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Abstract—Onmeta-level time scales, anomalous trajectories can
signify target intent through their shape and eventual destination.
Such trajectories exhibit complex spatial patterns and have well
defined destinations with long-range dependencies implying that
Markov (random-walk) models are unsuitable. How can esti-
mated target tracks be used to detect anomalous trajectories such
as circling a building or going past a sequence of checkpoints?
This paper develops context-free grammar models and recip-
rocal Markov models (one dimensional Markov random fields)
for modeling spatial trajectories with a known end point. The
intent of a target is assumed to be a function of the shape of the
trajectory it follows and its intended destination. The stochastic
grammar models developed are concerned with trajectory shape
classification while the reciprocal Markov models are used for
destination prediction. Towards this goal, Bayesian signal pro-
cessing algorithms with polynomial complexity are presented. The
versatility of such models is illustrated with tracking applications
in surveillance.

Index Terms—Intent inference, meta-level tracking, stochastic
context-free grammars, reciprocal Markov processes, trajectory
models, pattern of life analysis.

I. INTRODUCTION

C LASSICAL target tracking [1] assumes a state-space

model with target maneuvers (acceleration) modeled as a

finite stateMarkov chain. Suchmodels are useful over short time
scales (order of several seconds) and several well known target

tracking algorithms have been developed in the literature. This

paper is motivated by meta-level target tracking applications
on longer time scales (order of several minutes). At such time

scales, the evolution of the target trajectory might not neces-

sarily be modeled best using Markovian models. For example,

an anomalous target trajectory representing malicious intent

follows a pre-meditated sequence of events. Such sequences can

exhibit variable long-range dependency which cannot be suit-

ably captured using Markovian models. In meta-level tracking,

one is interested in devising automated procedures that assist

the human operator to detect anomalous trajectories from tracks

obtained by a conventional tracking algorithm.
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In this paper, novel stochastic models and associated signal

processing algorithms are developed for detecting anomalous

trajectory patterns in target tracking. The trajectory of a moving

target is observed by a noisy sensor (or even a network of sen-

sors). Sensor measurements are used by a tracker to yield a

sequence of “dots” representing the position of multiple tar-

gets. In this paper, we address the issue of developing syntactic

models to analyze anomalous trajectories embedded within the

estimated sequence of target positions (and/or velocity, acceler-

ation). A syntactic model uses low-level features of a signal to

describe the manner in which the features can combine to form

more complicated structures. The main syntactic models used

in this paper are stochastic context-free grammars (SCFG) and
stochastic reciprocal processes (RP). Both models can be used
to model long-range dependencies in signals. SCFGs have the

added advantage of dealing with variable-range dependencies.

This paper develops SCFG and RP models together with sto-
chastic filtering algorithms to assist the human operator in de-
termining anomalous trajectories. The algorithms presented in
this paper use the track estimates from an existing tracker to per-

form syntactic filtering. In this sense, they are at a higher layer
of abstraction than conventional tracking and are fully compat-

ible with existing trackers.

To motivate the paper, we describe two examples from radar

tracking applications. The first example involves a forensic
surveillance application called pattern of life analysis. A pattern
of life analysis involves identification of a target’s daily interac-
tion with its environment. Such a pattern of life analysis can be

used to predict a target’s behavior based on habit or schedule.

Moreover, anomalous behavior that deviates from routine

habit usually indicates an event of interest. Consider a street

like that shown in Fig. 1(a). The normal behavior of the local

traffic between the points and is observed

to flow in a straight road between the two points. However,
if the local population has insider information about terrorist

activity (such as installing an improvised explosive device)

near the marked embassy, then the local pattern of traffic flow
changes to avoid the marked embassy as shown in Fig. 1(b).

The ability to detect such changes in either single or aggregate

target behavior requires a parsimonious representation of target

trajectories. Such a representation is provided by the models

developed in this paper which are also scalable towards dealing

with trajectories of different shapes and sizes.

The second example involves a real-time application of

anomalous trajectory classification. Suppose that prior infor-
mation about the intended destination of a target
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Fig. 1. (a) A map showing the normal pattern of trajectories between and . (b) The same map showing an anomalous pattern of trajectories

between and . The deviant path signifies a strong intent by traffic to avoid the area where the embassy is located.

starting from is available. Knowledge about the in-

tended destination can be obtained, for example, from flight
plans or shipping registries for airplanes and ships respectively.

A generative model for trajectories with known destination

could provide predictive information about the path of the

target’s trajectory for various inference tasks. A pictorial repre-

sentation of this example is shown in Fig. 3. Further details are

provided in Section II.

Why Use Stochastic Context Free Grammars (SCFGs) and
Reciprocal Processes (RPs)?: SCFGs and RPs provide a more
powerful framework to deal with long-range correlation be-

tween points in the target trajectory. In formal language theory,

grammars can be classified into four different types depending
on the forms of their production rules [2]. Stochastic regular

grammars or finite state automata are equivalent to hidden
Markov models (HMMs). SCFGs (which will be defined
in Section III-A) are a significant generalization of regular
grammars. Only stochastic regular grammars and SCFGs have

polynomial complexity estimation algorithms and are therefore

of practical use in tracking applications. It is well known in

formal language theory, that SCFGs are more general than

HMMs (stochastic finite automata) and can capture long range
dependencies through recursively embedded structures in

trajectories. Modeling anomalous trajectories with SCFGs has

several potential advantages:

i) Ability to Model Complex Trajectories: The recursive
embedding structure of certain anomalous trajectory

patterns is more naturally modeled using SCFGs. As

mentioned earlier, the Markovian type model has depen-

dency that has fixed length, and the growing state space
is difficult to handle since the maximum range depen-

dency must be considered. As shown in Section III-B,

SCFGs can model arcs, rectangles, closed trajectories

and other anomalous trajectories like move-stop-move.

