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Abstract Climate change threatens the resource adequacy of future power systems. Existing research and
practice lack frameworks for identifying decarbonization pathways that are robust to climate‐related
uncertainty. We create such an analytical framework, then use it to assess the robustness of alternative pathways
to achieving 60% emissions reductions from 2022 levels by 2040 for the Western U.S. power system. Our
framework integrates power system planning and resource adequacy models with 100 climate realizations from
a large climate ensemble. Climate realizations drive electricity demand; thermal plant availability; and wind,
solar, and hydropower generation. Among five initial decarbonization pathways, all exhibit modest to
significant resource adequacy failures under climate realizations in 2040, but certain pathways experience
significantly less resource adequacy failures at little additional cost relative to other pathways. By identifying
and planning for an extreme climate realization that drives the largest resource adequacy failures across our
pathways, we produce a new decarbonization pathway that has no resource adequacy failures under any climate
realizations. This new pathway is roughly 5% more expensive than other pathways due to greater capacity
investment, and shifts investment from wind to solar and natural gas generators. Our analysis suggests modest
increases in investment costs can add significant robustness against climate change in decarbonizing power
systems. Our framework can help power system planners adapt to climate change by stress testing future plans
to potential climate realizations, and offers a unique bridge between energy system and climate modeling.

Plain Language Summary Over the past few years, large power outage events in California and
Texas have underscored the vulnerability of our power systems to extreme weather. By increasing the intensity
and frequency of extreme weather, climate change could lead to more power outages. In response, power system
planners are grappling with how to plan for extreme weather and climate change when making investment
decisions, such as in wind and solar power. In our research, we build and apply a new analytical framework for
making power system investment decisions under climate change. Our framework draws on a hundred
realizations of future climate, and integrates weather in those realizations with power system models that make
investment decisions and explore the risk of power outages. We find five alternative investment pathways all
could suffer from moderate to significant power outages under possible climate realizations by 2040. But by
identifying what realizations drive outage risk in these pathways, we construct a new pathway that does not
exhibit outage risks to our future climate realizations. Overall, these insights demonstrate the value of our new
analytical framework for making better investment decisions under uncertainty posed by climate change.

1. Introduction
Rapidly transitioning to a decarbonized electric power sector is crucial to aggressively mitigate climate change
and meet emissions reductions targets (Clarke et al., 2022; Rogelj et al., 2015). In the United States, the Inflation
Reduction Act (IRA) is poised to accelerate low‐carbon investments in the power sector, which could approach
370 billion USD by 2033 (Jenkins et al., 2022; Pacala et al., 2021). Which power sector decarbonization pathway
will be taken remains uncertain, where a pathway is defined by where, when, and what decarbonization in-
vestments occur (Berrill et al., 2022; Cole et al., 2021; Davis et al., 2018; Denholm et al., 2022; Jenkins
et al., 2021; Ralston Fonseca et al., 2021a, 2021b; Wessel et al., 2022). As they decarbonize, bulk (or
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transmission‐scale) power systems will be increasingly affected by climate change (Lee et al., 2023). Increasing
ambient air temperatures will increase peak and total electricity demand (Auffhammer et al., 2017; Craig, Cohen,
et al., 2018; Ralston Fonseca et al., 2019) and reduce available capacity from thermal and solar generators (Bartos
& Chester, 2015; Craig, Cohen, et al., 2018; Henry & Pratson, 2016; Miara et al., 2017). Wind, solar, and pre-
cipitation changes will also affect wind, solar, and hydropower generation potential (Craig, Cohen, et al., 2018;
Karnauskas et al., 2018; Schewe et al., 2014; Turner et al., 2017). These effects could compound to undermine
resource adequacy (RA), or a system's ability to continually balance electricity supply and demand (Ralston
Fonseca et al., 2021a, 2021b; Sundar et al., 2023; Turner et al., 2019). Understanding the vulnerability of
decarbonizing power systems to potential future climate realizations is critical for achieving reliable, affordable,
and clean power systems—the focus of our study (Craig et al., 2022; Wessel et al., 2022).

To account for decarbonization‐ and climate‐related uncertainty in investment decisions, prior literature opti-
mizes capacity investment decisions given different decarbonization pathways and future climate scenarios
(Abdin et al., 2019; Bloomfield et al., 2021; Kozarcanin et al., 2019; Ralston Fonseca et al., 2021a; Ralston
Fonseca et al., 2021b; Santos da Silva et al., 2021; Schlott et al., 2018; Simoes et al., 2021; Webster et al., 2022;
Wessel et al., 2022). This literature uses sensitivity or scenario analysis to incorporate climate‐related uncertainty
within deterministic modeling frameworks. For instance, Fonseca et al. (Ralston Fonseca et al., 2021a, 2021b)
sample three of 20 global climate models (GCMs) to include as scenarios in a deterministic long‐term power
system planning model. In other words, this literature aims to improve investment decisions by improving
predictions of future weather within standard modeling frameworks—a “predict‐then‐act” approach to climate
adaptation. But climate change poses deep uncertainty (Weaver et al., 2013), which undermines the value of
“predict‐then‐act” approaches (Marchau et al., 2019), particularly for power system planning models that must
significantly simplify uncertainty to remain computationally tractable. Deep uncertainty is characterized by
uncertainty in how a system works and its boundaries, which leads to significant uncertainty in the probability
distributions of scenarios and consequences (Marchau et al., 2019). In the context of climate change, deep un-
certainty arises from disagreement around which future CO2 emissions pathway the globe will follow (i.e.,
emissions scenario uncertainty); global climatic changes resulting from those pathways (i.e., climate sensitivity
and structural uncertainty); and local meteorological changes resulting from global climatic changes (i.e.,
parametric uncertainty) (Fourth National Climate Assessment, 2018; Hallegatte et al., 2012; WG, 2013). In the
near‐term (prior to 2050), inter‐annual (or internal) climate variability, which is driven by the dynamics of the
climate system and sensitive to initial conditions (Deser et al., 2012; Hawkins & Sutton, 2009; Lehner &
Deser, 2023; Lehner et al., 2020), is the primary source of climate‐related uncertainty (Lehner et al., 2020;
Schwarzwald & Lenssen, 2022). Under deep uncertainty, methods focused on identifying robust strategies or
alternatives are better suited to informing decisions than “predict‐then‐act” methods (Marchau et al., 2019). Such
decision support is urgently needed by power system planners and regulators, who are tasked with ensuring
resource adequacy across a wide range of potential future climate realizations, which combine secular trends and
inter‐annual climate variability (Lehner & Deser, 2023). Recent rolling outages in California and Texas (CPUC,
CAISO, & CEC, 2021; Mays et al., 2022) and resource adequacy warnings elsewhere in the United States (North
American Electric Reliability Corporation, 2021) underscore this urgency.

