
1. Introduction
Arctic amplification (AA) is a phenomenon of anthropogenic climate change in which the near-surface air 
temperatures (SATs) in the Arctic increase more rapidly than do those in the rest of the globe (Chylek et al., 2022; 
Holland & Bitz, 2003; Manabe & Wetherald, 1975; Pithan & Mauritsen, 2014; Previdi et al., 2021; Rantanen 
et al., 2022). AA has a distinct seasonal dependence: it is nonexistent during boreal summer, emerges in early 
autumn, and is greatest in late autumn and winter (Boeke & Taylor, 2018; Chung et al., 2021; Goosse et al., 2018; 
Previdi et al., 2021; Sejas et al., 2014; P. C. Taylor et al., 2021). Several studies have indicated that AA season-
ality may change in response to increasing levels of greenhouse gases forcing (Hahn et al., 2022; Holland & 
Landrum, 2021; Liang, Polvani, & Mitevski, 2022). For example, a recent study that performed a suite of exper-
iments involving an abrupt increase in carbon dioxide (CO2) demonstrated that the maximum AA shifts from 
autumn to winter as CO2 forcing increases; this shift was attributed to an accompanying seasonal shift in sea-ice 
area (SIA) loss and subsequent surface turbulent heat fluxes (THFs) from the ocean into the atmosphere (Liang, 
Polvani, & Mitevski, 2022). In addition, the sea-ice effective heat capacity (i.e., the thermal inertia of the sea-ice 
layer) was shown to contribute to this shift in the Arctic warming maximum from autumn to winter (Hahn 
et al., 2022). Similar seasonal shifting in Arctic warming has also been observed in Coupled Model Intercompar-
ison Project (CMIP) projections under Representative Concentration Pathway (RCP) or Shared Socioeconomic 
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Pathway (SSP) scenarios, but the models differ considerably in terms of both the warming amplitude and the 
number of months that the maximum AA shifts from autumn into winter (Holland & Landrum, 2021; Liang, 
Polvani, & Mitevski, 2022).

Accompanying with this amplified Arctic warming, Arctic precipitation is also projected to increase in the 21st 
century (Bintanja & Andry, 2017; Bintanja & Selten, 2014; McCrystall et al., 2021; Vihma et al., 2016) and 
become more extreme (Landrum & Holland, 2020). This precipitation increase is conventionally attributed to 
an increase in moisture supply owing to the substantial retreat of sea ice and the resultant increase in open water 
(Bintanja & Selten, 2014; Boisvert & Stroeve, 2015; Serreze et al., 2012; Vihma et al., 2016), stronger poleward 
moisture transport (Woods et al., 2013; Zhang et al., 2013), and higher atmospheric temperatures that enable 
the atmosphere to contain more moisture (Bintanja, 2018; Screen & Simmonds, 2010). A recent study proposed 
another theory suggesting that the precipitation increase is constrained by atmospheric radiative cooling, particu-
larly in regions covered by sea ice (Pithan & Jung, 2021). However, these studies did not specifically investigate 
seasonal shifts in precipitation, which are expected to correspond to the seasonal shifts in Arctic temperature and 
SIA loss.

By applying the uncertainty decomposition framework synthesized by Lehner et al. (2020), several studies have 
decomposed the total uncertainty in climate model projections into components associated with model structural 
differences, emission scenarios, and internal variability and have analyzed their temporal evolutions and relative 
importance over the course of the 21st century. For the Arctic specifically, Bonan et al. (2021) analyzed changes 
in SIA and found that by the end of the 21st century, scenario uncertainty dominates the uncertainty in summer-
time SIA loss, whereas model structural uncertainty primarily contributes to the uncertainty in wintertime SIA 
loss. Cai et al. (2021) employed a similar framework to decompose the uncertainty in 21st century Arctic warm-
ing and demonstrated that model uncertainty mainly affects the Arctic Ocean and land fields. More recently, Ono 
et al. (2022) used a single climate model with various forcing scenarios and reported that the strength of AA is 
highly dependent on the scenario. However, these studies have investigated either in the annual mean sense or 
in specific months or seasons, thus precluding any assessment of the aforementioned seasonal shifts in Arctic 
climate change; moreover, most of them have not examined AA per se.

