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When hot and dry extreme conditions coincide, the result-
ing impacts on humans and ecosystems are often dis-
proportionate. For example, compound hot–dry events 

cause tree mortality, crop losses and wildfire, with wide-ranging 
socioeconomic effects1–5. Sustained compound hot and dry condi-
tions can critically reduce streamflow and cause water shortages, 
representing a threat for agriculture and food security6–8. Given 
the suite of impacts, the present and future dynamics of compound 
hot–dry events have received considerable attention from the scien-
tific community over recent years9–12.

Previous studies have focused on assessing the frequency of com-
pound hot–dry events (fHD), which is crucial for developing strate-
gies to cope with the compound-event impacts. In a warmer climate, 
higher temperatures will increase fHD by causing more-frequent hot 
events everywhere over land6,9,10,13. In addition, mean precipita-
tion is expected to change over most land masses in response to 
global warming14,15, but its importance for future changes in fHD is 
unknown. Furthermore, available fHD estimates are based either on 
observations or on routinely used climate model outputs, which—
due to limited sample sizes—prevent a systematic understanding of 
present and future uncertainties in compound-event occurrence. In 
particular, such limited sample sizes do not allow for distinguish-
ing between irreducible and reducible fHD uncertainties, which arise 
from internal climate variability (that is, from the inherent chaotic 
nature of the climate system)16 and structural differences between 
climate models, respectively. Understanding the source of these 
uncertainties may ultimately allow for reducing them and therefore 
inform the development of costly socioeconomic adaptation strate-
gies to climate change17. In this article, employing climate model 
output from an ensemble of seven single-model initial-condition 
large ensembles16 (SMILEs), we address these research gaps; that is, 
we reveal the importance of mean precipitation trends for future 
fHD, and investigate present and future uncertainties in fHD and 
their sources. We focus on historical conditions (1950–1980) and a 
future climate that is—in line with the Paris Agreement—about 2 °C 
warmer than pre-industrial conditions.

To estimate the influence of internal climate variability, each of 
the seven SMILEs is run multiple times from different initial condi-
tions, resulting in multiple ensemble members that span a range of 
plausible climates and associated fHD. The multimodel mean of this 
fHD range provides an estimate of the uncertainty in fHD in a single 
realization due to internal climate variability18 (UIV). Uncertainty 
due to model-to-model differences in fHD (UMD) are estimated on 
the basis of the intermodel range of the ensemble mean of fHD (see 
Methods for details).

We focus on land masses and characterize hot–dry events on the 
basis of temperature and precipitation means over the warm sea-
son (the climatologically hottest three consecutive months), which 
is when the impacts from the compound event are generally most 
pronounced9. We highlight that our main conclusions also apply to 
the wettest season, which for some regions may be the season where 
impacts from the compound event are largest. To study the concur-
rence of hot and dry conditions, we compute fHD as the empirical 
frequency (%) of concurrent extremes, that is, the count of simul-
taneous exceedances of temperature over its historical 90th percen-
tile and precipitation below its historical 10th percentile (individual 
extremes occurring every ten years on average) divided by the total 
number of considered seasons9,19.

Uncertainty in historical estimates
The global average of fHD over land during the historical period 
(1950–1980) is about 3% (Fig. 1a; compound events occurring every 
33 years on average), which implies compound hot–dry events are 
three times more likely to occur than expected under independence 
between temperature and precipitation (1% probability). These 
estimates are in line with earlier results based on observations 
and climate model simulations9 and are controlled by the nega-
tive correlations between temperature and precipitation over land 
(cor = –0.42 on average) caused by a combination of atmospheric 
processes and land–atmosphere interactions20.

Using large-ensemble simulations from multiple models dem-
onstrates that large sample sizes are crucial for robust estimates  
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of fHD. Overall, model differences in fHD are relatively small  
(Fig. 1b). By contrast, estimates of fHD based on a single climate real-
ization are highly uncertain because of internal climate variability 
(Fig. 1c), indicating a wide range of possible compound-event risk 
estimates. For example, the compound-event frequency fHD ± UIV, 
where the range ±UIV is an estimate of the 68% uncertainty range 
(Methods), is 3.6 ± 3.5% at the grid cell containing Paris, France. At 
the global scale, the relative uncertainty 2 × UIV/fHD is 2.3 on aver-
age. Notably, the same metric for the frequency of (univariate) hot 
extremes derived from the same 31 years of data is 1.1, whereas to 
reach a relative uncertainty of 1.1 in fHD requires 130 years of data 
(Extended Data Fig. 1). This highlights that estimates of compound- 
event frequencies are substantially more uncertain than related  
univariate estimates.

The uncertainty in local fHD is reflected in estimates at the 
regional scale, which are often of interest for defining climate 
adaptation strategies21. For example, for Central Europe, Central 
North America and Amazon, which are at a relatively high risk 
of compound hot–dry events9,22 (Fig. 1a), the bottom 7% region-
ally averaged fHD estimates among the ensemble members indicate 
frequencies in line with independence between temperature and 

precipitation (stippling in Fig. 1d–f), which are up to 13 times 
smaller than in the top 7% members (Fig. 1g–i). We conclude 
that estimates of the occurrence of compound hot–dry events 
based on relatively short climate data such as observations (<130 
years) can be highly misleading as they may, by chance, indicate 
low compound-event risk in areas that are, instead, at high risk  
(or vice versa).

