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Volume IV of the Colorado River Basin State of the Science report focuses on models and methods 
for developing hydrologic traces that represent plausible hydrologic futures and can be run through 
system or planning models to evaluate the potential for outcomes and impacts of interest over the 
next 5 to 50 years. The three main approaches for developing such traces are Historical Hydrology 
(Chapter 9), Paleohydrology (Chapter 10), and Climate Change-informed Hydrology (Chapter 11). 
Long-term hydrologies generated using one or more of these approaches are used as driving inputs 
for Reclamation’s CRSS planning model, as well as similar planning and system models used by other 
organizations. The three chapters in Volume IV provide comprehensive descriptions and 
assessments of the respective approaches and their variants, the data they require, their 
applications, and their tradeoffs. It is important to examine and understand these choices in order 
to select appropriate hydrologic traces for system modeling and risk, and also to interpret the 
output of system modeling that has already been performed.  

Traditional long-term planning methods are based on the assumption that future hydrology will 
have characteristics (average, variance, extremes) similar to the historical observed hydrology. The 
extreme hydrologic drought of 2000–2004, unprecedented in the observed record, highlighted the 
downside of basing expectations for future hydrology only on the observed record (i.e. historical 
hydrology). Clearly, hydrologic behavior outside the range of the past 100 years was, and is, possible. 
Accordingly, the system analyses performed by Reclamation to support the 2007 Interim Guidelines 
included, for the first time, ensembles of hydrologic traces based on tree-ring reconstructions of 
basin paleohydrology. These traces show a broader range of natural variability, including more 
severe and sustained droughts, than those based only on the past century’s observed hydrology 
(Chapter 2).  

Volume IV 
Long-term—Informing the 5-Year to 50-Year Time Horizon 

 
Chapter  9. Historical Hydrology 

Chapter 10. Paleohydrology 

Chapter 11. Climate Change-Informed Hydrology 
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As the dry period that began in 2000 persisted, studies modeling the future impacts of human-
caused climate change on basin hydrology consistently indicated that the 21st century was likely to 
see systematic shifts in hydrologic conditions: earlier snowmelt and runoff, lower runoff efficiency, 
and (with less certainty) a decline in annual streamflow. Because Reclamation and other basin 
stakeholders saw the need to explicitly represent this additional climate change risk in planning 
studies, Appendix U in the 2007 Interim Guidelines laid out a pathway for developing and using 
climate change-informed hydrologic traces. In 2012, the Basin Study formally incorporated a climate 
change-informed ensemble along with traces based on historical hydrology and paleohydrology, 
using Robust Decision Making techniques to assess risks from all scenarios on an equal footing. 

As with the historical hydrology and paleohydrology, a typical analysis of climate change-informed 
hydrology will outline an ensemble of potential future trajectories for basin hydrology. Over longer 
planning horizons (30 years or more), the range depicted by this ensemble is even broader than 
those depicted by historical hydrology and paleohydrology, most notably on the dry side of the 
distribution.  

Several planning studies for the basin have used hydrologic traces that effectively blend information 
from two or more types of hydrology; these are described in greater detail within the listed 
chapters: 

• “Paleo-conditioned” hydrology takes state-transition (wet-dry) information and resamples the 
historical hydrology to create new sequences that reflect paleo-variability (Chapter 10) 

• Delta-method statistical downscaling takes future change factors in temperature and 
precipitation from climate-model ensembles and perturbs the historical climate sequence to 
simulate the historical hydrologic variability recurring under future climate (Chapter 11) 

• Temperature-perturbed hydrology is similar to the above, but uses several prescribed 
temperature change factors to simulate the historical hydrologic variability recurring under a 
warmer climate, assuming no precipitation changes (Chapter 11) 

While the sequence of the three chapters may suggest an evolution or transition, it would be 
incorrect to conclude that climate change-informed hydrology is now the preferred or optimal 
source of long-term traces to drive system models for planning studies. All three main sources of 
hydrologic ensembles (historical, paleohydrology, climate change-informed) have inherent 
advantages and limitations, summarized in the table below. These attributes may be more or less 
relevant depending on the time horizon of a risk assessment. For example, assessing risk five years 
into the future would not need to account for the sources of future uncertainty that longer-term 
studies must grapple with. For long-term risk assessments, it is more helpful to base analyses on at 
least two, and ideally all three types of hydrology, than any single type; more specifically, it is 
inappropriate to assume the historical hydrology will repeat itself. To further reduce the impacts of 
the assumptions inherent to any ensemble, it may be beneficial to use advanced analytical and 
decision-support frameworks that deemphasize probabilistic risk.  
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Key characteristics of the main types of hydrology, observed, paleohydrology, and climate change-
informed. (Source: adapted from Lukas et al. 2014) 

 Historical hydrology 
(Chapter 9) 

Paleohydrology 
(Chapter 10) 

Climate change-informed 
hydrology 

(Chapter 11) 

Most useful 
information to 
extract from this 
type of hydrology 

Variability 
(interannual to 
decadal); recent 
trends  

Variability (interannual 
to multi-decadal); shifts 
in mean and variability 

Potential long-term future 
changes 

Embedded 
assumption in using 
this to inform 
planning 

Historical mean and 
variability is stable 
over time and is 
representative of 
future risk 

Pre-1900 hydrology, 
including severe 
droughts and shifts in 
mean and variability, 
can recur in the future 

Climate models can 
provide reliable 
information about future 
changes in the basin 

Key data and models 

Gaged observations 
of streamflow and 
major diversions; 
water-balance model 
to naturalize 
streamflow (except at 
headwaters gages)  

Tree-ring chronologies 
(site time-series); 
statistical models 
relating ring-width to 
climate and hydrology 

Global climate models, 
statistical downscaling 
and bias-correction 
methods; gridded climate 
data; regional climate 
models; hydrology 
models 

Advantages  

Provides baseline 
information about 
risk; relates other 
sources of 
information to our 
experience of system 
impacts; readily 
available, trusted, 
and well-vetted 

Shows broader range of 
natural variability than 
seen in the observed 
records; places 
observed variability in 
longer context; provides 
many sequences of wet 
and dry years 

Best source of information 
about potential effects of 
future climate change on 
hydrology 

Limitations 

Does not capture the 
full range of natural 
variability; does not 
reflect risk from future 
climate change; likely 
to underestimate 
future system stresses  

Uncertainty in the proxy 
information; does not 
reflect risk from future 
climate change, though 
the broader range of 
variability may 
approximate that risk 

Larger uncertainties in 
future changes, requiring 
consideration of many 
traces; complex datasets 
that are difficult to obtain, 
analyze and interpret 

Primary sources of 
uncertainty affecting 
the output 

Imperfect record of 
streamflows; 
inadequate 
characterization of 
depletions when 
naturalizing gage 
records 

Tree rings imperfectly 
reflect hydroclimatic 
conditions; choices in 
handling of the tree-ring 
data and the model that 
relates tree-ring data to 
observed streamflows 

Future emissions of 
greenhouse gases; 
differing climate models; 
choice of downscaling 
and bias-correction 
methods; differing 
hydrologic models 
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Key points 
• Climate change-informed hydrology is increasingly used in basin 

planning studies to complement other long-range hydrologic 
information. 

• Most approaches to developing this information begin with global 
climate models (GCMs) driven by one of several emissions scenarios; 
the approaches incorporate multiple processing steps, with 
corresponding methodological choices that each have implications for 
the final output and its uncertainty.  

• GCMs are the best tools we have for exploring and quantifying 
physically plausible future climate changes at global to sub-continental 
scales. They have deficiencies in representing some key climate system 
features relevant to basin-scale climate, as well as reproducing 
historical basin-scale climate patterns themselves. 

• Downscaling methods make GCM output more usable for finer-scale 
hydrologic modeling, such as projections of future streamflows. 
Downscaled projections are not necessarily more accurate than the 
underlying GCM output in depicting future climate change. 

• Further warming is projected by all GCMs to continue in the basin as a 
consequence of continuing greenhouse gas emissions; basin 
temperatures are projected to rise by 2.5°F–6.5°F by mid-century 
relative to the late 20th century average. 

• The direction of future precipitation change for the basin is much less 
certain than temperature change. The GCMs show some overall 
tendency toward increasing annual precipitation in the northern parts 
of the Upper Basin, and toward decreasing precipitation from the San 
Juan Basin south through the Lower Basin.  

• The projected trends in precipitation are relatively small compared to 
the high year-to-year natural, or internal, variability in precipitation. 
Most GCMs project increased precipitation variability in the future. 

• Mainly due to the pervasive effects of warming temperatures on the 
water cycle, nearly all of the many datasets of climate change-informed 
hydrology and related studies show a strong tendency toward lower 
annual runoff volumes in the Upper Basin and the Lower Basin, as well 
as reduced spring snowpack and earlier runoff.  

• The overall spread of potential future hydroclimatic changes for the 
basin, as depicted across the GCM-driven projections, has not been 
reduced over the past decade and may not be appreciably reduced by 
forthcoming data and methods, not least because much of the spread is 
due to unpredictable natural climate variability.  
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11.1 Overview 

The last decade has seen basin water planning activities increasingly 
informed by expected future climate change and its effects on hydrology. 
The development and use of climate change-informed hydrology was 
largely confined to the research community prior to 2010, with few 
applications in real-world water planning activities in the western U.S. 
Appendix U of the Final EIS for the Interim Guidelines (Reclamation 2007c) 
set a pathway for consideration of climate change projections and their 
incorporation in water planning for the basin. Since then, there has been a 
broad shift toward greater use of these data by water agencies at the 
federal, state, and local level in the Colorado River Basin and elsewhere in 
the West, although with substantial variation in the pace and extent of  
adoption by different agencies and stakeholders. There has also been rapid 
growth in methodologies and available datasets, with agencies such as 
Reclamation and U.S. Army Corps of Engineers (USACE) becoming directly 
involved with data development, and leading interagency efforts to advance 
both the science and practice in this area (Brekke et al. 2009; Brekke 2011; 
Raff et al. 2013). The Water Utility Climate Alliance (WUCA), a self-organized 
consortium of major municipal water utilities, and its partners have also 
been instrumental in facilitating the development of climate change 
guidance for water managers (e.g., Barsugli et al. 2009; Vogel 2015).  

Climate change-informed hydrologic traces have been used as an adjunct 
to traces based on observed hydrology and paleohydrology in basin-scale 
planning studies, and also on their own to drive climate change impact 
assessments (see the Volume IV introduction). Virtually all approaches to 
developing climate change-informed hydrology, whether in the Colorado 
River Basin or elsewhere, begin with the output of GCMs—an acronym that 
originally referred to “general circulation models” but has come to also 
represent the more inclusive category “global climate models.” The GCMs 
translate the expected climate “forcings” (greenhouse gases, aerosols, and 
land use changes) on the Earth’s energy balance into future climate 
changes at global and regional scales, but they run at too coarse a 
resolution (typically 100 km or greater) to directly produce robust basin-
scale hydrology outputs that are usable for water planning in the basin. 
Several different methods, involving varying intermediate steps and 
methodological choices, may be used to derive basin-scale climate change-
informed hydrology from GCM output (Figure 11.1).  

In the method that has been most often used, including in recent basin 
planning studies (e.g., Reclamation 2012e, 2018), emissions scenarios are 
used to drive GCMs, and the climate output of the GCMs is bias-corrected 
and downscaled, then run through a separate (off-line) hydrologic model 
(Figure 11.1; the pink arrows show this pathway). At each step, described in 
Table 11.1, there are subjective decisions that a modeler or data analyst must 
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make, which partially indicates the uncertainties associated with that 
model or data type. The uncertainties collectively carry forward into the 
final result (simulated future hydrology), although not necessarily in a 
straightforward, additive manner. 

 
Figure 11.1 

Schematic showing five different approaches (colored arrows) for developing climate change-
informed hydrology from global climate model (GCM) output that have been tested or implemented 
for the Colorado River Basin. The pathway shown with the pink arrows has been the most frequently 
used in recent basin planning studies. Blue boxes show data inputs/outputs, while orange boxes 
show modeling steps. See also similar schematics in Ray et al. (2008) and Vano et al. (2014). 
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Table 11.1 

Key steps in the typical pathway for producing climate change-informed projections of future hydrology, 
objective of that step, and challenges related to that step.  

Step in modeling chain Objective of this step Caveats 

Emissions scenarios 

Provide multiple trajectories of 
future levels of global climate 
forcing (mainly from greenhouse 
gases) so that GCMs can project the 
future climate changes associated 
with an integrated storyline of 
future population growth, energy 
use, and policy. 

Scenarios often have been lumped 
together in hydrologic impact 
studies, but this should be avoided. 
 
Probabilities have not been 
assigned to the scenarios. 

Global Climate Models 
(GCMs) 

Provide estimates of future changes 
in atmospheric circulation and in 
key climate variables, at global to 
continental scales.  

The simulated natural (internal) 
variability in GCM projections 
means that large ensembles of 
simulations are required to robustly 
estimate mean changes. 

Bias-correction  

Shifts the values of GCM-simulated 
climate variables to better match 
historical observations of those 
variables (both mean and 
variability). 

Some GCM biases cannot be 
meaningfully corrected. 
 
Bias-corrected data can mislead 
users about the ability of the 
underlying GCMs to simulate 
historical climate. 

Downscaling  

Translates coarse-scale GCM 
climate output statistically or 
dynamically into finer-scale climate 
output suitable for regional climate 
analysis and impacts modeling. 

Most downscaling methods 
implicitly assume that spatial 
relationships or other 
characteristics of observed climate 
are maintained in the future (i.e., 
stationarity).   
 
Can mislead users about the 
reliability of the spatial and 
temporal details of the regional 
output. 

Hydrologic modeling 

Translates finer-scale climate output 
into future trajectories of hydrologic 
variables (e.g., runoff) at basin and 
watershed scale. 

Hydrology models are calibrated to 
historical climate and may have 
stationarity assumptions 
embedded in their parameters. 
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Methods that develop basin-scale hydrologic simulations from GCMs in 
order to drive a water system model are aligned with “top-down” 
approaches to climate change impact assessment, where one starts with 
global-scale climate projections, ultimately arriving at local changes and 
impacts that are determined by those top-level inputs in combination with 
the intervening data and models. In comparison, “bottom-up” approaches 
typically begin with local system vulnerabilities to determine thresholds of 
undesirable impacts, then query higher-level climate information to assess 
the future changes in exceedances of system thresholds. In practice, 
climate impact or vulnerability assessments often end up as hybrids of top-
down and bottom-up approaches. When one begins an assessment process 
with a large set (ensemble) of global climate projections, as is typically 
done, there is usually an equally large ensemble of local or basin-scale 
simulations at the end, with each of those simulations retaining important 
characteristics of the respective climate projection that drove it. The 
handling and interpretation of these simulations strongly influence how the 
data ultimately inform planning decisions. 

The organization and content of this chapter acknowledges that the top-
down, large-ensemble approach is strongly embedded in current practice, 
including recent and forthcoming hydrologic analyses and planning studies 
for the basin (e.g., Reclamation 2012e; 2018; 2020). Thus, this chapter 
follows the typical processing steps from GCMs to basin-scale hydrology, 
providing information on models and methods as used to generate 
ensembles of climate change-informed hydrology, and summaries and 
evaluations of the output of those ensembles. However, there are 
alternative approaches to using climate change information to understand 
potential future hydrology—those alternatives will be described toward the 
end of this chapter.  

Those readers with greater familiarity with the processing steps and 
models (GCMs, emissions scenarios, downscaling) and who are most 
interested in the results—projected future climate and hydrology for the 
Colorado River Basin—are encouraged to jump ahead to sections 11.6 and 
11.7. 

11.2 Understanding GCMs and climate projections  

As noted above, GCMs are the usual starting point for methods for 
producing climate change-informed hydrology, such as can be run in a 
water system model like CRSS. GCMs are designed to simulate the 
dynamics of the atmosphere, oceans, land surface and vegetation, sea ice, 
land ice, and the energy balance and water balance that integrate these 
components of the climate system. Overall, they provide realistic 
simulations of the key physical phenomena such as the planetary energy 
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balance, large-scale atmospheric and oceanic circulation, broad-scale 
patterns of temperature and precipitation, and statistical characteristics of 
the historical and current climate, at global scales. At the scale of regions 
the size of the Upper Basin, the simulations are not as realistic, especially 
for precipitation, as detailed below. 

The typical structure of a GCM divides the globe—the atmosphere and 
oceans—into a grid in both the horizontal and vertical dimensions, creating 
grid boxes (Figure 11.2). In GCMs, as in weather and climate forecast models 
(Chapter 7), fundamental physical laws of thermodynamics, motion, and 
fluid dynamics are used to simulate many of the processes, such as the 
transfer of mass, energy, and momentum between the grid boxes. Other 
processes, such as the formation of clouds and thunderstorms, take place 
at spatial scales smaller than a model grid box (typically 100-250 km 
across). Climate models simulate these sub-grid-scale processes by using 
numerical factors (parameters) that have been generalized from 
observations to the grid box scale, a procedure called parameterization. 
Higher resolution (i.e., smaller grid boxes) allows for more physically 
explicit representation of processes, as well as more realistic depiction of 
topography, both of which tend to improve model performance. But higher 

 
Figure 11.2 

Schematic showing the 3-dimensional grid of a typical GCM, with a horizontal 
resolution of about 100 km, and multiple vertical levels extending up into the 
atmosphere and down into the oceans. (Source: University Corporation for 
Atmospheric Research.) 
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resolution comes with much greater computational costs; increasing model 
resolution both horizontally and vertically by a factor of two requires eight 
times as many calculations. 

From a handful of models at a few modeling centers in the 1980s, the GCM 
community has grown to over 30 modeling centers in 10 countries. These 
centers have developed and now maintain at least 60 GCMs. It is important 
to emphasize that these have not been wholly independent efforts; the 
modeling centers share model code and parameters for many processes, 
and several centers maintain multiple GCMs that are variants of each other. 

Climate projections 
For a given climate simulation, a GCM is initialized with a long period to 
“spin up” the ocean and other slowly evolving model components from 
specific starting observations of the atmosphere and oceans, and then the 
GCM is allowed to run freely in time to simulate the past climate or to make 
long-term projections of future climate. Climate models are marched 
forward from the initial state at time steps ranging from a few minutes to 
an hour. This high temporal resolution means that GCMs actually simulate 
sequences of hourly and daily weather, which integrate over time into 
modeled climate variability and change at longer timescales. After the initial 
state is specified, the only inputs to the GCM are so-called “external 
forcings,” such as solar variations, aerosols from historical volcanic 
eruptions, and the changes in greenhouse gas concentrations, ozone, and 
anthropogenic aerosols collectively specified in an emissions scenario. 
Recently, historical observations and future scenarios of land cover change, 
which can exert regional influences on climate, have been included in many 
models.  

A simulation of future climate from a GCM is called a projection, rather 
than a prediction or forecast, because it is conditional on a particular set of 
assumptions about future greenhouse gases and other climate forcings. 
The assumptions reflect an integrated storyline of future population 
growth, energy use, and policy (emissions scenarios; section 11.4). For any 
given climate variable, the GCM projection will show a combination of 1) 
simulated natural (“internal” or “unforced”) variability and 2) a forced 
change over time, if that variable is affected by changes in external forcing 
(most prominently, rising greenhouse gases). 

A critical difference among GCMs is how each one simulates the feedback 
mechanisms that are expected to amplify the direct forcing of the climate 
from greenhouse gases, mainly involving clouds and water vapor. The 
strength of these feedback mechanisms is uncertain, and thus the models 
show a range of global temperature responses to given increments of 
greenhouse gases, which then translates into similarly broad ranges for 
projected temperatures at regional scales.  
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GCM performance and credibility 
Unlike short-term forecasts from weather models, which can be readily 
validated by frequent comparison with observations of the actual weather 
over the forecast period, the multidecadal future projections from climate 
models cannot be validated directly. Thus, the main way that the credibility 
of GCMs is established is by comparing their simulations of the historical 
period, over different spatial scales, with the observed climate over that 
period. Such comparisons examine both the models’ reproduction of the 
statistics of climate—averages, ranges, and extremes—and the models’ 
fidelity to the dynamical features of key climate processes. These 
comparisons can also be used to evaluate the relative performance of the 
GCMs, with the important caveat that performance over the historical 
period may not be reflective of a model’s skill in accurately predicting the 
future changes in climate.  

Assessing the ability of GCMs to reproduce the dynamical features and 
statistics of the historical climate, one can make the generalizations listed 
below (Barsugli et al. 2009; Lukas et al. 2014; USGCRP 2017; Reclamation 
2020). 

Performance at global to continental scales (1,000 km to 10,000 km) 

What GCMs reproduce well in their raw output: 
• Temperature: Spatial and seasonal patterns (i.e., monthly and annual 

averages), and recent warming trends 

• Precipitation: Spatial and seasonal patterns (i.e., monthly and annual 

averages), but not as well as for temperature 

• The dominant seasonal patterns of high and low pressure  

• The jet stream and its seasonal north-south movement  

What GCMs do not reproduce as well in their raw output: 
• Precipitation: Daily amounts—too little variability (“GCM drizzle”) 

• ENSO: the pattern and cycle is present in nearly all models, but the 

spatial features are unrealistic in some important respects  

Performance at the scale of the Colorado River Basin (<1,000 km) 

What GCMs reproduce well in their raw output: 
• Temperature: Seasonal cycle and recent warming trends  

What GCMs do not reproduce as well in their raw output: 
• Temperature: Spatial patterns—these are largely driven by 

topography which is smoothed out in GCMs 

• Temperature: Regional annual average—can differ from observed by 

+/- 6°F 

• Temperature: At mountain-top level—too warm because GCM-

modeled mountains are too low 
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• Precipitation: Annual amounts—nearly all GCMs overestimate by 50-

150% 

• Precipitation: Seasonal cycle (monthly averages)—few GCMs replicate 

the observed pattern 

• Precipitation: Spatial patterns—these are largely driven by topography 

which is smoothed out in GCMs  

• Precipitation: Daily amounts—insufficient variability; heavy and 

extreme events are too small/infrequent 

• ENSO signal in the region’s precipitation—generally weaker than 

actual   

Many of the deficiencies listed above stem from the relatively coarse 
spatial resolution (>100 km) of most GCMs and their inadequate 
representation of the complex topography of the western U.S. These 
deficiencies can be addressed to varying degrees using regional 
downscaling methods (section 11.5), which also include a bias-correction 
step that corrects for the systematic errors in GCM-simulated 
temperature and precipitation described above. 