In this study, we extend the results of Liang, Polvani, and Mitevski  (2022) and use multiple single-model 
initial-condition large ensembles (SMILEs) of model simulations. We first reproduce the results for Arctic warm-
ing and SIA loss presented by Bonan et al. (2021) and Holland and Landrum (2021), respectively, and then add 
new analyses of Arctic precipitation, THFs, and, in particular, AA. Instead of focusing only on annual mean 
values solely, we examine the full seasonal structure and evolution of projected 21st-century Arctic climate 
change and address the underlying mechanisms. Next, we apply SMILEs, in addition to the scenario simulations 
of CMIP Phase 5 (CMIP5), to perform an uncertainty decomposition analysis to compare the various models, 
different scenarios, and internal variability in terms of the seasonal evolution of AA. Finally, we discuss our 
results in the context of recent studies and highlight the influence of model structural uncertainty on projections 
of Arctic seasonality changes. A clear understanding of the sources of uncertainty in projections of Arctic climate 
and seasonality changes can enable a more accurate assessment of seasonal peak shifts in high-latitude ecosys-
tems, socioeconomics, and geopolitics.

2. Data and Methods
In this study, we use six SMILEs from the Multi-Model Large Ensemble Archive (MMLEA; Deser et al., 2020), 
namely the Community Earth System Model (CESM1-CAM5; Kay et  al.,  2015, 40 members), the Canadian 
Earth System Model (CanESM2; Kirchmeier-Young et al., 2017, 50 members), the Commonwealth Scientific 
and Industrial Research Organisation (CSIRO-Mk3.6.0; Jeffrey et al., 2013, 30 members), the Geophysical Fluid 
Dynamics Laboratory (GFDL-CM3; Sun et al., 2018, 20 members), the Geophysical Fluid Dynamics Laboratory 
Earth System Model (GFDL-ESM2M; Rodgers et al., 2015, 30 members), and the Max Planck Institute Earth 
System Model (MPI-ESM; Maher et al., 2019, 100 members). All of these SMILEs are forced with anthropo-
genic emissions in accordance with the RCP8.5 scenario.

In addition to these SMILEs, we analyze the outputs of 18 models that contributed to CMIP5 (K. E. Taylor 
et al., 2012). For these models, we consider all of the RCP2.6, RCP4.5, and RCP8.5 scenarios. Moreover, to 
assign the same weight to each model, we examine only one simulation per model per scenario, despite some 
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models providing multiple simulations. These models are listed in Table S1 of Supporting Information S1 and are 
also selected on the basis of the procedure described by Bonan et al. (2021).

We analyze the following variables: SAT, total precipitation (convective plus large-scale precipitation, hereaf-
ter referred to as precipitation), SIA, and surface THFs (latent plus sensible heat fluxes, with positive values 
indicating heat release from the ocean into the atmosphere). The response for these variables is calculated as 
the difference (Δ) between the mean over the target 30 yr periods (i.e., temporal chunks from 1951–1980 to 
2071–2100) and the mean over the reference period 1951–1980. We choose 1951–1980 as the reference period 
because CanESM2 provides its historical integrations starting from 1951 in the MMLEA. To test the robustness 
of these results, we repeat our analysis using different reference periods (e.g., 1921–1950), obtaining largely 
similar results (not shown).

Throughout the manuscript, the Arctic-averaged value indicates the latitude-weighted spatial average over the 
70°N–90°N domain, whereas the global-averaged value spans the 90°S–90°N domain. We mask out grid points 
over land when calculating area-averaged sea-ice loss and the resultant THF change; nevertheless, we obtain 
similar results without land masking because, as expected, the THF change is much larger over oceans than it is 
over land.

To identify the mechanisms driving changes in Arctic precipitation and Arctic near-surface temperature changes, 
we compute the vertically integrated moisture budget and the top-of-atmosphere energy budget. The methodol-
ogy details can be found in the Supporting Information.