A move-stop-move trajectory is a tactic used by targets

to evade radar detection. Further details are provided in

Section III-B.

ii) Predictive Capacity: SCFGs are more efficient in mod-
eling hidden branching processes when compared to sto-

chastic regular grammars or hidden Markov models with

the same number of parameters. The predictive power of

a SCFG measured in terms of entropy is greater than that

of the stochastic regular grammar [3]. An SCFG is equiv-

alent to a multi-type Galton-Watson branching process

with finite number of rewrite rules, and its entropy cal-
culation is discussed in [4].

Literature Survey: Trajectory modeling for intent inference
is mainly approached in two ways: a) anomaly detection [5] or

b) model-based inference [6]. In the former, a specific trajec-
tory is not identified. Rather, all possible trajectories of a target
are categorized as either normal or anomalous. For example, in

[5], a support-vector machine approach is taken to classify aber-

rant trajectories from normal trajectories. The latter approach

of model-based intent inference is taken in this paper. It in-

volves specifically identifying models for anomalous trajecto-
ries of interest.

A key feature of model-based inference is to obtain a se-

mantic interpretation of a complex pattern through the use of

simpler sub-patterns. For example, in [6], a dynamic Bayesian

network is used to identify scenarios where a shopper either en-

ters a retail store, leaves a store or passes by the store. In this

paper, we consider tracklets as the simpler sub-patterns com-

prising a trajectory (which is semantically equivalent to intent).

The tracklets are explained in detail in Section II.

Our work is related in spirit to the approach taken in [7] and

[8]. A context-free grammar approach is taken in [7] to iden-

tify two-person interactions like hugs, hand-shakes, kicks and

punches. A stochastic context-free grammar approach is taken

in [8] to recognize cheating actions in card-games at casinos.

Our work departs from them significantly as we consider trajec-
tory modeling in a tracking situation and not an action recogni-

tion system. The work presented in this paper builds upon the

work in [9], [10] on target tracking using stochastic context-free

grammars in radar tracking applications. Our work explicitly

differs from [9] in that no assumptions are made on the form the

target dynamics. In [9], tracklets are called modes which are ex-
plicitly factored into the state dynamics of the target as parame-

ters which affect the variance of directional noise. Our work di-

rectly uses filtered state estimates to obtain trajectory tracklets.
Moreover, we also build upon the framework in [9] by incor-

porating awareness of the target destination in the SCFG model

through constraints on the rule probabilities. The presentation is

this paper is also related to the approach taken in [11] where at-

tributes are associated with a stochastic context-free grammar to
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enforce constraints on the applicability of the production rules.

The domain of interest is detection of anomalous activities. In

this paper, constraints are also enforced albeit on the numerical

value of rule probabilities to obtain a desired expected length of

the target trajectory.

The use of SCFGs as a modeling tool for detecting anoma-

lous trajectories requires the ability to compute model likeli-

hoods. The inside-outside (IO) algorithm [3] is the conventional

method used to compute the probability of an observed trajec-

tory belonging to a given grammar model. However, the IO al-

gorithm requires the stochastic grammar to be in a restrictive

form. The Earley-Stolcke parser [12] on the other hand is able

to deal with arbitrarily structured grammars and is the algo-

rithm used in this paper for the Bayesian estimation of the model

probabilities.

The use of RPs in target tracking was first shown in [13]. A
continuous-time solution based on optimal smoothing is pro-

vided to predict the final destination of a ship whose starting
location and final destination are known. However, our work is
significantly different, because we consider a discrete-time, dis-
crete-space version of the problem. Moreover, we use the con-

cept of Markov bridges in predicting a target’s final destination.
The optimal filters used in this paper are derived in [14].
Main Results: For a unified treatment, this paper uses a gen-

eral tracking framework to develop the main ideas. The notion

of tracklets and the associated modeling of trajectories using

SCFGs and RPs is scalable towards many sensing modalities

like radar systems, multi-camera surveillance systems, geo-po-

sitioning based trackers and cellular base-station triangulation.

The main results of this paper are:

1) The detection of anomalous trajectories is formulated as

a classification problem in Section II. The SCFG and RP
models use the output from base-level tracking algorithms

to either provide feedback to enhance the tracker or to per-

form higher-level inference recognizing anomalous trajec-

tories. As a result, the tools developed in this paper are

legacy-compatible.

2) SCFGs are used as a modeling framework for spatial

patterns like arcs, rectangles, closed paths etc. They are

also used to model move-stop-move behavior which is

a common evasive tactic used by targets. Towards this

end, a quantized representation of velocity directions are

used as low-level features. This representation allows a

novel application in modeling the destination of a target

by placing constraints on the SCFG rule probabilities. As

a result, both shape and destination can be captured in the

same generative SCFG model.

3) While SCFGs are able to constrain the final destination
in an expected sense, anomalous trajectories which are

sensitive to the exact destination require an explicit posi-

tion-based representation. This is carried out through the

novel use of RPs and Markov bridges. Towards this end,

a grid-based quantization of Cartesian space is used as

low-level features. Such a representation allows destina-

tion prediction of the target which can further be used to

enhance the accuracy of the base-level tracker.

4) The use of SCFGs for shape classification and the use
of RPs for destination prediction is combined in a prob-

abilistic fusion framework to provide an inference that

is able to use both shape and destination cues to detect

anomalous trajectories of interest.

5) The experimental simulations carried out demonstrate the

discriminative power of SCFG and RP models in detecting

anomalous trajectories. We compare the performance of

destination-constrained SCFGswith probabilistic fusion of

SCFG and RP models for target intent inference.

II. ANOMALOUS TRAJECTORY CLASSIFICATION FRAMEWORK

In this section, a system-level description of the anoma-

lous trajectory classification problem is presented. We first
describe the tracking framework and provide a mathemat-

ical description of trajectory classification. We then provide
specific details about our tracklet estimation extension to the
classical tracking approach. A diagrammatic representation

of the proposed system is shown in Fig. 3. A tracking sensor

is assumed to make measurements related to the position

and velocity of targets in a particular region of interest (ROI).