11.3 The CMIPs: Standardized collections of GCM 
projections 

In the 1990s, the global community of climate modelers recognized the 
need for standardized sets of climate model runs, with consistent inputs, 
time periods to simulate, and historical and future greenhouse gas 
scenarios; i.e., emissions scenarios (section 11.4). This would facilitate 
systematic evaluation of model outputs to improve understanding of 
climate dynamics and to improve the models themselves. These efforts 
evolved into the World Climate Research Programme’s (WCRP’s) Coupled 
Model Intercomparison Project (CMIP). The third phase, called CMIP3, was 
carried out to support the IPCC’s Fourth Assessment Report (AR4), while 
the most recent phase, CMIP5 (there was no CMIP4), supports the IPCC 
Fifth Assessment Report (AR5). The next phase, CMIP6, is in progress and 
will support the IPCC Sixth Assessment Report, which is expected in 2021. A 
list of the modeling centers and the GCMs for which CMIP5 projections are 
available can be found on this NOAA webpage.  

Each CMIP can be thought of as an organized roundup of the output of the 
latest (at the time) generation of GCMs. Nearly all GCM output used in 
regional and national climate assessments and in basin-scale water 
resource planning studies since 2008 have come from CMIP3 or CMIP5 or 
both. Compared to CMIP3, CMIP5 included more participating modeling 
centers and GCMs, generally higher-resolution models, more complete 
physical parameterizations of key climate processes and more individual 

Models Represented in 
NOAA's Climate 
Change Web Portal 

 
Link: 
https://esrl.noaa.gov/p
sd/ipcc/cmip5/help.ht
ml 

https://esrl.noaa.gov/psd/ipcc/cmip5/help.html
https://esrl.noaa.gov/psd/ipcc/cmip5/help.html
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projections of future climate. It appears that CMIP6 will see the 
continuation of all of these trends. The differences between CMIP3, CMIP5, 
and CMIP6 are summarized in Table 11.2. 

Table 11.2 

Key characteristics of the Coupled Model Intercomparison Project (CMIP) and participating GCMs in Phase 
3 (CMIP3), Phase 5 (CMIP5), and the forthcoming Phase 6 (CMIP6) and applications of GCM data from 
CMIP3 and CMIP5. (Source: updated from Lukas et al. 2014; CMIP6 information from Hausfather 2019) 

 CMIP3 CMIP5 CMIP6 

Initial data availability 2006 2012 2019-2020 

Main Emissions Scenarios 
(count) 
 
See section 11.4 for 
explanation and acronyms 

(3) SRES: B1, A1B, 
A2 

(4) RCP: 2.6, 4.5, 6.0, 
8.5 

(9) SSP-RCP: SSP1-1.9, 
SSP1-2.6, SSP2-4.5, 

SSP3-7.0, SSP3-
LowNTCF [6.3], SSP4-
3.4, SSP4-6.0, SSP5-

3.4-OS, SSP5-8.5 

Historical climate period 1880–2000 1850–2005 1850-2014 

Projection period 2001–2100 2006–2100+ 2015-2100+ 

Number of modeling 
centers 

16 30 49 

Number of models 22 55 100 

Number of model 
simulations (projections) for 
core future scenario runs 

120 250 >300? 

Range of horizontal 
resolutions (average grid 
cell size) 

100-500 km (median: 
250 km) 

60–250 km (median: 
150 km) 

25–250 km 

Timestep of archived data Monthly 
Daily and monthly; 

some sub-daily 
Daily and monthly; 

some sub-daily 

Decadal Prediction? No Yes, 2010–2035 Yes 

Selected climate 
assessments using these 
projections 

IPCC AR4 (2007) 
Climate Assessment 

of the Southwest 
(2013) 

Climate Change in 
Colorado (2008) 

IPCC AR5 (2013) 
National Climate 

Assessment (NCA3, 
2014; NCA4, 2018) 
Climate Change in 
Colorado (2014) 

IPCC AR6 (2021) 

Selected Colorado River 
Basin hydrology studies 
using these projections 

Colorado River 
Water Availability 

Study–Phase 1 (2012) 
Colorado River Basin 
Supply and Demand 

Study (2012) 

Colorado River Water 
Availability Study–

Phase 2 (2014) 
Draft CMIP5 Report 
(Reclamation 2020) 
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Participation in CMIP is open to all modeling centers, limited only by their 
ability to use the standardized inputs for a given CMIP “experiment” and 
produce runs in the specified output format. There are no formal criteria 
for model quality, reliability, or skill. However, any model that was 
unusually poor at reproducing the historical climate, or produced future 
projections whose results were well outside the bounds of the other 
models, would be unlikely to be put forward for participation in CMIP by 
the modeling center that developed it (Knutti 2010; Knutti, Masson, and 
Gettelman 2013; Sanderson, Wehner, and Knutti 2017; Eyring et al. 2019).   

As noted earlier, climate models are not independent of each other: they 
share assumptions, simulation methods, and even code and parameter sets, 
and during development they are compared to the same set of historical 
observations. Collaboration among modeling centers also means that 
models that have high skill tend to be the ones that perform similarly to 
other models (Sanderson, Wehner, and Knutti 2017). Consequently, the 
effective number of models (i.e., sample size) in the CMIP ensembles is 
smaller than the nominal number of models (Tebaldi and Knutti 2007; 
Knutti, Masson, and Gettelman 2013; Sanderson, Wehner, and Knutti 2017). 
Because the resulting ensembles of model projections are neither a random 
nor systematic sample of potential future climate, the distribution of future 
projected changes should not be treated probabilistically. This issue is 
explored at greater length in the last section of this chapter.    

Is CMIP5 better than CMIP3? Will CMIP6 be better than CMIP5? 
While GCMs have continued to improve from one generation to the next, in 
the recent update cycles this progress has been more incremental than 
fundamental. The projections archived in CMIP5 are generally better than 
those in CMIP3, according to various performance metrics, but not so 
much better as to invalidate the results of analyses done with CMIP3 
(Knutti et al. 2010; Lukas et al. 2014; Reclamation 2020). The CMIP3 and 
CMIP5 model ensembles show very similar average projections for 
temperature and precipitation changes over much of the globe, including 
most of North America, and a similar range of uncertainty across the 
models. For the Colorado River Basin, there was very little difference in the 
temperature projections between the CMIP3 and CMIP5 ensembles, after 
accounting for the differences in the emissions scenarios, but for 
precipitation, the CMIP5 projections were slightly shifted toward wetter 
outcomes than CMIP3, and this difference is accentuated by certain 
downscaling methods, as described later.  

Similarly, the forthcoming CMIP6 models and their projections will be 
improved from CMIP5 in some technical respects (e.g., model resolution), 
and will probably have overall better performance in reproducing features 
of the observed climate. But judging from the previous CMIPs, CMIP6 
should be expected to show similar spatial patterns of future change as 



 

Chapter 11. Climate Change-Informed Hydrology 396 
 

CMIP5 and CMIP3, and similarly broad ranges of future change, as CMIP5 
and CMIP3. In other words, the overall CMIP6 ensemble seems unlikely to 
reduce uncertainties related to model structure (Table 1.4).  

Enough of the CMIP6 model results have been released for analysts to 
discern that the CMIP6 models are showing, on average, warmer future 
global temperatures than CMIP5 given equivalent emissions scenarios 
(Hausfather 2019). This indicates that, compared to their CMIP5 
counterparts, many of the CMIP6 models are simulating even stronger 
positive feedbacks (e.g., from clouds, water vapor, and surface reflectivity) 
that enhance the direct warming from the additional greenhouse gases. 
However, Tokarska et al. (2020) found that the CMIP6 models with higher 
future warming also tend to overestimate the observed global warming 
trend from 1981–2017; adjusting the CMIP6 projections to account for this 
tendency brings the overall CMIP6-projected warming into line with that 
depicted by CMIP5. It is too soon to know whether the adjustment to the 
CMIP6 ensemble proposed by Tokarska et al. (2020) will be more broadly 
accepted, e.g., to be implemented in downscaled CMIP6 datasets developed 
for application purposes. 

In addition to the main set of 21st century climate projections from CMIP6 
intended for use in climate change assessment (“ScenarioMIP”; O’Neill et al. 
2016), there will be a separate set of projections run using high-resolution 
climate models (“HighResMIP”; Haarsma et al. 2016). At least 20 GCMs that 
run at 50-km horizontal resolution or better are participating in 
HighResMIP; this resolution is comparable to the regional climate models in 
NARCCAP and NA-CORDEX (see section 11.5). HighResMIP may be able to 
provide additional insights into potential changes in atmospheric and ocean 
dynamics influencing the western U.S. 
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SPOTLIGHT 

 

The large size of the CMIP3 and CMIP5 ensembles (20–35+ GCMs, 100–200+ projections) and the broad 
range of projected future changes across the ensembles, make it challenging to analyze and interpret 
future climate projections. It would seem logical to try to reduce the size or otherwise refine the CMIP 
ensembles by evaluating the performance of the GCMs and then culling models that perform poorly or 
weighting the model projections according to their performance. For the most recent National Climate 
Assessment (USGCRP 2017), the GCM projections were weighted, but not screened to reduce the 
ensemble.  

Over the past decade, researchers have tested different approaches for evaluation, screening, and weighting 
for projections of future climate for the western U.S. (Brekke et al. 2008; Pierce et al. 2009; Mote et al. 2011; 
Reclamation 2020; Rupp et al. 2013; Rupp, Abatzoglou, and Mote 2017). Nearly all of these efforts have found 
that weighting or screening the GCM ensemble has little or no effect on the distribution of future climate 
changes, assuming at least 10 of the models (i.e., 30-50% of the original ensemble) are retained. Also, looking 
across those efforts, one can see that performance rankings of models can vary with different performance 
metrics. In all cases, as mentioned earlier, those metrics are based on the model’s ability to reproduce 
average statistics and spatial patterns of the observed climate, with the implicit but untestable assumption 
that models that better simulate the observed climate will perform better in predicting future climate 
changes. 

For performance-based screening and weighting to have a significant and meaningful effect on the 
ensemble, there must be a clear relationship between model performance and the sign/magnitude of the 
model’s projected future change. This condition, however, is rarely met in evaluations of GCM performance, 
including the case discussed in more detail below. One exception was from Rupp, Abatzoglou, and Mote 
(2017), who found that the GCMs that better reproduce the historical climate of the Columbia River Basin 
tend to project greater warming and larger precipitation increases than the other GCMs, though these 
results depended on the method of evaluating the GCMs. 

If a screening procedure does reduce the original ensemble to fewer than 10 models (i.e., eliminating more 
than 70% of the 30+ CMIP5 models) any theoretical beneficial effect of screening out low-performing GCMs 
may be outweighed by the risk of under-sampling model uncertainty. In other words, the screened ensemble 
distribution may become too narrow, and exclude outlying but still plausible climate outcomes that one 
would want to consider in risk assessment and planning (Mote et al. 2011).  
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Comprehensive and basin-specific screening and weighting procedures were performed for the 
forthcoming report, ‘”Exploring Climate and Hydrology Projections from the CMIP5 Archive” 
(Reclamation 2020). A set of 52 CMIP3 and CMIP5 GCMs were first screened against global 
performance metrics (Gleckler, Taylor, and Doutriaux 2008; Flato et al. 2013), removing 13 of the 
models. The remaining 39 models (12 from CMIP3, 27 from CMIP5) were then assessed against a set 
of 48 region-specific metrics that address the ability of the GCM to reproduce 1) the basic statistics 
of Colorado River Basin temperature and precipitation; 2) the amplitude and phase of seasonal 
cycles of temperature and precipitation; and 3) ENSO and PDO mean Sea Surface Temperature 
(SST) pattern and signal spectrum, and the teleconnected temperature and precipitation response 
over the western United States. The output of the retained 39 GCMs was then weighted according 
to overall performance on the set of region-specific metrics, with the best-performing GCM being 
given roughly 2.5 times the weight of the worst-performing GCM.  

The projections of hydrologic changes shown by the different ensembles—“Full” (all GCMs), 
“Retained” (after screening against the global metrics), and “Retained and Weighted” (after 
evaluation against the regional metrics)—are shown in Figure 11.3. There are only slight differences 
in the distribution of streamflow changes after the initial screening, and even smaller differences 
imparted by the weighting procedure (column on far right). 

 

Figure 11.3 

Projected changes in VIC-modeled streamflows at Colorado River at Lees Ferry for the end-of-century period (2066–
2095) relative to the historical period (1971–2000), from the Full, Retained, and Retained and Weighted CMIP3 and 
CMIP5 GCM ensembles. Triangles are ensemble means, bars show the 10th and 90th percentiles range, and 
horizontal lines are minimum and maximum projections. (Source: Reclamation 2020) 
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Given the apparent lack of impact on the distribution of projected changes in climate and hydrology, 
the main value to screening and weighting procedures may be in imparting greater credibility to the 
results. Since screening and weighting of CMIP3 and CMIP5 GCMs specific to the Colorado River Basin 
has already been performed (Reclamation 2020), it makes sense for those refined ensembles to be used 
in future analyses for the basin. Potentially, the same analyses could be performed for the CMIP6 
models when those data become available, though the value of doing so would likely be more in 
identifying performance differences between CMIP6 and CMIP5, than in refining the CMIP6 ensemble 
itself. 
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11.4 Emissions scenarios used to drive GCMs  

Since anthropogenic greenhouse gas emissions have been identified as the 
primary cause of recent global warming and other climate changes 
(USGCRP 2017), it is necessary for future climate simulations from GCMs to 
have inputs that describe how greenhouse gas emissions and 
concentrations will unfold over the next century and longer. A single “best” 
forecast of future emissions would be fraught with very large uncertainties, 
so the modeling community has adopted a set of multiple standardized 
trajectories whose range is intended to capture those uncertainties. 

The CMIP5 standardized greenhouse gas trajectories are called 
Representative Concentration Pathways (RCPs), which replaced the SRES 
(Special Report on Emissions Scenarios) emissions scenarios (e.g., B1, A1B, 
A2) that were used in the GCM projections for CMIP3. Both the RCPs and 
the SRES scenarios provide plausible trajectories of GHG emissions and 
concentrations that are each linked to future trends in demographic, 
socioeconomic, technological, and political factors. Since those underlying 
trends cannot be predicted with any confidence, there have been no 
probabilities assigned to any one of these RCPs being the actual future 
path.  

Each CMIP5 GCM simulation or projection uses one of the four RCPs: RCP 
2.6, RCP 4.5, RCP 6.0, or RCP 8.5 (Figure 11.4). The numbers refer to the 
strength of the global radiative forcing by year 2100, in watts per square 
meter (W/m2)—the extra energy trapped in the climate system by added 
greenhouse gases and other human-caused changes—compared to pre-
industrial levels. As with the SRES scenarios, the divergence among the 
RCPs at mid-century is much smaller than later in the century. The 
projected increase in global average temperature by 2100 for any given 
GCM closely corresponds to the radiative forcing of each RCP.  

• RCP 2.6 (low) assumes immediate and very large (about 70%) reductions 
in GHG emissions from today’s levels, and its climate forcing peaks by 
2050 with CO2 levels at about 435 parts per million (ppm), about 20 ppm 
above today’s (2019) level. After 2050, the forcing trajectory of RCP 2.6 
is well below the other RCPs.  

• RCP 4.5 (medium-low) assumes large reductions in GHG emissions that 
are less drastic and take effect later than in RCP 2.6, with CO2 at about 
475 ppm at 2050 and rising. At 2050 the forcing of RCP 4.5 is slightly 
above RCP 6.0, but after 2070 it levels out so that it is below RCP 6.0.  

• RCP 6.0 (medium-high) assumes moderate reductions in emissions, and 
its forcing is very similar to RCP 4.5 at 2050 and continues to climb 
throughout the 21st century.  
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• RCP 8.5 has greater forcing than the other RCPs at 2050, with CO2 at 
about 530 ppm, and the gap increases over the second half of the 21st 
century. By 2100 RCP 8.5 has CO2 levels around 950 ppm, over double 
the 2019 level. RCP 8.5 assumes essentially no reduction in emissions. 

For CMIP6, in the core future projections (“ScenarioMIP”), the RCPs have 
been retained, and each will be cross-referenced with an SSP (Societally 
Significant Pathway). For the CMIP6 projections, the climate forcing 
trajectories from 2020–2100 of these four RCPs are slightly different than in 
CMIP5 (Figure 11.3), so precise comparisons between CMIP5 and CMIP6 
projections at mid-century are not quite apples to apples, although the 
climate forcings at end of the century will be the same. The 4 RCP-SSP 
scenarios are augmented by 5 additional SSP-based emission concentration 
scenarios which, like the current RCPs, have a specified century-end 
climate forcing level. These 5 scenarios will fill in the gaps between the 4 
current RCPs, with forcings of 1.9, 3.4 (two scenarios), 6.3, and 7.0 W/m2, 
respectively. It is not yet known how many individual GCM projections will 
be made available from each of the CMIP6 RCP-SSP scenarios. 

 
Figure 11.4 

Global radiative forcing, 2000–2100, of the four Representative Concentration Pathways (RCPs) used 
to drive the current-generation (CMIP5) climate models and the three main SRES emissions scenarios 
used to drive the previous-generation (CMIP3) climate models. The CMIP6 model projections are 
being driven by slight variants on the four CMIP5 RCPs, along with five other emissions scenarios. 
(Source: Lukas et al. 2014; Data: SRES: IPCC 2000; RCP: IIASA RCP Database; 
http://tntcat.iiasa.ac.at:8787/RcpDb/) 

http://tntcat.iiasa.ac.at:8787/RcpDb/


 

Chapter 11. Climate Change-Informed Hydrology 402 
 

While the RCPs were intended by their developers to be treated as though 
they were equally likely to occur, many impact assessments based on 
CMIP5 GCM output have excluded projections based on RCP2.6, including 
the forthcoming ‘”Exploring Climate and Hydrology Projections from the 
CMIP5 Archive” report (Reclamation 2020). The draft report noted that 
RCP2.6 represents an aggressive global emissions mitigation effort and has 
no analog among the SRES scenarios. The RCP2.6 trajectory requires the 
implementation of direct CO2 capture and removal by the end of the 
century (van Vuuren et al. 2011). 

On the other end of the scale, RCP 8.5 is often called the “business-as-
usual” scenario, but it was derived from a larger family of “business-as-
usual” scenarios (i.e., policies toward global carbon mitigation are not 
pursued), and RCP 8.5 tracks higher than most of them. Some researchers 
argue that a return to coal’s dominance of primary energy supply as 
assumed in RCP 8.5 is increasingly unlikely (Ritchie and Dowlatabadi 2017). 
It is more appropriate to call RCP 8.5 a “high-end” business-as-usual 
scenario. Hausfather and Peters (2020) argue that the RCP8.5 trajectory has 
become highly unlikely due to recent trends in energy use and emissions, 
and it should be de-emphasized in impacts assessment.  

Regardless of whether GCM data from all RCPs is used for analysis, keeping 
the GCM data driven by each RCP separate throughout the analysis chain 
allows one to more clearly identify the differences and uncertainty in the 
final hydrology output that is due only to the RCP. While there is 
substantial overlap in the ensembles of Colorado River Basin future 
streamflow generated using RCP 4.5 and RCP 8.5 projections (Figures 11.12 
and 11.13), there are also systematic differences associated with the RCP. 

11.5 Downscaling and regional climate projections 

Overview of downscaling 
The “raw” output from GCMs provides our best estimates of future changes 
in global circulation patterns and can paint a useful broad-brush picture of 
changes at the global to sub-continental scales (e.g., Figures 11.8 and 11.9 
later in this chapter). But the coarse spatial resolution of GCMs makes the 
raw output less appropriate for analysis of watershed-scale changes, 
particularly for precipitation. This is especially true in areas of high 
topographic relief, such as the western U.S. Because the topography of 
mountain ranges is highly smoothed in the coarse representation of surface 
features in GCMs, with too-low elevations at the range crests, GCMs poorly 
simulate orographic precipitation and snow accumulation, and thus runoff 
from snowmelt—a critical deficiency in the snowmelt-driven Colorado 
River Basin. Other processes that control local precipitation and 
temperature in the basin (Chapter 2), such as land-atmosphere feedbacks, 
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local slope circulations, convective processes, and regional monsoon 
circulations, are either poorly simulated by the GCMs or occur at spatial 
scales smaller than the typical GCM grid box. 

To address these and other deficiencies in the GCMs, researchers have 
developed a number of methods to project regional-scale and local-scale 
changes in climate, using the raw GCM output as a starting point. These 
regional climate or downscaling methods have two primary purposes: first, 
to produce realistic daily or monthly sequences of weather and climate 
over regions such as the Colorado River Basin that can be used to run 
hydrology models and other impacts models, and second, to understand 
the regional changes that are likely to take place and the mechanisms 
behind them. The first is a relatively easy technical problem, for which most 
downscaling methods are sufficient. The second is a much harder and 
perhaps more important problem, and it is also difficult to quantify how 
well the different methods meet this goal.  