We quantify AA by using an AA factor (hereafter AAF), which is expressed as follows:

𝐴𝐴𝐴𝐴𝐴𝐴 =
Δ𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

Δ𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

, (1)

where ΔTArctic and ΔTGlobal are the SAT changes in the 30 yr mean (Δ) in the Arctic and global domains, respec-
tively. Some previous studies (e.g., Liang et al., 2022; Polvani et al., 2020) have calculated the AAF as the Arctic 
warming trend divided by the global warming trend. We attempt to calculate the AAF by using trends instead of 
epoch differences, but we obtain unreasonably large magnitude values in the RCP2.6 and RCP4.5 simulations in 
the late 21st century, when ΔTGlobal is often close to zero. Ono et al. (2022) also used epoch differences instead of 
trends because they also obtained similar unreasonable results. Thus, in the subsequent sections, we present the 
AAF computed on the basis of the difference in 30 yr means.

Following Lehner et al.  (2020), we decompose the total projection uncertainty UT in AA and related climate 
changes into components associated with model structural uncertainty (hereafter UM), emission scenario uncer-
tainty (hereafter US), and internal variability (hereafter UI):

𝑈𝑈𝑇𝑇 (𝑡𝑡) = 𝑈𝑈𝑀𝑀 (𝑡𝑡) + 𝑈𝑈𝑆𝑆 (𝑡𝑡) + 𝑈𝑈𝐼𝐼 (𝑡𝑡), (2)

where each component depends on time t. UM is computed as the variance across six ensemble-mean SMILEs 
under RCP8.5 forcing and represents the model-to-model difference after the reduction of internal variability 
effects. We also find that the variables derived from the SMILEs and CMIP5 models are largely comparable 
under RCP8.5 forcing (cf. leftmost and rightmost columns in Figure S1 of Supporting Information S1), indi-
cating that SMILEs represent the intermodel spread of CMIP5 models. The peaks of the CMIP5-RCP8.5 AAF 
do not have evident seasonal shifts; this may be due to the strong warming that inhibits AA (see Section 3 for 
the relevant discussion). US is computed as the variance across the CMIP5 multimodel means of the RCP2.6, 
RCP4.5, and RCP8.5 scenarios. Finally, UI is computed as the mean of the variance across ensemble members 
in each SMILE. We apply this uncertainty decomposition framework for each month individually to analyze the 
seasonality changes. Figure 4 displays the variances for each decomposed uncertainty instead of the percentages 
presented in Bonan et al. (2021). To confirm that our calculation for uncertainty decomposition is correct, we 
also calculate the percentages and compare them with those of Bonan et al. (2021). We obtain largely similar 
results (not shown).

3. Results
We first examine the seasonal evolution of the ensemble-mean responses of Arctic precipitation, SAT, THF, and 
SIA across six SMILEs (Figure 1) to illustrate the underlying physical processes leading to seasonal differences 
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in Arctic climate change. The annual maxima (i.e., the maximum monthly values of each year, indicated by gray 
dots) reveal that the SAT and THF responses, except for those from GFDL-ESM2M, have consistent seasonal 
shifts from October–November in the early-to-middle 21st century to December–January in the late 21st century. 
The maxima of SAT and THF tend to lag the SIA shift by approximately 1 month; this phenomenon is evident 
in CESM1-CAM5, CanESM2, GFDL-CM3, and MPI-ESM but not in CSIRO-MK3.6.0 or GFDL-ESM2M. This 
suggests that a mechanism involving increased SIA loss later in autumn—accompanied by a seasonal shift in the 
maximum THF release from the ocean to the atmosphere—engenders the seasonal shift in SAT responses. Addi-
tionally, the SIA losses in some models (e.g., CanESM2 and GFDL-CM3) have secondary peaks in early summer, 
suggesting the “summer mode” identified in a previous study (Onarheim et al., 2018).

In addition to the seasonal shifts in SIA and THF responses, a similar shift might be expected in the Arctic 
precipitation response owing to the presence of a stronger local moisture source (i.e., enhanced surface evapo-
ration) later in autumn due to SIA loss. This precipitation maximum shift does indeed occur in CESM1-CAM5, 
GFDL-ESM2M, and MPI-ESM but not in CanESM2 or GFDL-CM3. In CSIRO-Mk3.6.0, the annual maximum 
Arctic precipitation response shifts seasonally in the opposite direction over the 21st century, moving from Octo-
ber to September. Although the reasons for this qualitatively different response are unclear, we notice that the SIA 
loss in CSIRO-Mk3.6.0 (Figure 1u) is generally small (as reported in Bonan et al., 2021) and that its mean SIA is 
high (Jahn et al., 2016), leading to a delayed seasonal shift relative to the other models.