In response to these needs, we construct a new analytical framework for planning decarbonizing power systems
under deep climate uncertainty by drawing on a concept from the decision science literature: robust decision
making (RDM) (Lempert, 2003; Marchau et al., 2019). RDM has been used to inform climate adaptation stra-
tegies, for example, in water resources management (Fischbach et al., 2017; Giuliani & Castelletti, 2016; Lempert
& Groves, 2010; Markolf et al., 2019; Reis & Shortridge, 2020; Shortridge & Guikema, 2016; Smith et al., 2022).
It has also been used in the power sector, for example, to evaluate policy strategies for European power systems
against shocks (Nahmmacher et al., 2016). But our framework is the first to apply RDM to planning decar-
bonizing power systems under deep climate uncertainty. By integrating power system planning and operational
models with potential climate realizations from a single model initial‐condition large ensemble (SMILE) (Deser
et al., 2020; Maher et al., 2021), our framework generates alternative decarbonization pathways; characterizes the
vulnerability of and trade‐offs between those pathways under potential climate realizations; and uses generated
insights to identify new alternative decarbonization pathways that are robust to climate‐related uncertainty
(Figure 1). SMILEs have limited prior use in power systems research (van der Wiel, Bloomfield, et al., 2019; van
der Wiel, Stoop, et al., 2019) even though they are designed to sample inter‐annual variability and provide many
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realizations of future climate, encoding multiple extreme events and a range of possible meteorological pro-
jections (Bevacqua et al., 2022, 2023).

We use our framework to answer: how can we design decarbonizing power systems to be robust against deep
climate uncertainty? We conduct our study for the U.S. Western Interconnect, which we divide into five sub-
regions per Western Electricity Coordinating Council's resource adequacy assessments (Figure S23 in Supporting
Information S1, (WECC, 2022)). We use 100 members from the Community Earth System Model 2 (CESM2)
Large Ensemble (LENS2) through 2040, which was driven by the SSP3‐7.0 emissions scenario and reaches
1.65°C of global warming by 2040 relative to pre‐industrial (Rodgers et al., 2021). For each ensemble member,
we obtain surface air temperatures, relative humidity, surface solar radiation, 10 mwind speeds, and total runoff at
daily and 1° spatial resolution (approx. 100 km by 100 km) through 2040 across our study region. While this
resolution is lower than what is preferred for power system modeling, higher resolution climate data sets often do
not sample as large of a range of internal climate variability as LENS2, particularly in the time‐span of interest to
us (through 2040) and when focused on extreme events. In selecting LENS2, we also emphasize internal vari-
ability over climate response uncertainty. For each ensemble member, we translate meteorological variables to
spatially explicit timeseries of electricity demand; maximum potential wind, solar, and hydropower generation;
and thermal generator deratings and forced outage rates. To analyze the vulnerability and trade‐offs of alternative
decarbonization pathways, we generate five decarbonization pathways by running a capacity expansion (or long‐
term planning) model of the Western Interconnect using power system variables from five sampled ensemble
members. Our decarbonization pathways reduce interconnect‐wide power system CO2 emissions by 60% from
2022 levels by 2040. For each decarbonization pathway, we approximate its regional resource adequacy in 2040
under each of the 100 ensemble members using economic dispatch and surplus available capacity models. From
this large set of alternative future systems and climate realizations, we examine vulnerabilities and trade‐offs of
these decarbonization pathways across potential climate realizations. Finally, we identify a future climate real-
ization that generates the largest resource adequacy failures across decarbonization pathways in 2040, then use
that climate realization to generate a new decarbonization pathway robust to all 100 ensemble members.

2. Methods
2.1. Robust Decision‐Making Framework

We use robust decision‐making (RDM) to quantify the robustness of alternative decarbonization pathways in the
Western Interconnect power system to potential future climate realizations. We first conduct exploratory
modeling to generate five decarbonization pathways for the Western Interconnect using a capacity expansion (or
long‐term planning) model (Section 2.2). We then stress test each decarbonization pathway to all 100 LENS2
ensemble members (Section 2.4). For each pathway and ensemble member, we approximate resource adequacy
by quantifying daily Surplus Available Capacity (SAC) and Energy Not Served (ENS) in 2040 (Section 2.3).
Finally, we identify the climate ensemble member that drives the largest combined energy not served (ENS)
across decarbonization pathways in California (our largest load region) in 2040; rerun our planning model using

Figure 1. (a) Map of our Western Interconnect study region, which is divided into 5 sub‐regions (differentiated by color). Blocks at edges of interconnect correspond to
LENS2 grid cells. CAMX stands for California and Mexico and NWPP stands for Northwest Power Pool. (b) Our analytical framework integrates 100 ensemble
members (or climate realizations) from the LENS2 data set with power system capacity expansion, economic dispatch, and surplus available capacity (SAC) models.
For each region, this framework yields 500 annual timeseries of daily energy not served and surplus available capacity in 2040, or 1 annual timeseries of daily values (or
“daily timeseries”) for each climate realization, decarbonization pathway, and metric. Not shown is identification of an extreme 2040 climate realization, which is then
fed back into the capacity expansion model to generate a new decarbonization pathway.
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that ensemble member; and quantify our resource adequacy metrics for that pathway against all 100 climate
ensemble members.