Regional climate or downscaling methods are typically classified into one of 
two distinct categories: dynamical or statistical (Wilby and Wigley 1997). 
The dynamical approach requires running a higher-resolution regional 
climate model (RCM) over the domain of interest. This has the benefit of 
producing future projections that are more firmly grounded in our physical 
understanding of the processes involved, but at a cost of much higher 
computational resources. In contrast, statistical downscaling approaches 
typically require little in the way of total computing time, but they are 
based purely on statistical relationships among observed climate variables, 
and may not represent future changes in those variables correctly. The 
calibration of RCMs requires comparison with observed climate variables, 
so dynamical downscaling is not entirely free from this issue either. 

 
Figure 11.5 

Historical average annual precipitation over the Upper Colorado River Basin and adjacent High Plains 
as simulated by the CESM GCM (100-km grid, left), as estimated by the PRISM observational gridded 
product (4-km grid, middle), and as simulated by the WRF high-resolution regional weather/climate 
model (4-km grid, right) which was used to dynamically downscale the CESM GCM simulation on the 
left.  
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For the Colorado River Basin, biases in GCMs make raw GCM output data 
problematic to use directly in hydrology models. Figure 11.5 shows that the 
mean annual precipitation coming from the Community Earth System 
Model (CESM; Hurrell et al. 2013), one of the higher-resolution GCMs, is not 
only of much coarser resolution than the spatial scales represented in the 
observed climate, it is also heavily biased (i.e., much too wet in the wrong 
places) and the spatial patterns would not match the spatial patterns of a 
coarsened observation dataset. In contrast, a very high resolution (4-km) 
regional climate model simulation using the Weather Research and 
Forecasting model (WRF; Skamarock and Klemp 2008) reproduces the 
annual precipitation field of the observations with much better spatial 
fidelity, and smaller biases. Most statistical downscaling methods also 
reproduce the observed spatial pattern, but only because they are forced to 
do so by design, not as a result of accurately simulating the underlying 
physical processes.  

These biases in the GCMs are of critical importance for hydrologic 
applications. Most obviously, the fact that the GCMs do not properly 
represent the correct distributions of precipitation and temperature means 
that a hydrology model run directly with the output of that GCM will not 
develop a realistic snowpack, and so will not depict the correct magnitude 
or timing of spring runoff. In essence, such a hydrologic simulation would 
not be simulating the Colorado River Basin as we know it. That the 
mountains in a GCM are too low also means that the GCM will not simulate 
most precipitation in mountainous regions by orographic processes, as it 
should, but instead is more heavily reliant on simulated convection (i.e., 
thunderstorms) to generate precipitation. As such, it is possible that the 
global model would not predict the correct change in precipitation for this 
region, even if it is predicting the correct change in global circulation (e.g., 
shift in storm tracks) governing that precipitation. Also, local temperature 
change signals in the Colorado River Basin are strongly influenced by land 
surface feedbacks, such as the snow-albedo feedback, that are not present 
in the GCMs simply because the GCM mountains are not tall enough to 
maintain a seasonal snowpack in the first place.  

Downscaled output variables 
The most commonly provided variables from both statistical and dynamical 
downscaling models are daily precipitation and minimum and maximum 
temperatures. These variables have been the core of climate projections, in 
part because observations are available to train statistical methods to 
predict these variables. In addition, dynamical and quasi-dynamical 
methods, and some statistical methods, can provide downscaled humidity, 
shortwave and longwave radiation, and winds, though the lack of widely 
available observations of these variables means that there has not been as 
much verification and adjustment to correctly represent these variables.   
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Requirements for hydrologic modeling 
Again, the first task of regional climate projection methods is to produce 
realistic sequences of weather and climate over regions such as the 
Colorado River Basin that can be used to run hydrology and other impact 
models. To be useful for hydrologic modeling, regional climate projections 
must first provide a high enough spatial and temporal resolution to resolve 
the hydrologically relevant phenomena. Statistical downscaling methods 
typically strive for a grid spacing less than or equal to 12 km, and a daily 
time sequence. A daily weather sequence is often further downscaled 
temporally to a 1- to 3-hourly sequence based on an idealized diurnal cycle 
for temperature and radiation, though precipitation often remains at the 
daily average time scale. This is sufficient to resolve large-scale storm 
systems, though not the more extreme convective processes (i.e., 
thunderstorms). The spatial and temporal resolution of a downscaled 
dataset is also driven by the gridded historical climate data available to 
train the statistical methods (Chapter 4). 

An additional element required for robust hydrologic projections is that the 
daily to seasonal statistics of the historical regional climate as output from 
the downscaling method should be consistent with the historical climate 
data that were used to calibrate the hydrologic model. This can be 
approached by calibrating the hydrologic model using a dataset that is 
consistent with the downscaling method, or tuning the downscaling 
method to be consistent with the dataset that was used to calibrate the 
hydrologic model. For example, the continental-domain VIC parameters 
used in many climate projections are semi-calibrated using the Maurer 
gridded observation product (Maurer et al. 2002) as inputs, and the BCSD 
downscaled projections described below were trained on the Maurer 
gridded observations as well (Reclamation 2014).  

All hydrologic models require, at a minimum, daily or monthly precipitation 
and temperature. More sophisticated hydrology and land surface models 
(Chapter 6) typically require shortwave and longwave radiation, humidity, 
and wind speed, preferably on an hourly time step. If only daily 
precipitation and temperature are available, then these additional variables 
are estimated. This estimation is commonly performed using a set of 
empirical equations as part of the MT-CLIM algorithm (Running and 
Thornton 1996); for example, MT-CLIM is embedded in the VIC hydrologic 
model. MT-CLIM uses a set of calibrated relationships to derive these 
variables from precipitation and minimum and maximum temperature; 
however, the viability of these relationships in a future climate has not been 
thoroughly evaluated. Wind is not estimated by MT-CLIM and is often 
simply given a climatological average value. 
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Widely used regional climate downscaling methods and datasets  
Many different methods for regional downscaling of GCM output have been 
developed. The focus below is on those that have been most widely used in 
impact assessments for water resources and similar applications in the U.S. 
Publicly available datasets of downscaled projections produced using these 
methods are summarized in Table 11.3. 

Statistical methods 
The development of statistical downscaling methods is closely linked with 
applications in hydrology and water management (Wilby, Hassan, and 
Hanaki 1998; Wood et al. 2004). Interestingly, these two early works took 
very different approaches. The Statistical DownScaling Model (SDSM; 
Wilby, Dawson, and Barrow 2002) uses atmospheric variables that are more 
robustly simulated by the GCMs, such as humidity and upper-level winds, 
to predict precipitation.  

In contrast, the Bias-Corrected Spatial Disaggregation method (BCSD; 
Wood et al. 2004) makes use of the GCM precipitation fields, in part 
because precipitation provides the most direct relationship with hydrologic 
variables of interest such as runoff (Clark and Hay 2004). More recently 
constructed analog approaches, including the Locally Constructed Analog 
method (LOCA; Pierce, Cayan, and Thrasher 2014), have been developed to 
make use of the spatial patterns of precipitation and temperature simulated 
by the GCMs to predict changes in regional climate. The focus here is on 
the two most commonly used statistical methods for water resource 
applications in the western U.S.: BCSD and LOCA, and also describe key 
differences between LOCA and two related techniques, BCCA and MACA. In 
considering any downscaling or regional climate method it is critical to 
understand the assumptions that the method makes about what 
information can be used from a GCM.  

The statistical downscaling methods used in the United States have mainly 
been developed through short-term grant-based projects by researchers 
based at universities, and also at government agencies, often for specific 
regional applications. Their initial downscaled projection datasets, 
therefore, may only have regional coverage. An agency-university 
consortium led by Reclamation later employed the BCSD, BCCA, and LOCA 
methods to generate new datasets covering the contiguous U.S., facilitating 
broader use in water resources management and planning. 
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Table 11.3 

Selected widely used and publicly available datasets of downscaled climate projections covering the 
conterminous U.S. or larger domains that are based on the downscaling methods discussed in this 
chapter. See the text for references to technical literature describing these methods and datasets. Note 
that there may be other available datasets produced using the same methods or variants of them. Time 
step M=monthly, D=daily 

Dataset 
name 

Downscaling 
Method 

GCM 
data 

Observed 
climate data 
for bias-
correction 

# 
Runs 

Spatial 
Resolu-

tion 

Time 
step 

Associated 
hydrology-

model 
output 

available? 

Visualiza-
tion tool 

that shows 
these data? 

Statistically downscaled datasets 

Reclamation 
et al. CMIP5 
BCSD  

Bias-
Corrected 
Spatial 
Disaggrega-
tion 

CMIP5; 
37 
GCMs 

Maurer et al. 
(2002) 

231 12 km M Yes No 

NASA NEX- 
DCP30 (in 
USGS Nat’l 
Climate 
Change 
Viewer) 

Bias-
Corrected 
Spatial 
Disaggrega-
-tion 
(variant) 

CMIP5; 
33 
GCMs 

PRISM >100 0.8 km M Yes Yes – USGS 
National 
Climate 
Change 
Viewer 

Reclamation 
et al. CMIP5 
LOCA 

Locally 
Constructed 
Analogs 

CMIP5; 
32 
GCMs 

Livneh et al. 
(2015) 

64 6 km D Yes Yes – 
NOAA 
Climate 

Explorer v2 

Reclamation 
et al. CMIP5 
BCCA 

Bias-
Correction 
Constructed 
Analogs   

CMIP5; 
32 
GCMs 

Maurer et al. 
(2002) 

134 12 km D Yes 
 

No 

MACAv2, U. 
of Idaho (2 
variants) 

Multivariate 
Adaptive 
Constructed 
Analogs  

CMIP5; 
20 
GCMs 

METDATA; 
Abotzoglou 
(2013), or 
Livneh et al. 
(2013) 

40 4 km, or 
6 km 

 

D No 
 

Yes; 
Climate 
Toolbox 
Climate 
Mapper 

Dynamically downscaled datasets 

NARCCAP Dynamical; 
6 RCMs  

CMIP3; 
4 
GCMs 

Maurer et al. 
(2002) 

12 50 km 
 

D No No 

NA-
CORDEX 

Dynamical; 
6 RCMs 

CMIP5; 
6 
GCMs 

METDATA; 
Abatzoglou 
(2013) 

35 25 km 
or 50 
km 

D No No 

 

https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://crt-climate-explorer.nemac.org/
https://crt-climate-explorer.nemac.org/
https://crt-climate-explorer.nemac.org/
https://climatetoolbox.org/tool/climate-mapper
https://climatetoolbox.org/tool/climate-mapper
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Bias-Corrected Spatial Disaggregation (BCSD). The Bias-Corrected Spatial 
Disaggregation method (BCSD) has been the most widely used statistical 
downscaling method in water management in the U.S., including in the 
Colorado River Basin, due to its longevity and its early adoption (in 2007) by 
the Reclamation-led consortium. BCSD was developed in the early 2000s to 
produce regional climate data that are consistent with the observed 
historical weather and climate, and the long-term, large-scale climate 
change signal predicted by GCMs. The standard implementation of BCSD 
uses quantile mapping (Panofsky and Brier 1968) to bias-correct the GCM 
monthly precipitation and temperature outputs to match an observed 
gridded climate dataset (e.g., Maurer at 1/8°; see Chapter 4). This bias-
corrected dataset is then spatially disaggregated (i.e., downscaled) using 
historical climatological factors statistically relating each high-resolution 
(12-km) grid point to the encompassing coarse-resolution value from the 
GCMs, resulting in monthly downscaled projection values. 

A further set of steps is used to generate daily downscaled output, if 
desired. A projected monthly value as generated in the steps above is used 
to select a similar month of historical weather from the observed gridded 
climate dataset, and that sequence of daily weather is rescaled for 
precipitation, or offset for temperature, to match the monthly values of the 
downscaled projection dataset. Effectively, this implies that the sequences 
of monthly precipitation and temperature predicted by the GCM are 
reasonable and can be relied on, but that the sequences of daily weather 
from the GCM are not reliable. However, it means that the projected 
weather sequences under a future climate will not substantially change, 
even if the underlying GCMs indicate such changes. A variant of BCSD using 
daily, rather than monthly, GCM data as inputs to produce daily projection 
data was subsequently applied by Abatzoglou and Brown (2012). This variant 
method implicitly assumes that the sequences of daily weather from the 
GCM are in fact reliable. 

There have been numerous modifications and variants to the basic BCSD 
method over time to improve the representation of specific features, 
including a monthly dataset (NEX-DCP30) produced at 800-m resolution 
(Thrasher et al. 2013). The details of the most recent implementations of the 
BCSD by the Reclamation-led consortium can be found in Reclamation 
(2014). 

Users of BCSD are cautioned that in the standard implementations of the 
method, such as those used by the Reclamation-led consortium, the 
quantile mapping procedure used for bias correction can alter the GCM-
projected future change in precipitation, in a manner that does not appear 
to be physically meaningful. This issue is described in greater detail below.  

National Climate 
Change Viewer 

 
 
Link:  
https://www2.usgs.gov/
landresources/lcs/nccv/
viewer.asp 

https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
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Locally Constructed Analog method (LOCA). The Locally Constructed 
Analog method (LOCA; Pierce et al. 2015) is a much newer statistical 
downscaling method that has gained widespread use in the western U.S. in 
the past several years. LOCA was developed to improve on previous 
“constructed analog” techniques that all make use of the coarse spatial 
pattern of the daily weather sequences from GCMs to generate a high-
resolution spatial pattern. LOCA uses a very different initial bias-correction 
step from BCSD, with a frequency-dependent delta-quantile bias 
correction, similar to that described by Li, Sheffield, and Wood (2010), that 
corrects not only the statistical distribution, but also the representation on 
multiple time scales.  

Once the bias correction is performed on the coarse scale, LOCA 
downscales the dataset by finding observed historical analog days with 
spatial patterns of precipitation or temperature that match the GCM’s 
coarse resolution spatial patterns. It does this in two steps, and 
independently for each location; first it selects a collection of, for example, 
30 days that match the larger regional pattern (within ~1000 km) around 
the location to be downscaled, and from those days, LOCA selects the 
single analog that best matches the more local precipitation or temperature 
pattern (within ~100 km). The available LOCA dataset used the Livneh et al. 
(2015) observational dataset on a 1/16° spatial grid to provide a higher 
spatial resolution dataset than common BCSD products. Unlike BCSD, 
LOCA assumes that the daily weather sequencing from the GCM is 
reasonable to begin with. So LOCA permits the daily "weather" to change, 
and as a result it can change, for example, the average number of storms in 
a year more than BCSD is likely to.  

As with BCSD, more comprehensive overviews of LOCA are available to the 
reader seeking additional detail on the method (Pierce, Cayan, and 
Thrasher 2014; Pierce et al. 2015; Reclamation 2016a).  

Bias-Corrected Constructed Analog (BCCA) and Multivariate Adaptive 
Constructed Analog (MACA). BCCA (e.g., Hidalgo, Dettinger, and Cayan 
2008) and MACA (Abatzoglou and Brown 2012) are both constructed-analog 
methods that are conceptually similar to LOCA. In both methods, the 
selection of the closest analog days is carried out with respect to the entire 
domain, rather than the LOCA method of selecting analogs at regional-
then-local scales. The analog days are then combined by computing 
weights such that the weighted sum of the analog days best reproduces the 
GCM-modeled day’s pattern being downscaled, rather than selecting a 
single best analog day as with LOCA. These same weights are then applied 
to the original fine-resolution observations from the analog days, 
producing the final spatially downscaled field. One drawback of BCCA and 
MACA is that as the domain size increases (e.g., to the contiguous U.S.), it 
becomes increasingly difficult to find close analog days for the entire 

The Climate Explorer 

 
 
Link: 
https://crt-climate-
explorer.nemac.org/ 

Climate Mapper 

 
 
Link: 
https://climatetoolbox.
org/tool/climate-
mapper 

https://crt-climate-explorer.nemac.org/
https://crt-climate-explorer.nemac.org/
https://climatetoolbox.org/tool/climate-mapper
https://climatetoolbox.org/tool/climate-mapper
https://climatetoolbox.org/tool/climate-mapper
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domain. Also, when downscaling precipitation, it becomes more likely that 
some of the analog days will have precipitation where the GCM model day 
has none, which will result in spurious rainfall for that day in the 
downscaled dataset. Finally, combining multiple analog days over a large 
domain tends to miss localized extreme precipitation events that occur on 
a single day, which can influence analyses of the impacts of projected 
extremes. 

Delta method. The simplest statistical downscaling approach is the delta, or 
period change, method. The delta method starts with time series of 
historical daily or monthly climate data from gridded observations or from 
individual stations. The change in the monthly climatological average of 
temperature between a GCM simulated historical period and GCM 
projected future period is calculated across the GCM grid. These changes 
(deltas) are interpolated from the GCM grid down to the observation 
locations, and then added to the historical observations to produce the 
downscaled projections. Similarly, the monthly percent change in 
precipitation from the GCMs is applied to the precipitation observations. 
The delta method incorporates the coarse-scale patterns of climate change 
seen in the GCMs while preserving the fine-scale spatial detail and time 
sequences of weather events from the historical data.  

The delta method can also be applied to data that has already been 
downscaled with another statistical or dynamical method, instead of raw 
GCM output. This downscaling-and-delta approach was used to generate 
the climate inputs to the hydrologic models used in the Colorado River 
Water Availability Study (CWCB 2012) and the Front Range Climate Change 
Vulnerability Study (Woodbury et al. 2012). The choice of the delta method 
in these studies indicated a preference for the already observed climate 
sequences (offset by the GCM-derived deltas) over the future climate 
sequences that are simulated by the GCMs. The historical sequences are 
certainly more familiar to stakeholders but cannot capture future changes 
in climate variability. 

Dynamical methods 
As with statistical methods, dynamical approaches to regional climate 
projection have been evolving for over 20 years (Giorgi and Mearns 1991; 
Leung, Kuo, and Tribbia 2006; Mearns et al. 2013). The general class of 
models primarily used in dynamical downscaling is referred to as Regional 
Climate Models (RCMs). RCMs are atmospheric models that run at higher 
resolutions than GCMs (typically 20–50 km), over a limited domain (i.e., not 
global). An RCM uses the 3-dimensional atmospheric output from a GCM to 
supply the conditions at the boundary of the RCM’s domain. The RCM then 
simulates the interior of its domain using fluid dynamics and other 
equations and physical parameterizations, much like a GCM. One benefit of 
dynamical downscaling methods is that they involve fewer assumptions 
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that may become inappropriate in a future climate, such as the assumption, 
inherent in statistical downscaling, that the historical spatial relationships 
in climate will not change. But there are still assumptions of climate 
stationarity embedded in the parameterizations and calibration of RCMs. 

Large Regional Domain (NARCCAP and NA-CORDEX). The traditional use 
of RCMs centers on the idea that an RCM should cover a sufficiently large 
domain that regional-scale circulation changes are represented, e.g., the 
North American Monsoon, and that such models should be driven directly 
with the circulation fields from a GCM to permit changes to regional 
circulation and weather patterns to be directly represented. This approach 
was used in the North American Regional Climate Change Assessment 
Program (NARCCAP; Mearns et al. 2013) and the North American 
Coordinated Regional Downscaling Experiment (NA-CORDEX; Mearns et al. 
2017).  

Both NARCCAP and NA-CORDEX employed multiple RCMs to downscale 
multiple GCMs, with the objective of better understanding the uncertainty 
in regional climate stemming from both GCMs and RCMs. The NARCCAP 
RCMs used a grid spacing of approximately 50 km, while the NA-CORDEX 
RCMs used grid spacings of 50 km and 25 km. While these models provide a 
better representation of the large-scale regional climate patterns than 
GCMs, they are not at a sufficient resolution for hydrologic impact 
assessments in the Colorado River Basin and would require additional 
statistical bias correction and downscaling. In addition, due to the 
computational cost of RCMs, these simulations have been performed for 
many fewer GCMs than in the primary statistical downscaling datasets. NA-
CORDEX has downscaled only six GCMs, primarily for the RCP 8.5 scenario. 
Only three GCMs have been downscaled for RCP 4.5 and only one of those 
RCM simulations was performed with the higher resolution 25 km grid.  

High-resolution convection-permitting and pseudo-global warming 
(PGW). In addition to the large-domain simulations, very high resolution 
simulations have been performed for shorter time periods. When 
atmospheric models use a grid spacing less than about 6 km, they can 
explicitly model convective processes, without the use of a simplified 
parameterization. In addition, they represent topography much better. 
Consequently, these high-resolution models better match observed 
precipitation and temperature patterns over the Upper Basin (Ikeda et al. 
2010; Mahoney et al. 2013; Rasmussen et al. 2014) and over larger domains 
(Prein et al. 2015; Liu et al. 2017). However, since the computational cost of a 
model increases with the cube of the decrease in grid spacing, these high-
resolution models have an enormous computational cost. Simulations over 
the contiguous United States using a 4-km grid spacing have been 
performed, but only over relatively short time periods: 13 years for the 
historical period and 13 years for the future period (Liu et al. 2017).  