These measurements are utilized by a base-level tracker

to estimate the actual position and velocity of the targets. Such

a set-up is the conventional “tracker” module used in many

tracking applications. We introduce an additional module called

the tracklet estimator which produces quantized position

estimates and velocity directions using the output of a

base-level tracker. These, in turn, are used by a meta-level

inference engine to determine target intent.

The base-level tracker is a nonlinear Bayesian filter (such as
a particle filter, IMM algorithm etc.) which can be represented

as an operator that uses sensor measurements to update

a posterior distribution over the position and velocity of the

target by

(1)

The posterior distribution in (1) is then used by the tracklet

estimator to obtain quantized estimates of the target position and

its velocity direction. The tracklet estimator can be represented

as an operator such that

(2)

where . We consider two different

tracklets viz., the position tracklets which are quantized by the

operator and velocity tracklets which are quantized

through .

The aim of this paper is to provide models for the process

that can be used to classify anomalous trajectories. The target

trajectory is associated with an intent depending on its shape

and/or its destination. For example, a circling behavior (closed

loops, rectangles, arcs) might be indicative of a reconnaissance

operation in the vicinity of a sensitive asset like a check-post.

A boat that is loitering near the shore-line and heading towards

a known drop-off point could also be indicative of a smuggling

operation.

A unified framework is developed in this paper to deal
with different kinds of anomalous trajectories. The defining
features of the considered trajectories are either its shape or

the destination of the target. These are further characterized
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Fig. 2. (a) A rectangular trajectory and an arc trajectory are shown with different destinations. A closed trajectory is shown whose beginning and ending points co-

incide. A move-stop-move trajectory is shown which is a tactic used by targets to evade radar detection. (b) State estimates quantized into radial velocity directions.

through velocity or position tracklets. Each type of target

intent is thus assumed to be generated by a particular model

, where there are different types of

target intent under consideration. These models are described

in Sections III-B and IV-A. As a target moves in a region of in-

terest (ROI), it generates tracklets . The anomalous trajectory

classification task is then defined as finding the model that

has the highest probability of explaining the observed tracklet

sequence ,

(3)

We now provide further details on the base-level tracker and

tracklet estimationmodules in Fig. 3. A typical tracking applica-

tion involves certain assumptions on the dynamics of the target.

The target dynamics are summarized using its kinematic state

in the vector and a description of how

evolves. The state variables refer to the position of the

target while refer to the velocity of the target in Carte-

sian co-ordinates. A tracking sensor cannot measure the kine-

matic state of a target directly. It can however make measure-

ments related to the state which are contaminated with

noise. A base-level tracker (Kalman filter, particle filter, IMM
algorithm) is then used to track the state of the target using the

sensor observations . The output of such a tracker consists of

a posterior probability distribution . The state

estimate can then be evaluated from the posterior distribution

using a conditional expectation. The state estimates

form the input to the tracklet estimator.

The tracklet estimator is a quantization module which

outputs either position or velocity tracklets. Tracklets are used

as sub-units which comprise target trajectories. The SCFG

models utilize velocity tracklets as sub-units of the trajectory

shape while RP models utilize position tracklets as sub-units of

a goal-directed trajectory (with a known destination). Each type

of tracklet is described below. The position tracklet estimator

works with a discretized surveillance space over which the

target is observed. At each time instant, the position tracklet

estimator quantizes the state estimates to the closest

element on the discretized 2-D grid . The position

tracklet estimator can be represented as

(4)

where is the Euclidean distance between

and the center of the grid element .

The velocity tracklet estimator utilizes the coordinate ve-

locity estimates to find the direction of motion of
the target. The possible directions of motion of the target

are quantized into 8 radial angular directions from the set

. The radial

directions are shown in Fig. 2(b) and each is labeled for nota-

tional convenience with a lowercase alphabet and an additional

to denote that is a unit directional vector. The velocity tracklet

estimator thus outputs

(5)

III. TRAJECTORY MODELING AND INFERENCE USING

STOCHASTIC CONTEXT-FREE GRAMMARS

In this section, we present SCFG models and associated

signal processing algorithms for trajectory modeling and classi-

fication. SCFGs will be the main tool that we will use to model
shapes of target trajectories. The output of an SCFG is a string

of terminal symbols. These terminal symbols are precisely the

tracklets which we aim to model. Finally, the Earley-Stolcke
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Fig. 3. The architecture of the proposed meta-level inference for target intent described in Section II.

parser is presented to perform statistical signal processing of

the tracklets.

A. Review of Stochastic Context-Free Grammars

In this section, we briefly review stochastic context-free

grammars. A textbook treatment can be found in [2]. A con-

text-free grammar is a 4-tuple , where is

a finite set of non-terminals is a finite
set of terminals such that

is the chosen start symbol (initial non-terminal) and is

a finite set of production rules of the form

and . The set denotes all finite length
strings of symbols in , excluding strings of length 0

(the case where strings of length 0 is included is indicated by

). The symbol denotes a re-write operation which

replaces the non-terminal with the string . A stochastic

context-free grammar is defined as a pair , where

is a probability function over the production

rules such that .

The number of alternative production rules associated with

is denoted .

A grammar is a generative model which produces an output

sequence of terminal symbols. A symbol refers to an element of

the set which can be either a single non-terminal or a

single terminal. A sequence of such symbols is called a string

. When the string is complete and composed en-

tirely of terminals (such that no further symbols can be concate-

nated or produced in the string), it is called a sentence. In Fig. 4,

we show an example of a sentence generated by a grammar. We

also demonstrate ambiguity in the generation process that can

be resolved through rule probabilities.