The “XLRM” framework is a common starting point for RDM that frames the decision space available to
stakeholders (Marchau et al., 2019). X indicates uncertainties outside decisionmaker control; L indicates policy
levers, or near‐term actions, available to decisionmakers; M indicates performance measures that can be used to
compare future scenarios; and R indicates relationships between uncertainties (X ) and levers (L) and how those
relationships affect performance measures (M). Table 1 provides an XLRM framework for our analysis spe-
cifically and for power system adaptation to climate change analyses more generally.

2.2. Capacity Expansion Model and Decarbonization Pathways

To generate alternative decarbonization pathways, we use a capacity expansion (or long‐term planning) model.
We run the capacity expansion model (CEM) in 2 year increments from 2023 to 2040, capturing coincident,
spatially resolved meteorology and hydrology for each year (Section 2.4). The CEM is a deterministic linear
program that minimizes fixed plus variable costs by deciding investment in wind plants, solar plants, and natural
gas combined cycle (NGCC) plants with or without carbon capture and sequestration (CCS), and inter‐regional
transmission. These investment decisions differentiate our “decarbonization pathways.” The CEM also optimizes
operation of existing and new generators, and optimizes inter‐regional transmission flows using the simplified
transport method, which constrains inter‐regional transmission flows to a fixed power rating rather than modeling
AC or DC power flow. The first CEM run is initialized with the existing Western U.S. generator fleet and inter‐
regional transmission capacity (Text S5 in Supporting Information S1). All generator capacity investment de-
cisions occur at the LENS2 grid cell level, that is, on a 100 by 100 km grid across our study region, while
transmission investments occur at inter‐regional levels. We constrain thermal plant investments to grid cells that
already contain large thermal units. Given the immature state of CCS technology, we allow the CEM to invest in
NGCC or coal with CCS beginning in 2031. To capture ongoing retirements of coal‐fired power plants, we retire
coal units with average capacity factors of less than 0.3 after each CEM run (Craig, Jaramillo, & Hodge, 2018).
While we recognize the important role of grid‐scale storage in decarbonizing power systems, our climate data is
only available at daily resolution (Section 2.4). As such, we cannot model intra‐day storage.

The CEM includes numerous system‐ and generator‐level constraints. At the system level, the CEM balances
regional supply (generation plus imports minus exports) and demand each day. We do not account for in-
terchanges with Canada and Mexico. The CEM requires derated capacity to exceed peak demand, where derated
capacity accounts for wind and solar generation potential; a fixed 5% forced outage rate for wind and solar
generators; temperature‐dependent FORs for thermal and hydropower plants; and weather‐driven deratings of
combustion turbine, combined cycle, and coal‐fired plants. At the generator level, wind and solar generation is
limited by daily, spatially specific wind and solar capacity factors (Section 2.4); hydropower generation is
constrained by subregional monthly total generation; and generation from combustion turbine, combined cycle,
and coal‐fired plants is limited by daily, spatially specific meteorology.

With the CEM, we generate five decarbonization pathways that each reduce interconnect‐wide CO2 emissions by
60% from 2022 levels by 2040. To create these five pathways, we use meteorological timeseries from five
sampled LENS2 members. These ensemble members are sampled to capture a range of warming and relative
humidity changes within the LENS2 ensemble (Table 2). Specifically, we quantify warming level based on the
difference between historic (1985–2015) and mid‐century (2035–2065) mean surface temperature and relative
humidity (Jones et al., 2022). Warming and relative humidity levels vary from 1.5 °C to 2.75 °C and 0.1 to − 1.79,
respectively, across sampled ensemble members (Figure S12 in Supporting Information S1). We present results

Table 1
Our Analysis Represented Within the XLRM Framework

X: Future climate realizations L: Power system decarbonization pathways (composed of where, when, what type,
and how much investment in generating and transmission occurs)

R: Response of power system assets to climate change (including hydropower,
thermal generators, wind power, solar power, and electricity demand);
capacity expansion model; resource adequacy models

M: Daily and annual resource adequacy; Total fixed plus variable system costs;
Annual system CO2 emissions
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for each of these pathways by labeling them from 1 to 5 (Table 2). In using
five sampled ensemble members, our purpose is to create heterogeneous
decarbonization pathways that could all reach a given decarbonization target,
then assess the pathways' vulnerabilities, trade‐offs, and robustness. We do
not create a pathway for each ensemble member because creating pathways
that span all climate‐ and decarbonization‐related uncertainty is not compu-
tationally tractable. Rather, researchers and practitioners explore a subset of
this uncertainty in analyses and long‐term plans. With respect to climate‐
related uncertainty, sampling algorithms are typically used to identify a few
weeks of one weather year for inclusion in planning models. While these
algorithms aim to capture periods that could threaten system resource ade-
quacy, they capture a limited range of potential climate conditions, particu-
larly when considering not just multiple weather years but also multiple
climate realizations. We therefore demonstrate our framework in a similar

context as is used in practice, that is, on pathways that consider a subset of relevant uncertainty. The CEM is
programmed in the General Algebraic Modeling System (GAMS) (GAMS, 2024) and solved using CPLEX
(IBM, 2024).