We next analyze the moisture and energy budgets over the Arctic domain to understand the mechanisms under-
lying the precipitation and SAT responses (Figures S2 and S3 in Supporting Information S1). We perform these 

Figure 1. Seasonal evolution of (a–f) precipitation, (g–l) surface air temperature, (m–r) turbulent heat flux, and (s–x) sea-ice area responses, averaged over the Arctic 
domain (70°N–90°N) for six single-model initial-condition large ensembles (SMILEs) under RCP8.5 scenario. The responses are computed as the difference between 
the mean of a running 30 yr period and the mean of the 1951–1980 reference period; for each SMILE, the ensemble mean is shown. Years along the x-axis denote 
the centers of each 30 yr period, and the dots denote the annual maximum values, shown every 5 yr. The number of ensemble members in each SMILE is indicated in 
parentheses at the top.
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analyses for only CESM1-CAM5 because of data availability. Our moisture budget analysis reveals that the 
surface latent heat fluxes are the dominant contributor to the precipitation seasonality changes; the annual maxi-
mum precipitation response shifts from October to November (cf., Figures S2a and S2d in Supporting Infor-
mation S1). This is attributable to the greater open water area because SIA loss facilitates latent heat exchange 
between the ocean and atmosphere during autumn, consequently maximizing the increase in Arctic precipitation 
at this time of year. By contrast, the contributions of horizontal and vertical moisture advections are much smaller 
(Figures S2b and S2c in Supporting Information S1).

The energy budget analysis reveals that a similar mechanism is responsible for the seasonal shift in SAT response; 
this shift aligns well with a shift in the maximum oceanic heat release (ΔOHR, positive into the atmosphere) from 
October to November (Figure S3b in Supporting Information S1). Decomposing surface ΔOHR into latent and 
sensible heat fluxes and net longwave and shortwave radiations indicates that changes in THF indeed produce 
the SAT seasonal shift (Figure S3c in Supporting Information  S1); neither shortwave nor longwave changes 
contribute significantly to the shift (not shown). The Planck and lapse-rate feedbacks also contribute to this SAT 
shift, although their individual contributions are smaller than that of the THF change (Figures S3g and S3h in 
Supporting Information S1). By contrast, the surface albedo (Figure S3f in Supporting Information S1) and water 
vapor feedbacks (Figure S3i in Supporting Information S1), which peak in summer, do not contribute directly to 
the seasonality changes during autumn and winter, although they can indirectly affect the lapse-rate feedback in 
winter (Feldl et al., 2020) and increase fall-winter conductive heat flux because of the delayed emergence of sea 
ice corresponding to reduced sea-ice thickness (SIT; Hahn et al., 2022; Landrum & Holland, 2022). In summary, 
our analysis suggests that a seasonal shift in SIA loss and associated changes in the turbulent heat exchange 
between the ocean and atmosphere is the key physical process leading to the seasonal shift in the SAT response, 
confirming the results of previous studies (Chung et al., 2021; Liang, Polvani, & Mitevski, 2022).

We next focus on the seasonality changes in AA. We quantify the strength of AA by using an AAF. Figures 2a–2f 
show that in the six SMILEs, the maximum AAF (gray dots) shifts from November to December over the 
course of the 21st century. This seasonal evolution is largely consistent with that of the Arctic SAT response 
(Figures 1g–1l), indicating that the seasonal shift in AA is dominated by seasonal changes in the Arctic (rather 
than global) SAT response. However, in contrast to the Arctic SAT response, which increases in magnitude 
monotonically throughout the 21st century, the AAF reaches its maximum between the 2000–2050 period and 
decreases thereafter. One reason for a weaker AA in the late 21st century is the saturation of the impact of SIA 
loss: the Arctic Ocean is nearly ice-free by this time in autumn/early winter, except in CSIRO-MK3.6.0; there-
fore, local feedback associated with SIA loss can no longer effectively amplify Arctic warming. Concurrently, 
increasing greenhouse gases continue to steadily warm the globe. These two factors combine to produce a smaller 
AAF, which has also been documented in previous studies (Chung et al., 2021; Deser et al., 2010; Liang, Polvani, 
& Mitevski, 2022).

