temperature (Tmax), mean specific humidity, soil moisture, 850 hPa geopotential
heights, and sensible and latent heat flux from these simulations. Further, we calculate evaporative fraction
(EF) as the ratio of latent heat flux to total heat flux (latent + sensible) to depict energy partitioning between
the two heat fluxes. The use of EF in the analyses is motivated by the reasoning that if amplified or damped
warming during future heat waves is related to energy partitioning, changes in Tmax should correlate with
changes in EF during the heat waves (Donat et al., 2017).

2.2. Observational Data Set

We obtain daily Tmax and dew point temperature (Td) from the Parameter‐Elevation Regressions on
Independent Slopes Model (PRISM) (Daly et al., 2008) observational product (henceforth “observations”),
available at 4 km horizontal resolution over the continental United States, for comparison during the
2001 to 2013 period.

2.3. Heat Stress Index

We use ATmax, also referred to as the heat index or the “feels like” temperature for the human body
(Steadman, 1979), to account for the role of humidity and as a measure of heat stress during heat waves.
Acknowledging that the choice of heat stress index might depend on a specific application (Buzan &
Huber, 2020), we select ATmax over other heat stress indices, such as WBT, wet‐bulb global temperature
(WBGT), or Td, for two primary reasons: (1) Differences between ATmax and Tmax can be directly used to
understand the role of humidity during heat waves (Russo et al., 2017) and (2) WBT andWBGT refer to heat
stress when a person's skin is completely wet and unclothed or for hard exertions when a person's skin is
partly wet and exposed, making them more applicable to sports and other physical activities, whereas
ATmax more often applies to a fully clothed person who is not perspiring much (Sherwood, 2018). Overall,
different heat stress metrics can yield different absolute results, but the conclusions on the role of humidity
in future heat waves are robust to the choice of metric.

Here, ATmax is calculated by applying the Heat Index equation used by the National Oceanic and
Atmospheric Administration (supporting information). We substitute ATmax below Tmax with Tmax values
to focus on the amplifying effect of humidity on heat stress (Russo et al., 2017). Large differences between
ATmax and Tmax magnitudes during a heat wave indicate humidity as a driving factor of heat
stress amplification.

2.4. Compound Heat Wave Definition

There are several ways to define heat waves, generally based on intensity and duration of high‐temperature
events. A widely used definition involves use of minimum number of consecutive days when temperature is
above a certain threshold, absolute or percentile based (Baldwin et al., 2019; Cloutier‐Bisbee et al., 2019;
Horton et al., 2016; Sillmann et al., 2013). However, heat waves may often continue after a break of a day;
therefore, use of the consecutive days criteria may underestimate the actual length of a heat wave.
Therefore, following Baldwin et al. (2019), we use a compound heat wave definition that allows for break
days: a period during summer season (June‐July‐August, JJA) is considered a heat wave if at least three con-
secutive days cross a given threshold and the heat wave continues if no more than one consecutive day falls
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below the threshold. We use grid cell‐based 95th percentiles of Tmax (T95) and ATmax (AT95) as thresholds,
which are based on all days of the 13 summer seasons. We calculate separate thresholds for WRF‐CTRL
and WRF‐PGW simulations. Heat waves in WRF‐CTRL are identified using only WRF‐CTRL thresholds
(hereafter CTRLCTRL), while heat waves in WRF‐PGW are identified using both WRF‐CTRL thresholds
(hereafter PGWCTRL) and WRF‐PGW thresholds (hereafter PGWPGW). The use of two separate
thresholds to find heat waves enables comparing the characteristics of heat waves (1) occurring in a warmer
climate with respect to the present climate threshold (PGWCTRL), (2) occurring in the present climate with
respect to the present climate threshold (CTRLCTRL), and (3) occurring in the future climate with respect to
the future climate threshold (PGWPGW). Together with the synoptic reoccurrence of present‐day heat waves,
(2) and (3) allow for a direct comparison between present and future heat waves with the mean background
warming accounted for (i.e., CTRLCTRL and PGWPGW). We apply the heat wave definition on Tmax and
ATmax using T95 and AT95 thresholds to identify “Tmax heat waves” and “ATmax heat waves,” respectively,
for CTRLCTRL, PGWPGW, and PGWCTRL.