2.3. Decarbonization Pathways and Resource Adequacy Under Potential Climate Realizations

From our CEM, we obtain five decarbonization pathways, each planned for one of five sampled ensemble
members. To understand the vulnerability of each decarbonization pathway to other potential ensemble members,
we approximate the resource adequacy of each decarbonization pathway against all 100 ensemble members (or
climate realizations) from LENS2. Because LENS2 provides daily values, we are unable to quantify resource
adequacy (RA) of the Western Interconnect at an hourly basis using a standard probabilistic RA model. Instead,
we approximate resource adequacy by quantifying daily Surplus Available Capacity (SAC) and Energy Not
Served (ENS). While LENS2's daily resolution is a limitation of our study, LENS2 (and large ensembles
generally) provide unique insights into extremes of varying timescales, from daily extremes like extreme heat to
longer extremes like droughts (Deser et al., 2020; McKinnon & Simpson, 2022).

To calculate daily ENS, we run an economic dispatch model (EDM) for each decarbonization pathway output by
our capacity expansion model in 2040. The EDM minimizes the sum of operating, CO2 emission, inter‐regional
transmission, and ENS costs by optimizing generation, inter‐regional transmission, and ENS decision variables.
CO2 emission costs include a decarbonization‐pathway‐specific CO2 price necessary to achieve the relevant CO2
emissions cap in that year. We determine this CO2 price by iteratively increasing it until total CO2 emissions
comply with the cap. We include this price instead of a cap to avoid infeasibility in the EDM in climate re-
alizations that preclude meeting the CO2 cap. The EDM includes several constraints from the CEM, including
balancing supply and demand within each of our five subregions while accounting for transmission inflows and
outflows; constraining regional monthly hydropower generation to an energy budget; constraining wind and solar
generation to spatially and temporally differentiated capacity factors; and constraining fossil‐based thermal plant
generation based on capacity deratings. Since we cannot probabilistically sample generator outages like hourly
resource adequacy models, the EDM instead derates generators' capacities based on temperature‐dependent or
fixed forced outage rates (FORs).We run the EDM for a 1‐year optimization horizon. Inputs to the EDM include a
decarbonization pathway and variables driven by the given climate ensemble member (i.e., daily electricity
demand, monthly hydroelectric generation, daily solar and wind capacity factors, and daily thermal plant forced
outage rates and derates). See Text S6 in Supporting Information S1 for the full EDM formulation and key
parameters. The EDM is programmed in Python (3.10.6), the optimization problem is formulated with Pyomo
(6.4.2) (Hart et al., 2017) and solved using GLPK 5.0 (GNU, 2020).

From the EDM output, we directly obtain daily ENS and calculate SAC for each region. SAC equals daily
available non‐hydropower capacity, hydropower generation, and transmission imports minus demand and
transmission exports for each region. In this way, SAC indicates excess supply available in a region to satisfy
unexpected increases in demand. The lower the SAC, the greater the risk of a supply shortfall, suggesting lower
resource adequacy. Prior research has used a net load metric as a proxy for resource adequacy (Ruggles &
Caldeira, 2022; van der Wiel, Stoop, et al., 2019). Our SAC extends the net load metric by capturing not just daily
wind and solar generation potential, but also accounts for optimized hydroelectric dispatch; temperature

Table 2
Difference in Temperature (T ) and Relative Humidity (RH) Between
Mid‐Century (2035–2065) and Historic (1985–2015) of the Five LENS2
Ensemble Members Used to Generate Decarbonization Pathways

Index LENS2 member ID ΔT (°C) ΔRH

1 r10i1191p1f2 2.50 − 1.17

2 r5i1231p1f1 2.59 − 1.79

3 r12i1301p1f2 1.70 0.10

4 r10i1181p1f1 2.03 − 0.22

5 r9i1301p1f1 2.13 − 0.80

Note. Index indicates the 1–5 label for each pathway that we use when
presenting our results.
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dependent outages in thermal and hydroelectric power plants; capacity deratings in fossil‐based thermal power
plants; and electricity flows between regions. See Text S7 in Supporting Information S1 for more details on SAC
calculation.

2.4. LENS2 Climate Data and Conversion to Power System Variables

In the near‐term (prior to 2050), internal variability (vs. model or emissions scenario uncertainty) is the primary
source of climate‐related uncertainty (Lehner et al., 2020; Schwarzwald & Lenssen, 2022). To capture the role of
internal variability in driving potential climates through 2040, we use the CESM2 Large Ensemble (LENS2)
(Rodgers et al., 2021). This data set is a single model initial‐condition large ensemble (SMILE) following the
SSP3‐7.0 emissions trajectory. We treat this global emissions trajectory as independent of our system's emissions
trajectory, as internal variability—not emissions uncertainty—s the primary source of uncertainty over our study
period.