North American 
Regional Climate 
Change Assessment 
Program (NARCCAP) 

 
Link: 
https://www.narccap.uc
ar.edu/ 
 

North American 
CORDEX Program (NA-
CORDEX) 

 
Link: 
https://na-cordex.org/ 

https://www.narccap.ucar.edu/
https://www.narccap.ucar.edu/
https://na-cordex.org/
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Because climate variability’s short (decadal) time scales make it hard to 
discern the forced anthropogenic climate signal, these high-resolution 
simulations use a different method to evaluate the impacts of climate 
change, referred to as the Pseudo-Global Warming (PGW) method. The 
PGW method keeps the weather at the boundaries of the model consistent 
in current and future climate, but it perturbs those weather patterns with a 
mean climate change signal in the future climate. This means that these 
simulations have a warmer, moister background state, and they project 
what would happen to today’s weather in a future climate. As a result, one 
can look at the differences between two 13-year simulations (current and 
future) to understand a climate change signal that would otherwise be 
obtained by comparing two 30-year periods from multiple GCMs, as is 
typically done. These simulations provide important guidance about the 
likely mean future climate changes driven by thermodynamic changes to 
the atmosphere, but they cannot depict climate changes caused by major 
shifts in weather patterns, such as the location of the storm track over the 
basin or the frequency of major storms.   

Other regional climate downscaling approaches 
Alternative approaches have been developed to investigate regional 
changes that fall somewhere in between the two main categories of 
downscaling methods, blending aspects of both. These include statistical 
downscaling methods based on atmospheric drivers and quasi-dynamical 
methods based on physical understanding.   

Statistical methods based on atmospheric circulation indices (Wilby, 
Dawson, and Barrow 2002; Langousis and Kaleris 2014; Timm, Giambelluca, 
and Diaz 2015) have the advantage of being both developed to match 
regional observations (as with other statistical methods), and using output 
fields from a GCM that might reasonably be expected to be simulated well, 
such as upper air wind speed, temperature, and humidity. However, the 
relationships between these upper atmosphere parameters and 
hydrologically relevant meteorology, e.g., precipitation, are often highly 
non-linear and not well represented by purely statistical models. In 
addition, the atmospheric fields used do not have significant spatial 
variability, and as a result the predicted spatial variability in precipitation, 
in particular, is often too small and this results in unrealistic hydrologic 
behavior (Gutmann et al. 2014; Mizukami et al. 2016). Ensemble Generalized 
Analog Regression Downscaling (En-GARD) is a new statistical method, 
based on a combination of concepts and techniques (Wilby, Dawson, and 
Barrow 2002; Clark et al. 2004; Clark and Slater 2006), that aims to provide 
both realistic spatial patterns of precipitation and linkages to atmospheric 
variables that are better simulated in the GCM than precipitation.  

Quasi-dynamical methods (Georgakakos et al. 2012; Gutmann et al. 2016) 
solve many of the same equations as full dynamical methods, but make 
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various simplifications to permit them to run hundreds of times faster than 
traditional RCMs. For example, the development of the Intermediate 
Complexity Atmospheric Research model (ICAR; Gutmann et al. 2016) 
makes use of an analytical approximation to represent the wind field over 
mountain ranges, and then performs the same physical advection of heat 
and moisture in a high-resolution domain while using physical 
parameterizations from the Weather Research and Forecasting model 
(WRF; Skamarock and Klemp 2008) to model precipitation and the near-
surface air temperature. These quasi-dynamical methods are likely to be 
useful for predicting changes in orographic precipitation and even land 
surface feedbacks in the Colorado River Basin. Large ensembles of climate 
projections from these methods are only just now being produced.  

Currently, Gutmann and collaborators at NCAR are conducting a study in 
which they are applying En-GARD and ICAR to CMIP5 projections to 
produce GCM-informed Colorado River Basin streamflow ensembles, in 
order to evaluate the results and understand the implications of using these 
downscaling methods. This work is being funded by Reclamation and the 
other sponsors of this report. 

Uncertainties and knowledge gaps in regional climate downscaling 
Regional climate downscaling has many uncertainties associated with it. In 
particular, any regional climate method is reliant on information from the 
GCM, to varying degrees, and a regional climate projection can only 
compensate for some aspects of GCM performance deficiencies (Maraun et 
al. 2017). In addition, a large number of physical processes known to 
operate on smaller scales, such as the snow-albedo feedback effect 
(Letcher and Minder 2015) are not represented in statistical methods and 
can be clearly demonstrated to alter the climate change signal (Lanzante et 
al. 2018). Similarly, orographic precipitation is not well represented in 
GCMs, and it is not clear that statistical methods can meaningfully quantify 
a precipitation change signal when the underlying GCM simulation is 
improperly specifying how precipitation is being produced.  

In general, dynamical and quasi-dynamical methods are better able to 
explicitly represent features such as the changing distribution of 
precipitation over a mountain range as snow changes to rain. However, 
these physically explicit models require numerous parameters within them, 
which are themselves uncertain. How fast does a snowflake melt as it falls? 
How does sub-grid variability in the land surface influence local air 
temperature?  

Other GCM deficiencies may lead to poor regional climate signals, 
regardless of the downscaling method. In particular, no regional climate 
method is able to fully correct for GCM errors in the location of the 
primary mid-latitude storm track, such as over the western U.S., and the 
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resulting errors in the frequency of storm systems for the region. While 
some large-domain RCMs may be able to shift the storm track location 
internally, they are somewhat constrained at the domain boundaries by the 
GCM conditions that drive the RCM. Of greater concern, if the GCM storm 
track is in the wrong location, statistical methods can correct the effect of 
this shift with respect to the historical climate record, but they are not 
addressing the root cause. If the GCM then predicts a future shift in this 
incorrectly positioned storm track, then a statistical method may inherit 
from the GCM a change in precipitation of a different sign than if the 
actual, correctly located, storm track had shifted in the same way (Maraun 
et al. 2017). As a result, GCMs should first be evaluated for the large-scale 
circulation that matters to a given region and application before attempting 
further regional climate refinements.  

Opportunities for improvement 
There are three overlapping areas for improving our regional 
understanding and quantification of the future climate change signal in the 
Colorado River Basin. The first would be further development and 
deployment of physically oriented methods for studying and projecting 
regional climate, whether dynamical, statistical, or hybrid (e.g., ICAR, En-
GARD, NA-CORDEX, WRF). Most statistical downscaling methods are 
perfectly adequate at producing fine-scale climate projections to use as 
inputs to hydrology models, but they can’t add to our understanding of 
physical processes. Second, clear metrics are needed to evaluate the 
validity of the future climate change signal predicted by different methods. 
While multi-decadal future projections cannot be validated against 
observations in the same manner as weather forecasts, there are ways to 
assess whether one method produces more physically realistic and 
plausible climate changes than another. Third, better understanding of 
what is required for a GCM projection or downscaled regional projection to 
be meaningful in the basin is needed; if the GCM-simulated historic storm 
track is shifted far from its actual location, it is likely that neither the GCM 
simulation nor a downscaled regional projection based on it can be trusted 
to provide changes in cool-season precipitation for the basin. We also need 
to identify which aspects of future regional climate changes are more or 
less predictable, and emphasize the former in vulnerability assessment and 
planning, and conversely, deemphasize the latter.  

11.6 Projected future climate changes for the basin  

As noted previously, most of the pertinent spatial and temporal information 
seen in downscaled GCM output is inherited from the “parent” GCM and is 
not the result of the downscaling method. While GCMs do struggle with 
many regional to local-scale details, they do a reasonable job in capturing 
the important physical phenomena of the climate system that play out 
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between global and regional scales. By looking at the direct-from-GCM 
projections first, one can also better discern in what ways the regional 
projections from different downscaling methods may differ from the 
underlying GCM simulations.  

The sections below look at projected climate changes, referring to the 
differences in the GCM’s projections of a variable (temperature or 
precipitation) between a historical period and a future period.  

Projected temperature change (direct from GCMs) 
All of the CMIP3 and CMIP5 climate models, under all emissions scenarios, 
project that the climate of the Colorado River Basin will continue to rapidly 
warm relative to historical variability. Projected changes in temperature for 
the western U.S. by the mid-21st century (2041–2070) from CMIP5 climate 
models under two emissions scenarios (RCP 4.5 and RCP 8.5) are shown in 
Figure 11.6.  

Model ensembles under RCP 8.5 (high emissions scenario) show generally 
warmer outcomes than under RCP 4.5 (medium-low emissions scenario) 
due to the higher levels of greenhouse gases and the associated climate 
forcing. However, within each emissions scenario, the 30+ projections (one 
from each GCM) differ in the projected magnitude of future warming, and 
so the respective ranges of the projected warming under the two scenarios 
overlap considerably. Under RCP 4.5, the basin’s annual temperatures are 
projected to warm by +2.5°F to +5°F by mid-century compared to the late 
20th century average. Under RCP 8.5, the basin’s annual temperatures are 
projected to warm by +3.5°F to +6.5°F by mid-century. The projected 
warming in the warmest 20% of the projections under RCP 4.5 is similar to 
the median projection under RCP 8.5. Most of the projections under RCP 
4.5, and nearly all of the projections under RCP 8.5, show a mid-century 
climate that is, on average, at least 3°F warmer than the 1971–2000 baseline 
and thus as warm as or warmer than the warmest individual years in the 
historical record.  

The differences in warming shown by the various projections under each 
RCP have two primary sources; the first and more important is that the 
GCMs have different simulated responses to each increment of greenhouse 
gases (i.e., forced change), and the second is the “noise” of simulated multi-
decadal natural (internal) variability in temperature—which, while relatively 
smaller than the forced change, is still present.  
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Figure 11.6 

Projected annual and seasonal temperature changes by 2041–2070 over the western U.S. from an 
ensemble of GCMs under RCP 4.5 (left) and RCP 8.5 (right). The large maps show the average 
change across all of the projections for that RCP (n=37; one projection per GCM), and the smaller 
maps show the averages of the coolest 20% (n=8) and warmest 20% (n=8) of the projections. (Source: 
adapted from Lukas et al. 2014. Data: CMIP5 projections re-gridded to 1-degree grid (not 
downscaled); http://gdo-dcp.ucllnl.org/)  

http://gdo-dcp.ucllnl.org/
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Additional features of the projected temperature changes are seen in 
Figure 11.6. Warming is expected to be slightly greater in summer than the 
other seasons due to land surface feedbacks; once soils dry out in summer, 
the energy that had been evaporating soil moisture can instead warm the 
land surface and the air. The warming is expected to be slightly greater in 
the Upper Basin compared with the Lower Basin, due to the Upper Basin’s 
greater distance from the oceans’ moderation of temperature changes; in 
fact, the Upper Basin is partly within the “bullseye” of the largest projected 
warming in the contiguous U.S., which is centered on the northern Great 
Basin. 

Projected precipitation change (direct from GCMs) 
The GCMs are in general agreement in projecting a north-south gradient in 
precipitation change across the western U.S., in which the northern tier of 
states is expected to see an increase in annual precipitation, and the 
Southwest is expected to see a decrease in annual precipitation. The Upper 
Basin sits in the transition area between these two regions, and while the 
uncertainty about the magnitude of precipitation change is no larger than 
for other parts of the U.S., there is more uncertainty about the direction of 
change, since the average of the models sits closer to the zero-change line.  

Projections of annual and seasonal precipitation change from CMIP5 
models under RCP 4.5 and RCP 8.5 are shown in Figure 11.7. On average, the 
GCMs indicate slight overall tendencies toward higher annual precipitation 
in the Upper Basin and toward lower annual precipitation in the Lower 
Basin under both RCP 4.5 and RCP 8.5. Those tendencies are enhanced for 
the northern half of the Upper Basin (wetter) and the southern half of the 
Lower Basin (drier). For the Upper Basin, the “wetter” projections call for 
around 5–10% more annual precipitation, while the “drier” projections call 
for 5–10% less precipitation. For the Lower Basin, the wetter projections 
call for 0–5% more annual precipitation, while the drier projections call for 
10–15% less precipitation. 

The north-south pattern in projected precipitation change across the basin 
and the West mainly arises because of two mechanisms: the first, 
thermodynamic (i.e., changes in energy states and flows) causes a general 
global increase in water vapor because the warmer atmosphere is able to 
hold more moisture (Seager, Naik, and Vecchi 2010). The second, dynamic 
(i.e., changes in atmospheric motions) is a northward shift in the average 
cool-season storm track across western North America as global 
atmospheric circulation changes in response to warming, resulting in an 
expansion of the relatively dry subtropical high-pressure zone that 
dominates Lower Basin climate (McAfee, Russell, and Goodman 2011; 
Seager, Naik, and Vecchi 2010).  
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In the northern tier of the western U.S., where the number of storm 
systems is projected to remain the same or increase, the increased water 
vapor leads to greater precipitation; in the far Southwest, the number of 
such systems is projected to decrease, canceling out the water vapor 
increase and leading to reduced annual precipitation (USGCRP 2017; 
McAfee, Russell, and Goodman 2011). The climate models disagree 
regarding the extent of the northward shift in storm tracks; this 
disagreement in part leads to their different depictions of future annual 
precipitation change for the basin, especially the Upper Basin, and other 
parts of the interior West. 

Much of the uncertainty regarding whether annual precipitation will 
increase or decrease in the Upper Basin reflects inadequate scientific 
understanding of the expansion of the subtropical dry zone and the net 
effect of its interaction with the overall wetting of the atmosphere. There is 
also uncertainty about how ENSO may change in a dramatically warmed 
climate; greater future tendencies toward El Niño or La Niña would impart 
additional nudges to the average storm tracks and precipitation patterns. 

The GCMs show more pronounced tendencies for change in seasonal 
precipitation for the basin than annual precipitation (Figure 11.7). In winter 
(DJF), most models show increased precipitation over the Upper Basin. In 
spring (MAM), most models show decreased precipitation for the Lower 
Basin. In summer, while the average change for precipitation for both the 
Upper and Lower Basins is not large, the “dry” projections show especially 
large decreases in summer precipitation. However, since the North 
American Monsoon is not represented well in the GCMs, and the 
convective storms that dominate summer precipitation cannot be directly 
simulated by the GCMs, the confidence in the projected changes in summer 
precipitation is lower than for the other seasons.  

The differences in the precipitation change shown by the various 
projections under each RCP have two primary sources; the first and more 
important is that the GCMs have different simulated responses to each 
increment of greenhouse gases (i.e., forced change), and the second is the 
“noise” of simulated multi-decadal natural (internal) variability in 
precipitation.  

Also important to hydrology and water management is that most of the 
GCMs project that the variability in precipitation will increase at all time 
scales over the western U.S., including greater interannual variability (Lukas 
et al. 2014; Pendergrass et al. 2017). This would mean more frequent 
occurrence of both very dry and very wet years, and more frequent 
oscillations from very dry to very wet conditions, such as in 2018–2019, or 
the reverse, such as in 2011–2012.  
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Figure 11.7 

Projected annual and seasonal precipitation changes by 2041–2070 over the western U.S. from an 
ensemble of GCMs under RCP 4.5 (left) and RCP 8.5 (right). The large maps show the average 
change across all of the projections under that RCP (n=35; one projection per GCM), and the smaller 
maps show the averages of the driest 20% (n=8) and wettest 20% (n=8) of the model simulations. 
(Source: adapted from Lukas et al. 2014; Data: CMIP5 projections re-gridded to 1-degree (not 
downscaled); http://gdo-dcp.ucllnl.org/)  
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The influence of downscaling methods on GCM climate projections 
The GCM output is known to have deficiencies that downscaling is 
intended to correct. As a downscaling method bias-corrects the GCM 
output and spatially distributes that signal to finer scale, it may alter the 
GCM’s climate change signal, as expressed in future trends. However, the 
influence of common downscaling methods on the projections of climate 
change has seldom been systematically examined or quantified. In a review 
of bias-correction methods, Maraun (2016) asserts that current bias-
correction approaches cannot correct GCM-projected trends in a 
physically plausible manner, and so bias-correction approaches that 
deliberately preserve the GCM signal should be deployed.  

For the Colorado River Basin and the western U.S., a clear example of GCM-
signal alteration arose with the monthly BCSD projections based on CMIP3 
(e.g., Reclamation 2011; 2012e). The BCSD procedure effectively imparted a 
“wettening,” so that the bias-corrected and downscaled BCSD data 
projected larger increases in precipitation than did the underlying GCM 
projections. When BCSD was later used to downscale the CMIP5 GCM 
output, this wettening effect was even larger and had a significant influence 
on the corresponding ensemble of projected hydrologic changes for the 
Upper Basin (Reclamation 2014; Lukas et al. 2014), as noted in Table 11.3 and 
in the accompanying text. Maurer and Pierce (2014) found that the BCSD 
wettening as shown in CMIP5 was in fact due to the quantile mapping (QM) 
bias-correction procedure within BCSD, and that QM tends to reduce the 
future trend when the projection has more variability than the observed 
data, and increase the trend when the model has less variability than the 
observed data—in other words, the trend alteration appears to be a 
statistical artifact of the QM procedure. Subsequent analyses of QM in 
Reclamation (2020) have affirmed the observation that the QM procedure 
alters projected trends in a manner that is not consistent with physical 
mechanisms. 

Figure 11.8 shows the ensemble mean change in annual precipitation of 10 
CMIP5 GCMs that have been downscaled by BCSD as in Reclamation (2014), 
and by LOCA—which by design does not alter the GCM change signal 
during bias correction, though it may do so during the spatial downscaling. 
BCSD shows wetter outcomes (darker blues) in the Upper Basin headwaters 
and less-dry outcomes (fainter red) in the Lower Basin headwaters than 
LOCA. 

In one of the first comprehensive evaluations of its kind, Alder and 
Hostetler (2019) compared downscaled projections of temperature and 
precipitation for the western U.S. generated using 6 different statistical 
methods, including BCSD (two variants), BCCA, MACA (two variants), and 
LOCA. The downscaled projections were compared with each other and 
with the projections from the 14 parent CMIP5 GCMs. They found, first, the 
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GCM change signals—especially in precipitation—were altered by all of the 
downscaling methods, with the degree of alteration differing according to 
region, downscaling method, and the parent GCMs. They found that most 
of these alterations stemmed from the specific gridded climate dataset (see 
Chapter 4) used to bias-correct and spatially distribute the GCM output for 
a particular method (Table 11.3).  

Figure 11.9, from Alder and Hostetler (2019), shows the projected changes in 
cold-season (October-April) temperature and precipitation for the Upper 
Basin from the individual 14 GCMs and ensemble of those GCMs, and from 
the 6 downscaling methods (by individual GCM and the ensemble). The 
alteration of the GCM cold-season temperature signal by the downscaling 
method is very small overall except in the case of BCCA, which imparts a 
clear cooling to the GCM change signal. For precipitation, all 6 downscaling 
methods impart some wettening to the GCM change signal; the wettening 
is smallest in MACA-L (MACAv2-Livneh) and in LOCA, while the wettening 
is largest in the two variants of BCSD. 

 
Figure 11.8 

Projected percentage change in precipitation for the late 21st century (2070–2099 as averaged across 
the same set of 10 CMIP5 GCMs under RCP 8.5, using BCSD (left) and LOCA (right) procedures for 
bias-correction and spatial downscaling. Note that precipitation increases over the Upper Basin 
headwaters are larger (darker blues) for the BCSD projections. (Source: E. Gutmann, NCAR; Data: 
http://gdo-dcp.ucllnl.org/)  

http://gdo-dcp.ucllnl.org/
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One should keep in mind that these signal alterations and differences 
between methods are still substantially smaller than the overall range of the 
GCM-projected changes without downscaling (the black boxplots in Figure 
11.9). But they do add another uncertainty to the projections of climate 
change and hydrologic change for the basin. In most cases, we lack criteria 
to determine which method(s) and accompanying alterations are the most 
reliable. For now, users should be cognizant of the uncertainties related to 
downscaling methods, and researchers will continue to look for better ways 
to evaluate them, including whether some methods are better suited for 
some types of applications and their associated impact metrics (e.g., 

 

Figure 11.9 

Future change (2075–2099 vs. 1950–1999) in average cold season (October–April) temperature 
(upper) and total precipitation (lower) for the Upper Colorado River Basin under RCP 8.5 shown by 14 
“raw” GCM projections (gray) and the corresponding downscaled projections from six statistical 
downscaling methods (colors). BCSD-C = Reclamation variant of BCSD (Reclamation 2014); BCSD-F = 
NASA/USGS variant of BCSD (Thrasher et al. 2013); MACA-L = MACAv2-Livneh; MACA-M = 
MACAv2-METDATA. (Source: adapted from Figure 2 in Alder and Hostetler 2019) 
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hydrologic, ecological) or for certain regions. Some of this applications 
knowledge has been gleaned by the research community, but it has not 
been systematically documented. 

Projected Upper Basin temperature and precipitation change from 
a downscaled dataset 

Given the discussion above, and recognizing the relative merits of the 
different available datasets of downscaled GCM data, selecting a 
representative dataset to examine in greater detail does not imply that it is 
the best dataset, either in general or for informing water management in 
the Colorado River Basin. Here the CMIP5-LOCA downscaled projection 
dataset has been chosen because it contains a broad sample of the full 
CMIP dataset (32 models, one projection each, under two emissions 
scenarios, RCP 4.5 and RCP 8.5), it lacks the precipitation ‘wettening’ effect 
seen in the BCSD datasets, and it is used as the basis for hydrology 
projections in the forthcoming CMIP5 report (Reclamation 2020) alongside 
CMIP5-BCSD data. The features of the temperature and precipitation 
projections that are highlighted below are held in common with nearly all of 
the statistically downscaled GCM datasets, and are not specific to LOCA. 