Trends in mean precipitation as key modulator
In a warmer climate, the global average frequency of compound 
hot–dry events is projected to increase to a land average of about 
12% (multimodel range: 10–14%), or about four times higher 
compared with 1950–1980 (Fig. 2a)9. Compared with the histori-
cal period, the uncertainty in the fHD estimates can be enhanced by 
model differences in the response to climate change and particularly 
in the projected regional mean warming and mean precipitation 
trends18. This would be expected as, for both temperature and pre-
cipitation, trends in mean conditions drive changes in extremes23,24, 
and therefore uncertainty in trends can affect future occurrences of 
univariate and compound extremes. Accordingly with this expec-
tation, the uncertainty in local temperature trends leads to a large 
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Fig. 1 | Historical fHD and associated uncertainties. a, Multimodel mean of fHD during the warm season (1950–1980). b, Uncertainty in fHD due to UMD 
relative to the sum of UMD and UIV (expressed in percentage; uncertainty is dominated by internal climate variability for values below 50% and by 
model-to-model differences otherwise; Methods). c, Uncertainty in fHD due to internal climate variability (2 × UIV) relative to fHD. d–i, Average of the fHD 
spatial fields associated with the lowest (d–f) and highest (g–i) 7% regionally averaged fHD among a pool of ensemble members from different climate 
models (Methods), shown for three of the regions used in the IPCC: Central Europe (d,g), Central North America (e,h) and Amazon (f,i). Stippling in 
panels a and d–i indicates areas where fHD is smaller than expected under independence between precipitation and temperature.
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uncertainty range in the future frequency of hot events (fH) of 38% 
on average worldwide (Fig. 3a,b; Extended Data Fig. 2c shows that 
model differences dominate the uncertainty in warming trends). 
Nevertheless, we find that the uncertainty in local warming trends 
does not affect future fHD because nearly all dry events will be 
extremely hot regardless of the exact local warming level6 (uncer-
tainty range in future fHD is less than 1.5% on average, Fig. 3a,c).  
In particular, future temperature is higher than the historical 90th 
percentile for 96% of droughts on average over land masses accord-
ing to the multimodel mean. This occurs because trends normal-
ized by the standard deviation in the year-to-year variability are 
much larger for temperature than for precipitation (Extended Data  
Fig. 3a,b and Supplementary Information). Even under moder-
ate warming of 2 °C, this mechanism is effective over virtually all 
land masses (Fig. 3c), including regions characterized by a weaker 
increase in hot extreme occurrences such as Argentina, Australia 
and India25,26 (Extended Data Fig. 2a).

The situation is very different for precipitation trends, which 
strongly influence uncertainties in future fHD (uncertainty range 
of 48% on average, Fig. 3d,e). Consequently, projected precipi-
tation trends also strongly determine fHD in a warmer world.  

In particular, models projecting a stronger increase in mean pre-
cipitation are associated with a lower frequency of concurrent hot 
and dry events in the future, and vice versa (mean correlation of 
–0.8, Fig. 3f). This relationship also holds when considering higher 
thresholds to define extremes, that is, potentially more impact-
ful compound events, compound hot–dry events during the wet-
test season (Extended Data Fig. 4a–d) and other warming levels, 
as long as local warming trends are large compared with local 
precipitation trends (Extended Data Fig. 5 and Supplementary 
Information). Furthermore, while the underlying negative cor-
relations between temperature and precipitation may favour the 
exclusive control of precipitation trends on future fHD, results are 
similar when assuming zero correlation (Extended Data Figs. 5 and 
6 and Supplementary Information). This indicates that a similar 
mechanism may govern the future dynamics of other compound 
events that are affected by global warming and for which trends in 
the drivers differ strongly in magnitude, regardless of the under-
lying dependencies between the compound-event drivers27,28. 
For example, the results are similar when considering compound 
hot–dry events defined on the basis of soil moisture rather than 
precipitation, that is, on the basis of soil moisture drought rather 
than meteorological drought (Extended Data Fig. 4e,f). Other 
events may include, for example, compound high-temperature 
and low-chlorophyll extremes in the ocean, which threaten marine 
ecosystems29, sequential flood–heatwave events that slow recov-
ery times and amplify damages30 as well as emerging novel com-
binations of extreme weather such as tropical cyclone–deadly heat  
compound events31.

Overall, our results imply that improved modelling of precipita-
tion trends is needed32,33 to reduce uncertainties in the projection of 
future fHD. However, we also find that about half of the uncertainty 
in precipitation trends (Extended Data Fig. 7c), and therefore in the 
future fHD (Fig. 2b), is driven by internal climate variability over the 
majority of land masses. This means that even if precipitation trends 
could be constrained for some regions34–36, uncertainties would 
remain high for most land areas due to ‘certain uncertainty’ from 
unpredictable internal climate variability37. Hence, given model 
and internal variability uncertainties, for practical risk assessment, 
considering distinct plausible precipitation trends, that is, differ-
ent climate storylines38–41, may be a way to plan for plausible future 
compound-event risk.