B. SCFG Models for Anomalous Trajectories
In this section, we model various trajectories of interest

using stochastic context-free grammar models. For all the

SCFG models considered in this paper, each type of trajectory

shape or pattern has an associated grammar model . All

the grammars have a common set of terminals and a

common start symbol . They may have different rule spaces

and/or non-terminal spaces . While modeling trajectory

shapes using grammar models, we will focus on the structure

of the production rules. The non-terminal space is implicitly

included when writing the production rules. In Section III-C,

the production rule probabilities will be chosen to constrain the

expected final destination of the target.
Line Trajectory: A target traveling in a straight path cre-

ates linear trajectories with local Markov dependency, and it is

characterized by rules of the form with repre-

senting the target’s direction of motion. An example string of

a target traveling in a straight horizontal line for four sampling

instants is “ ”. The production rules of a line grammar gen-

erates a language that is equivalent to that of a hidden Markov

model formulation (or equivalently a regular grammar). A reg-

ular grammar is constrained to have only one non-terminal on

either side of a production rule. The linear shape can be repre-

sented as the language . This notation implies

that all strings generated by a line grammar will have the

form . The notation implies that the terminal symbol

appears times consecutively in a sequence. The other geo-

metric shapes of interest are arcs, rectangles, closed loops and

move-stop-move trajectories. These shapes possess long range

and self-embedding dependencies that require production rules

which regular grammars (and hence Markov models) cannot

represent.
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Fig. 4. An example grammar with context-free production rules and representative alternative parse trees of a generation process for the string . The quantities

in brackets denote the probability of choosing that production rule. The individual probabilities of each parse tree is shown together with the total probability of

the string.

Fig. 5. An arc grammar in (a) and an m-rectangle grammar in (b). A move-stop-move grammar is shown in (c).

Arc Trajectory: An arc-shaped trajectory can be expressed
as a language , where there is an equal

number of matching upward and downward tracklets and an

arbitrary number of forward tracklets . The symbol denotes

an arbitrary number of symbols. The symbol represents any

arbitrary string belonging to the language. Such a language can

be generated by the grammar shown in Fig. 5(a). The grammar

can be constructed based on techniques reviewed in [15].

Rectangular Trajectory: The m-rectangle language (with
associated grammar shown in Fig. 5(b)) is

and it can model any trajectory comprising of

four sides at right angles (not necessarily a closed curve) with

at least two opposite sides being of equal length. Why do we

consider m-rectangles instead of rectangles? This is because

the language comprising of only rectangles is not context-free.

The language comprising of only rectangles can be generated

by a more specific class of grammars called context-sensitive
grammars. A proof of this can be found in [15]. As a result,

algorithms of polynomial complexity for recognizing such

trajectories cannot be constructed. However, we can construct

heuristic rules by fixing the number of ’s and ’s in the

grammar to generate rectangles and squares.

Closed Trajectory: Consider the closed trajectory in

Fig. 2(a). We can resolve each directional vector onto the unit

directions represented by and . A closed figure then com-
prises of an equal number of (up) and (down) movements

together with an equal number of (left) and (right) move-

ments. Such a trajectory also comprises an arc-like language

where an equal number of opposing movements is represented

by the language , where and refer to

opposite movements from the set .

Move-Stop-Move Trajectory: A move-stop-move trajectory
results from a coarse representation of the tracker state esti-

mates which allows us to model a common evasion tactic used

by targets. If the target stops moving (or its velocity drops below

a threshold), then ground moving target indication (GMTI)
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trackers are unable to track it [9]. As a result, targets seeking

to evade a radar often intersperse periods of movement with

periods of no movements. The sporadic stopping between two

periods with movement can be modeling as a self-embedding

grammar of the form shown in Fig. 5(c). A move-stop-move

trajectory in which the target stops for four sampling instants

would take the form “ ”, where each

refers to a movement in any one of the directions in and

refers to a stop.

C. Constraints on SCFG Rule Probabilities
In this section, we describe two constraint conditions which

ensure that the SCFG is well-posed and also allows us to con-

strain the expected destination of a target. The first condition is
called the consistency constraint (described in [2]) which en-

sures that the grammar is able to terminate in a finite length
string. The second condition constrains the final destination of
the target in an expected sense.

In the following, we describe the manner in which the target

destination is modeled. The production rule probabilities of a

grammar can be chosen such that the expected value of the final
destination is equal to the intended final destination. We assume
that the target maintains a constant speed in the direction of

motion. If the target speed is , then each estimated tracklet

represents the movement of the target by meters in a radial

direction represented by . The total distance traveled by the

target until time is given by

(6)

The co-ordinate system used is the Cartesian plane which is rep-

resented by the unit vectors and as shown in Fig. 2(b). Con-

sequently, every trajectory consisting of a sequence of tracklets

can be written as an linear combination of and . Each of

the other unit directional vectors can also be written as a linear

combination of and using vector addition.

Consider a target moving in an m-rectangle trajectory like

that in Fig. 3. Let’s assume that the target starts at an initial

position which represents the position vector .

We wish to constrain the final destination of the target to be
at representing the position vector . This

implies that the total distance traveled by the target is

. The total distance can be computed as

the sum of the number of times the target moves in each of the

directions in (because of the constant speed assumption). This

is given by

(7)

where is the total length of the string and is the number of

times the target moves in direction . Our interest is from

amodeling perspective and hence we would like to constrain the

total distance the target travels. It turns out that the probabilistic

nature of the grammar production rules allows us to constrain

the total distance traveled if we can bound the expected value of

the total distance traveled. This is obtained from (7) by replacing

each quantity with its expected value viz., the expected number

of times that the target travels in each of the directions

. To compute these expected values, we need to define
the following matrices.

The matrix has rows indexed by non-terminals and

columns indexed by production rules. An element of the

matrix has value if production rule has non-terminal

on its left and 0 otherwise. Here is the probability of choosing

rule as shown in Fig. 5.

The matrix has rows indexed by production rules and

columns indexed by non-terminals. An element of the

matrix is the number of occurrences of non-terminal on

the right hand side of production rule .