2.5. Regional Analysis

We focus our analysis on four regions covering the conterminous United States: southeast,
northeast‐Midwest, central, and West (Figure 1m). The regions are derived from U.S. Geological Survey
(USGS) climate adaptation science center regions. For ease of presentation, we combine the northwest
and southwest regions as West and the north‐central and south‐central regions as central.

2.6. Heat Wave Indices

We use the following indices to calculate heat wave characteristics:

1. Duration of heat wave: number of days above the threshold including the break days
2. Mean amplitude: average of Tmax over the length of heat wave excluding the break days
3. Mean heat wave intensity: average difference between Tmax and T95 over the length of heat wave exclud-

ing the break days
4. Number of heat waves: total count of heat waves that occur during summer
5. Percentage area under heat wave: fraction of the total grid points (in percent) in a region that is under a

heat wave on a given day

3. Results
3.1. Characteristics of Tmax Versus ATmax Heat Waves

We first evaluate the characteristics (duration, intensity, and area) of Tmax and ATmax heat waves (Figure 1)
that occurred in observations during the analyses period (2001 to 2013) over the four geographical regions
(Figure 1m). The southeast, which is the most humid region in the United States, generally shows a higher
mean percentage area and mean intensity for ATmax heat waves as compared to Tmax heat waves with the
exception of a few years (Figures 1d and 1h). We illustrate this point by showing a comparison for summer
2010, when a higher percentage of the southeast was under ATmax heat wave when compared to Tmax heat
wave (Figure 1i). This shows that humidity can affect, and in this case exacerbate, the geographical footprint
of heat waves. The impact of humidity is further evident from the large differences between ATmax and Tmax

in the southeast during the 2010 heat waves, suggesting that humidity amplified those heat waves
(Figures 1k and 1l). Contrarily, summer 2012 was relatively dry in the southeast, with a higher percentage
of area under Tmax heat waves compared to that under ATmax heat waves and comparatively smaller differ-
ences between ATmax and Tmax during heat waves (Figures 1j, 1m, and 1n).

The northeast‐midwestern United States displays mixed behavior with generally higher mean intensity
values for ATmax as compared to Tmax heat waves, whereas the mean percentage area is similar under
ATmax and Tmax heat waves (Figures 1c and 1g). On the other hand, the central and West (Figures 1a, 1b,
1e, and 1f) generally exhibit indistinguishable characteristics for the two kinds of heat waves, consistent with
the predominantly dry summer in these regions. Overall, heat waves last for up to 8 days, with the majority
lasting between 3 and 6 days across the four regions for both Tmax and ATmax (Figures 1a–1h).
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Figure 1. (a–h) Scatter plots of mean duration versus (a–d) mean intensity and (e–h) mean percentage area for the heat waves over West, Central,
Northeast‐Midwest, and Southeast United States, respectively. The four regions are marked in 1 m. Circles (filled for ATmax and hollow for Tmax; black for
PRISM [observations] and red for WRF CTRLCTRL) represent averages during heat waves for each summer (JJA). Lines (solid for ATmax and dashed for Tmax;
black for observations and red for WRF CTRLCTRL) show mean percentage area under heat waves over the Southeast for JJA during (i) 2010 and (j) 2012. (k–n)
Spatial maps show average differences between ATmax and Tmax during the heat wave days in 2010 for (k) WRF (CTRLCTRL) and (l) observations and in
2012 for (m) WRF (CTRLCTRL) and (n) observations.
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3.2. WRF‐CTRL Versus Observations