Estimating future compound-event occurrences
Across all large-scale regions commonly used in the Intergovern
mental Panel on Climate Change, the regional average of the 
future fHD associated with different model ensemble members 
depends on mean precipitation trends (Extended Data Fig. 8). For 
example, this relationship holds over Central Europe (correlation 
cor(fHD, ΔPmean) = –0.9, Fig. 4a), where model differences and inter-
nal climate variability equally contribute to uncertainties in future 
fHD

18 (Fig. 2b). If mean precipitation weakly increases according to 
a ‘wet storyline’, compound hot–dry summers would occur in one 
out of ten years over Central Europe on average (fHD = 10%, Fig. 4d). 
Alternatively, an equally plausible ‘dry storyline’ characterized by 
decreasing mean precipitation would result in more than twice as 
many compound hot–dry summers (fHD = 26%; Fig. 4g). Future fHD 
is also controlled by mean precipitation trends over Central North 
America (cor(fHD, ΔPmean) = –0.8, Fig. 4b). According to the wet and 
dry storylines, regionally averaged compound-event frequencies 
range from 11% to 18%, respectively (Fig. 4e,h). The Amazon is a 
notable region where, contrary to most other regions, model differ-
ences dominate the uncertainties in precipitation trends (Extended 
Data Fig. 7c) and fHD (Fig. 2b). As a result, for the Amazon, improv-
ing the representation of the processes dominating mean precipita-
tion trends, particularly the plant physiological response to CO2

42,43 
and changes in the Atlantic meridional overturning circulation44,  

0 15105 20 25

fHD (%)

a

b

30 35 40

0 302010 5040 60

Uncertainty contribution (%)

70 80 90

Fig. 2 | fHD in a 2 °C world and associated drivers of uncertainties.  
a, Multimodel mean of fHD during the warm season in a climate 2 °C 
warmer than pre-industrial conditions. Stippling indicates values above 
10%, which is the projected fHD if only temperature increases with no 
changes in precipitation (see the first discussion item in Supplementary 
Information). b, Uncertainty in fHD due to model-to-model differences 
(UMD) relative to the sum of UIV and UMD (uncertainty is dominated by 
internal climate variability for values below 50% and by model-to-model 
differences otherwise; Methods).
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is essential for constraining estimates of future compound risk. 
Here, compound-event frequencies range from 20% to 42%  
(Fig. 4f,i), according to a wet and a dry storyline (cor(fHD, ΔPmean) =  
–0.9, Fig. 4c).

We focused on the frequency of concurrent extremes on the basis 
of historical exceedance thresholds, which is a widely used indica-
tor of the frequency of impactful compound events6,8–10,13,28. The 
modulation of the future frequency of concurrent extremes from 
trends in one of the two compound-event drivers, here precipita-
tion, is expected to hold for other compound events as long as the 
trends in the drivers differ strongly in magnitude (Extended Data 
Fig. 5). In general, the magnitude of some compound-event-related 
impacts may still be affected by the magnitude of exceedance in 
the driver with the strong trend, here temperature. Furthermore, 
adaptation of human and ecological systems may render historical 
hazard thresholds obsolete45. However, given that many impacts 
are characterized by threshold behaviour in response to climate 
stressors, for example tree mortality2, crop yields46, heat stress in 
humans and other species47, landslides48 and floods49, estimating 
compound-event frequencies on the basis of historical exceedance 
thresholds can be considered a suitable impact indicator6,9–11,13,19,31. 
We thus conclude that the mechanism identified here provides rel-
evant information to scientists and practitioners to reduce uncer-
tainties when dealing with complex compound-event risks in  
the future.

Our results demonstrate that present estimates of concurrent hot 
and dry extremes based on relatively short climate records (<130 
years) are highly uncertain as a result of internal climate variability  

and thus sampling uncertainty. For future estimates, given that 
in a warmer climate the importance of temperature variability in 
determining fHD uncertainties vanishes, the importance of the sta-
tistical dependence between temperature and precipitation must 
vanish as well. That the uncertainty in future compound-event 
occurrence is merely a function of uncertain precipitation trends is 
reflected in a strong projected reduction in the relative uncertain-
ties of the fHD (that is, 2 × UIV/fHD) that occurs despite an increase 
in the absolute uncertainty (2 × UIV) (Extended Data Fig. 9a–d). 
Nevertheless, relative uncertainties in the future fHD due to cli-
mate model differences (2 × UMD/fHD) increase in a warmer climate 
over about 75% of land masses (Extended Data Fig. 9e–h), again 
reflecting the need for a better understanding of forced precipita-
tion trends. Because uncertainty in mean precipitation trends is 
strongly modulated by large-scale atmospheric circulation33, our 
results highlight that advancing our understanding of atmospheric 
circulation and its change is crucial for providing stakeholders 
with more-robust future fHD estimates. This would be especially 
important in case we do not meet the warming targets from the 
Paris Agreement because, for instance at 3 °C of global warming, 
model differences dominate the overall uncertainties over most 
land masses17,50 (Extended Data Fig. 10). In any case, given the dif-
ficulties in constraining large-scale atmospheric circulation32,33 and 
the omnipresent effects of internal climate variability37, exploring 
potential impacts associated with a range of plausible storylines 
derived from multimodel large-ensemble simulations will offer 
new opportunities to develop societal preparedness for plausible  
worst-case scenarios.
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Methods
Data. We used seven SMILEs: CESM1-CAM551 (including 40 ensemble members), 
CSIRO-Mk3-6-052 (30), CanESM253 (50), EC-EARTH54 (16), GFDL-CM355 
(20), GFDL-ESM2M56 (30) and MPI-ESM57 (100). Monthly temperature and 
precipitation data were available for all models for the period 1950–2099, based on 
the representative concentration pathway58 RCP8.5 after 2005. Soil moisture over 
the total column (employed in Extended Data Fig. 4e,f) was available likewise, but 
only for models CESM1-CAM5, CSIRO-Mk3-6-0, GFDL-CM3 and MPI-ESM. We 
considered 1950–1980 as the historical baseline period. The considered historical 
period has a length of 31 years, similar to the length routinely used in climate 
studies. Considering a shorter or longer period would result in a higher and lower 
uncertainty due to internal climate variability, hence a decrease and increase of the 
uncertainty in the frequency of compound hot–dry events due to model-to-model 
differences relative to the full uncertainty range, respectively. However, considering 
a period of a different length would not affect the main conclusions of the study.