The stochastic expectation matrix is an

matrix indexed by non-terminals. An element of the

matrix is the expected number of times a non-terminal

will occur when is re-written using exactly one production

rule. The stochastic expectation matrix plays an important

part in determining the consistency of a grammar. A grammar

is consistent if it terminates in a finite length terminal string. A
grammar is consistent if the largest eigenvalue of its

stochastic expectation matrix is less than one [2].

We are also interested in the matrix for any number

of production rules being applied. This is given by

. This series converges as shown in [16] to

(8)

where is a identity matrix. The matrix is called

the non-terminal expectation matrix. Each element repre-

sents the expected number of non-terminals that could result

from a non-terminal taking into account an arbitrary number

of production rules being applied.

The matrix has rows indexed by production rules and

columns indexed by terminals. An element of thematrix

represents the number of times the terminal appears on the

right hand side of the production rule .

The matrix has rows indexed by non-termi-

nals and columns indexed by terminals. An element

of the matrix represents the expected number of instances of

terminal resulting from one re-write of the non-terminal .

The terminal expectation matrix has

rows indexed by non-terminals and rows indexed by termi-

nals. Each element represents the number of instances of

terminal resulting from an arbitrary application of production

rules starting from a non-terminal .

Using the matrices defined above, we can now compute the
expected word length of the grammar . The expected word

length is defined as the total number of terminals derived

starting from a particular non-terminal . Since we are inter-

ested in the final word length, we consider only the non-terminal
which is the starting symbol (with index 1). This can be rep-

resented as

(9)

Using the expected values from (9), the total distance trav-

eled by the target can be constrained which is the same as con-
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straining the end-point of the trajectory given that we know the

initial starting point. The constraint equation is given by

(10)

after resolving the 8 radial directions into constituent combina-

tions of and . The value of each element is a function

of the production rule probabilities . Using the con-

straint in (10) and the consistency constraint, we obtain one in-

equality constraint (the consistency constraint) and one equality

constraint (the expected word length constraint). The exact form

of these constraints depends on the form of the grammatical

rules. In the case of the grammars described in Fig. 5, the con-

sistency constraint turns out to be a trivial constraint. The eigen-

values of the stochastic expectation matrix are specific rule
probabilities. Since a rule probability is , the con-

sistency criteria is trivially satisfied for these grammars. As a
result, we are only left with one equality constraint to satisfy.

In the case of the grammar in Fig. 5(b), the expected word

length constraint results in a multi-linear equation (after multi-

plying by the common factor throughout) of the form

(11)

where is the distance between and . Since we are faced

with only one equation in 5 unknowns, where each unknown

, a brute-force approach is used to obtain a fea-

sible solution. A 5-dimensional grid is created and the constraint

equation in (11) is swept to find a feasible solution set.

D. Bayesian Signal Processing of SCFG Models
This section deals with the solution of the following sequen-

tial classification problem. Given an observation sequence of
the target’s estimated velocity directions , can we

classify the target’s trajectory? The set of permissible grammar

models is given by which contains all the anomalous trajec-

tories described in Section III.B. Mathematically, we seek the

grammar posterior probability

(12)

where is the grammar model (or corresponding anomalous

trajectory) with the maximum probability given the observation

sequence. The computation of the likelihoods using partial sen-

tences rather than a complete trajectory

is a non-trivial exercise and requires the computation of prefix
probabilities. The prefix probability of the

string is the probability that grammar derives

the string which has as its prefix and
is an arbitrary suffix. The prefix probability is

defined as

(13)

The computation of the prefix probabilities is carried out using
the Earley-Stolcke parser which is described next.

Fig. 6. A graphical example of an Earley state. The non-terminals are repre-

sented by the upper case letters. The lower case alphabets are the terminal sym-

bols. The dot ” ” is a marker representing the current position of the input string.

Bayesian Methods of Grammatical Inference: The infer-
ence of SCFG models is predominantly carried out using the

inside-outside algorithm [3]. The inside-outside algorithm is

very similar to the forward-backward algorithm used in the

inference of hidden Markov models. In the case of SCFGs, the

inside-outside algorithm restricts the grammar to have a partic-

ular form called the Chomsky normal form (CNF). However,

any grammar can be transformed into the Chomsky normal

form [15]. We begin by defining the inside probability for a
stochastic grammar model. The inside probability is denoted

by . This is described as the

probability that non-terminal derives the observations

(terminals) from . The inside-outside algorithm

computes this probability recursively by first computing the
inside probability of single observations and

then incrementally computing the inside probability for all

sequences of length two and so on.

In this paper, we choose to work with unconstrained gram-

mars that are not in Chomsky normal form. We prefer this ap-

proach because it preserves the intuitive meaning of production

rules. The Earley-Stolcke algorithm also computes inside prob-

abilities but it uses a top-down approach which is different from

the bottom-up approach that the inside-outside algorithm uses.

The Earley-Stolcke Parser: The Earley-Stolcke parser scans
an input string from left to right and is

able to compute the probability of the string given the

parameters of the SCFG. As each symbol is scanned, a set of

states is created which represents the condition of the infer-

ence process at that point in the scan. Each state in represents

(1) a production rule such that we are currently scan-

ning a portion of the input string which is derived from its right

hand side, (2) a point (marker) in that production rule which

shows how much of that rule’s right side we have recognized so

far and (3) a pointer back to the position in the input string at

which we began to look for that instance of the production rule.

Each state is an incomplete portion of the parse tree which gen-

erated the input string . These states are referred to as the con-

trol structure used by the Earley-Stolcke parser to store the in-

complete parse trees and are represented as .

The upper-case letters and are non-terminals, and

are substrings of non-terminals and terminals, “.” is the marker

that specifies the end position for the partially parsed input,

is the starting index of the substring that is generated by the

non-terminal . Fig. 6 illustrates an example state ,

where and are non-terminals; the indices and specify the

beginning and the end of the substring respectively which the

non-terminal can “explain” so far, and the index marker “ ”
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demarcates the part of ’s production rule that has been applied

to explain the substring. With the marker in front of the non-

terminal is not yet applied, and the state is still incomplete.