Figure 11.10 shows the projected Upper Basin temperature change, 
compared to a 1971–2000 baseline, from CMIP5-LOCA dataset (32 models, 
one projection each) driven by the RCP 4.5 (top) and RCP 8.5 (bottom) 
emissions scenarios. A 30-year running average has been applied to the 
traces to match the typical 30-year analysis period for evaluating future 
change. To further place the projections in the context of the recent past, 
the average observed temperature anomaly over the 30-year period 1988–
2017 (i.e., the ‘Stress Test’; Chapter 9) is shown; the Upper Basin climate for 
that period was already 1.1°F warmer than the 1971–2000 baseline. 

Just as in the raw GCM output shown earlier, all of the traces show a much 
warmer future climate, with the magnitude of warming depending on the 
emissions scenario (the RCP 4.5 and RCP 8.5 ensembles overlap but are 
clearly different overall), each model’s climate sensitivity (as seen in the 
spread of the traces under each scenario), and how far out into the future 
one looks. In general, the projected warming shows a fairly linear response 
to the respective climate forcing in the emissions scenarios as shown in 
Figure 11.4; e.g., the RCP4.5 traces tend to flatten out after 2050, just as the 
forcing in the RCP 4.5 scenario does. Note that while there is some 
variability (e.g., “bumpiness”) present in the traces, the traces by and large 
maintain their relative positions over time, indicating that the 
anthropogenic forced change in temperature is dominant compared to 
internal (natural) variability at a 30-year timescale.  
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Figure 11.10 

Projected future temperature change for the Upper Basin compared to a 1971–2000 baseline, from 
two ensembles of 32 CMIP5 projections under two emissions scenarios (top: RCP4.5; bottom: 
RCP8.5) downscaled with LOCA. The lighter traces on both time series plots are the 30-year running 
averages, plotted on the middle (15th) year, of the projected annual temperature anomaly, with the 
median trace shown as the dark dashed line. The 30-year average of the observed temperature 
(“obs”) anomaly over the 1988–2017 ‘Stress Test” period is shown as a black square. The box-
whiskers plots show the distribution of the 30-year average values at 2055 (2041–2070); the outer 
boxes show the 10th and 90th percentiles; the inner boxes show the 25th, 50th, and 75th percentiles, 
and the max/min are shown at the ends of the whiskers. (Data: D. Pierce, Scripps Institution; 
http://loca.ucsd.edu; Pierce, Cayan, and Thrasher 2014) 

http://loca.ucsd.edu/
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Figure 11.11 

Projected future precipitation change for the Upper Basin compared to a 1971–2000 baseline, from 
two ensembles of 32 CMIP5 projections under two emissions scenarios (top: RCP4.5; bottom: 
RCP8.5) downscaled with LOCA. The lighter traces on both time-series plots are the 30-year running 
averages, plotted on the middle (15th) year, of the projected annual precipitation anomaly, with the 
median trace shown as the dark dashed line. The 30-year average of the observed precipitation 
(“obs”) anomaly over the 1988–2017 ‘Stress Test” period is shown as a black square. The box-
whiskers plots show the distribution of the 30-year average values at 2055 (2041–2070); the outer 
boxes show the 10th and 90th percentiles; the inner boxes show the 25th, 50th, and 75th percentiles, 
and the max/min are shown at the ends of the whiskers. (Data: D. Pierce, Scripps Institution; 
http://loca.ucsd.edu; Pierce, Cayan, and Thrasher 2014) 

http://loca.ucsd.edu/
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The magnitudes of projected warming for the 2041–2070 period centered 
on 2055 are essentially the same as those seen in the raw GCM data and 
depicted in Figure 11.6. As seen in the box-whiskers plots in Figure 11.10, 
under RCP 4.5, the vast majority of the projections show warming of +3.0° 
to +6.5°F by mid-century compared to the late 20th century average, and 
under RCP 8.5, the vast majority show warming of +4°F to +8°F. As 
discussed earlier, some climate analysts have suggested that the RCP 8.5 
scenario should be de-emphasized due to unrealistic assumptions about 
future energy supply sources. But note that several of the higher-warming 
RCP 4.5 traces exceed the median RCP 8.5 level at 2055, and if traces from 
RCP 6.0 were available from the LOCA dataset, many of them would track 
at that level too. So even if the RCP 8.5 scenario itself is in fact “very 
unlikely,” as Hausfather and Peters (2020) asserted, many of the warming 
outcomes associated with that scenario are also attainable under other 
RCPs for the same time period.  

As discussed earlier in the context of the maps of the raw GCM 
precipitation output (Figure 11.7), the Upper Basin is located in the 
transition zone between areas of expected drying (lower annual 
precipitation) to its south, and expected wettening (higher annual 
precipitation) to its north. Figure 11.11 shows the projected Upper Basin 
precipitation change over the 21st century. The average observed 
precipitation anomaly (-3.5%) during the 30-year ‘Stress Test’ period (1988–
2017) is also shown. 

The LOCA downscaling procedure by design tries to preserve the GCM-
projected trends, and as seen in Figure 11.9 it preserves the GCM’s 
precipitation trends better than other downscaling methods. So the overall 
message of the CMIP5-LOCA projections in Figure 11.11 is very consistent 
with the raw GCM output from CMIP5: there are slight overall tendencies 
toward higher annual precipitation in the Upper Basin under both RCP 4.5 
and RCP 8.5.  

But also evident in the time-series plots of Figure 11.11 is a feature that was 
hidden in the change maps of Figure 11.7, but noted in the text: Multi-
decadal internal (natural) variability strongly influences the precipitation 
traces, manifesting as frequent excursions in the 30-year averages, up and 
down by 5% or more. These excursions make it hard to discern the long-
term trends that might be attributable to forced changes, e.g., changes in 
atmospheric circulation (ENSO, prevailing storm tracks) or the global 
moistening of the atmosphere in a warmer climate. To the extent those 
forced changes are present, they are not leading to significantly different 
overall changes under RCP 8.5 (which has greater climate forcing) than 
under RCP 4.5. The ensemble medians throughout the 21st century are very 
similar, though from 2050 onward the RCP 8.5 has greater spread across 
the ensemble, perhaps indicating that at least the outlying precipitation 
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projections are showing greater influence of simulated changes in 
atmospheric circulation.  

Toward the end of the next section, these same LOCA-downscaled 
projected temperature and precipitation changes will be shown again, after 
they have been integrated into simulations of future hydrology for the 
Upper Basin.  

11.7 Projections of future Colorado River hydrology 
under climate change 

The future warming projected by all climate models for the Colorado River 
Basin (Figures 11.6 and 11.10) by itself will have clear impacts on the 
hydrologic cycle. Most significantly, warming will tend to reduce annual 
runoff, given the same amount of precipitation. As detailed in previous 
sections, the magnitude of the warming for any given future period is 
uncertain, although the progressive nature of the warming means that a 
slower warming projection will, over more time, still reach thresholds that a 
faster warming projection reaches earlier. Precipitation, which is the 
primary determinant of the variability in annual runoff (see Chapter 2), has 
uncertainty regarding both the direction and magnitude of future change.    

The sensitivity of basin runoff to a given temperature change, and to a 
lesser extent the sensitivity of runoff to a given precipitation change, are 
also uncertain (Vano, Das, and Lettenmaier 2012; Vano and Lettenmaier 
2014; Vano et al. 2014). Together, these uncertainties regarding the 
magnitude of future temperature and precipitation change, and regarding 
the true sensitivity of basin hydrology to specific temperature and 
precipitation changes, have led to a broad range of potential future 
hydrologic outcomes. However, across the many studies and assessments 
of future basin hydrology, this range of outcomes is strongly tipped toward 
reduced runoff, reflecting the pervasive impact of the projected warming.   

Methodologies used in past and recent studies 
The earliest studies for the basin used empirical statistical relationships to 
translate basic climate change scenarios (e.g., + 2°C warming; -10% 
precipitation) into basin-scale hydrologic changes, and highlighted the 
importance of quantifying the sensitivity of runoff to both temperature and 
precipitation (Stockton and Boggess 1979; Revelle and Waggoner 1983). 
Later, Nash and Gleick (1991) set what has become a standard for most 
subsequent studies by deriving specific climate change factors directly 
from two GCMs and then using a hydrology model (Sac-SMA; 
Chapters 6 & 8) to translate those climate scenarios into runoff changes for 
select Upper Basin watersheds. 
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The modern era of runoff-modeling studies began with Christensen et al. 
(2004), who pioneered what has become the most prevalent approach (see 
Figure 11.1 and Table 11.1): a set of GCM projections is statistically 
downscaled, and the downscaled temperature and precipitation projections 
are run through a hydrologic model (in their case, and in most later cases, 
the VIC model; Chapter 6) to obtain future basin streamflows. This same 
general approach has been followed by many later studies (Table 11.4), with 
increasingly larger ensembles of GCM projections.  

The first analyses of climate change-informed hydrologic simulations for 
the Colorado River Basin or its headwaters to be formally sponsored by 
water agencies and to be specific to their long-term water planning 
appeared in the early 2010s:  

• Joint Front Range Climate Change Vulnerability Study (Woodbury et al. 
2012)  

• Colorado River Water Availability Study, Phase 1 (CWCB 2012) 
• West-Wide Climate Risk Assessment (WWCRA; Reclamation 2011) 
• Colorado River Basin Water Supply and Demand Study (‘Basin Study;’ 

Reclamation 2012e) 

These studies exemplified the top-down approach to climate change 
impact assessment, in which an ensemble of hydrologic simulations is 
developed from GCMs in order to drive a water system model. All were 
based on the same set of downscaled GCM climate projections (CMIP3-
BCSD), a dataset developed by a consortium including Reclamation and 
USACE, although the projections were processed differently in each study. 
The Basin Study (Reclamation 2012e) marked the first basin-scale planning 
study involving Reclamation that based analyses of future water 
vulnerability on climate change-informed hydrology. The process of 
conducting these four studies shed light on several of the key 
methodological considerations and uncertainties described below and their 
implications for projecting future changes in basin water supplies. The 
latter two studies used a larger ensemble of simulations (112 in both cases) 
that more completely captured the full range of future climatic and 
hydrologic conditions depicted across the CMIP3 GCMs. 

Subsequent assessments have largely focused on updating and refining the 
ensemble of simulations, by using the next generation of climate models, 
culling lower-performing climate models, using newer downscaling 
approaches to assess regional changes, or using different hydrologic 
models. The update to WWCRA (Reclamation 2016b) used the same 
approach as the original, but with newer climate models (CMIP5) and a later 
version of the VIC hydrologic model. Similarly, the forthcoming report, 
“Exploring Climate and Hydrology Projections from the CMIP5 Archive” 
(Reclamation 2020) uses CMIP5 climate models, then screening of the 
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models for performance, a primary downscaling method (BCSD), and also 
an alternate downscaling method (LOCA). 

Results—future changes in annual Upper Basin runoff 
Table 11.4 summarizes the results from about 20 studies and assessments 
since 2005 that have provided estimates of future changes in annual 
naturalized Upper Basin runoff and streamflow, in nearly all cases as 
measured at Lees Ferry. For a given methodology, the results from different 
studies have been similar, and thus the results across the studies are 
generalized in the “Synthesis of results” column. Looking across the 
different methodologies, there is broad consistency in two overall findings: 
1) most individual simulations within a given study show reduced runoff for 
the mid-21st century, and 2) the mid-range of the simulations accordingly 
suggests a reduction in runoff of about 10% to 20%, i.e., down to an average 
of about 12.0–13.5 maf/year, compared to the historical hydrology of 
14.8 maf/year. (There is one exception to these generalizations, as noted 
below.) Again, the overall tendency toward reduced runoff reflects the 
pervasive drying effect of the near-certain projected warming, which is 
either ameliorated by increased precipitation or exacerbated by decreased 
precipitation, depending on the particular simulation. 

Table 11.4 

Summary of results from studies since 2005 that have provided estimates of future changes in naturalized 
Upper Basin runoff. The studies are grouped according to methodology/primary GCM data. Previous 
summaries of the studies projecting future hydrology for the Upper Basin can be found in Ray et al. (2008); 
Lukas et al. (2014); and Vano et al. (2014) 

Methodology  
Studies or 
assessments using 
these simulations 

Synthesis of results of 
these studies for Upper 
Basin runoff in mid-21st 
century 

Comments 

CMIP3 GCM projections + 
BCSD statistical 
downscaling + hydrologic 
model 

Christensen and 
Lettenmaier (2007); 
Reclamation (2011); 
Woodbury et al. 
(2012); CWCB (2012); 
Reclamation (2012e); 
Harding, Wood, and 
Prairie (2012); Ficklin, 
Stewart, and Maurer 
(2013) 

Most (60–80%) 
simulations show 
reduced runoff; median 
change -10%  
(-25% to +10%) 

All studies used the 
VIC model except 
Woodbury et al. 
(Sac-SMA and 
WEAP) 

CMIP3 GCM projections + 
delta method downscaling 
+ hydrologic model 

Deems et al. (2013) 
Median change -10% to 
-20%  

Individual 
simulations not 
reported; study also 
examined effects of 
dust on snow 
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Methodology  
Studies or 
assessments using 
these simulations 

Synthesis of results of 
these studies for Upper 
Basin runoff in mid-21st 
century 

Comments 

CMIP3 GCM projections + 
dynamical downscaling 
with RCMs; runoff directly 
from the RCMs 

Gao et al. (2011) 

Most (2 of 3) 
simulations show 
reduced runoff; 
changes -16% to +5% 

Very small projection 
ensemble; study 
domain includes 
Lower Basin 
headwaters  

CMIP3 GCM projections; 
runoff directly from the 
GCMs 

Milly, Dunne, and 
Vecchia (2005);  
Seager et al. (2007) 

Nearly all (~95%) 
simulations show 
reduced runoff; median 
change -10% to -20% 

This method is less 
reliable for basin-
scale runoff than 
other methods  

CMIP5 GCM projections + 
BCSD statistical 
downscaling + hydrologic 
model 

Reclamation (2016b; 
2020) 

About half of 
simulations show 
reduced runoff; median 
change 0%  
(-25% to +20%) 

Outcomes are 
shifted wetter than 
other methods due 
to the BCSD bias-
correction 
procedure’s effects 
on precipitation  

CMIP5 GCM projections + 
other statistical 
downscaling + hydrologic 
model 

Alder and Hostetler 
(2015); Reclamation 
(2020) 

Most (~70%) of 
simulations show 
reduced runoff; median 
change -5 to -10%  
(-25% to +10%)  

Alder and Hostetler 
(2015) used a variant 
of BCSD lacking the 
procedure that leads 
to wettening; 
Reclamation (2020) 
used LOCA 

CMIP5 GCM projections + 
observed runoff 
sensitivities to temperature 
and precipitation 

Lehner et al. (2019) 

All simulations show 
reduced runoff; median 
change -17%  
(-31% to -3%) 

Future time period 
varies by GCM and 
corresponds to 
temperature increase 
of 2°C vs. 1950-2008 

CMIP5 GCM projections; 
runoff changes directly 
from the GCMs 

Seager et al. (2013) 

Most (~80%) of 
simulations show 
reduced runoff; median 
change -10% 
(-30% to +10%) 

Results are for the 
2021-2040 period; 
for mid-century, the 
reductions would be 
more prevalent and 
larger 

Generalized temperature 
change from GCMs + 
hydrologic models (or 
runoff sensitivity to 
temperature derived from 
hydrologic models) 

McCabe and Wolock 
(2007); Udall and 
Overpeck (2017); 
Milly and Dunne 
(2020); Reclamation 
(2020) 

All simulations show 
reduced runoff; median 
change -20%  
(-40% to -5%) 

Results only reflect 
future changes in 
temperature, not 
changes in 
precipitation 

 



 

Chapter 11. Climate Change-Informed Hydrology 431 
 

There are some appreciable differences in the results among the respective 
methodologies. The most prominent is that the CMIP5 + BCSD downscaling 
+ hydrologic model ensemble reported in recent Reclamation-funded 
studies (Reclamation 2014; 2016b; 2020) showed wetter (i.e., less dry) 
outcomes than earlier CMIP3-based hydrologies and CMIP5-based 
hydrologies produced using different bias-correction and downscaling 
methods (Alder and Hostetler 2019; Reclamation 2020).  

Also, the studies that have analyzed Upper Basin runoff output directly from 
GCMs, whether based on CMIP3 or CMIP5, have found the future runoff 
reductions to be more prevalent and larger than studies using downscaled 
climate and hydrology. This shift toward drier outcomes is in part a 
consequence of the simplified topography in the GCM leading to a smaller 
or non-existent mountain snowpack.  

The last methodology listed (Generalized temperature change from GCMs + 
hydrologic model) shows drier outcomes than other methods, because it 
only reflects the projected temperature change, and not the precipitation 
change. Udall and Overpeck (2017), like McCabe and Wolock (2007) a 
decade previously, argue for separating the impacts on runoff of 
temperature projections, in which we have very high confidence, from 
those associated with the much lower-confidence projections of future 
precipitation.  

Finally, the Lehner et al. (2019) study used a novel methodology in which 
the temperature and precipitation changes from CMIP5 GCMs were 
combined with the respective sensitivities of runoff to temperature and 
precipitation as statistically derived from observations, creating 
“observationally constrained” projections of future runoff. All of the 
individual projections in Lehner et al. (2019) show reductions in streamflow, 
with magnitudes similar to the temperature-change-only runoff 
projections in Udall and Overpeck (2017) and similar studies. 

Those studies that also include analyses at the sub-basin level consistently 
indicate a stronger tendency toward decreased runoff for the southern 
parts of the Upper Basin, including the San Juan River, and less so in the 
northern parts, including the upper Green River and the Yampa River 
(Reclamation 2012e; CWCB 2012; Alder and Hostetler 2015; Reclamation 
2016a; 2020). This north-south gradient in streamflow outcomes is mainly 
driven by the corresponding north-south gradient in projected annual 
precipitation, since the projected magnitudes of warming for the different 
sub-basins are comparable. 

As with the downscaled climate datasets, it is difficult to select one 
representative dataset from the many different analyses of future Upper 
Basin streamflows to examine in greater detail. Here, a CMIP5-LOCA-VIC 
dataset of projected streamflows is shown because it matches the CMIP5-
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LOCA projections of Upper Basin temperature and precipitation discussed 
in the previous section, and because a very similar dataset was used in 
analyses in the forthcoming CMIP5 report (Reclamation 2020). (Note: The 
LOCA-based projected streamflows shown here in Figures 11.12 and 11.13 are 
not the same as the LOCA-based projected streamflows that will be 
available later this year on the collaborative downscaled climate and 
hydrology projection archive hosted on Lawrence Livermore National 
Laboratory’s Green Data Oasis; the latter dataset was processed using a 
different streamflow routing scheme and will have more individual 
projections.) 

Figure 11.12 shows the projected streamflow change at Lees Ferry from 
CMIP5-LOCA dataset (32 models, one projection each) driven by the RCP4.5 
(top) and RCP8.5 (bottom) emissions scenarios. A 30-year running average 
has been applied to the traces to match the typical 30-year analysis period 
for evaluating future change. Note that even with this 30-year smoothing, 
the individual traces show substantial variability, depicting swings in the 
apparent future change over the course of the 21st century. Nearly all of this 
variability is driven by the internal (i.e., natural) variability in precipitation, 
as shown in Figure 11.11. (See also the sidebar on natural variability below.) 
This means that the precise features of the distribution of the ensemble at 
any slice in time, e.g., the box-whiskers plots for 2055, are somewhat 
arbitrary in that they reflect a snapshot of ever-shifting multi-decadal 
variability as well as the forced anthropogenic change. 

Also note that while the median change is negative (i.e. decreasing 
streamflow) throughout the 21st century under both RCP4.5 and RCP8.5, and 
many of the individual traces show streamflow decreasing by 10% or more, 
the ensemble medians remain relatively constant after about 2050 despite 
increasing projected basin temperatures. This is because the precipitation 
increases projected by most of the CMIP5 projections, while relatively small 
in percentage terms, are still large enough to compensate for the 
progressive effects of warming in about one-third of the streamflow traces. 
Even so, about 30% of the traces under both RCP4.5 and RCP8.5 show 30-
year average flows at 2055 that are less than the average observed 
streamflow of 13.3 maf (13% below the 1971-2000 average) during the 1988-
2017 period used as the “Stress Test” hydrology (Chapter 9). 

 

Downscaled CMIP3 and 
CMIP5 

Climate and Hydrology 
Projections 

 
Link: 
https://gdo-
dcp.ucllnl.org/ 

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/
https://gdo-dcp.ucllnl.org/
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Figure 11.12 

Projected future streamflow change at Lees Ferry compared to the 1971–2000 baseline, from two 
ensembles of 32 CMIP5 projections under two emissions scenarios (top: RCP4.5; bottom: RCP8.5) 
downscaled with LOCA and run through the VIC model to simulate hydrology. The lighter traces on 
both time-series plots are the 30-year running averages, plotted on the middle (15th) year, of the 
projected annual streamflows, with the median trace shown as the dark dashed line. The 30-year 
average of the 1988–2017 ‘Stress Test” observed natural streamflow is shown as a black square. The 
box-whiskers plots show the distribution of the 30-year average values at 2055 (2041–2070); the 
outer boxes show the 10th and 90th percentiles; the inner boxes show the 25th, 50th, and 75th 
percentiles, and the max/min are shown at the ends of the whiskers. (Data: N. Mizukami, NCAR) 
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Figure 11.13 shows the same projected streamflow changes for the 2055-
centered period as in the box-whiskers plots in Figure 11.12, but as a 
function of the projected annual temperature changes (as in Figure 11.10) 
and the projected annual precipitation changes (as in Figure 11.11). Each 
circle is an individual CMIP5-LOCA projection (32 under RCP 4.5; 32 under 
RCP 8.5); filled circles indicate a projected increase in streamflow, while 
open circles indicate a decrease in streamflow. The size of the circle 
indicates the magnitude of the change. The position of each circle in the 
scatterplot shows the projected temperature and precipitation changes 
associated with that same projection’s streamflow change. Across both 
RCPs, about two-thirds of the projections (42 of 64) show decreasing 
streamflows, in many cases despite increasing annual precipitation. The 
largest decreases in streamflow (-20% or more) are associated with 
moderate or high increases in temperature (>4°F), and decreases in 
precipitation of 5-15%. Conversely, projected increases in streamflow are 
only associated with increases in precipitation of 5% or more. 