For each model, to obtain model data in a world 2 °C (or 3 °C, considered in 
Extended Data Fig. 10 only) warmer than pre-industrial conditions in 1870–1900, 
we selected the earliest 31 yr time window in which the average global warming 
relative to 1950–1980 is higher than 2 °C (or 3 °C) minus the observed warming 
from 1870–1900 to 1950–1980 (about 0.28 °C on the basis of observations from  
the HadCRUT5 dataset59). Model data were bilinearly interpolated to an equal  
2.5° spatial grid before all calculations (for graphical purposes, the fields in  
Figs. 1 and 4 were interpolated to a finer grid at the end of the analysis).

Definition of compound hot–dry events. Following ref. 9, our analysis focuses 
on land (excluding Antarctica) and on temperature and precipitation mean values 
over the warm season, that is, the average hottest three consecutive months during 
1950–1980 (we also consider the average wettest three consecutive months in 
Extended Data Fig. 4c,d). Considering three months’ mean values is a compromise 
between the longer timescales of droughts (which may last even three months and 
more) and the shorter timescales of heatwaves (several days)9 and generally provide 
a good indicator of summertime impacts60,61. Overall, choosing different timescales 
leads to similar spatial patterns in the frequency of compound events62.

We compute empirical frequencies of concurrent extremes (fHD) and univariate 
extremes. For each model, extreme events of mean temperature and precipitation 
were defined as values above the 90th percentile and below the 10th percentile, 
respectively, of the distribution obtained by pooling together data of the period 
1950–1980 from all available ensemble members (hence, extreme events in a 
warmer climate are defined on the basis of historical percentile thresholds). 
Employing more extreme percentiles to define extreme events would imply the 
considered compound events are very rare in the historical period; for example, 
the global average of fHD over land is 0.14% (corresponding to compound events 
occurring every 713 years on average) when employing the 99th and 1st percentile 
thresholds for defining temperature and precipitation extremes, respectively. 
We confirm that our main result, that precipitation trends determine future 
occurrences of compound hot–dry events, generally holds when employing more 
extreme thresholds than the historical 10th and 90th percentiles (for example, for 
5th and 95th percentiles, Extended Data Fig. 4a,b). This is in line with the fact 
that most future droughts (precipitation lower than the 5th percentile) are hot 
(temperature higher than the 95th percentile) for 94% of droughts on average 
over land masses (multimodel mean value). Similarly, 89% of droughts are hot 
when employing 1st and 99th percentiles to define precipitation and temperature 
extremes, respectively, and 83% of droughts are hot when employing the 10th and 
99th percentiles to define precipitation and temperature extremes, respectively.

Note that the analysis of compound hot–dry events defined on the basis of soil 
moisture (Extended Data Fig. 4e,f) rather than on precipitation, that is, on the basis 
of dry events associated with soil moisture drought rather than meteorological 
drought, was carried out exactly as the analysis based on temperature and 
precipitation, but swapping precipitation for soil moisture and employing only four 
climate models.

Calculation of ensemble mean, multimodel mean, UIV and UMD. Following ref. 18,  
given a statistical quantity of interest X, we quantified the contribution to its 
uncertainty from uncertainty due to internal climate variability (UIV) and model 
differences (UMD). Here, X can be the fHD in the historical or future period, the 
historical frequency of hot events fH, the projected change in mean precipitation 
ΔPmean, or the projected change in mean temperature ΔTmean. UMD and UIV were 
obtained starting from Xs,e, which is the estimate of the statistical quantity X in 
the ensemble member e of the SMILE model s. That is, when interested in the 
uncertainty of fHD in the historical period, Xs,e = f histHD s,e (analogously for the 
future fHD and for the historical fH). When interested in ΔPmean, Xs,e = ΔPmean s,e, we 
computed ΔPmean s,e as Pfutmean s,e − Phistmean s,e, where Pfutmean s,e is the mean precipitation 
in the future scenario (analogously for the change in mean temperature).