Each state is also associated with a forward probability and an

inside probability which are explained in more detail later. For

the purposes of dealing with the start symbol, the Earley-Stolcke

uses a dummy state which is the initial state of

the Earley Stolcke parser.

Earley-Stolcke Operations: In general, we operate on a state
set as follows: the states in the set are processed in order, by

performing one of three operations on each depending on the

form of the state. These operations may add more states to

and may also put states in a new state set . Whenever an

operation attempts to add a new state, it is linked to an existing

state. The predictor operation is applicable to a state when there
is a non-terminal to the right of the dot. It causes the addition of

one new state to for each alternative production rule of that

non-terminal. The dot is placed at the beginning of the produc-

tion rule in each new state. The pointer is set to , since the state

was created in . Thus the predictor adds to all productions

which might generate sub-strings beginning at . More for-

mally, for a state in the state set , the predictor

adds a new state for each of the alternative production

rules . A link is thus created between these states.

The state is called a predicted state.
The scanning operation, on the other hand, is applicable just

in the case when there is a terminal to the right of the dot. The

scanner compares that symbol with , and if they match, it

adds the state to , with the dot moved over one symbol in

the state to indicate that that terminal symbol has been scanned.

If exists and , the scanning operation adds

a new state to state set which is called

a scanned state. A link is also created between these states.
The third operation, the completer, is applicable to a state if

its dot is at the end of its production. Such a

state is called a “complete” state. For every complete state, the

completer goes back to the state set indicated by the pointer in

the complete state, and adds all states from to which

have (the non-terminal corresponding to that production) to

the right of the dot. It moves the dot over in these states.

Intuitively, is the state set wewere in whenwewent looking

for that . We have now found it, so we go back to all the states

in which caused us to look for a , and we move the dot

over the in these states to show that it has been successfully

scanned. A completion operation adds a new state

(called a completed state) using and

. A link pointing from to is also

created. In such a manner, the Earley-Stoclke parser continues

until all the observation symbols have been scanned. If the final
state set contains the state , then the algorithm

terminates successfully. It represents a successful parse of the

sentence .

Earley-Stolcke Probabilities: Wementioned earlier that each
state is associated with a forward probability

which is the sum of the probabilities of all paths of length

which end in the state and generate observations

. The inner probability of a state is

defined as the sum of the probability of all paths of length

Fig. 7. The updates for the forward probability and the inside probability

for each of the Earley-Stolcke operations.

which pass through the state and hence derive the ob-

servations . A path is simply a sequence of Earley

states linked through the operations of prediction, scanning and

completion as mentioned above. The length of a path is defined
as the number of scanned states in it. Since a state can be scanned

only when the terminal to the right of the dot matches the input

symbol, there is a one-to-one correspondence between scanned

states and length of the input. In Fig. 8, we show the concept on

an Earley path and the manner in which they can split and merge

via the operations of prediction, scanning and completion. The

updates of the forward probability and inside probability for

each of the state operations is summarized in Fig. 7.

IV. TRAJECTORY MODELING AND INFERENCE USING

RECIPROCAL STOCHASTIC PROCESSES

In this section, we describe a 1 dimensional Markov random

field called a reciprocal stochastic process. These processes are
used in this paper to model target trajectories with an intended

destination. On the time scales used in meta-level tracking,

most real world targets are “destination-aware”—they have a

well defined destination, and they rarely move according to
a “drunkard’s” random walk (Markov chain). From a proba-

bilistic modeling point of view, being destination-aware means

that the initial and final target states (in terms of position) need
to be chosen from a joint distribution before specifying the

transition law of the target dynamics. Naturally, finite state
Markov chains cannot capture this long range dependency.

The modeling of trajectories using RPs is significant because
it offers an alternative to the SCFG based modeling described

in Section III. While an SCFG is able to constrain the expected

destination of a target, the use of RP models and position track-

lets allows us to exactly constrain the final destination of the
target. Such a capability is of obvious importance in accurate

destination prediction.
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Fig. 8. This figure shows the links created due to the prediction, scanning and completion operations between states in an Earley-Stolcke parser. The prediction
creates visible splits in the path while scanning and completion merge different paths. Some paths created by the prediction operation do not lead to a viable string

and hence remain incomplete.

A. Reciprocal Process Models for Destination-Constrained
Trajectories
Review of RP’s: Consider a random process indexed on

the set for some integer . We assume that

the process takes values in some set with finite cardinality
. The state space is the set of integers

(a discrete-state process). A stochastic process is defined to be
reciprocal in nature if

(14)

for each . As a result, is conditionally

independent of its value at all time points

given its neighbors and . The RP

model is specified by its 3-point transition functions in (14)
along with a given joint distribution on the

end-points of the process. A reciprocal process is a one-di-

mensional version of a Markov random field. Our interest
in reciprocal stochastic processes stems from the fact that a

trajectory with a known destination can be represented as a

pinned reciprocal process in which the end point is fixed.
This is shown in [17] to generate a Markov bridge.

A reciprocal process can be considered to be composed of

Markov bridges, each Markov bridge corresponding to the

end-point being fixed at one of the states. The model

for each such Markov bridge is encapsulated by [14]

(15)

The 3-pt probability transitions

can be denoted as . We assume that the 3-pt transi-

tions are time invariant and hence . We can

then fully specify the set of Markov bridges using (15) by

the backward recursion for

(16)

The last term on the right-hand side of (16) is the normalization

constant. We can initialize if and 0

otherwise.

Construction of Markov Bridges: A random process can

then be constructed by conventional Markov process construc-

tion if the initial state is drawn from and propa-

gated forward using the transition probabilities . Such a

process is the required Markov bridge pinned at the end-point

with with probability 1. An RP can be constructed

by drawing from the specified RP end-
point distribution and constructing the Markov bridge starting

at and using the transition probabilities defined
in (16).