An examination of different RCP forcing scenarios in CMIP5 (Figure 3) also shows that the maximum AAF 
exhibits a seasonal shift into winter as the forcing magnitude increases. Specifically, in 14 of 18 CMIP5 models, 
the annual maximum AAF shifts forward (i.e., later in the year) by 1 month in RCP8.5 relative to RCP2.6. This 
is consistent with the finding of another recent study, which also revealed that the AAF exhibits a seasonal shift 
in the high-SSP scenario in the CMIP6 model compared with the low-SSP scenario (see Figure S8 in Supporting 
Information S1 of Liang, Polvani, and Mitevski (2022)).

Although the maximum AAF is shown to shift in most individual models and in the multimodel mean (Figure 2g), 
we observe that the timing and magnitude of this shift exhibits a considerable spread across the models (see also 
Holland and Landrum (2021)). This spread is also indicated in Figure 2h, where the region of relatively small 
signal-to-noise ratios (blue dots) shifts from autumn into winter over the 21st century, implying a large inter-
model spread owing to model-to-model difference in these seasons. This motivates us to decompose the total 
projection uncertainty for the AAF and the related climate variables into components associated with model 
uncertainty, emission scenario uncertainty, and internal variability, as defined in Section 2. Figure 4 displays the 
decomposition of the uncertainty magnitudes of the Arctic precipitation, SAT, AAF, and SIA responses over the 
21st century. As indicated in the figure, the model structural uncertainty UM explains the majority of the total 
fall-winter uncertainty UT, with both UM and UT exhibiting highly similar seasonal shifts in their maxima for all 
variables (cf. first and second columns of Figure 2). Much of the model (and thus total) uncertainty in projections 
of precipitation, SAT, and AAF stems from model-to-model differences in projected SIA loss, considering the 
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dominant role of SIA loss in shaping these other climate responses, as discussed earlier. For the precipitation, 
SAT, and SIA, both UM and UT increase over the 21st century along with the increase in the mean responses for 
these variables. By contrast, for the AAF, the maxima of UM and UT occur during the first half of the century 
(particularly in late autumn/early winter), and both decrease thereafter. This temporal evolution of uncertainty 
once again follows that of the AAF mean (Figure 2). Notably, the result of the uncertainty decomposition for SIA 
(Figures 4m–4p), showing that UM dominates over US even in summer, is different from the conclusion drawn by 
Bonan et al. (2021). This inconsistency is attributed to the difference in the chosen time-window length (30 vs. 
5 yr) and difference in definition of uncertainty (variance vs. percentage) between the two studies.

US and UI (cf. third and fourth columns of Figure 4) generally have a considerably smaller contribution to the 
total uncertainty than UM does, and they do not have clear seasonal shifts. However, at the end of the 21st century, 
we find that US has a larger contribution to the total uncertainty in Arctic precipitation, SAT, and SIA responses 
relative to its contribution to the total uncertainty in the AAF. In the annual mean (Figures S4e, S4f, and S4h 
in Supporting Information S1), this contribution amounts to approximately 30%–40% of UT. By contrast, the 
contribution of US to the total uncertainty in the AAF is much smaller (approximately 5% at the end of the 21st 
century; see Figure S4g in Supporting Information S1). Two reasons may explain this smaller contribution. First, 
the mean AAF is smaller at the end of the 21st century (Figure 2), with corresponding reductions in all sources of 
uncertainty (including US). Second, US for the Arctic SAT response is proportionally similar to that for the global 