The mean value of X in any single SMILE (s) was calculated as the 
model-dependent ensemble mean:

Xs,e =
1
Ns

Ns∑

e=1
Xs,e (1)

where Ns is the ensemble size of the considered SMILE model s. Xs,e  represents an 
estimate of the quantity X in the considered SMILE, where averaging across the 
ensemble members (indicated as e) leads to filtering out variations due to internal 
climate variability. When the quantity of interest X is a projected change, for 
example, ΔPmean, it represents the forced response of Pmean in the considered SMILE. 
The multimodel mean of X based on the Nmod = 7 SMILEs was computed as the 
mean across the individual SMILE ensemble means:

Xs,e =
1

Nmod

Nmod∑

s=1
Xs,e. (2)

The uncertainty in X in a single realization due to internal climate variability 
(that is, in practice, the uncertainty in the quantity X, when X is estimated from 
a single ensemble member of a given model) was estimated as an average of the 
internal climate variability effect on X in the seven SMILEs:

UIV =

√√√√ 1
Nmod

Nmod∑

s=1
σ2

(Xs) (3)

where, in the SMILE s, the spread in X due to internal climate variability was 
calculated as the sample standard deviation of X across the ensemble members:

σ(Xs) =

√√√√ 1
Ns − 1

Ns∑

e=1
(Xs,e − Xs,e)

2. (4)

Note that given that UIV is obtained on the basis of the standard deviation, the value 
2 × UIV employed in Fig. 1c provides an estimate of the 68.2% uncertainty range 
in X due to internal climate variability (assuming that X is normally distributed—
note that the actual distribution may deviate from normality; however, we tested 
that 2 × UIV is similar when employing a quantile-based estimate of the standard 
deviation in equation (3)).

The uncertainty in X due to model differences (in practice, the uncertainty in 
the quantity X, when X is estimated on the basis of a single SMILE, that is, on the 
basis of large-ensemble simulations from a single model) was quantified as the 
square root of the variance of the ensemble mean of X in the seven SMILEs. In 
practice, we first calculated:

σ
2
MD = D2

− E2 (5)

where D2 is the sample variance of the ensemble means:

D2
=

1
Nmod

− 1

Nmod∑

s=1
(Xs,e − Xs,e)

2 (6)

and E2 is a correction term that accounts for the inflation of the variance of the 
ensemble means due to internal climate variability63, which is equal to

E2 =

1
Nmod

Nmod∑

s=1

σ2
(Xs)

Ns
. (7)

The larger the ensemble size, the smaller this correction term becomes18. In 
a few locations where model differences are small, it can occur that D2 − E2 < 0, 
resulting in UMD not being defined. In these cases, we set E2 = 0. Finally, the 
uncertainty in X due to model differences was quantified as:

UMD =

√
σ2
MD . (8)

Dependence of UIV on sample size. We estimated how sample size affects the UIV 
of both fHD and fH in the historical period. To achieve this, we created bootstrapped 
ensemble members of varying sample sizes (Nyears) from the 31 yr historical 
period (1950–1980) of MPI-ESM, the model with the largest number of ensemble 
members (100). Specifically, for any Nyears of interest, we constructed 12 ensemble 
members with sample size of Nyears years through sampling without replacement 
from the pool of 31 × 100 = 3,100 years of data. We consider 12 ensemble members 
as it allows for exploring uncertainties associated with a large sample size. In 
fact, using the 3,100 available years, the procedure allows for constructing 12 
independent ensemble members having a sample size up to 258 years. On the basis 
of the 12 ensemble members, we computed the relative uncertainty 2 × UIV/fHD, 
where fHD was obtained via equation (1) and the uncertainty due to internal climate 
variability via equation (3), which—given that only one model is considered 
here—corresponds to the sample standard deviation of fHD across the 12 ensemble 
members (analogously for the fH). Hereby, Nyears varies from 15 to 258 years. 
Note that results for fH and for the frequency of dry events are virtually identical; 
therefore, only fH is shown in Extended Data Fig. 1b.
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We tested that 12 ensemble members are enough for studying relative 
uncertainties. Results are robust to the random sampling; that is, the results 
are virtually identical when repeating the analysis multiple times. Combining 
annual data from different ensemble members is acceptable given that serial 
correlations of temperature and precipitation are very low on land areas9. Overall, 
this method based on 12 randomly generated ensemble members from a single 
model (MPI-ESM) provides a robust estimate of the effect of internal variability, as 
demonstrated by the nearly identical uncertainty values obtained via the preceding 
method and that used in the rest of the paper for Nyears = 31 years (see coloured dots 
in Extended Data Fig. 1b).

Area-weighted aggregated statistics. All the statistics, such as mean, quantiles and 
percentage of land masses, were weighted on the basis of the gridpoints surfaces, 
employing the R packages wCorr64 and spatstat65.

Pool of randomly sampled ensemble members. To obtain the composite maps 
in Fig. 1d–i and the plots in Fig. 4 and Extended Data Fig. 8, and to carry out the 
experiments introduced in the next three sections, we consider a pool of randomly 
sampled ensemble members from the merged members of all climate models. To 
give the same weight to all models, each model contributes equally to the pool with 
16 randomly sampled members, where 16 is the number of available ensemble 
members from the climate model with the lowest number of members.

Uncertainty range from uncertainty in local mean warming and precipitation 
trends. We performed two experiments (results shown in Fig. 3) to quantify 
(1) the uncertainty range in the future fHD (similarly for the fH) arising from the 
uncertainty in the change of local mean temperature, that is, uncertainty in local 
temperature trends, and (2) the uncertainty range in the future fHD arising from the 
uncertainty in the change of local mean precipitation, that is, uncertainty in local 
precipitation trends.