Hidden Reciprocal Models (HRM): The notion of a hidden
reciprocal model (HRM) is introduced by defining an obser-
vation process with the conditional independence property

that . The

process is called a hidden reciprocal model (HRM) with

denoting the observation probabili-

ties. EachMarkov bridge is defined to be a model parameterized
by , where .

The representation of reciprocal processes using the con-

cept of Markov bridges allows a convenient characterization

for fixing the end-point of a target’s trajectory. This permits
consideration of “destination-constrained” trajectories which

can be imparted with the intent of the target. The starting and

ending point of the trajectory is thus constrained by a Markov

bridge model . Each such trajectory with different

ending points can be represented using a Markov bridge model.

If we consider the intent of the target as deciding which of the

regions the target will end up in, the intent inference task

amounts to classifying the observed trajectory of the target to

one of the models in .

B. Signal Processing of RP Models

In this section, we present equations for evaluating the log

likelihood of an observed se-

quence from an RP model . Detailed deriva-

tions for the associated filtering and maximum likelihood state
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Fig. 9. (a) Depiction of different anamolous trajectory shapes and associated intent. (b) Targets traveling to different destination using the same trajectory shape.

estimation of RP models can be found in [14]. We define the
quantity

(17)

with initialization

(18)

The first term in (18) comes from the RP end-points distribution
such that

(19)

(20)

We also define
. The filtering equation

can be computed recursively

(21)

for . We have applied the property that the RP

pinned at is a Markov bridge with initial state distribu-

tion and transition probabilities . The normalization

factor is given by

(22)

The log-likelihood can then be recursively computed to be

For maximum likelihood classification with partial observations
, the hidden Markov bridge model with the max-

imum likelihood is classified as the destination of the target
using

(23)

V. NUMERICAL EXAMPLES

In this section, numerical studies are presented to illustrate

SCFG and RP models in anomalous trajectory detection and

classification. The first set of experiments in Section V-A
demonstrates individual examples for the classification of
anomalous trajectories based on SCFG shape models. The

scenario being considered is depicted in Fig. 9(a).

The second set of experiments in Section V.B deals with the

use of the SCFG and RP models in both shape and destina-

tion-constrained trajectories for pattern of life analysis. We con-

trast the SCFG representation with that of hidden reciprocal

models. In each simulation, a base tracker is used to extract

tracklets which are then input into the appropriate classifier. The
SCFG filter refers to the Bayesian signal processing algorithm
described in Section III-D. An extended Kalman filter (EKF) is
employed for tracking the target using a constant acceleration

model for the target dynamics in all the subsequent simulations.

A. Classification of Trajectory Shape

In this section, the results of detecting different anomalous

trajectories based on shape are presented. Consider the scenario

depicted below in Fig. 9(a), where the target moves in a specific
trajectory around a sensitive asset (like an embassy or a security

check-point). The shape of the trajectory correlates with the in-

tent of the target and is of great importance if it can be reliably

detected. The two shapes considered here are an m-rectangle

trajectory which depicts circling behavior and an arc trajectory

which can be used to signify avoidant behavior. A clean and

estimated version of the m-rectangle trajectory traversed by a

target is shown in Fig. 10(a) while that of an arc trajectory is

shown in Fig. 10(b).
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Fig. 10. (a) An m-rectangle trajectory, its noisy measurements and estimated output from the base level tracker. (b) An arc trajectory, its noisy measurements and

estimated output from the base level tracker.

Fig. 11. The posterior probability of different shapes when tracking a target following a (a) m-rectangle trajectory and an (b) arc trajectory.

The estimated state of the target output by the base-level

tracker is used to estimate tracklets that form the input to the

SCFG filter. The quantization of the velocity tracklets has a
de-noising effect on the state estimates. As a result, even bad

base-level trackers can be used to obtain relatively clean strings

of the target trajectory. The quantization noise can be captured

using the probability mass function

(24)

For the m-rectangle trajectory in Fig. 10, the grammar model

probabilities are computed using Bayes’ rule and the assump-

tion of a uniform prior over all grammar models. The posterior

probability distribution is shown in Fig. 11(a). We observe that

the line grammar initially has the highest posterior probability

because the target has not yet made a turn. As soon as the first
turn is made, the posterior probability of the line vanishes. After

the third turn is made, the m-rectangle trajectory becomes the

more likely grammar model.

B. Destination-Constrained Trajectories

In this section, the usefulness of SCFG grammars with

constrained destinations is examined by a proof-of-concept

example. Consider the target trajectories shown in Fig. 9(b)

which are of a m-rectangle trajectory to different destinations.

Using the constraints described in Section III.C, a trajectory

can be forced to end at a certain point (expected destination).

The rule probabilities of a template m-rectangle grammar are

solved for using these constraints and three different grammar

models are produced. The trajectory in Fig. 10(a) is the same

as the one having destination A in Fig. 9(b). The posterior

probability of the grammar models is computed using the

trajectory with destination A as the input and the result is

shown in Fig. 12(a). For this example, we notice that after the

3rd turn, the correct destination is chosen as the model with
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Fig. 12. (a) The posterior probability of different destinations using an m-rectangle trajectory as depicted in Fig. 9(b). (b) Markov bridge model classification for
destination prediction.

highest posterior probability. This is because for an m-rectangle

trajectory, displacement only occurs in one dimension. Since

two opposite sides of an m-rectangle should be of the same

size, only one of the remaining sides needs to be observed,

before the model can predict the destination.