The LENS2 data set consists of 100 ensemble members which are split into 2 groups each consisting of 50 re-
alizations, where each group is driven by one forcing condition. Each of the 50 realizations in the two groups are
initiated from different initial conditions sampled to reflect micro and macro perturbations in the pre‐industrial
control simulation. Unless noted otherwise, all the variables with a specified frequency represent an average
over the inherent time periods, for example, daily temperature is daily averaged temperatures and monthly runoffs
are monthly averaged runoffs. We obtain daily surface temperature, 10 m wind speed, surface downwelling solar
flux, surface atmospheric pressure, surface relative humidity, and monthly total runoff from 1980 to 2050 for each
ensemble member. We obtain these variables at the highest spatial resolution possible, at a 100 km by 100 km
grid. While this spatial and temporal resolution is lower than what is preferred for power system modeling, higher
resolution climate data sets (e.g., from statistical or dynamical downscaling) often do not sample as large of a
range of internal climate variability as LENS2 (Buster et al., 2022; Jones et al., 2022; Losada Carreño et al., 2020),
particularly in the time‐span of interest to us (through 2040) and when focusing on extreme events. On the other
hand, this approach does not sample climate response uncertainty, that is, how different climate models portray
the future response to greenhouse gas forcing. We discuss the value of using a large ensemble like LENS2 and
how it can assist creation of higher resolution products in our Discussion. More information on LENS2 and our
used variables are in Text S2 of Supporting Information S1.

We apply a mean bias correction to LENS2 surface temperatures using surface temperatures from the ERA5
reanalysis data (Hersbach et al., 2018; Maraun, 2016). To bias correct runoff for forecasting hydroelectric
generation, we use a mean bias scaling method for each of the constituent drought regions (ref Text S2.4 in
Supporting Information S1). More details on the bias correction methods are in Text S2.2 of Supporting Infor-
mation S1. Other studies using large ensembles for quantifying climate impacts have also used such mean bias
correction methods (Schwarzwald & Lenssen, 2022). We do not use more sophisticated bias correction methods
like quantile mapping (QM) as it fits the distribution of projections to observations (historical climate), which
may lead to loss of changes in internal variability in the projections. We do not find a strong bias in solar radiation,
so we did not bias correct it. Though we identify biases in 10 m wind speeds relative to ERA5, wind power
capacity factors derived from bias corrected wind speeds are much lower compared to other observational data
sets. As a result, we use the native LENS2 wind speed data in our analysis.

We use different models to derive power system variables from LENS2 data. We calculate daily solar and wind
capacity factors for each LENS2 grid cell using deterministic equations (Text S2.3 in Supporting Information S1).
We calculate monthly hydroelectric generation using a linear regression model using total runoff as the predictor
variable. We obtain the model for each drought region in the Western US (Turner, Voisin, Nelson, & Tid-
well, 2022) by training observed hydroelectric generation (Turner, Voisin, & Nelson, 2022) trained against ERA5
total runoff. We then forecast hydroelectric generation using bias corrected total runoff from the LENS2 data
(Text S2.4 in Supporting Information S1). We calculate demand for each of our five subregions using a piecewise
linear regression model using daily temperature as the predictor variable. The regression model is trained using
observed demand data and ERA5 surface temperatures, so ignores technological or population changes (Text S3
in Supporting Information S1). We calculate temperature‐dependent forced outage rates for thermal power plants
using plant‐type‐specific relationships (Murphy et al., 2019) (Text S4 in Supporting Information S1). We also
calculate capacity deratings of fossil‐based thermal power plants for each LENS2 grid cell using plant‐type‐
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specific relationships between deratings and air temperatures, relative humidity, and/or air pressure (Text S4 in
Supporting Information S1).

3. Results
3.1. Capacity Investments Across Decarbonization Pathways

We first examine the five decarbonization pathways output by our capacity expansion model. In creating these
pathways using five sampled LENS2 ensemble members rather than creating 100 pathways using each of the 100
LENS2 ensemble members, we demonstrate the value of our framework in analyzing a limited number of al-
ternatives generated by computationally complex planning models, similar to how alternatives are incorporated in
system planning in practice. Each pathway is defined by its “fleet” of energy generator types. Our pathways
decarbonize primarily through investment in wind and solar capacity, but exhibit different levels of investment
(Figure 2). Interconnect‐wide solar and wind capacity increase from roughly 40 and 30 GW in 2022, respectively,
to up to 129 and 46 GW in 2040, respectively, across pathways. Between pathways, wind and solar capacities in
2040 range from 34 to 46 GW and from 103 to 129 GW, respectively. Small amounts (less than 4 GW) of NGCC
with carbon capture and sequestration (CCS) are also deployed in four decarbonization pathways. Heterogeneity
in solar and natural gas capacity largely drives differences in total installed capacity between pathways, which
ranges from 252 to 280 GW. Solar capacity investment largely occurs in three regions—California, Desert
Southwest, and Central—with high quality solar resources, while wind investment largely occurs in the North-
west, which has high quality wind resources (Figure S1 in Supporting Information S1). No investment in
interregional transmission beyond existing capacity occurs. Growth in wind, solar, and NGCC capacity displace
other capacity, including coal‐fired capacity, and replace lost capacity from the retirement of the Diablo Canyon
nuclear generating station, which is located in California. Generation by plant type follows similar trends as
capacity investments. Across pathways, wind, solar, natural gas, and hydropower account for roughly 7%–13%,
31%–37%, 23%–27%, and 20%–24% of annual generation, respectively, in 2040.

3.2. Resource Adequacy of Decarbonization Pathways Under Future Climate Realizations

For each decarbonization pathway, we use LENS2 to quantify daily electricity supply and demand under 100
potential climate realizations in any given year. Using daily supply and demand, we approximate resource ad-
equacy through two metrics: daily surplus available capacity (SAC) and daily energy not served (ENS), both
quantified in units of electricity. SAC indicates excess electricity supply available in a region to satisfy unex-
pected increases in demand, while ENS equals the difference between electricity demand and supply. A negative
daily SAC value indicates ENS occurs, while larger positive SAC values indicate greater redundancy against
supply shortfalls. ENS is rare in power systems, as it results in voluntary or involuntary load shedding. Invol-
untary load shedding occurs during rolling blackouts. Given daily SAC and ENS for each of our five decar-
bonization pathways under each of our 100 ensemble members, we then calculate the annual minimum SAC
(“minimum SAC”), which indicates the fleet's largest susceptibility to supply shortfalls in a given year, and total
annual ENS (“total ENS”), which indicates the fleet's total supply shortfall in a given year.