We compare the simulated (WRF‐CTRL) and observed (PRISM) characteristics of both Tmax and ATmax heat
waves for the analyses period (Figures 1a–1h, S2, and S3). Overall, WRF‐CTRL simulates a comparable
range for both mean intensity (Figures 1a–1d) and mean percentage area (Figures 1e–1f) over the four
regions. The spatial patterns of characteristics such as length, total number of heat waves, amplitude, inten-
sity of Tmax and ATmax heat waves, and T95 and AT95, compare well with the observed characteristics, with
the exception of a few noticeable biases in their magnitudes (Figures S2 and S3). For instance, WRF‐CTRL
underestimates the frequency of Tmax and ATmax heat waves in theWest and ATmax heat waves in the south-
east and parts of the Midwest. WRF‐CTRL also exhibits positive biases in simulating the amplitudes of both
Tmax and ATmax heat waves and T95 and AT95, primarily over the central and southeast (Figures S2 and S3).
These biases in themagnitude of heat waves are possibly associated with the prevailing warm season (May to
October) biases in these simulations (Liu et al., 2017). A near‐surface temperature warm bias of up to 3 °C
exists in the central and cold biases of up to 2 °C in the southeast and Midwest and up to 1 °C bias in the
northeast during summer (Liu et al., 2017), which are partly attributed to mean biases in simulated soil
moisture in these regions (Figure S4).

To revisit the specific cases discussed before, during 2010, WRF‐CTRL reproduces the observed percentage
area under Tmax and ATmax heat waves (Figure 1i). The spatial pattern of where ATmax is larger than Tmax is
simulated well. WRF‐CTRL slightly underestimates the amplification of ATmax relative to Tmax along the
Lower Mississippi (Figures 1k and 1l). During 2012, WRF‐CTRL exhibits some biases, underestimating
the area where ATmax exceeds Tmax (Figures 1j, 1m, and 1n). Overall, WRF‐CTRL is able to capture the spa-
tiotemporal characteristics of observed heat waves during 2001–2013 reasonably well.

3.3. Changes in the Characteristics of Heat Waves in a Warmer Climate

Changes in moisture availability during heat waves can influence their characteristics. To investigate such
influences, we plot RH against Tmax during both Tmax and ATmax heat waves in observations, CTRLCTRL,
PGWCTRL, and PGWPGW (Figure 2). Due to strong warming, more than half of the summer days over the
majority of the United States qualify as part of a heat wave in the future climate (Figure S5). Therefore,
future heat waves defined using the CTRL threshold (PGWCTRL) are more representative of the future aver-
age summer conditions rather than heat wave conditions (e.g., Lehner et al., 2016). As a result, a significant
increase in the duration and frequency of heat waves is projected in PGWCTRL (Figure S6). RH during Tmax

heat waves shows only small differences between PGWCTRL and CTRLCTRL. Contrarily, PGWPGW, which
represents future heat waves defined relative to the future climate, shows Tmax increasing by an average
of at least 5 °C in all regions compared to CTRLCTRL (Figure 2). RH during Tmax heat waves in PGWPGW

is projected to decrease in all regions except the West where it is historically low already. The strongest
decrease occurs in the southeast and northeast‐Midwest (Figures 2a–2d). Specific humidity, in turn, does
not change much during future Tmax heat waves (Figure S7). Conversely, during future ATmax heat waves,
which by definition tend to be more humid than Tmax heat waves, RH remains largely unchanged due to
increases in both specific humidity and Tmax in PGWPGW and PGWCTRL (Figures 2 and S7). Together, these
simulated changes suggest that temperature‐defined heat waves become drier in the future, whereas humid
heat waves maintain their character (Figures 2e–2h).

Given the use of spectral nudging in these simulations, CTRL heat waves are likely to reappear in a similar
but not identical fashion in PGW (Figure S1), allowing for a direct comparison between PGWPGW and
CTRLCTRL heat wave characteristics (Figure S5). This close correspondence is confirmed by the fact that heat
wave metrics such as duration, area, and frequency, which are largely controlled by the synoptic conditions,
are very similar between CTRLCTRL and PGWPGW on a seasonal basis, while subtle differences can occur for
individual heat waves (not shown). Using paired differences between PGWPGW and CTRLCTRL heat waves
for 13 summer seasons, we aim to identify differences that are robust to these methodological uncertainties.
We generally find higher intensities of Tmax heat waves that are significant (95% confidence level) over the
central andWest, and higher intensities of ATmax heat waves that are significant over all regions (Figure S8).