 
Figure 11.13 

Projected future streamflow changes at Lees Ferry for 2041-2070 (2055) relative to the 1971-2000 
baseline, and the projected temperature and precipitation changes associated with each projection 
of streamflow change. About two-thirds of the 64 projections show future decreases in streamflow, 
many of them despite increases in annual precipitation. These CMIP5-LOCA data are the same as 
those shown in Figures 11.10-11.12. (Streamflow projection data: N. Mizukami, NCAR; Temperature 
and precipitation projection data: D. Pierce, Scripps Institution; http://loca.ucsd.edu; Pierce, Cayan, 
and Thrasher 2014) 

http://loca.ucsd.edu/
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SPOTLIGHT 

 

As mentioned earlier in this chapter, GCMs simulate fundamental physical processes within and between 
thousands of grid cells arrayed across the face of the Earth and vertically up into the atmosphere and down 
into the oceans. Natural (or “internal”) variability is not “programmed into” these models—it emerges as a 
consequence of the simulation of physical processes at very short time scales, accumulating into physically 
realistic behavior of the atmosphere and oceans at longer time scales, including the familiar modes of 
climate variability such as ENSO. 

Each historical simulation or future projection from a GCM contains an expression of internal variability that 
is unique to that one simulation. GCM simulations over the historical period do not attempt to replicate the 
actual events and sequences of the observed climate, such as historical wet and dry years as observed in 
particular regions; however, the events and sequences that are simulated by the GCM over the historical 
period should be consistent with the statistical characteristics of the historical natural variability. GCM 
projections of future conditions can and often do show changes in variability relative to the historical period, 
such as greater interannual variability in precipitation over most regions (Pendergrass et al. 2017).  

The simulated internal variability in any one GCM projection—whether over the historical period or a future 
period—will not be synchronized with the variability seen in projections from other GCMs. If the initial 
conditions of the atmosphere and ocean at the start of the simulation are varied, even minutely, then 
projections from the same GCM will develop different variability, due to the sensitivity of the modeled 
variability on the initial conditions.  

As explained in Chapter 2, the observed variability in annual precipitation is much greater than the variability 
in temperature, relative to long-term observed trends in the two variables. The same is true in future 
projections: the projected internal variability in precipitation is much greater than that in temperature, 
relative to the expected anthropogenically forced trends. 

This simulated internal variability strongly influences the projections of future hydrologic change in the 
Colorado River Basin and the way they are interpreted. Harding, Wood, and Prairie (2012) analyzed the large 
ensemble of 112 CMIP3-based hydrology projections and separately visualized multiple runs that came from a 
single GCM, which clearly highlights the large role of simulated multidecadal natural variability in the spread 
of projected streamflow changes for the Upper Basin. 
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Figure 11.14 shows 17 downscaled projections of Upper Basin annual temperature and precipitation from 
a single GCM, and 17 traces of VIC-modeled streamflows based on those climate projections. Note that 
for precipitation, the spread due to internal variability alone is relatively large, and this spread in 
precipitation is then carried forward into the streamflow traces. The forced trends in precipitation are 
hard to discern given the internal variability. Temperature, in contrast, has a much clearer forced 
trend: the traces follow the respective forcing of the emissions scenarios and the forced trend is much 
larger than the natural variability in temperature. That said, the spread of the temperature traces under 
each scenario at 2050 is not trivial (roughly 0.5°F–1.5°F). 

Analyses of a larger ensemble of projections (n = 40) driven by a single emissions scenario from the 
same GCM (NCAR CCSM3), likewise found that regional changes and trends in temperature and 
precipitation around the globe are strongly influenced by GCM-simulated natural variability (Deser, 
Knutti, et al. 2012; Deser, Phillips, et al. 2012). That work and that of Harding, Wood, and Prairie (2012) 
also indicate that apparent disagreement between different GCMs regarding future regional change 
can stem from these unaligned and essentially random expressions of multidecadal variability, rather 
than from different predictions of the future forced change. For example, a “dry” projection of a region 
of interest from one GCM could be an outlier relative to an overall wet tendency of that GCM if one 
evaluated a larger set of projections for that region. These large ensembles can also help assess 
whether the internal variability simulated by the GCMs is similar to the observed variability (McKinnon 
et al. 2017). 

 

Figure 11.14 

Single-GCM (NCAR CCM3) downscaled projections of (left) Upper Basin average annual temperature; (center) Upper 
Basin average annual precipitation; and (right) annual Colorado River streamflow at Lees Ferry, shown as running 30-year 
averages plotted on the last year. All 17 projections came from the same GCM, the NCAR CCM3 model, as generated 
for CMIP3. Projections are color-coded by emissions scenario. Within each emissions scenario (red, green, or blue), the 
differences among the traces are entirely due to the varying expressions of simulated internal (natural) variability over 
time. (Source: adapted from Harding, Wood, and Prairie 2012) 
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Results—future changes in annual Lower Basin runoff 
Fewer studies have assessed potential future changes in Lower Basin 
runoff, that is, tributary flows to the Colorado mainstem. Also, the basin-
wide assessments of future hydrology (e.g., Reclamation 2012e) have not 
reported on projected streamflows for the Lower Basin in the same level of 
detail as those for Lees Ferry. Studies that have assessed Lower Basin 
runoff changes, and other datasets that can be readily queried, generally 
show ranges of future hydrologic projections shifted strongly toward lower 
streamflows, as in the Upper Basin, but with drier overall outcomes 
(Table 11.5).  

Table 11.5 

Summary of results from studies since 2005 that have provided estimates of future changes in Lower Basin 
runoff. The studies are grouped according to primary GCM data and the methodology.  

Methodology  
Studies/assessments 
using these 
simulations 

Results of these studies 
for Lower Basin runoff in 
mid-21st century 

Comments 

CMIP3 GCM projections + 
BCSD statistical 
downscaling + hydrologic 
model (VIC) 

Reclamation (2012e) 

Mean change for Virgin 
River, +3%; mean 
change for Bill Williams 
River, -4% 

 

CMIP3 GCM projections; 
runoff directly from the 
GCMs 

Milly, Dunne, and 
Vecchia (2005) 

Most (~87%) 
simulations show 
reduced runoff; median 
change -20% to -25% 

 

CMIP5 GCM projections + 
BCSD statistical 
downscaling + hydrologic 
model (VIC) 

Reclamation (2020) 

Median runoff change 
for grid boxes in Little 
Colorado and Salt-
Verde headwaters: -
10% to -25% 

Runoff outcomes for 
Lower Basin not 
explicitly given; 
values here 
estimated from map 
of changes 

CMIP5 GCM projections + 
other statistical 
downscaling + hydrologic 
model (simple water-
balance model) 

Alder and Hostetler 
(2015) 
 

Most (~80%) 
simulations show 
reduced runoff; median 
change -15%  
(-25% to +10%) 

Downscaled data 
used a variant of 
BCSD lacking the 
procedure that leads 
to ‘wettening’ 

 

Results—future changes in other hydrologic variables and outcomes 
Besides changes in annual runoff volumes, most studies based on datasets 
of hydrology projections for the basin as cited in Tables 11.4 and 11.5 have 
also reported future projections of other hydrologic variables, including 
snowpack, the timing of snowmelt and runoff, and soil moisture. Additional 
modeling studies have focused on one or more those variables. Below are 
summaries that generalize the findings of those datasets and studies. In 
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general, the systematic changes to the hydrology of the basin that have 
been observed in recent decades, and at least partly driven by the warming 
trend (Chapter 2), are expected to continue, if not proceed more rapidly 
than in the past. 

Snowpack 
As with runoff, the various studies of hydrologic projections for the Upper 
Basin all show a strong tendency toward future basin-wide declines in 
April 1 SWE across the individual simulations (Christensen and Lettenmaier 
2007; Reclamation 2011; 2012e, 2016b, 2020; Alder and Hostetler 2015), 
despite projected increases in winter and early spring precipitation in most 
GCM projections. Additional, snow-focused modeling studies that 
considered parts or all of the Upper Basin likewise strongly indicate future 
declines in spring snowpack (Battaglin, Hay, and Markstrom 2011; Lute, 
Abatzoglou, and Hegewisch 2015). Synthesizing across these studies, the 
general mid-range of the projected change in April 1 SWE by mid-century is 
roughly -10% to -20%. As with precipitation and runoff, the southern sub-
basins are projected to more likely have declines in April 1 SWE, and larger 
declines than the northern sub-basins.  

This strong tendency seen toward decreased April 1 SWE reflects multiple 
effects of the projected warming: a shift toward precipitation falling as rain 
instead of snow, greater sublimation and melt of the snowpack throughout 
the season, and a shift toward earlier snowmelt in the spring. These 
warming-related effects are strongly modulated by elevation, with 
snowpack at higher elevations seeing less impact from warming, as a 
percentage of current snowpack, than at lower elevations. Analysis of the 
CMIP5-BCSD hydrology projections also shows a tendency toward 
decreases in February 1 SWE and March 1 SWE in the Upper Basin, but not 
as strongly as for April 1 SWE (Lukas et al. 2014). May 1 and June 1 SWE, 
however, show sharp declines in nearly all of those projections, reflecting a 
broad shift toward earlier snowmelt.  

The future persistence of the snowpack in the Lower Basin headwaters is at 
much greater risk than in the Upper Basin headwaters, facing larger 
projected declines in seasonal snowfall or peak SWE or both (Lute, 
Abatzoglou, and Hegewisch 2015; Christensen and Lettenmaier 2007). This 
is due to both the greater tendency toward projected declines in cool-
season precipitation for the Lower Basin, and also because the current 
“snow climate” of the headwaters of the Lower Basin is substantially 
warmer and closer to the critical 0°C (32°F) threshold than in the Upper 
Basin (Lute, Abatzoglou, and Hegewisch 2015). 

These snowpack projections also indicate that in the future, springtime 
SWE may become a less useful predictor of April–July streamflow and 
annual streamflow than it is currently (Livneh, Badger, and Lukas 2017). 
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Regardless of the future change in precipitation, the projected warming 
means that less of the annual precipitation in the headwaters would fall as 
snow, and that more of the snowpack would melt and run off prior to 
April 1, or other benchmark dates, than in the past. 

Timing of snowmelt and runoff 
The projections of future hydrology for the Upper Basin show much greater 
agreement regarding future change in the timing of snowmelt and peak 
runoff timing, and related changes in the annual hydrograph, than future 
change in annual runoff. Runoff timing is especially sensitive to warming, 
and nearly all projections, even ones with increased precipitation, show the 
peak of runoff shifting earlier, with the extent of that warming-driven shift 
ranging from 1–4 weeks by 2050, depending mainly on the GCM and 
emissions scenario.  

 
Figure 11.15 

Projected monthly runoff change for the Colorado River headwaters for ~2050 (2035–2064) under 
RCP 4.5, from the CMIP5-BCSD dataset. Top: projected average monthly flows for the 31 projections 
(light blue lines) and the ensemble median (dark blue dotted line) compared to the 1971–2000 
baseline (gray dashed line). Bottom: the corresponding ranges of the monthly runoff changes from 
that ensemble; the dark blue bars show the range from the 10th to 90th percentile and the light blue 
boxes show the 25th to 75th percentile. As the hydrograph shifts earlier, March–May runoff increases 
while June tends to decrease, and July–September runoff sharply decreases in all projections. 
(Source: Lukas et al. 2014; Data: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/) 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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Figure 11.15 is illustrative of the shift in the annual hydrograph seen in all of 
the GCM-based future hydrologies for the Upper Basin; here, CMIP5-BCSD 
projections of monthly runoff for the Colorado headwaters (i.e., at 
Glenwood Springs) for mid-century under RCP 4.5. That this shift is clearly 
seen in the CMIP5-BCSD hydrology, which has no overall tendency toward 
lower streamflow (Table 11.4), indicates how strongly earlier runoff timing is 
driven by warming temperatures. The shift toward earlier timing manifests 
as increases in monthly runoff in the spring months (March–May) in nearly 
all projections, while runoff decreases in summer and early fall (June–
September) in nearly all projections, with the largest percentage decline in 
July. This general seasonal pattern of change is also seen in projections for 
the other sub-basins of the Upper Basin, as well as for snowmelt-
dominated catchments in the Lower Basin. 

As discussed in Chapter 2, some portion of the recent observed trend 
toward earlier runoff in the Upper Basin is due to the effect of dust-on-
snow deposition—an effect that has not been explicitly included in the 
GCM-based studies, with the exception of Deems et al. (2013). If dust-on-
snow deposition in the region continues to increase in the future, as it has 
recently (Clow, Williams, and Schuster 2016), the shift toward earlier runoff 
in the Upper Basin will occur faster than indicated by the GCM-based 
hydrology projections (Deems et al. 2013). 

Changes in water demand 
As stated in the Introduction, this report does not attempt a 
comprehensive treatment of estimates of water use and projections of 
future demand. But it is important to note here the projected effects of 
climate change on water demand, since they may be as significant as future 
changes in supply in tipping the water balance of the basin toward 
undesirable outcomes. 

In a warmer climate, evaporative demand (i.e., potential evapotranspiration; 
PET) increases, which would increase the consumption of water by plants—
whether in the context of agricultural crops, outdoor municipal vegetation, 
or phreatophytes—and would also increase evaporation from reservoirs. 
Estimating the magnitude of the future changes in water use first requires 
quantifying the PET change given changes in temperature, and then 
adjusting the temperature-driven changes in PET with changes in 
precipitation, if any.  

The Colorado River Basin Water Supply and Demand Study (Reclamation 
2012d) represented PET using the Penman-Monteith method (Chapter 5), 
both as that method is incorporated within the VIC model, and in separate 
adjustments for high-elevation areas. That analysis projected that for a 
2060-centered period across an ensemble of CMIP3 projections, the  
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agricultural demand adjustment factor would increase, on average, by 4-
10% in 34 VIC grid cells representing important agricultural production 
areas in all seven basin states. An outdoor municipal demand factor for key 
urban areas in the basin increased by 4-10%, while reservoir evaporation 
increased by 3-5%. Nearly all of the changes in the demand factors were 
driven by temperature, with relatively small adjustments due to projected 
precipitation change. Basin-wide, the average projected total change in 
water demand for 2060, driven by climate alone, was an increase of 0.5 maf, 
with individual projections ranging from no change to an increase in water 
demand of over 1.0 maf.  

The ‘”Exploring Climate and Hydrology Projections from the CMIP5 
Archive” study (Reclamation 2020) repeated these analyses across large 
ensembles of both CMIP3 and CMIP5 projections, for a 2070-centered 
period. All demand factors were higher under CMIP5 than CMIP3, generally 
showing an increase of 6-15% for agricultural demand and outdoor 
municipal demand, over the 1971-2000 baseline. That study did not 
calculate a basin-wide change in total demand.  

The Colorado River Water Availability Study (CRWAS; CWCB 2012), using 
CMIP3 projections of future temperature and precipitation, calculated 
changes in agricultural demand (Crop Irrigation Requirement; CIR) for a 
dozen areas in the Upper Basin in western Colorado. That analysis 
projected that the average annual CIR would increase by 18–37% for a 2070-
centered period. The large discrepancy between the CRWAS results and 
those summarized above from Reclamation (2012d; 2020) can be attributed 
to the use of the Blaney-Criddle empirical PET method in the CRWAS 
analyses, which produces unrealistically large sensitivities of PET to 
increasing temperature for the higher-elevation sites in the basin 
(Reclamation 2012d; see also Chapter 5).  

11.8 Interpreting climate change-informed hydrology 
in light of multiple uncertainties 

Sources of uncertainty 
Reviewing the history of studies of future basin hydrology in Table 11.4, it 
can be seen that the overall spread of potential future hydroclimatic 
changes in the Colorado River Basin has not been reduced by the 
development of new methods and the refinement of climate models—which 
is also true for global-scale projections of climate and hydrology. In fact, in 
the last several years, additional sources of uncertainty and error have been 
identified and more fully appreciated, if not quantified (Clark et al. 2016).  

Table 11.6 summarizes the general sources of uncertainty in climate 
change-informed projections of future hydrology. Until recently, the 
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construction of the various ensembles of downscaled CMIP3 and CMIP5 
projections used in Colorado River Basin planning only reflected the first 
three sources of uncertainty: emissions scenarios, GCM model structure, 
and internal (i.e., natural) variability. The magnitude of natural climate 
variability simulated by the models and its effects on estimates of future 
change is larger than was understood in the late 2000s (Deser, Phillips, et 
al. 2012; Harding, Wood, and Prairie 2012), which complicates efforts to 
identify and tease apart the uncertainties from other sources. The 
remaining sources of uncertainty in Table 11.6 have not been adequately 
characterized: the choice of downscaling method and bias-correction 
method, the choice of observed climate dataset used for bias-correction, 
and the choice of hydrology model, all of which are key steps in the 
conventional top-down approach.  

The quantifiable contributions of the first three sources to the uncertainty 
in projections of temperature, precipitation, and runoff for the Upper Basin, 
from the CMIP5-BCSD ensemble, are depicted in Figure 11.16. In the bottom 
row, of the total uncertainty in the 30-year average Upper Basin runoff in 
about 2050, the largest source is the differences among the GCMs (“model”) 
in simulating the forced change in temperature and precipitation given the 
same emissions scenario. The second largest source is internal variability 
manifesting at the 30-year timescale, as also shown in the right-hand panel 
of Figure 11.14. The smallest source of uncertainty in runoff at 2050 is the 
choice of emissions scenario. 

Interpreting the range of future potential outcomes 
The potential future climate and hydrology outcomes for the Colorado 
River Basin depicted by the large CMIP-based ensembles have created 
frustration for planners and practitioners, mainly for two related factors. 
First, the range of projected future outcomes is very broad, with some 
future hydrologic traces showing significant increases in streamflow, and 
others showing significant decreases in streamflow. But this range needs to 
be kept in perspective: even if climate change were not occurring, water 
managers in the basin would still face large uncertainties about the 
trajectory of basin hydrology over the next several decades due to natural 
(internal) variability of the climate system alone, as indicated by the 
historical hydrology (Chapter 9), paleohydrology (Chapter 10), and 
ensembles of projections from a single climate model that highlight the 
magnitude of internal variability (Figure 11.14). Second, the sheer number of 
traces—often 100 or more—makes data handling, analysis, and 
interpretation unwieldy.  
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Table 11.6 

Summary of sources of uncertainty in future hydrologic projection based on CMIP GCM runs. The sources 
in the first three rows are reasonably quantified; see Figure 11.15. T and P refer to temperature and 
precipitation, respectively.  

Source of 
uncertainty 

How this 
uncertainty can 
be discerned if 
not fully 
characterized 

Is this feasible within 
a typical dataset of 
CMIP-based 
hydrologic 
projections? 

Contribution to 
total uncertainty in 
projected Upper 
Basin climate 
changes  

Contribution to 
total uncertainty in 
projected Upper 
Basin runoff 
changes 

Emissions 
scenario 

Look at the 
differences in 
the GCM 
ensemble 
under different 
RCPs 

Partially— simulated 
natural variability 
can confound unless 
large ensembles 
from multiple 
models are available 

T: Large  
P: Small 

Small; increases 
to moderate by 
2100 

GCM structure 
and parameters, 
i.e., 
representation of 
key climate 
processes 

Look at results 
from different 
GCMs under 
same RCP 

Partially— simulated 
natural variability 
can confound unless 
large ensembles 
from multiple 
models are available 

T: Large, but 
decreases by 
2100 

P: Large 

Large 

Decadal and 
multi-decadal 
natural (internal) 
variability  

Look across 
multiple runs 
from a single 
GCM under the 
same RCP 

Partially—  
most CMIP GCMs 
have only 1 run per 
RCP, but some have 
multiple runs 

T: Small 
P: Moderate; 

confounds 
interpretation 
of T and P 
changes 

Moderate; 
decreases toward 
late 21st century 

Downscaling 
method (including 
bias-correction) 

Compare 
results from at 
least two 
methods  

No—  
most existing 
datasets use one or 
a few very similar 
methods  

Unclear; locally 
can be large, 
especially for 
precipitation 

Unclear; locally 
can be large 

Gridded climate 
data used for 
statistical 
downscaling and 
calibrating RCMs 

Compare 
results using 
different 
gridded 
climate 
datasets, with 
all else equal 

No—  
existing datasets use 
one gridded 
observational 
dataset 

Unclear Unclear 

Hydrologic model 
structure and 
parameters 

Compare 
results using 
different 
hydrologic 
models, with all 
else equal 

No—  
most datasets use 
one hydrologic 
model with one set 
of parameters 

N/A 
Unclear; locally 
can be large 



 

Chapter 11. Climate Change-Informed Hydrology 444 
 

 

 
Figure 11.16 

Quantification of three key sources of uncertainty (i.e., ensemble spread) in CMIP5 BCSD projections 
of Upper Basin temperature (upper), precipitation (middle), and runoff (lower): Internal (or natural) 
variability; Emissions scenario, and Model (GCM) structure and parameters. The left-right pairs of 
plots show the same data in different ways: (left) the uncertainty associated with each source relative 
to the observed mean of that variable, and (right) as a fraction of the total uncertainty at that time 
period. (Source: F. Lehner, NCAR, based on plots by Hawkins and Sutton 2009; Data: http://gdo-
dcp.ucllnl.org/) 

http://gdo-dcp.ucllnl.org/
http://gdo-dcp.ucllnl.org/
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In response to both of these factors, it can be tempting for users to 
interpret a CMIP-based ensemble of hydroclimate projections in 
probabilistic terms, e.g., assuming that the mid-point of the ensemble 
range is more likely than the projections nearer the ends of the range, and 
focusing on that number. Some judgment of the likelihood of future 
outcomes is needed in order to allocate resources in most planning 
paradigms (Schneider 2002). But as noted earlier, the ensembles of GCM 
projections may be biased by similarity between GCMs stemming from 
shared development environments and model code. Furthermore, it is 
believed that even a large ensemble will under-sample the multi-variate 
space potentially occupied by the future climate; the actual climate may 
end up outside of the range of the CMIP projections (Stainforth et al. 2007; 
Shepherd et al. 2018). Accordingly, it should not be automatically assumed 
that the mean or median of the ensemble is the most likely outcome—or 
that the 90th percentile of the ensemble actually has a 10% likelihood of 
being exceeded, and so on. Climate researchers have attempted to correct 
the distributions of regional projected climate change to account for this 
cross-GCM similarity, though the corrected distributions were even 
broader, with heavier tails, and the centers of the distributions were often 
shifted (Steinschneider et al. 2015). Thus, taking the distribution of 
projected changes (e.g., the box-whiskers plots in Figures 11.10-11.12) at face 
value as a quantitative measure of future risk is not advisable.  