Figure 3 and Figure S2 in Supporting Information S1 show these two metrics for the regions in the Western
Interconnect in 2040. Depending on the region, resource adequacy failures occur in most or all decarbonization

Figure 2. Installed capacity (left) and electricity generation (right) by generator type across Western Interconnect in 2040 for
each of our five decarbonization pathways (Table 2). CC stands for natural gas combined cycle, CCCCS for CC with carbon
capture and sequestration, and PV for photovoltaic. Other includes biomass, geothermal, landfill gas, and fossil and non‐
fossil waste plants.
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Figure 3. Minimum annual SAC values for each subregion in 2040 (see Figure 1 for map of regions). Each panel corresponds to a realization of the “Surplus available
capacity” panel of Figure 1. Each row corresponds to one of our five decarbonization pathways. Within each row, there are 100 separate color bars that indicate that
pathway's minimum annual SAC against each of our 100 climate ensemble members. Minimum annual SAC values range from negative (red) to positive (blue) red
values indicate supply shortfalls (or resource adequacy failures), while blue values indicate surplus capacity relative to demand.
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pathways under many climate realizations, as indicated by negative SAC values and positive total ENS values.
Pathways exhibit significant differences in resource adequacy under future climate realizations. For instance, in
California in 2040, one decarbonization pathway (5, or the pathway generated using the r9i1301 climate ensemble

member) has a maxiumum of 286 GWh of total yearly ENS, whereas the other
pathways have maximum total yearly ENS of 0–100 GWh, respectively. The
pathway with the least ENS and greatest SAC—r10i1191 (or 1 in Figure 5)—
achieves more installed capacity in 2040 (280 GW) relative to other pathways
(251–262 GW), particularly through greater investment in solar PV and
natural gas combined cycle (Figure 2). Across decarbonization pathways,
certain climate realizations incur significantly greater ENS than others (as
indicated by vertical red stripes). For instance, of the total ENS across all
2040 California pathways and all 100 climate realizations, none of that ENS
occurs in 79% of climate realizations, while 50% of that ENS occurs in just 3%
of climate realizations. Maximum ENS values are driven by days with low
hydropower, coinciding low wind and solar generation, and high electricity
demand (Figures S4–S8 in Supporting Information S1), indicating an
important role of compounding extremes in driving resource adequacy fail-
ures (Craig et al., 2020; Turner et al., 2019).

3.3. Carbon Dioxide Emissions and Costs of Decarbonization Pathways
Under Climate Realizations

Future climate variability will affect not only the resource adequacy of future
fleets, but also their CO2 emissions and operational costs through changes in
electricity demand; available wind, solar, and hydropower potential; and
generation from dispatchable (largely fossil) plants (Figure 4). Across our
decarbonization pathways, climate realizations could result in CO2 emissions
higher or lower than the CO2 cap by up to 28% and 27%, respectively. As with
resource adequacy (Figure 3), CO2 emissions from some decarbonization
pathways are less vulnerable to climate variability than others. For instance,
one pathway (2, or generated using the r5i1231 climate ensemble member)
fails to meet the CO2 emissions cap in 70% of climate realizations, while

Figure 4. Same structure as Figure 3, but each color bar shows interconnect‐wide CO2 emissions as a fraction of the target
CO2 emissions cap (left) or interconnect‐wide operational costs (right) in 2040.

Figure 5. Sum of minimum annual SAC values for our five subregions in
2040 versus cumulative (2023–2040) total (fixed plus operating) costs for
each decarbonization pathway. Minimum annual SAC values equal the sum
of non‐synchronous subregional minimum SAC values. Each
decarbonization pathway is depicted with a cross; the dot at the center of
each cross indicates the mean total SAC and mean total cost for that
decarbonization pathway across all 100 climate ensemble members; the
horizontal arm of each cross ranges from the minimum to maximum total
cost for that decarbonization pathway across all 100 climate ensemble
members; and the vertical arm of each cross ranges from the minimum to
maximum total SACs for that decarbonization pathway across all 100
climate ensemble members. For context, total non‐synchronous peak
demand across the five subregions equals roughly 200 GWh (although peak
demand varies across climate realizations). A negative minimum annual
SAC value indicates one or more subregions in that pathway experiences a
supply shortfall under at least one future climate realization.
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another pathway (1) only fails to meet the emissions cap in 20% of realizations. Operational costs also vary across
climate realizations in each pathway, from $127 to $146 billion. No single meteorological variable drives the
observed variability in emissions and costs (Figure S9 in Supporting Information S1). Rather, high emissions
generally occur in climate realizations with low wind, solar, and hydropower generation and high demand.

3.4. Trade‐Offs Between Resource Adequacy and Costs

Power system planners must balance competing objectives of minimizing system costs while meeting resource
adequacy targets. Figure 5 compares each decarbonization pathway's total costs against the sum of annual
minimum SAC over the five sub‐regions (Figure 3) across 2040 climate realizations. Total costs include fixed
investment costs, which vary between decarbonization pathways but not climate realizations, and operational
costs (Figure 4), which vary between decarbonization pathways and climate realizations. Cumulative total costs
from 2023 to 2040 range from $223–246 billion across pathways and climate variability. Although pathways are
differentiated by their mean costs across realizations, variability in operational costs induced by climate vari-
ability introduces overlap in total cost ranges between pathways. Despite overlaps between total costs, pathways
can exhibit significant differences in resource adequacy outcomes. For instance, one pathway (1, or the first
pathway from the right in Figure 5) only exhibits a small resource adequacy failure (or a total regional minimum
annual SAC value of − 0.2 GWh) under one climate realization, and has a positive mean SAC value across
ensemble members. Other pathways (e.g., the three pathways at left in Figure 5) have larger resource
adequacy failures (of up to − 40 GWh SAC) under certain ensemble members, and negative mean SAC values
across ensemble members (of up to − 10 GWh). Selecting the first pathway rather than other pathways would
eliminate resource adequacy failures at a median total cost difference of − 1 to 3%.