To better understand the mechanisms driving these differences in intensity, we analyze thermodynamic
changes in the characteristics of heat waves. For Tmax heat waves in PGWCTRL, which span more than half
of future summer days over the majority of the United States (Figure S5), the latent and sensible heating
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exhibit only minor changes with respect to CTRLCTRL over all regions with the exception of small but signif-
icant increases in latent heating over the southeast and sensible heating over the northeast‐Midwest (green
boxes in Figures 3a and 3b). Conversely, for Tmax heat waves in PGWPGW (red boxes in Figures 3a and 3b),
latent heat and sensible heat fluxes show significant changes in all regions. Generally, dry regions (West and
central) see smaller changes in heat fluxes than more humid regions (northeast‐Midwest and southeast),
with the latter showing a clear increase in the partitioning of energy toward sensible heat. This corroborates
the results in Figure 2, which suggest future summers will experience constant or increased RH, but future
heat waves will see decreases in RH, particularly in humid regions, thus relatively damping future heat stress
on the hottest days (Coffel et al., 2019). Further, changes in heat fluxes, especially during PGWPGW Tmax heat
waves, closely correspond to changes in soil moisture, with projected decreases in latent heat flux and
increases in sensible heat flux generally being associated with decreases in soil moisture during heat
waves (Figure S9a).

During ATmax heat waves, heat fluxes exhibit only small changes (Figures 3c and 3d), which also approxi-
mately correspond to changes in soil moisture being generally small and insignificant over most regions with
the exception of stronger soil moisture decreases over the northeast‐Midwest (Figure S9b). Specifically,
PGWCTRL (green boxes in Figures 3c and 3d) shows a mixed response for latent heat fluxes with no mean
change in the West, small but significant increases in the central and southeast, and small decreases in
the northeast‐Midwest. Likewise, sensible heat fluxes in PGWCTRL show negligible changes in all regions
with the exception of significant increases in the northeast‐Midwest. Contrarily, PGWPGW (red boxes in

Figure 2. Scatter plots between Tmax versus RH during (a–d) Tmax heat waves and (e–h) ATmax heat waves for four regions. Black, blue, green, and yellow circles
represent the averages across heat waves occurring during each summer in observations, CTRL simulations with respect to the CTRL threshold (CTRLCTRL),
PGW simulations with respect to the CTRL threshold (PGWCTRL), and PGW simulations with respect to the PGW threshold (PGWPGW), respectively.
Background contours in (e) to (h) correspond to respective ATmax values.
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Figures 3c and 3d) exhibits negligible changes in heat fluxes over both theWest and central and insignificant
decreases in latent heat fluxes and significant increase in sensible heat fluxes over both the
northeast‐Midwest and southeast.

To further establish the role of land‐atmosphere interactions in driving variations in the characteristics of
heat waves, we investigate the relationship between changes in EF and changes in Tmax during future heat
waves (Figures 3e–3l). During Tmax heat waves, changes in EF are significantly negatively correlated with
changes in Tmax over most regions except the southeast, consistent with the idea that in regions where moist-
ure is not abundant, moisture limitation can amplify or dampen temperature anomalies via EF
(Figures 3e–3h). These relationships occur over all regions in both PGWCTRL and PGWPGW, except in the
West where it does not occur in PGWPGW and the southeast where it does not occur in PGWCTRL heat waves.
In turn, for ATmax heat waves, where moisture is typically abundant, correlations between EF and Tmax are
insignificant everywhere, except for the West (Figures 3i–3l). Overall, these changes are in line with the
expectation that the amplified warming during Tmax heat waves is closely associated with reduced evapora-
tive cooling, portraying land‐atmosphere interactions as the primary driver of the amplification of Tmax heat
waves. Conversely, a weak relationship between the changes in EF and changes in Tmax during ATmax heat
waves indicates a weak land‐atmosphere coupling during more humid heat waves in both present and
future climates.