However, this does not mean the distribution of the CMIP ensembles tell us 
nothing. There is very strong confidence in future warming in general, and 
that higher emissions scenarios lead to greater warming. The overall shifts 
in hydroclimate seen in the CMIP-based ensembles—toward lower spring 
snowpacks, earlier melt and runoff, lower annual runoff volumes, and 
increasing water demand—are driven largely or almost entirely by the 
warming. In other words, there are compelling physical mechanisms behind 
the most relevant hydrologic changes depicted in the ensembles. It is 
reasonable, then, to take the ensembles as a starting point for exploration 
of the system consequences.  

One way to do this, while also reducing the number of individual traces to 
deal with when evaluating impacts, is a scenario approach in which several 
discrete hydroclimate scenarios are created, each based on a carefully 
selected subset of GCM projections, which cover most of the range or 
uncertainty across the projections. With only four or five future 
hydroclimate scenarios, more attention can be given to each pathway. 
Clark et al. (2016) laid out what they call a “hydrologic storylines” approach 
in which each storyline is a scenario derived from the traditional top-down 
methodology, with the collection of storylines representing a sampling of 
the range of future projections. Reclamation (in an Oklahoma case) and 
AMEC (CRWAS-II for Colorado; Harding 2015) have also proposed empirical 
approaches that create a small number of scenarios representing the 
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spread of the ensemble. A storyline approach, with four future climate 
scenarios, was also adopted for the 4th California State Climate Assessment 
(Pierce, Kalansky, and Cayan 2018). An alternative storyline approach 
proposed by Shepherd et al. (2018) calls for evaluating the changes shown 
by the different combinations of GCMs, downscaling methods, and 
hydrology models according to the physical plausibility of the underlying 
causal mechanisms of these changes. The emphasis is on identifying those 
modeled future trajectories and changes, such as a northward shift in the 
typical storm track over the basin, that are linked to the most compelling 
physics-based and observationally validated explanations. In some cases, 
this may suggest physically plausible conditions beyond the ensemble 
range.  

Other water system analysts have preferred approaches that keep the 
CMIP ensemble intact, in all of its diversity and breadth, but begin with the 
known system vulnerabilities. These bottom-up sensitivity analyses may, 
for example, create multi-dimensional climate response functions specific 
to a system outcome, and then plot how the ensemble of climate or 
hydrologic changes falls across that response surface or response space 
(e.g., Brown and Wilby 2012). 

For now and the foreseeable future, the most reasonable conclusion is that 
there is no one best approach for addressing uncertainty in projections of 
future climate. The range and distribution of conditions across the 
ensemble are biased to an unknown degree, so likelihood should not be 
directly taken from the distribution—but the ensemble nevertheless 
contains useful information that should not be ignored. 

For further reading and additional guidance on interpreting and applying 
climate change information in the context of water system planning, Vano 
et al. (2018) provide a concise and practical primer that also includes a table 
of additional reading with embedded links.  

11.9 Challenges and opportunities  

About a decade ago, multiple assessments conducted by, or on behalf of, 
Reclamation and other water agencies identified research needs and 
knowledge gaps related to climate change information used in water 
planning in the Colorado River Basin and the U.S. (Reclamation 2007a; 
Barsugli et al. 2009; Brekke et al. 2011). Reviewing the findings of these 
assessments, one is struck by how many of the needs and gaps have 
persisted over the intervening decade, despite the cumulative investment 
by the research and practitioner communities.   

This is not to say that scientific understanding and technical capacity have 
not progressed. In particular, there is now much improved availability of 
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regional climate projection datasets from statistically and dynamically 
downscaled methods (Table 11.3), and many of these datasets provide daily 
data that are suitable for analyzing changes in climate extremes. There is 
also much greater understanding and appreciation, and even quantification, 
of the different sources of uncertainty in climate change-informed 
hydrology for the basin. This has included evaluations of different datasets 
and models (though often not comprehensive enough) for the different 
steps of the top-down chain.   

The list below summarizes several remaining challenges in the 
development and usability of climate change-informed hydrology, and the 
opportunities for further improvement in this area. Note that few of these 
are directed at the research community alone, which indicates that in many 
cases, the path to greater actionability is not necessarily found in the 
refinement of models, quantitative methods, or datasets.    

Challenge 
GCM disagreements in changes of key climate variables: 1) GCMs do not 
agree on the magnitude of warming to expect globally, or in the basin, for a 
given emissions scenario-timeframe combination, and 2) GCMs do not 
agree on the direction and magnitude of annual precipitation change for 
the basin. Based on past history, further improvements in GCMs (e.g., 
better resolution of CMIP6 GCMs) will likely only slowly reduce these 
disagreements. 

Opportunities 
• Pursue additional guidance beyond the GCM ensemble regarding 

changes in these uncertain variables, e.g., recent observed trends, 
climate theory, and expert opinion (e.g., surveys of researchers). 

• Identify specific hydroclimate conditions, events, and sequences that 
lead to vulnerability; there may be greater consensus among the GCMs 
regarding these than in the changes in annual or seasonal average 
precipitation, for example. 

Challenge 
Due to GCM uncertainty and other factors, the range of projected future 
outcomes for basin hydrology (e.g., change in annual runoff volume at Lees 
Ferry) from GCM-based ensembles is very broad, and most planning 
decisions cannot address the full range of potential future conditions 
without incurring regrets from under- or over-preparation. 

Opportunities 
• Methods are available (e.g., scenario development, hydrologic 

storylines) to at least reduce the number of traces from the ensemble, 
improving their tractability for planning, and potentially identifying 
more physically plausible and likely outcomes. 
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• Alternative planning paradigms may be more appropriate for decision 
making under deep uncertainty. In planning, emphasize those 
outcomes associated with greater vulnerability and impacts, i.e., drier 
projections. 

Challenge 
GCM resolution, while improving, is still coarser than that required for 
realistic modeling of basin hydrology and system modeling, requiring the 
application of downscaling methods. 

Opportunity 
• The HighResMIP experiment within CMIP6 will soon make available an 

ensemble of GCM projections at 25–50 km resolution. This is still 
coarser than the resolution optimal for hydrologic modeling but will 
provide a useful test of what added value can be expected from high-
resolution GCMs. 

Challenge 
Statistically downscaled projection datasets, which dominate applications 
of regional climate data in water supply assessments, are perfectly 
adequate as sequences to input in hydrology models, but they add little to 
our physical understanding of future changes beyond what the GCMs can 
tell us. The very high resolution of these datasets (1–12 km) can also mislead 
users as to their accuracy and added value. 

Opportunity 
• For water supply assessments, look to dynamically downscaled or 

hybrid methods and datasets (e.g., NA-CORDEX, ICAR, En-GARD) for 
more physically oriented guidance that can provide context for 
statistically downscaled datasets, or replace them. 

Challenge 
The sources of uncertainty and differences in climate change-informed 
hydrology for the basin have been identified and explored to varying 
degrees, but not fully examined, including the underlying methodological 
choices. Thus, data users have incomplete information about uncertainty, 
and may not be aware of the subjective choices underlying particular 
results of hydrologic assessments. 

Opportunities 
• Support comprehensive evaluations of the differences stemming from 

downscaling methods, bias-correction methods, and hydrologic 
models. 

• Provide visualization tools of future climate and hydrology that are not 
limited to a single dataset and allow the users to toggle between 
datasets to clearly see commonalities and differences. 
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Challenge 
Any given ensemble of climate change-informed hydrology (e.g., CMIP5 
BCSD) is a complex dataset that is challenging to obtain, analyze, and 
interpret; the increasing proliferation of similar datasets and their 
respective underlying methodological approaches can be bewildering to 
even sophisticated users. 

Opportunities 
• For both researchers and practitioners, support efforts to provide 

guidance on the appropriate use of existing datasets, e.g., Vano et al. 
(2018), and WUCA training workshops. 

• Develop and disseminate new methods and datasets only when there is 
a compelling use case and clear added value over existing datasets. 
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Glossary 
ablation 
The loss of snow from the snowpack due to melting, evaporation, or wind. 

absolute error 
The difference between the measured and actual values of x. 

albedo 
The percentage of incoming light that is reflected off of a surface. 

aleatory uncertainty 
Uncertainty due to randomness in the behavior of a system (i.e., natural variability) 

anomaly 
A deviation from the expected or normal value. 

atmospheric river (AR) 
A long and concentrated plume of low-level (<5,000’) moisture originating in the tropical Pacific. 

autocorrelation 
Correlation between consecutive values of the same time series, typically due to time-dependencies in 

the dataset. 

bank storage 
Water that seeps into and out of the bed and banks of a stream, lake, or reservoir depending on relative 

water levels. 

bias correction 
Adjustments to raw model output (e.g., from a climate model, or streamflow forecast model) using 

observations in a reference period. 

boundary conditions 
Conditions that govern the evolution of climate for a given area (e.g., ocean heat flux, soil moisture, sea-

ice and snowpack conditions) and can help forecast the future climate state when included in a model. 

calibration 
The process of comparing a model with the real system, followed by multiple revisions and comparisons 

so that the model outputs more closely resemble outcomes in the real system. 

climate forcing 
A factor causing a difference between the incoming and outgoing energy of the Earth’s climate system, 

e.g., increases in greenhouse-gas concentrations. 

climatology 
In forecasting and modeling, refers to the historical average climate used as a baseline (e.g., “compared 

to climatology”). Synonymous with climate normal. 
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coefficient of variation (CV) 
A common measure of variability in a dataset; the standard deviation divided by the mean. 

consumptive use 
The amount of diverted water that is lost during usage via evapotranspiration, evaporation, or seepage 

and is thus unavailable for subsequent use. 

convection 
The vertical transport of heat and moisture in the atmosphere, typically due to an air parcel rising if it is 

warmer than the surrounding atmosphere. 

covariate 
A variable (e.g., temperature) whose value changes when the variable under study changes (e.g., 

precipitation).  

cross-correlation 
A method for estimating to what degree two variables or datasets are correlated. 

cumulative distribution function (CDF) 
A function describing the probability that a random variable, such as streamflow, is less than or equal to 
a specified value. CDF-based probabilities are often expressed in terms of percent exceedance or non-

exceedance. 

Darcy’s Law 
The mathematical expression that describes fluid flow through a porous medium (e.g., soil). 

datum 
The base, or 0.0-foot gage-height (stage), for a stream gage. 

dead pool 
The point at which the water level of a lake or reservoir is so low, water can no longer be discharged or 

released downstream. 

deterministic 
Referring to a system or model in which a given input always produces the same output; the input strictly 

determines the output. 

dewpoint 
The local temperature that the air would need to be cooled to (assuming atmospheric pressure and 

moisture content are constant) in order to achieve a relative humidity (RH) of 100%. 

dipole 
A pair of two equal and opposing centers of action, usually separated by a distance. 

discharge 
Volume of water flowing past a given point in the stream in a given period of time; synonymous with 

streamflow. 
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distributed 
In hydrologic modeling, a distributed model explicitly accounts for spatial variability by dividing basins 

into grid cells. Contrast with lumped model. 

downscaling 
Method to take data at coarse scales, e.g., from a GCM, and translate those data to more local scales.  

dynamical 
In modeling, refers to the use of a physical model, i.e., basic physical equations represent some or most 

of the relevant processes. 

environmental flow 
Water that is left in or released into a river to manage the quantity, quality, and timing of flow in order to 

sustain the river’s ecosystem. 

epistemic uncertainty 
Uncertainty due to incomplete knowledge of the behavior of a system. 

evapotranspiration 
A combination of evaporation from the land surface and water bodies, and transpiration of water from 

plant surfaces to the atmosphere. Generally includes sublimation from the snow surface as well. 

fixed lapse rate 
A constant rate of change of an atmospheric variable, usually temperature, with elevation. 

flow routing 
The process of determining the flow hydrograph at sequential points along a stream based on a known 

hydrograph upstream. 

forcing  - see climate forcing or weather forcing 
 
forecast 
A prediction of future hydrologic or climate conditions based on the initial (current) conditions and 

factors known to influence the evolution of the physical system. 

Gaussian filter 
A mathematical filter used to remove noise and emphasize a specific frequency of a signal; uses a bell-

shaped statistical distribution. 

gridded data 
Data that is represented in a two-dimensional gridded matrix of graphical contours, interpolated or 

otherwise derived from a set of point observations. 

heat flux 
The rate of heat energy transfer from one surface or layer of the atmosphere to the next. 

hindcast 
A forecast run for a past date or period, using the same model version as for real-time forecasts; used for 

model calibration and to “spin up” forecast models. Same as reforecast. 
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hydraulic conductivity 
A measure of the ease with which water flows through a medium, such as soil or sediment. 

hydroclimate 
The aggregate of climatic and hydrologic processes and characteristics, and linkages between them, for 

a watershed or region. 

hydrograph 
A graph of the volume of water flowing past a location per unit time. 

hydrometeorology 
A branch of meteorology and hydrology that studies the transfer of water and energy between the land 

surface and the lower atmosphere. 

imaging spectrometer 
An instrument used for measuring wavelengths of light spectra in order to create a spectrally-resolved 

image of an object or area. 

in situ 
Referring to a ground-based measurement site that is fixed in place. 

inhomogeneity 
A change in the mean or variance of a time-series of data (such as weather observations) that is caused 

by changes in the observing station or network, not in the climate itself. 

Interim Guidelines  
The Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake 

Powell and Lake Mead, signed by the Secretary of the Interior in December 2007. The guidelines expire 

in 2026. https://www.usbr.gov/lc/region/programs/strategies.html 

internal variability 
Variability in climate that comes from chaotic and unpredictable fluctuations of the Earth’s oceans and 

atmosphere. 

interpolation 
The process of calculating the value of a function or set of data between two known values. 

isothermal 
A dynamic in which temperature remains constant while other aspects of the system change. 

jet stream 
A narrow band of very strong winds in the upper atmosphere that follows the boundary between warmer 

and colder air masses. 

kriging 
A smoothing technique that calculates minimum error-variance estimates for unsampled values. 

kurtosis 
A measure of the sharpness of the peak of a probability distribution. 

https://www.usbr.gov/lc/region/programs/strategies.html
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lag-1 autocorrelation 
Serial correlation between data values at adjacent time steps. 

lapse rate 
The rate of change of an atmospheric variable, such as temperature, with elevation. A lapse rate is 

adiabatic when no heat exchange occurs between the given air parcel and its surroundings. 

latency 
The lag, relative to real-time, for producing and releasing a dataset that represents real-time conditions. 

latent heat flux 
The flow of heat from the Earth’s surface to the atmosphere that involves evaporation and condensation 

of water; the energy absorbed/released during a phase change of a substance. 

Law of the River 
A collection of compacts, federal laws, court decisions and decrees, contracts, and regulatory guidelines 

that apportions the water and regulates the use and management of the Colorado River among the 

seven basin states and Mexico. 

LiDAR (or lidar) 
Light detection and ranging; a remote sensing method which uses pulsed lasers of light to measure the 

variable distances from the sensor to the land surface. 

longwave radiation 
Infrared energy emitted by the Earth and its atmosphere at wavelengths between about 5 and 25 

micrometers. 

Lower Basin 
The portions of the Colorado River Basin in Arizona, California, Nevada, New Mexico and Utah that are 
downstream of the Colorado River Compact point at Lee Ferry, Arizona. 

lumped model 
In hydrologic modeling, a lumped model represents individual sub-basins or elevation zones as a single 

unit, averaging spatial characteristics across that unit. Contrast with distributed model. 

Markov chain 
A mathematical system in which transitions from one state to another are dependent on the current state 

and time elapsed. 

megadrought 
A sustained and widespread drought that lasts at least 10-15 years, though definitions in the literature 
have varied. 

metadata 
Data that gives information about other data or describes its own dataset. 
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mid-latitude cyclone 
A large (~500-2000 km) storm system that has a low-pressure center, cyclonic (counter-clockwise) flow, 

and a cold front. Over the western U.S., mid-latitude cyclones almost always move from west to east 

and are effective at producing precipitation over broad areas.   

Minute 319 
The binding agreement signed in 2012 by the International Boundary and Water Commission, United 

States and Mexico, to advance the 1944 Water Treaty between both countries and establish better basin 

operations and water allocation, and humanitarian measures. 

Modoki 
An El Niño event that has its warmest SST anomalies located in the central equatorial Pacific; same as 

“CP” El Niño. 

multicollinearity 
A condition in which multiple explanatory variables that predict variation in a response variable are 

themselves correlated with each other. 

multiple linear regression 
A form of regression in which a model is created by fitting a linear equation over the observed data, 

typically for two or more explanatory (independent) variables and a response (dependent) variable. 

multivariate  
Referring to statistical methods in which there are multiple response (dependent) variables being 

examined. 

natural flow 
Gaged flow that has been adjusted to remove the effects of upstream human activity such as storage or 

diversion. Equivalent to naturalized flow, virgin flow, and undepleted flow. 

naturalized flow – see natural flow 

nearest neighbor method 
A nonparametric method that examines the distances between a data point (e.g., a sampled value) and 

the closest data points to it in x-y space (“nearest neighbors,” e.g., historical values) and thereby 
obtains either a classification for the data point (such as wet, dry, or normal) or a set of nearest 

neighbors (i.e., K-NN). 

nonparametric 
A statistical method that assumes no underlying mathematical function for a sample of observations. 

orographic lift 
A process in which air is forced to rise and subsequently cool due to physical barriers such as hills or 

mountains. This mechanism leads to increased condensation and precipitation over higher terrain. 

p 
A statistical hypothesis test; the probability of obtaining a particular result purely by chance; a test 
of statistical significance. 
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paleohydrology 
The study of hydrologic events and processes prior to the instrumental (gaged) record, typically using 

environmental proxies such as tree rings. 

parameterized 
Referring to a key variable or factor that is represented in a model by an estimated value (parameter) 

based on observations, rather than being explicitly modeled through physical equations. 

parametric 
A statistical method that assumes an underlying mathematical function, specified by a set of 

characteristics, or parameters (e.g., mean and standard deviation) for a sample of observations. 

persistence 
In hydrology, the tendency of high flows to follow high flows, and low flows to follow low flows. 

Hydrologic time series with persistence are autocorrelated. 

phreatophytes 
Plants with deep root systems that are dependent on water from the water table or adjacent soil 

moisture reserves. 

pluvial 
An extended period, typically 5 years or longer, of abnormally wet conditions; the opposite of drought. 

principal components regression (PCR) 
A statistical technique for analyzing and developing multiple regressions from data with multiple 

potential explanatory variables. 

prior appropriation 
“First in time, first in right.” The prevailing doctrine of water rights for the western United States; a legal 

system that determines water rights by the earliest date of diversion or storage for beneficial use. 

probability density function (PDF) 
A function, or curve, that defines the shape of a probability distribution for a continuous random 

variable. 

projection 
A long-term (typically 10-100 years) forecast of future hydroclimatic conditions that is contingent on 

specified other conditions occurring during the forecast period, typically a particular scenario of 

greenhouse gas emissions.  

quantiles 
Divisions of the range of observations of a variable into equal-sized groups. 

r  
Correlation coefficient. The strength and direction of a linear relationship between two variables. 
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R2  
Coefficient of determination. The proportion of variance in a dependent variable that's explained by 
the independent variables in a regression model. 

radiometer 
An instrument used to detect and measure the intensity of radiant energy, i.e., shortwave energy 

emitted from the sun and reflected by clouds, and longwave energy emitted from the earth’s surface. 

raster 
A digital image or computer mapping format consisting of rows of colored pixels. 

reanalysis 
An analysis of historical climate or hydrologic conditions that assimilates observed data into a modeling 

environment to produce consistent fields of variables over the entire period of analysis. 

reference evapotranspiration  
An estimate of the upper bound of evapotranspiration losses from irrigated croplands, and thereby the 

water need for irrigation. 

regression 
A statistical technique used for modeling the linear relationship between two or more variables, e.g., 

snowpack and seasonal streamflow. 

relative humidity (RH) 
The amount of moisture in the atmosphere relative to the amount that would be present if the air were 

saturated. RH is expressed in percent, and is a function of both moisture content and air temperature. 

remote sensing 
The science and techniques for obtaining information from sensors placed on satellites, aircraft, or other 

platforms distant from the object(s) being sensed. 

residual  
The difference between the observed value and the estimated value of the quantity of interest. 

resolution 
The level of detail in model output; the ability to distinguish two points in space (or time) as separate.  

spatial resolution - Resolution across space, i.e., the ability to separate small details in a spatial 

representation such as in an image or model. 

temporal resolution - Resolution in time, i.e., hourly, daily, monthly, or annual. Equivalent to time 

step. 

return flow 
The water diverted from a river or stream that returns to a water source and is available for consumptive 

use by others downstream. 
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runoff 
Precipitation that flows toward streams on the surface of the ground or within the ground. Runoff as it is 

routed and measured within channels is streamflow. 

runoff efficiency 
The fraction of annual precipitation in a basin or other area that becomes runoff, i.e., not lost through 

evapotranspiration. 

sensible heat flux 
The flow of heat from the Earth’s surface to the atmosphere without phase changes in the water, or the 

energy directly absorbed/released by an object without a phase change occurring. 

shortwave radiation 
Incoming solar radiation consisting of visible, near-ultraviolet, and near-infrared spectra. The wavelength 

spectrum is between 0.2 and 3.0 micrometers. 

skew 
The degree of asymmetry in a given probability distribution from a Gaussian or normal (i.e., bell-shaped) 

distribution. 

skill 
The accuracy of the forecast relative to a baseline “naïve” forecast, such as the climatological average 

for that day. A forecast that performs better than the baseline forecast is said to have positive skill.    

smoothing filter 
A mathematical filter designed to enhance the signal-to-noise ratio in a dataset over certain frequencies. 