3.5. Identifying an Alternative Decarbonization Pathway Robust to Future Climate Realizations

Our prior results indicate a subset of potential climate realizations drive significant risk of resource adequacy
failures across decarbonization pathways (Figure 3). We identify the ensemble member that drives the largest
resource adequacy failures (quantified as the sum of minimum annual SACs) across decarbonization pathways in
California (our largest load region) in 2040, namely r19i1231 (or pathway 6), then rerun our capacity expansion
model using that ensemble member's meteorology. This ensemble member was not captured in our initial
sampling procedure, in which we selected five ensemble members that spanned the warming at mid‐century
represented by the ensembles in the CESM2‐LE data set (Figure S12 in Supporting Information S1). Rather,
r19i1231 features a compound extreme event in 2040 of low hydropower and wind generation potential and high
air temperatures, the latter of which drive elevated electricity demand and low available thermal capacity (Figure
S11 in Supporting Information S1). Capturing unexpected extreme climate realizations, such as r19i1231, is a key
motivator for our framework, as identifying extremes a priori is difficult given complex interactions within power
systems.

Our new decarbonization pathway generated with the r19i1231 climate ensemble member invests in more solar
and NGCC capacity and in less wind capacity than other pathways (Figure 6a). Overall, capacity investment is 2–
30 GW greater in the new pathway than other pathways. Figure 6b compares the resource adequacy of the
decarbonization pathway generated with this new ensemble member versus our original decarbonization path-
ways. Our new pathway exhibits significantly higher minimum SAC values, indicating less vulnerability to
resource adequacy failures. In fact, the new pathway does not experience any resource adequacy failures across
any climate realizations in 2040 in any region (i.e., no ENS or negative SAC values), and has a minimum annual
SAC of 0–3 GWh in California across climate realizations. The newly generated pathway also meets CO2
emission caps in all but three potential climate realizations (Figure 6c). Figure 6d compares the trade‐off between
resource adequacy and system costs for the new versus prior pathways. The new pathway has significantly better
resource adequacy than prior pathways, but at greater total costs. Specifically, the new pathway incurs, on
average, roughly $10 billion greater total costs between 2023 and 2040 compared to the next costliest pathway.

4. Discussion
Existing research and system planning practices lack decision support frameworks for identifying investment
alternatives that are robust to climate‐related uncertainty. We construct such an analytical framework by inte-
grating planning and operational power system models with a large climate ensemble, then use our framework to
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identify the vulnerabilities, trade‐offs, and robustness of alternative decarbonization pathways for the Western U.
S. power system in 2040. We began our analysis with five alternative pathways to 60% decarbonization of the
power system. All of these pathways exhibited modest to significant resource adequacy failures under potential
climate realizations. But by choosing one pathway over others, significantly better resource adequacy outcomes
can be achieved at little additional cost. Even this more robust pathway, though, suffered resource adequacy losses
under future climate realizations. By identifying a particularly problematic future climate realization for future
resource adequacy and using it to create another alternative decarbonization pathway, we identified a pathway
robust to, or that experienced no resource adequacy failures under, all examined future climate realizations. This
robustness is achieved through an increase of roughly $10 billion (or 5%) in total costs, posing a trade‐off to
decision‐makers.

Our analysis quantifies the resource adequacy of alternative decarbonization pathways against a wide range of
near‐term climate variability. Capturing this range of climate variability was possible through the use of the
LENS2 data set, but came at the cost of climate data with poor spatial and temporal resolution. Energy system
modeling needs and available climate data set characteristics are often misaligned (Craig et al., 2022), and
conducting detailed downscaling of all LENS2 ensemble members is computationally prohibitive. However, our
analytical framework can guide high resolution downscaling of large climate ensembles like LENS2 for energy

Figure 6. (a) Difference in installed capacity by generator type across Western Interconnect in 2040 between the decarbonization pathway generated using the r19i1231
ensemble member (pathway “6”) and each of the other decarbonization pathways. CC stands for natural gas combined cycle, CCCCS for CC with carbon capture and
sequestration, and PV for photovoltaic. (b) Same structure as Figure 3, but includes the decarbonization pathway generated using the r19i1231 ensemble member
(pathway “6”) (bolded at bottom) and only includes the two largest subregions by demand for conciseness. (c) Same structure as left panel of Figure 4, but includes the
decarbonization pathway generated using the r19i1231 ensemble member (pathway “6”) (bolded at bottom). (d) Same structure as Figure 5, but includes the
decarbonization pathway generated using the r19i1231 ensemble member (shown as cross centered on square instead of circle).
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system applications, a key need for energy system modelers. Specifically, our framework can identify ensemble
members, periods of interest, and/or climate conditions that pose the greatest threat to alternative future power
systems. Threatening conditions are themselves a function of investment decisions in power systems, so iden-
tifying those conditions for a broad range of alternatives, as our framework enables, is crucial to fully characterize
vulnerabilities and robustness. In our case, one ensemble member (r19i1231) resulted in resource adequacy
failures across nearly all studied decarbonization targets due to the compounding effects of low wind and hy-
dropower generation potential and high air temperatures. Identified members, periods, or climate conditions of
concern can be selectively downscaled and fed back into planning or resource adequacy modeling, maximizing
the value of high resolution downscaled data. This process requires bottom‐up trans‐disciplinary collaboration
between energy system and climate modellers (Craig et al., 2022).