Figure 3. Box and whisker plots (a to d) show spread in paired differences in heat fluxes between corresponding present and future summers during Tmax, ATmax
heat waves for (a, c) latent heat and (b, d) sensible heat fluxes. Darker shading inside the box shows significance at 95% confidence level using two‐sided Student's
T test, whereas lighter shading is used where the change is not significant. Green and red boxes represent the change between PGWCTRL and CTRLCTRL
and between PGWPGW and CTRLCTRL heat waves, respectively. In the box and whisker plots, the center line shows the 50th percentile, the bottom and top
boundaries of the box indicate first (Q1) and third (Q3) quartiles, respectively; the whiskers extend 1.5 times the interquartile length (Q3–Q1) beyond the box
boundaries. The hollow circles are the outliers. Scatter plots (e–l) between changes in Tmax versus changes in evaporative fraction (EF) for (e–h) Tmax and (i–l)
ATmax heat waves for four regions. Green and red boxes circles represent the change between PGWCTRL and CTRLCTRL and between PGWPGW and CTRLCTRL
heat waves, respectively. Numbers in e–l show correlation coefficients between the changes, and color of the statistics correspond to the respective scatter.
The significant statistics at 95% confidence level are marked with asterisks.
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4. Conclusion and Discussion

Using a set of high‐resolution spectrally nudged WRF model simulations, we evaluate changes in the char-
acteristics of temperature‐based and temperature‐humidity‐based heat waves (Tmax and ATmax) in a warmer
climate. We find a decrease in RH during future Tmax heat waves and no significant change in RH during
future ATmax heat waves with reference to the control period. Given that ATmax depends on both RH and
Tmax, higher Tmax during humid heat waves drives an increase in ATmax, even if RH remains largely
unchanged. Changes in Tmax during Tmax heat waves are correlated with changes in EF, which reflects a
stronger land‐atmosphere coupling during these heat waves. Contrarily, generally weak or no relationship
exists between the changes in EF and Tmax during ATmax heat waves, indicating a weak role of
land‐atmosphere coupling in the future changes of ATmax heat waves. Overall, higher temperatures in a war-
mer climate can result in reduced soil moisture during the warm season, causing an increase in the sensible
heat flux and a decrease in the latent heat flux. These relationships are well visible during Tmax heat waves.

The findings associated with Tmax heat waves are generally consistent with previous studies, which associate
intensification of temperature extremes with higher partitioning to sensible heat as a result of stronger
land‐atmosphere coupling undermoisture‐limited circumstances (Coffel et al., 2019; Donat et al., 2018, 2017;
Fischer & Knutti, 2013; Lee et al., 2016; Teuling et al., 2010). In more moisture‐abundant circumstances,
such as described by ATmax heat waves, the lack of substantial changes in the energy flux partitioning yields
no amplification of heat wave characteristics beyond the mean warming. This is consistent with previously
reported undetectable changes in the land‐atmosphere interactions in moisture‐abundant regions over the
United States (Cheng et al., 2019).

Overall, this study provides a new but complementary perspective on the changing characteristics of heat
waves in a future climate. The design of our experiments, with large‐scale atmospheric circulation spectrally
nudged, allows us to more robustly associate these changes to thermodynamic processes. However, future
heat waves are still likely to be affected by changes in the atmospheric circulation, although these are typi-
cally less robust across models (Barnes et al., 2014; Gibson et al., 2017; Sussman et al., 2020). The results here
suggest that circulation changes are unlikely to be a dominant factor needed to explain changing heat wave
characteristics. This is consistent with results from fully coupled GCMs, but a comprehensive assessment of
changes in the heat waves and heat stress hazard nonetheless needs to account for both dynamic and ther-
modynamic factors. An analysis of large ensembles of fully coupled simulations is needed to understand the
contribution from different drivers at the regional scale and to overcome limitations of this study with regard
to sample size and thus statistical significance. Here we identify the role of humidity during heat waves using
one heat stress index, but further exploration using other available heat stress indices might be useful since
different indices show varying sensitivity to humidity.
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