Figure 2. Seasonal evolution of the AAF in (a–f) six single-model initial-condition large ensembles (SMILEs) with RCP8.5 forcing and (g) the multi-SMILE mean 
across six models. Panel (h) displays the signal-to-noise ratio, defined as the ratio of the multi-SMILE mean to the multi-SMILE standard deviation. Years along 
the x-axis denote the centers of each 30 yr period, gray dots in (a–f) denote the annual maximum AAF every 5 yr, and blue dots in (h) denote the annual minimum 
signal-to-noise ratio of the AAF every 5 yr from October to May. Values in parentheses in the titles of (a–f) indicate the number of ensemble members in each SMILE.
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SAT response, which can be manifested as the temporal evolution of their variance ratio (Figure S5c in Support-
ing Information S1). Because the AAF is defined as the ratio of Arctic and global SAT responses (see Methods), 
this could result in a relatively small contribution of US to the AAF uncertainty.

4. Discussion and Concluding Remarks
Recent studies have documented the seasonal shift in Arctic warming, the maximum value of which shifts from 
autumn into winter as a consequence of the increasing greenhouse gases forcing (Holland & Landrum, 2021; 
Liang, Polvani, & Mitevski, 2022) and changes in sea-ice heat capacity (Hahn et al., 2022). To extend these 
findings, we examine the seasonal evolution of Arctic SIA loss, surface THF, precipitation, SAT, and AA to 
determine the underlying mechanisms and analyze future projection uncertainties using 6 SMILEs and 18 CMIP5 
scenario simulations. Our results confirm that the maximum Arctic SATs exhibit clear seasonal shifts toward 
boreal winter along with the corresponding seasonal shifts in SIA loss and THF release in the course of the 21st 
century. As expected, because Arctic warming dominates the AA signal, the annual peak of the AAF has a similar 
seasonal shift from autumn into winter. The amplitude of the AAF decreases with time; this phenomenon can 
largely be explained by the saturation of SIA loss, preventing sea-ice-related feedback from further enhancing 
existing warming (Chung et al., 2021; Deser et al., 2010; Holland & Landrum, 2021). SIA loss, therefore, plays 
a key role in regulating the seasonal evolution of Arctic climate change.

AA seasonality may be influenced by other mechanisms, particularly the Planck feedback and lapse-rate feedback, 
which were demonstrated to substantially affect the generation of AA during winter (Pithan & Mauritsen, 2014). 
However, our energy budget analysis indicates that they are less important than SIA-loss-related THF release into 
the atmosphere in terms of the strength, and the months in which they exhibit that the shifts are not consistent 

Figure 3. AAF for each month across 18 CMIP5 models at the end of the 21st century (2071–2100) in the RCP2.6, RCP4.5, and RCP8.5 scenarios. The reference 
period is 1951–1980, as for the single-model initial-condition large ensembles. Gray dots in each panel denote the maximum AAF value across 12 months.
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with those of THF. These results again support the key role of SIA loss in modulating wintertime Arctic climate 
seasonality and confirm the conclusions of previous studies (Dai et al., 2019; Feldl et al., 2020; Hahn et al., 2022; 
Jenkins & Dai,  2021; Liang, Polvani, & Mitevski,  2022). The sea-ice albedo feedback, although peaking in 
summer and not directly affecting the AA seasonal shift, could indirectly enhance both the lapse-rate feedback in 
winter (Feldl et al., 2020) and the sea-ice insulation feedback. However, these results should be used with caution 
because our feedback analysis is performed using only the CESM1-CAM5 model owing to data availability. A 
similar analysis with other models is warranted to assess the robustness of our findings.

A recent study highlighted the contribution of SIT change to Arctic warming (Landrum & Holland, 2022), which 
could also modulate the seasonality of warming peak. We examine the seasonal evolution of SIT for six SMILEs 
(Figure S6 in Supporting Information S1) and observe that changes in SIT may affect AA seasonality. We also 
observe that for some years, wintertime THF increases significantly, but SIA remains unchanged or exhibits 
only a small decrease (Figure 1). These THF increases, by contrast, coincide with thinning sea ice (Figure S6 
in Supporting Information S1). This effect of SIT is consistent with the findings of Hahn et  al.  (2022), who 
suggested that the sea-ice capacity effect due to changes in SIT contributes to the seasonal shift in Arctic warm-
ing. Furthermore, the mean sea-ice state in a climate model could be crucial for determining Arctic climate 

Figure 4. Seasonal evolution of uncertainty in projections of Arctic precipitation: (a) total uncertainty UT, (b) model structural uncertainty UM, (c) emission scenario 
uncertainty US, and (d) uncertainty due to internal variability UI. (e–h) As in (a–d), but for Arctic surface air temperature response. (i–l) As in (a–d), but for the AAF. 
(m–p) As in (a–d), but for Arctic sea-ice area response. Years along the x-axis denote the centers of each 30 yr period, and gray dots denote the annual maximum values 
every 5 yr.