Using the same set of 3 destinations depicted in Fig. 9(b),

a set of Markov bridge models can be constructed using the

development in Section IV-A. The trajectory with destination

A is then used as input to classify the destination based on the

signal processing of RP models. The results from (17)–(23) are

used to obtain the posterior probabilities (where each Markov

bridge represents one of the destinations). The posterior prob-

abilities can be seen in Fig. 12(b). We immediately notice

that the RP formulation is unable to distinguish between the

models until nearly the end of the trajectory. However, at

a certain point in the trajectory, the posterior probability of

the correct destination increases until it reaches its destination

with probability 1.

C. Pattern of Life Analysis

In this section, we compare the performance of a destina-

tion-constrained SCFG (as presented in Section III-C with the

fusion of an SCFG shape model and an RP destination model.

SCFGs can be used to effectively determine complex spatial

patterns of a trajectory. However, the destination can only be

predicted in an expected sense. Alternatively, reciprocal pro-

cesses cannot incorporate shape constraints on trajectories but

are well suited towards predicting the destination of a target.

If the intent of target is modeled as a function of its shape and

destination, then the conditional joint probability of shape and

destination achieves a form of inter-model fusion.

Suppose that there are syntactic trajectory patterns of in-

terest (like arcs, rectangles, closed loops, move-stop-move etc.)

and destinations of interest in an intent inference task. Each

trajectory shape of interest is modeled through the use of a

SCFG and each destination of interest is

modeled by a Markov bridge . The set of all

target intents

under consideration is given by the Cartesian product of the

SCFG and Markov bridge models. Under the independence as-

sumption of target shape and target destination, the posterior

probability of the target intent is given by

(25)

where are understood to be velocity track-

lets when dealing with SCFG models and position tracklets

when dealing with Markov bridge models. The individual

posterior probabilities of the SCFG model and Markov

bridge model can be computed using the filter equations
presented in Sections III-D and IV-B respectively.

Using the joint shape and destination classifier of (25), our
aim is to detect a significant departure of a target or targets from
a pre-established routine trajectory. This involves a trajectory

either deviating in shape between known starting point and des-

tination point or a target deviating in both shape and destination

point. The example demonstrated in Fig. 1 is used for the nu-

merical study.

The flavor of the experiment is as follows: Consider that tar-
gets traveling between point A and point B are tracked and its

trajectory on the X-Y plane is recorded. A normal trajectory has

a linear shape between point A and point B. A sensitive asset

is located between points A and B. A suspicious trajectory, on

the other hand, involves any kind of circling or avoidant be-

havior between points A and B. For instance, we would like

to classify m-rectangle shaped trajectories with point B as its

destination. In the experiment, we create 100 differently shaped

trajectories between point A and point B. Of these, 25 trajecto-

ries are arc-shaped, 50 are m-rectangles and 25 are arbitrarily

shaped. The m-rectangle trajectories form positive examples

while the other shapes represent negative examples. We com-

pare two classifiers, viz., the destination constrained SCFG and
a fusion of the RP model (for destination prediction) and the

SCFG model (for shape classification). The receiver operating
characteristics for these classifiers are shown in Fig. 13(a). The
fused SCFG and RP classifier outperforms the destination con-
strained SCFG classifier. On the equal error rate guide, the clas-
sification accuracy is 83% for the fused SCFG and RP model

while it is 73% for the constrained SCFGmodel. The area under
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Fig. 13. (a) The receiver operating characteristics of the fused SCFG and RP model classifier versus a destination constrained SCFG. (b) The ROC curve for only
SCFG based shape classification with and without destination constraints.

the curve (AUC) for the fused SCFG and RP model classifier is
0.8879 while the AUC for the destination constrained SCFG is

0.8012. We feel that the expected destination constraint makes

the constrained SCFG a weak classifier for destination predic-
tion. It would be prudent to point out that constraining higher

order moments of the sentence length may lead to better clas-

sification accuracy. For example, the variance of the sentence
length could place a more stringent constraint on the destina-

tion through creating a narrow distribution around the expected

destination.

As demonstrated in Fig. 13(a), the expected destination con-

straint does the not make the constrained SCFG very amenable

towards destination prediction. However, it does make the

SCFG more well-behaved in terms of its performance when

only considering shape classification. In Fig. 13(b), an SCFG
model is only used for shape classification of the models in
Section III-B. We see one distinct cluster of similar ROC

curves in Fig. 13(b). These curves are obtained for SCFG

models recovered by using feasible solutions generated from

(11). The other curves are obtained by randomly choosing

probabilities for the m-rectangle grammar model that do not

satisfy any destination constraint. The classification accuracy
is an average of 73% in the former case while it is lowered to

69% in the latter.

VI. CONCLUSION

This paper has presented stochastic context free grammars

(SCFG) and reciprocal Markov process (RP) models for the tra-

jectories of targets. Our premise is that the target’s trajectory

can be modeled as words (modes) spoken by a SCFG language

or RP model. Then, Bayesian signal processing algorithms are

proposed to detect anomalous trajectories. The methods devel-

oped in this paper can be viewed as middleware forming the
human-sensor interface since they interpret information from a
tracker to assist a human operator. The parsing of the motion tra-

jectories is implemented with Earley-Stolcke parsing algorithm.

In [9], we have fed back this syntactic information to improve

the performance of the tracker and demonstrate the performance

on GMTI data collected with DRDC Ottawa’s XWEAR radar.

In related work, [10] presents data fusion algorithms for SCFGs

in a camera-network for surveillance. The main thrust in this

paper has been to incorporate the destination of a target as part

of its intent (in addition to the spatial pattern exhibited by the

trajectory).

The simulations present proof-of-concepts for the various ap-

plications presented. The use of velocity tracklets allows a par-

simonious representation of both shape and destination of the

target trajectory. RP models can only be used to represent des-

tination-constrained trajectories. They also require discretiza-

tion of the surveillance space into a grid which leads to a large

state-space. RP models are also disadvantageous because they

require knowledge of the time at which the destination is

reached. However, SCFGs can only constrain the trajectory des-

tination weakly. A fusion of the the SCFG and RP models pro-

vides a better classification of joint shape and destination-based
target intent.
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