Common signal smoothing techniques include moving average and Gaussian algorithms. 

snow water equivalent (SWE) 
The depth, often expressed in inches, of liquid water contained within the snowpack that would 

theoretically result if you melted the snowpack instantaneously. 

snow course 
A linear site used from which manual measurements are taken periodically, to represent snowpack 

conditions for larger area. Courses are typically about 1,000’ long and are situated in areas protected 

from wind in order to get the most accurate snowpack measurements. 

snow pillow 
A device (e.g., at SNOTEL sites) that provides a value of the average water equivalent of snow that has 

accumulated on it; typically the pillow contains antifreeze and has a pressure sensor that measures the 

weight pressing down on the pillow. 

stationarity 
The condition in which the statistical properties of the sample data, including their probability 

distribution and related parameters, are stable over time. 

statistically significant 
Unlikely to occur by chance alone, as indicated by one of several statistical tests. 
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stepwise regression 
The process of building a regression model from a set of values by entering and removing predictor 

variables in a step-by-step manner. 

stochastic method 
A statistical method in which randomness is considered and included in the model used to generate 

output; the same input may produce different outputs in successive model runs.  

stratosphere 
The region of the upper atmosphere extending from the top of the troposphere to the base of the 

mesosphere; it begins about 11–15 km above the surface in the mid-latitudes. 

streamflow 
Water flow within a river channel, typically expressed in cubic feet per second for flow rate, or in acre-

feet for flow volume. Synonymous with discharge. 

sublimation 
When water (i.e., snow and ice) or another substance transitions from the solid phase to the vapor phase 

without going through the intermediate liquid phase; a major source of snowpack loss over the course of 

the season. 

surface energy balance 
The net balance of the exchange of energy between the Earth’s surface and the atmosphere. 

teleconnection 
A physical linkage between a change in atmospheric/oceanic circulation in one region (e.g., ENSO; the 

tropical Pacific) and a shift in weather or climate in a distant region (e.g., the Colorado River Basin). 

temperature inversion 
When temperature increases with height in a layer of the atmosphere, as opposed to the typical gradient 

of temperature decreasing with height. 

tercile 
Any of the two points that divide an ordered distribution into three parts, each containing a third of the 

population. 

tilt 
A shift in probabilities toward a certain outcome. 

transpiration 
Water discharged into the atmosphere from plant surfaces. 

troposphere 
The layer of the atmosphere from the Earth's surface up to the tropopause (~11–15 km) below the 

stratosphere; characterized by decreasing temperature with height, vertical wind motion, water vapor 

content, and sensible weather (clouds, rain, etc.). 
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undercatch 
When less precipitation is captured by a precipitation gage than actually falls; more likely to occur with 

snow, especially under windy conditions. 

unregulated flow 
Observed streamflow adjusted for some, but not all upstream activities, depending on the location and 

application. 

Upper Basin 
The parts of the Colorado River Basin in Colorado, Utah, Wyoming, Arizona, and New Mexico that are 

upstream of the Colorado River Compact point at Lee Ferry, Arizona.  

validation 
The process of comparing a model and its behavior and outputs to the real system, after calibration.  

variance 
An instance of difference in the data set. In regard to statistics, variance is the square of the standard 

deviation of a variable from its mean in the data set. 

wavelet analysis 
A method for determining the dominant frequencies constituting the overall time-varying signal in a 

dataset.
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Acronyms & Abbreviations 
24MS 
24-Month Study Model 

AET 
actual evapotranspiration 

AgriMET 
Cooperative Agricultural Weather Network 

AgWxNet  
Agricultural Weather Network 

AHPS  
Advanced Hydrologic Prediction Service 

ALEXI  
Atmosphere-Land Exchange Inversion 

AMJ 
April-May-June 

AMO  
Atlantic Multidecadal Oscillation 

ANN  
artificial neural network 

AOP  
Annual Operating Plan 

AR 
atmospheric river 

AR-1  
first-order autoregression 

ARkStorm  
Atmospheric River 1,000-year Storm 

ASCE  
American Society of Civil Engineers 

ASO  
Airborne Snow Observatory 

ASOS  
Automated Surface Observing System 

AVHRR  
Advanced Very High-Resolution 

Radiometer 

AWOS  
Automated Weather Observing System 

BCCA 
Bias-Corrected Constructed Analog 

BCSD 
Bias-Corrected Spatial Disaggregation 

(downscaling method) 

BCSD5 
BCSD applied to CMIP5 

BOR  
United States Bureau of Reclamation 

BREB  
Bowen Ratio Energy Balance method 

C3S  
Copernicus Climate Change Service 

CA  
Constructed Analogues 

CADSWES 
Center for Advanced Decision Support for 

Water and Environmental Systems 

CADWR 
California Department of Water Resources 

CanCM4i 
Canadian Coupled Model, 4th generation 

(global climate model) 

CBRFC  
Colorado Basin River Forecast Center 
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CCA  
Canonical Correlation Analysis 

CCSM4  
Community Climate System Model, version 

4 (global climate model) 

CDEC  
California Data Exchange Center 

CDF  
cumulative distribution function 

CESM  
Community Earth System Model (global 

climate model) 

CFS  
Climate/Coupled Forecast System 

CFSv2  
Coupled Forecast System version 2 (NOAA 

climate forecast model) 

CHPS  
Community Hydrologic Prediction System 

CIMIS  
California Irrigation Management 

Information System 

CIR 
crop irrigation requirement 

CIRES 
Cooperative Institute for Research in 

Environmental Sciences 

CLIMAS 
Climate Assessment for the Southwest 

CLM  
Community Land Model 

CM2.1 
Coupled Physical Model, version 2.1 (global 

climate model) 

CMIP  
Coupled Model Intercomparison Project 

(coordinated archive of global climate 

model output) 

CNRFC 
California-Nevada River Forecast Center 

CoAgMET  
Colorado Agricultural Meteorological 

Network 

CoCoRaHS  
Community Collaborative Rain, Hail and 

Snow Network 

CODOS 
Colorado Dust-on-Snow 

CONUS  
contiguous United States (the lower 48 

states) 

COOP  
Cooperative Observer Program 

CP  
Central Pacific 

CPC  
Climate Prediction Center 

CRB  
Colorado River Basin 

CRBPP 
Colorado River Basin Pilot Project 

CRPSS 
Continuous Ranked Probability Skill Score 

CRSM  
Colorado River Simulation Model 

CRSP 
Colorado River Storage Project 
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CRSS  
Colorado River Simulation System 

CRWAS  
Colorado River Water Availability Study 

CSAS 

CRWAS  
Center for Snow and Avalanche Studies 

CTSM  
Community Terrestrial Systems Model 

CU 
consumptive use 

CUL  
consumptive uses and losses 

CV  
coefficient of variation 

CVP/SWP  
Central Valley Project/State Water Project 

CWCB  
Colorado Water Conservation Board 

CWEST  
Center for Water, Earth Science and 

Technology 

DA  
data assimilation 

Daymet v.3  
daily gridded surface meteorological data 

DCP 
Drought Contingency Plan 

DEM  
digital elevation model 

DEOS  
Delaware Environmental Observing System 

DHSVM  
Distributed Hydrology Soil Vegetation 

Model 

DJF  
December-January-February 

DMDU  
Decision Making Under Deep Uncertainty 

DMI  
Data Management Interface 

DOD  
Department of Defense 

DOE  
Department of Energy 

DOW  
Doppler [radar] on Wheels 

DRI  
Desert Research Institute 

DTR  
diurnal temperature range 

EC  
eddy-covariance method 

EC 
Environment Canada 

ECCA  
ensemble canonical correlation analysis 

ECMWF  
European Centre for Medium-Range 

Weather Forecasts 

EDDI  
Evaporative Demand Drought Index 

EFAS  
European Flood Awareness System 
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EIS  
Environmental Impact Statement 

En-GARD  
Ensemble Generalized Analog Regression 

Downscaling 

ENSO  
El Niño-Southern Oscillation 

EOF  
empirical orthogonal function 

EP  
Eastern Pacific 

ERC 
energy release component 

ESI  
Evaporative Stress Index 

ESM  
coupled Earth system model 

ESP  
ensemble streamflow prediction 

ESRL  
Earth System Research Laboratory 

ET  
evapotranspiration 

ET0  
Reference (crop) evapotranspiration 

EVI  
Enhanced Vegetation Index 

FAA  
Federal Aviation Administration 

FAWN  
Florida Automated Weather Network 

FEWS  
Famine Early Warning System 

FEWS 
Flood Early Warning System 

FIRO  
forecast-informed reservoir operations 

FLOR 
Forecast-oriented Low Ocean Resolution 

(global climate model) 

FORTRAN  
Formula Translation programming 

language 

FPS  
Federal Priority Streamgages 

FROMUS  
Forecast and Reservoir Operation Modeling 

Uncertainty Scoping 

fSCA  
fractional snow covered area 

FWS 
U.S. Fish and Wildlife Service 

GCM  
global climate model, or general circulation 

model 

GEFS  
Global Ensemble Forecast System 

GEM  
Global Environmental Multiscale model 

GEOS 
Goddard Earth Observing System (global 

climate model) 

GeoTiff  
Georeferenced Tagged Image File Format 

GFDL  
Geophysical Fluid Dynamics Laboratory 
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GFS  
Global Forecast System model 

GHCN  
Global Historical Climatology Network 

GHCN-D  
Global Historical Climate Network-Daily 

GHG  
greenhouse gas 

GIS  
geographic information system 

GLOFAS  
Global Flood Awareness System 

GLOFFIS 
Global Flood Forecast Information System 

GOES  
Geostationary Operational Environmental 

Satellite 

GRACE  
Gravity Recovery and Climate Experiment 

GRIB  
gridded binary or general regularly-

distributed information in binary form 

gridMET  
Gridded Surface Meteorological dataset 

GSSHA  
Gridded Surface/Subsurface Hydrologic 

Analysis 

GW  
groundwater 

HCCD  
Historical Canadian Climate Data 

HCN  
Historical Climatology Network 

HDA  
hydrologic data assimilation 

HDSC  
Hydrometeorological Design Studies 

Center 

HEFS  
Hydrologic Ensemble Forecast Service 

HESP  
Hierarchical Ensemble Streamflow 

Prediction 

HL-RDHM  
Hydrologic Laboratory-Research Distributed 

Hydrologic Model 

HMT  
Hydromet Testbed 

HP  
hydrological processor 

HRRR  
High Resolution Rapid Refresh (weather 

model) 

HSS  
Heidke Skill Score 

HTESSEL  
Land-surface Hydrology Tiled ECMWF 

Scheme for Surface Exchanges over Land 

HUC  
Hydrologic Unit Code 

HUC4  
A 4-digit Hydrologic Unit Code, referring to 

large sub-basins (e.g., Gunnison River) 

HUC12  
A 12-digit Hydrologic Unit Code, referring 

to small watersheds 
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ICAR  
Intermediate Complexity Atmospheric 

Research model 

ICS  
intentionally created surplus 

IDW  
inverse distance weighting 

IFS  
integrated forecast system 

IHC  
initial hydrologic conditions 

INSTAAR  
Institute of Arctic and Alpine Research 

IPCC  
Intergovernmental Panel on Climate 

Change 

IPO  
Interdecadal Pacific Oscillation 

IRI  
International Research Institute 

iRON  
Interactive Roaring Fork Observing Network 

ISM  
Index Sequential Method 

JFM 
January-February-March 

JJA  
June-July-August 

K-NN  
K-Nearest Neighbor 

Landsat  
Land Remote-Sensing Satellite (System) 

LAST  
Lane’s Applied Stochastic Techniques 

LERI  
Landscape Evaporative Response Index 

lidar  
light detection and ranging  

LOCA  
Localized Constructed Analog 

LSM  
land surface model 

M&I  
municipal and industrial (water use 

category) 

MACA 
Multivariate Adaptive Constructed Analog 

maf  
million acre-feet 

MAM  
March-April-May 

MEFP  
Meteorological Ensemble Forecast 

Processor 

METRIC  
Mapping Evapotranspiration at high 

Resolution with Internalized Calibration 

MJO  
Madden-Julian Oscillation 

MMEFS  
Met-Model Ensemble Forecast System 

MOCOM 
Multi-Objective Complex evolution 

MODDRFS  
MODIS Dust Radiative Forcing in Snow 
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MODIS  
Moderate Resolution Imaging 

Spectroradiometer 

MODIS LST (MYD11A2)  
Moderate Resolution Imaging 

Spectroradiometer Land Surface 

Temperature (MYD11A2) 

MODSCAG  
MODIS Snow Covered Area and Grain-size 

MPR 
Multiscale Parameter Regionalization 

MRM  
Multiple Run Management 

MT-CLIM (or MTCLIM) 
Mountain Climate simulator 

MTOM  
Mid-Term Probabilistic Operations Model 

NA-CORDEX  
North American Coordinated Regional 

Downscaling Experiment 

NAM  
North American Monsoon 

NAO  
North Atlantic Oscillation 

NARCCAP  
North American Regional Climate Change 

Assessment Program 

NARR  
North American Regional Reanalysis 

NASA  
National Aeronautics and Space 

Administration 

NASA JPL  
NASA Jet Propulsion Laboratory 

NCAR  
National Center for Atmospheric Research 

NCCASC 
North Central Climate Adaptation Science 

Center 

NCECONET  
North Carolina Environment and Climate 

Observing Network 

NCEI  
National Centers for Environmental 

Information 

NCEP  
National Centers for Environmental 

Prediction  

nClimDiv  
new Climate Divisional (NOAA climate 

dataset) 

NDBC  
National Data Buoy Center 

NDVI  
Normalized Difference Vegetation Index 

NDWI  
Normalized Difference Water Index 

NEMO 
Nucleus for European Modelling of the 

Ocean (global ocean model) 

NevCan  
Nevada Climate-ecohydrological 

Assessment Network 

NGWOS 
Next-Generation Water Observing System 

NHMM  
Bayesian Nonhomogenous Hidden Markov 

Model 
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NICENET  
Nevada Integrated Climate and 

Evapotranspiration Network 

NIDIS  
National Integrated Drought Information 

System 

NLDAS  
North American Land Data Assimilation 

System 

NMME  
North American Multi-Model Ensemble 

NN R1  
NCEP/NCAR Reanalysis 

NOAA  
National Oceanic and Atmospheric 

Administration 

NOAH  
Neural Optimization Applied Hydrology  

Noah-MP 
Noah-Multi-parameterization Model 

NOHRSC  
National Operational Hydrologic Remote 

Sensing Center 

NPP  
Nonparametric paleohydrologic method 

NRCS  
Natural Resource Conservation Service 

NSF  
National Science Foundation 

NSIDC 
National Snow and Ice Data Center 

NSMN  
National Soil Moisture Network 

NVDWR  
Nevada Department of Water Resources 

NWCC 
National Water and Climate Center 

NWIS  
National Water Information System 

NWM  
National Water Model 

NWP  
numerical weather prediction 

NWS  
National Weather Service 

NWSRFS 
National Weather Service River Forecast 

System 

NZI  
New Zealand Index 

OCN  
Optimal Climate Normals 

OHD  
Office of Hydrologic Development  

OK Mesonet  
Oklahoma Mesoscale Network 

ONI  
Oceanic Niño Index 

OWAQ  
Office of Weather and Air Quality 

OWP  
Office of Water Prediction 

PC  
principal components 

PCA  
principal components analysis 
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PCR  
principal components regression 

PDO  
Pacific Decadal Oscillation 

PDSI  
Palmer Drought Severity Index 

PET  
potential evapotranspiration 

PGW  
pseudo-global warming 

PRISM  
Parameter-elevation Relationships on 

Independent Slopes Model 

PSD  
Physical Sciences Division 

QBO  
Quasi-Biennial Oscillation 

QDO  
Quasi-Decadal Oscillation 

QM 
quantile mapping 

QPE  
Quantitative Precipitation Estimate 

QPF  
Quantitative Precipitation Forecast 

QTE  
Quantitative Temperature Estimate 

QTF  
Quantitative Temperature Forecast 

radar 
radio detection and ranging 

RAP  
Rapid Refresh (weather model) 

RAWS  
Remote Automated Weather Station 

Network 

RCM  
Regional Climate Model 

RCP 
Representative Concentration Pathway 

RE 
reduction-of-error 

RFC 
River Forecast Center 

RFS  
River Forecasting System 

RH  
relative humidity 

RiverSMART  
RiverWare Study Manager and Research 

Tool 

RMSE  
root mean squared error 

S/I 
seasonal to interannual 

S2S 
subseasonal to seasonal 

Sac-SMA 
Sacramento Soil Moisture Accounting 

Model 

SAMS 
Stochastic Analysis Modeling and 

Simulation 

SCA  
snow-covered area 
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SCAN  
Soil Climate Analysis Network 

SCE  
Shuffled Complex Evolution 

SCF  
seasonal climate forecast 

SE  
standard error 

SECURE  
Science and Engineering to 

Comprehensively Understand and 

Responsibly Enhance Water 

SFWMD 
South Florida Water Management District 

SM  
soil moisture 

SMA  
Soil Moisture Accounting 

SMAP 
Soil Moisture Active Passive 

SMHI 
Swedish Meteorological and Hydrological 

Institute 

SMLR  
Screening Multiple Linear Regression 

SMOS 
Soil Moisture and Ocean Salinity 

SNODAS 
Snow Data Assimilation System 

SNOTEL  
Snow Telemetry 

SOI  
Southern Oscillation Index 

SON  
September-October-November 

SPoRT  
Short-term Prediction Research Transition 

SRES  
Special Report on Emissions Scenarios 

SRP  
Salt River Project 

SSEBOP  
Simplified Surface Energy Balance 

SSEBOP ET 
Simplified Surface Energy Balance 

Evapotranspiration 

SSP  
Societally Significant Pathway 

SST  
sea surface temperatures 

SSW  
stratospheric sudden warming 

SubX  
Subseasonal Experiment 

SUMMA  
Structure for Unifying Multiple Modeling 

Alternatives 

SVD  
singular value decomposition 

SW  
surface water 

SWANN  
Snow-Water Artificial Neural Network 

Modeling System 

SWcasts 
Southwest Forecasts 
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SWE 
snow water equivalent 

SWOT 
Surface Water and Ocean Topography 

SWS  
Statistical Water Supply 

Tair  
air temperature 

Tdew  
dew point temperature 

TopoWx  
Topography Weather (climate dataset) 

TVA  
Tennessee Valley Authority 

UC  
Upper Colorado Region (Reclamation) 

UCAR 
University Corporation for Atmospheric 

Research 

UCBOR 
Upper Colorado Bureau of Reclamation 

UCRB 
Upper Colorado River Basin 

UCRC  
Upper Colorado River Commission 

UCRSFIG 
Upper Colorado Region State-Federal 

Interagency Group 

USACE  
U.S. Army Corps of Engineers 

USBR 
U.S. Bureau of Reclamation 

USCRN  
U.S. Climate Reference Network 

USDA 
U.S. Department of Agriculture 

USGCRP 
U.S. Global Change Research Program 

USGS 
U.S. Geological Survey 

USHCN 
United States Historical Climatology 

Network 

VIC 
Variable Infiltration Capacity (model) 

VIIRS  
Visible Infrared Imaging Radiometer Suite 

VPD 
vapor pressure deficit 

WBAN  
Weather Bureau Army Navy 

WCRP  
World Climate Research Program 

WFO  
Weather Forecast Office 

WPC  
Weather Prediction Center 

WRCC  
Western Regional Climate Center 

WRF  
Weather Research and Forecasting 

WRF-Hydro 
WRF coupled with additional models to 

represent hydrologic processes 
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WSF  
water supply forecast 

WSWC  
Western States Water Council 

WUCA 
Water Utility Climate Alliance 

WWA 
Western Water Assessment 

WWCRA  
West-Wide Climate Risk Assessments 

WWMPP 
Wyoming Weather Modification Pilot 

Project 
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