At a given location, as a first step, we defined a wide range of plausible changes 
of mean precipitation and temperature. That is, from the pool of ensemble 
members introduced in the preceding section, we defined the highest, average, 
and lowest change of mean precipitation (ΔPhighmean, ΔPaveragemean  and ΔPlowmean) and 
temperature (ΔThigh

mean, ΔTaverage
mean  and ΔTlow

mean). These values are used in the two 
experiments as follows.

In experiment (1), we computed the difference between fHD (analogously 
for fH) resulting from two scenarios that combine the estimated mean future 
precipitation with ΔThigh

mean and ΔTlow
mean. Specifically, for a given SMILE model s, 

we compute the difference in fHD (analogously for fH) associated with the bivariate 
data (Thist

s + ΔThigh
mean, Phists + ΔPaveragemean ) and (Thist

s + ΔTlow
mean, Phists + ΔPaveragemean ), 

where Thist
s  and Phists  are the historical data of the SMILE model s (data of the 

period 1950–1980; Thist
s  and Phists  are obtained by merging data from all ensemble 

members of the SMILE model s such as to get a unique reference dataset 
and more-robust estimates). Finally, we defined the uncertainty range as the 
multimodel mean of the preceding difference.

We conducted experiment (2) as experiment (1), but we computed the 
difference between the highest and lowest fHD associated with the bivariate data 
(Thist

s + ΔTaverage
mean , Phists + ΔPlowmean) and (Thist

s + ΔTaverage
mean , Phists + ΔPhighmean).

Uncertainty range in fHD for different combinations of mean warming and 
precipitation trends. The uncertainty range in the future fHD is controlled by the 
uncertainty in precipitation and is not affected by uncertainty in the local warming 
(Fig. 3). To demonstrate that this results mainly from expected changes in mean 
temperature being much larger than expected changes in mean precipitation, we 
carried out, in line with the procedure of the preceding section, two idealized 
experiments (results shown in Extended Data Fig. 3). In the two experiments, we 
quantified, for different combinations of expected changes in mean temperature and 
precipitation, the uncertainty range in the future fHD arising (experiment 1) from the 
uncertainty in the change of local mean temperature (that is, uncertainty in local 
temperature trends), and (experiment 2) from the uncertainty in the change of local 
mean precipitation (that is, uncertainty in local precipitation trends).

We first defined the uncertainty in mean temperature change σΔT (analogously 
for precipitation, σΔP) as the global median of the location-dependent standard 
deviation of changes in temperature from the pool of ensemble members 
introduced in the preceding section (Pool of randomly sampled ensemble 
members). (Note that while σΔT and σΔP can be different for different expected 
changes in mean temperature and precipitation, for example, under different 
scenarios of global warming, we kept them constant in this idealized experiment, 
which allows for disentangling the individual effect of differences in expected 
changes in mean temperature and precipitation on fHD uncertainty.) The values σΔT 
and σΔP are then used in the two experiments as follows.

In experiment (1), the values are used to quantify, for different combinations 
of expected changes in mean temperature and precipitation, the uncertainty 
range in the future fHD arising from the uncertainty in the change of local mean 
temperature. For a given combination of expected changes in mean temperature 
(ΔTmean) and precipitation (ΔPmean), we defined the uncertainty range in fHD as 
the difference between the highest and lowest fHD resulting from two divergent 
scenarios associated with two diverging local mean temperature changes.  

That is, we compute the difference in fHD associated with two bivariate Gaussian 
distributions (approximating the temperature–precipitation distribution) whose 
means are (Tfut

mean ± 2 × σΔT, Pfutmean), where Tfut
mean = Thist

mean + ΔTmean and Thist
mean 

is the mean temperature in the historical period (analogously for precipitation). 
(Note that in Extended Data Fig. 3, we also show with contours the fHD associated 
with the bivariate Gaussian distribution whose means are (Tfut

mean, Pfutmean), which aids 
further interpretation of Fig. 2 discussed in the Supplementary Information.)

In experiment (2), the values are used to quantify, for different combinations 
of expected changes in mean temperature and precipitation, the uncertainty 
range in the future fHD arising from the uncertainty in the change of local mean 
precipitation. This is as in experiment (1), but we computed the difference between 
the fHD associated with two bivariate Gaussian distributions whose means are 
(Tfut

mean, Pfutmean ∓ 2 × σΔP).
In all experiments, we considered realistic standard deviations (and mean 

values) of precipitation and temperature for the Gaussian distribution (we employ 
the distribution of Fig. 3a; note that results are independent of the marginal 
distribution mean values and that results are shown also in units of standard 
deviations to allow for a better comparison of the behaviour at locations with  
different present-day standard deviations; Extended Data Fig. 3). Both the 
preceding experiments were repeated three times, considering a Gaussian 
distribution with correlation between precipitation and temperature 
cor(T, P) = –0.5, which is in line with observed values during the warm season 
considered here9, cor(T, P) = 0 and cor(T, P) = 0.5.