In using climate data with poor temporal (daily) resolution, our analysis suffers from two shortfalls. First, we are
unable to capture the diurnal pattern of solar power in which it does not generate power at night, potentially
biasing our investment decisions and resource adequacy analyses in favor of solar power. Second, because we do
not resolve periods within the day, we are unable to include intra‐day electricity storage in our planning or
resource adequacy modeling. Intra‐day storage, particularly utility‐scale lithium‐ion facilities, is a rapidly
growing source of grid capacity and flexibility, particularly in California (Antonio & Mey, 2024; US Energy
Storage Monitor—Q1 2024 and 2023 Year in Review Executive Summary, 2024). This flexibility and capacity
could provide valuable when adapting to climate change and increasing intensity and frequency of extreme
weather events. While our LENS2 climate data set is unable to capture this value, implementation of our
framework per the above guidelines would enable stakeholders to capture the value of storage for climate
adaptation. Daily resolution could also explain the lack of investment in interregional transmission capacity, since
short‐term (sub‐daily) peaks in wind and solar generation drive value for expanded inter‐regional transmission.
Prior research on decarbonization scenarios for the Western United States using high resolution historic weather
data finds significant transmission expansion in cost‐optimal futures (Brown & Botterud, 2021; Jenkins
et al., 2021).

Additional opportunities for extending our research exist. We do not consider changes in demand due to adoption
of new technologies, for example, heat pumps to electrify space heating or space cooling in response to increasing
temperatures. In winter peaking regions like the Northwest, electrified heating through heat pumps can lead to
higher demand in the winter months, introducing interactions between decarbonization and climate change that
could affect our SAC calculations. In the Northwest and other regions with historically low space cooling pen-
etrations, adoption of space cooling could also interact with increasing extreme heat to exacerbate summer peak
demands. Incorporating the effect of such demand‐side changes in our models will allow us to make accurate
assessment of future fleets' robustness (Wessel et al., 2022). Future research could also extend our framework to
incorporate additional robustness concepts. For instance, in practice utilities design future systems that meet
certain resource adequacy thresholds, for example, the 1‐in‐10 standard, which could be captured using a sat-
isficing metric. While we focus on the year 2040 when assessing resource adequacy of alternative systems against
potential climate realizations, future research could also consider the temporal evolution of system outcomes
under climate change. Doing so could illuminate trade‐offs in the near‐to long‐term of decarbonization pathways
to climate change. Our framework could also be extended to planning of other power systems in the United States
and globally, which will also grapple with climate‐change‐driven impacts on demand and supply (Yalew
et al., 2020). Specific insights, though, will vary given region‐specific contexts that will moderate impacts of
climate change, for example, regions will vary in their reliance on hydropower and need for space heating and/or
cooling.

Our framework provides a practical way for real‐world system planners and utilities to better account for
climate‐related uncertainty, whether planning for individual or multiple regions in the Western United States or
elsewhere. Regulators could also require system planners to use our framework during Integrated Resource Plan
(IRP) proceedings to understand trade‐offs between improved resource adequacy and greater consumer costs.
Many system planners use third‐party software, for example, PLEXOS, to make long‐term plans. Modifying the
underlying mathematical formulation of such software is challenging for end users. Instead, our framework
requires changes to model inputs and additional processing of model results, a more feasible undertaking. The
key element of our analytical approach is to stress test alternative investment plans (or decarbonization path-
ways) against potential climate realizations to identify system vulnerabilities and challenging climate
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conditions, then feed identified challenging conditions back into decisionmaking. Energy system planners will
use planning processes that diverge from our methods in several ways. Despite these differences, planners can
adopt the key element of our analysis into their planning processes to better deal with climate‐related uncer-
tainty by following these guidelines. First, planners should identify a range of climate realizations of interest,
ideally in collaboration with climate scientists. These realizations will likely have higher resolution than our
LENS2 climate data set, requiring planners to sample periods to include in their planning model given
computational constraints. Planners can adapt their sampling procedures or adopt new procedures designed for
future climate data (Hilbers et al., 2019). In either case, sampled time periods will not capture the full range of
weather conditions that could affect future power systems. Stress testing alternative decarbonization pathways
to the full range of weather, the key element of our framework, can therefore generate crucial insights into
system vulnerability when sampling time periods for planning. Second, planners should analyze alternative
decarbonization pathways that stem not from climate variability, but instead from other sources of uncertainty
that they typically focus on, for example, policy, emissions reduction target, or technology availability. With
our framework, planners can understand vulnerabilities of these alternative pathways to future climate change.
Third, planners can feed identified vulnerabilities and meteorological drivers of those vulnerabilities back into
their planning process, for example, as additional sampled periods, to identify more robust investment strate-
gies. Finally, our framework can illuminate investment pathways robust to climate change, but investment
strategies should be coupled with adaptive planning (Marchau et al., 2019) to ensure continued robustness under
climate uncertainty. By following these guidelines, our framework can help stakeholders identify future power
systems that are robust to climate change and that simultaneously advance reliable, affordable, and clean
objectives.

Data Availability Statement
Meteorological data used in this study is available through (Rodgers et al., 2021). Code for the CEM, SAC
calculations, and analysis notebook used to create figures in the manuscript are available at (Sundar &
Craig, 2024a). Input data to various models and analysis data is available at Zenodo (Sundar & Craig, 2024b).
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