 19448007, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
100745, W

iley O
nline L

ibrary on [13/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

WU ET AL.

10.1029/2022GL100745

9 of 11

change (Previdi et al., 2021) and the timing and strength of climate shifts. For example, as reported by Bonan 
et al. (2021), CSIRO-Mk3.6.0 simulates excessive sea ice during the 21st century (Figure 1u), limiting the shift-
ing months into winter or even delaying the shift to the end of this century. Further research is warranted to 
explore these aspects of SIT and model mean states.

We also find that the seasonal shift in the annual peaks of Arctic precipitation is not evident in CanESM2, 
CSIRO-Mk3.6.0, and GFDL-CM3 (Figures 1b–1d). This can be attributed to the excessively high mean sea-ice 
state in CSIRO-Mk3.6.0 (Figure S4d in Supporting Information S1), resulting in less open water and a smaller 
moisture source. However, this explanation does not seem plausible for CanESM2 and GFDL-CM3 because their 
SIAs are the smallest among the six SMILEs (Figure S4d in Supporting Information S1). Pithan and Jung (2021) 
proposed energy-constraint and moisture-constraint mechanisms driving Arctic precipitation change (see their 
Figure 4). Accordingly, we speculate that these mechanisms in the models may be not simulated well, leading 
to discrepancies in the seasonal shifts of precipitation. However, the relative importance (and sensitivity) of 
the energy-constrained and moisture-constrained precipitation in these models is unclear and requires further 
investigation.

In addition to investigating the seasonal shift in AA, our study is the first to apply the uncertainty decomposition 
framework of Lehner et al. (2020) to the monthly AAF. A key finding of our study is that unlike the uncertainty 
in global mean SAT projections, which is dominated by emission scenarios in the late 21st century (Figure S5b in 
Supporting Information S1), the uncertainty in the projection of AA is dominated by model structural differences, 
and scenario uncertainty plays a relative smaller role. Moreover, unlike the uncertainty in SAT or precipitation, 
the uncertainty in the AAF is greatest in the mid-21st century and declines afterward. We also observe that the 
scenario uncertainty for AAF is much lower than for the other variables. We attribute this finding to the intrinsic 
nature of AA, which is dependent on the relative warming of the Arctic compared with the whole globe.

Lastly, Ono et al. (2022) demonstrated that the strength of AA is dependent on the applied scenario, suggesting 
the importance of scenario uncertainty for AA projection. Moreover, in their study, results obtained from differ-
ent models revealed this scenario dependence (Figure S16b in Supporting Information S1 of Ono et al. (2022)), 
but their multimodel spread (the rightmost error bars) is similar or even larger than the difference between two 
scenarios (i.e., the difference between blue and red dots). This implies that model-to-model differences could 
be comparable to the scenario uncertainty. Finally, we obtain our results regarding scenario uncertainty from 
only three CMIP5 scenario simulations. Future research should use additional models, ensembles, and scenario 
simulations from CMIP6 models to confirm the robustness of our results and reconcile our findings and those of 
Ono et al. (2022).

Data Availability Statement
The SMILEs were obtained from the MMLEA website (https://www.cesm.ucar.edu/community-projects/
mmlea). The CMIP5 RCP simulations were downloaded from the World Climate Research Programme reposi-
tory (https://esgf-node.llnl.gov/projects/cmip5/). The radiative kernel for CESM1 large ensemble was obtained 
from Dr. Angeline G. Pendergrass's Zenodo repository (https://zenodo.org/record/997902). The Python scripts 
for processing data and plotting figures are available on Y.-T. Wu's Zenodo repository (https://doi.org/10.5281/
zenodo.6965473).
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