Correlation between variability in the future fHD and temperature and 
precipitation trends. The future fHD is correlated with precipitation trends; 
that is, models (or ensemble members) that project a stronger increase in 
mean precipitation lead to a lower future fHD, and vice versa (Figs. 3f and 4). 
To demonstrate that this result stems mainly from expected changes in mean 
temperature being much larger than expected changes in mean precipitation, and 
how the underlying negative dependence between temperature and precipitation 
affects the preceding, we carried out an idealized experiment (results shown in 
Extended Data Fig. 5).

For a combination of different expected ΔTmean and ΔPmean, we quantified 
the correlation between the variability around such changes and the future fHD. 
Specifically, for a given combination of ΔTmean and ΔPmean, we obtain 1,000 pairs 
of future fHD and variability around the expected ΔTmean (analogously for ΔPmean), 
which are used to compute the correlation. To obtain each of the 1,000 pairs, we 
simulated 300 pairs of temperature and precipitation from a bivariate Gaussian 
distribution (with cor(T, P) = –0.5, 0 and 0.5 and the same standard deviations 
as in the preceding experiment). We prescribed the mean of the distribution as 
(Tfut

mean, Pfutmean), where Tfut
mean = Thist

mean + ΔTmean and Thist
mean is the mean temperature 

in the historical period (analogously for precipitation). The variability around 
the expected ΔTmean and ΔPmean was obtained on the basis of σΔT and σΔP, which 
were defined as in the preceding section to resemble the uncertainty around 
the expected changes. That is, normally distributed noise ηT ∼ N (0, σΔT) and 
ηP ∼ N (0, σΔP) is added to the 1,000 simulated Tfut

mean i and Pfutmean i. We then 
compute fHD for the i-th 1,000 simulations, which is finally used to compute the 
correlation of the 1,000 pairs (fHD, ηT) and (fHD, ηP).

Finally, we note that considering a bivariate Gaussian distribution is acceptable 
for seasonal values of precipitation and temperature and allows for a simple 
understanding of the mechanism under investigation and how it may affect the 
dynamic of other compound events. Seasonal precipitation may have a skewed 
distribution in some areas; hence, we tested that the results are qualitatively similar 
when considering a bivariate distribution such as the Gaussian but with a Gamma 
distribution for precipitation values (that is, combining66 a Gaussian copula with 
a Gaussian marginal distribution for temperature and a Gamma distribution for 
precipitation).

Regional storylines of future fHD. In Fig. 4a, we show plausible storylines of 
future fHD resulting from two contrasting precipitation trends. That is, for a given 
region, we build the dry storyline of future fHD through averaging fHD spatial fields 
associated with the bottom 7% ensemble members of a pool of members in terms 
of regionally averaged changes in mean precipitation. The same approach is taken 
to create a wet storyline, which corresponds to the top 7% ensemble members. The 
pool of ensemble members is introduced in the section ‘Pool of randomly sampled 
ensemble members’.

Data availability
The model data used in the study are openly available online at https://esgf-data.
dkrz.de/projects/mpi-ge/ (for the model MPI-GE) and https://www.earthsystemgrid.
org/dataset/ucar.cgd.ccsm4.CLIVAR_LE.html (for the other models: CanESM2, 
CESM-LE, CSIRO-Mk3-6-0, GFDL-ESM2M and GFDL-CM3). The HadCRUT5 
dataset is available at https://www.metoffice.gov.uk/hadobs/hadcrut5/.

Code availability
All custom codes are direct implementations of standard methods and techniques, 
described in detail in Methods.
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Extended Data Fig. 1 | Relative uncertainty due to internal climate variability in frequencies of hot events (fH) and compound hot-dry events (fHD) in 
the historical period. a, The same as Fig. 1c, but for fH, that is the uncertainty in fH due to internal climate variability (2 × UIV) relative to fH. The image is 
obtained using, as in the rest of the paper, samples of 31 years. The same palette as in Fig. 1c is used for comparison. b, Curves show the dependence of 
the relative uncertainty due to internal climate variability in fHD (green) and fH (magenta) on the sample size. To explore the relationship for large sample 
sizes, the curves are obtained based on a method that employs data from the model with the largest number of ensembles, that is the MPI-ESM model 
(Methods). The arrows indicate the difference between the sample size required to obtain fixed levels of relative uncertainty for fHD and fH. The green and 
magenta dots show the relative uncertainties obtained via the method used in the rest of the paper, hence based on all seven climate models and 31 years 
of data. The match between the dots and the curve highlights that the estimate of the uncertainty obtained through the MPI-ESM-based method provides 
accurate information.
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Extended Data Fig. 2 | Temperature changes in a world 2 ∘C warmer than pre-industrial conditions and associated drivers of uncertainties.  
a, Multimodel mean projected change in frequency of hot extreme events (relative to 1950–1980). Stippling indicates locations where at least six out of 
seven models agree on the sign of the change. b, As in panel a, but for changes in mean temperature. c, Uncertainty in the change in mean temperature 
due to model-to-model differences (UMD) relative to the sum of UIV (uncertainty due to internal climate variability) and UMD (expressed in percentage;  
see Methods).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Uncertainty in the frequency of compound hot-dry events (fHD) in idealised experiments. (Note that an in-depth interpretation 
of the figure is provided in the Supplementary Material.) Given a present-day bivariate Gaussian distribution of temperature T and precipitation P with a 
correlation cor(T, P) of -0.5 (first row), 0 (second row), and 0.5 (third row), shading shows the uncertainty in the future fHD associated with uncertainty in 
the change of mean temperature (left column) and mean precipitation (right column) at given levels of expected changes in mean temperature (shown 
on the x-axis) and mean precipitation (y-axis). Magenta isolines show the expected fHD resulting from the expected changes in mean temperature and 
precipitation (they are the same on right and left columns for a given cor(T, P)). The second axes show changes in units of present-day standard deviations. 
The closed contour shows the kernel density containing 90% of the multimodel mean projected changes in mean temperature and precipitation in 
units of relative present-day standard deviations over land grid-points (actual changes in ∘C and mm/day are shown in Extended Data Figure 2b and 7b, 
respectively). The green line indicates changes of equal magnitude in temperature and precipitation, in units of present-day standard deviations. (Note 
that the difference in magnitude of uncertainty from temperature (left column) and precipitation (right column) results from the fact that the uncertainty 
in the change of temperature is relatively large compared to the uncertainty in the change of precipitation).

Nature Climate Change | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


Articles Nature Climate Change

Extended Data Fig. 4 | Effect of uncertainty in local warming and precipitation or soil moisture trends on future fHD. a-b, The same as Fig. 3c,f, but for 
extreme events of temperature and precipitation that are defined as values above and below their individual 95th and 5th percentiles, respectively.  
c-d, The same as Fig. 3c,f, but when considering compound hot-dry events during the wettest, instead than the hottest, season. e-f, The same as Fig. 3c,f, 
but when considering soil moisture rather than precipitation and based on four rather than seven available climate models.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Correlation between the future frequency of compound hot-dry events (fHD) and changes in mean temperature and precipitation 
in idealised experiments. (Note that an in-depth interpretation of the figure is provided in the Supplementary Material.) Pairs of temperature T and 
precipitation P are simulated from a bivariate Gaussian distribution with a given cor(T, P) which considers an expected future change in mean precipitation 
and temperature and variability around this change. For a given mean temperature change of +2 ∘C and no change in mean precipitation, panel a,b show 
how future fHD depends on the exact change in temperature and precipitation, respectively (given cor(T, P) = -0.5). For different values of cor(T, P) of  
-0.5 (c,d), 0 (e,f), and 0.5 (g,h), shading shows the correlation between the future fHD and the change in temperature (left column) and precipitation  
(right column) at given levels of expected changes in mean temperature (shown on the x-axis) and mean precipitation (y-axis). For example, the 
correlation coefficient of the pairs in a is reported in panel c. Axes, green lines, and closed contours are the same as in Extended Data Figure 3. Stippling 
indicates where at least 90% of the fHD values from the Gaussian distribution are equal to 0%.
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Extended Data Fig. 6 | Effect of uncertainty in local warming and precipitation trends on future fHD under no dependence between temperature 
and precipitation. The same as Fig. 3c,e,f, but in a scenario within which the warm-season mean temperature T and precipitation P time series are 
uncorrelated. That is, for each model ensemble member, the thirty-one pairs (T,P) of the period 1950-1980 and in the warmer climate period are randomly 
shuffled prior to proceeding with the rest of the analysis.
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Extended Data Fig. 7 | Precipitation changes in a world 2 ∘C warmer than pre-industrial conditions and associated drivers of uncertainties. The same as 
Extended Data Figure 2, but for precipitation.
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Extended Data Fig. 8 | Relationship between regional future frequency of compound hot-dry events (fHD) and mean precipitation trends. Similar to  
Fig. 4, but for all of the regions used in the Intergovernmental Panel on Climate Change (IPCC). That is, in a world 2 ∘C warmer than pre-industrial 
conditions, regionally averaged future fHD against changes in mean precipitation (relative to 1950-1980) are shown for all IPCC regions (differentiated 
by colored symbols), based on a pool of ensemble members from different climate models (Methods). The image highlights that the relationship is 
non-linear, in line with theoretical expectations (Figure Extended Data Figure 5b). Such a non-linear behaviour is not well evident when considering 
individual regions given the more limited range of uncertainty of precipitation trends.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Sources of uncertainty in the frequency of compound hot-dry events (fHD) in the historical period and in the future (a world 2 
∘C warmer than pre-industrial conditions). a,b, Uncertainty due to internal climate variability (2 × UIV) relative to fHD in the historical and future periods, 
respectively. Panel a is the same as Fig. 1c. c,d, Uncertainty due to internal climate variability (2 × UIV) in historical and future periods, respectively.  
e,f, Uncertainty in fHD due to model-to-model differences (2 × UMD) relative to fHD in the historical and future periods, respectively. g,h, Uncertainty in fHD 
due to model-to-model differences (2 × UMD) in the historical and future periods, respectively.
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Extended Data Fig. 10 | Drivers of uncertainties in future frequency of compound hot-dry events (fHD) and mean precipitation trends in a world  
3 ∘C warmer than pre-industrial conditions. a,b, As in Fig. 2b and Extended Data Figure 7c, respectively, but in a world 3 ∘C warmer than pre-industrial 
conditions. That is, uncertainty due to model-to-model differences (UMD) relative to the sum of UIV (uncertainty due to internal climate variability) and  
UMD for future fHD in a and mean precipitation trends in b. UMD is larger than UIV over 67% and 77% of landmasses for future fHD and mean precipitation 
trends, respectively.
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