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Abstract—In this paper, a track before detect approach utilizing
trajectory shape constraints is proposed to track dimly lit targets.
The shape of the target trajectory is modeled syntactically using
stochastic context-free grammar models (SCFG) that arise in nat-
ural language processing. The directional vector of the target ac-
celeration modes are used as geometric primitives called tracklets.
The tracklets are syntactic sub-units of complex spatial trajectory
shapes. Stochastic context-free grammars are a generalization of
Markov chains (regular grammars) and can model such complex
spatial patterns with long range dependencies. Knowledge about
the evolution of the trajectory is used in enhancing the track be-
fore detect algorithm. A novel multiple model SCFG particle filter
is proposed and numerical results are presented to show significant
improvement over conventional jumpMarkov models in track be-
fore detect.

Index Terms—Dimly lit targets, multiple model particle filter,
natural language processing, stochastic context-free grammars,
track-before-detect, trajectory models.

I. INTRODUCTION

C ONVENTIONAL target tracking algorithms employ a

detect-then-track approach that performs filtering based
on target detection. A target is detected by applying a hard

threshold on the sensor measurement utilizing a suitable metric,

for example, a constant false alarm ratio. Such a method of

first detecting targets and subsequently forming tracks is more
efficient in terms of computational complexity. However, in
dimly lit (low signal-to-noise ratio) conditions, the background

clutter is often at a comparable strength to the target returns and

hard thresholding leads to overwhelming spurious detections.

A track-before-detect (TBD) approach uses multiple frames of

the raw sensor measurements with the objective of avoiding

a hard thresholding decision. Consequently, TBD algorithms

jointly estimate the existence of the target (detection) as well

as track its kinematic state (filtering).
In this paper, we enhance the TBD approach by exploiting

target trajectory patterns. Conventionally, maneuvering targets

are modeled using jump Markov state space models [1], [2].
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However, modeling maneuvers via Markov chains does not

facilitate modeling complex spatial trajectories like u-turns,

closed trajectories and circling patterns as shown in Fig. 1(b).

The main idea of this paper is to model maneuvering targets as a

stochastic context-free grammar (SCFG) modulated state space

model. The proposed track-before-detect approach exploits

higher level information regarding the intent and/or trajectory

pattern of the target. We show that the resulting syntactic

TBD algorithms can successfully detect and track targets at

significantly lower SNR than conventional TBD algorithms.

A. Why Use Stochastic Context-Free Grammars for Trajectory
Modeling?

An SCFG is defined formally in Section III-A and is pre-
sented in analogy to a hidden Markov model (HMM) to

aid signal processing readers who are unfamiliar with this

formalism. SCFGs have been studied extensively in natural

language processing and are a generalization of Markov chains

(as shown in Fig. 1(a)). The expressive power of SCFGs en-

ables scale-invariant modeling of complex spatial trajectories

with variable-order long-range dependencies that naturally

arise when humans (or human operated objects) move in an

environment [3]. Such patterns cannot be generated by Markov

chains (this is proved in computer science using “pumping

lemmas” [4]). In Fig. 1(a), we show the Chomsky hierarchy

of grammatical models which depicts that SCFGs are a more

expressive generalization of Markov models.

Inference using SCFGs can also be performed in polyno-

mial time using efficient algorithms like the inside-outside algo-
rithm [5] and the Earley-Stolcke parser [6]. This makes SCFGs

practically relevant unlike more general context-sensitive gram-

mars (see Fig. 1(a)) where inference is known to be NP-com-

plete [7]. Additionally, SCFGs have a compact formal repre-

sentation in terms of production rules that allow human intu-

ition to be easily codified into high-level rules. This, in turn,
permits the design of high-level Bayesian signal processing al-

gorithms to detect trajectories of interest. The ability for the

designer to encode domain expertise into a knowledge base is

important because the lack of sufficient field data is a limiting
factor in training anomaly recognition systems. From an infor-

mation-theoretic perspective, it is shown in [5] that the predic-

tive power of SCFGs, as measured by its predictive entropy, is

greater than that of an analogous hidden Markov model with

the same number of free parameters. These characteristics make

SCFGs an ideal trajectory modeling tool.
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B. Why Consider Trajectory-Constrained TBD?

Track-before-detect plays an important role for situational

awareness in low SNR conditions. The main idea of our ap-

proach is for the human operator to utilize meta-level informa-

tion about suspicious trajectories to make the TBD algorithm

more sensitive in dimly lit environments. Increased sensitivity,

in this scenario, is defined as an increase in the tracking and
detection performance at low signal-to-noise ratios when the

target exhibits a suspicious trajectory. Consider the scenario de-

picted in Fig. 2(a) that can occur in dismount-moving target in-

dicator (DMTI) radar applications for highly mobile targets. It

depicts a hypothetical situation in which a human guard (or ve-

hicle) is patrolling the perimeter of a compound in a circling

pattern. Humans are capable of turning on the spot and instan-
taneously reversing their motion which represents a significant
deviation from a constant velocity motion model. Such trajecto-

ries are also not well modeled by constant turn models. A stan-

dard track-before-detect particle filter with two modes of opera-
tion (a constant velocity and a constant turn mode) diverges and

is unable to reliably detect and track a simulated rectangular tra-

jectory at an SNR of 2 dB as shown in Fig. 2(b). However, an

SCFG-switching multiple model approach can accurately de-

tect and track the target as shown in Section V. As the target

moves in the surveillance environment, it generates a sequence

of modes which constitute a trajectory . The

set denotes a class of scale-invariant, rotation-invariant trajec-

tories with recursive embedding that can model shapes such as

lines, arcs, m-rectangles and closed-loops as shown in Fig. 1(b).

In this paper, we will choose to be a set of trajectories that

can be generated by a stochastic context-free grammar. In the

sequel, we show that modeling the trajectory followed by the

target using directional modes allows our syntactic TBD par-

ticle filter to operate better than conventional TBD algorithms
(without trajectory constraints) in lower SNR conditions. Even

a small SNR difference of 3 dB can amount to a target being

detected with high fidelity at 16 dB) or it being

marginally detected ( at 13 dB) [8].

We approach the multi-frame TBD problem as a tracking

problem involving a high-dimensional sensor measurement that

is also a highly non-linear function of the state contaminated

with non-Gaussian noise. As depicted in Fig. 4, our syntactic

TBD approach utilizes a hybrid particle filter to propagate
a mixed continuous-discrete state given the entire image se-

quence of radar measurements without performing any hard

thresholding at each measurement instant. The output of the

TBD algorithm is a posterior filtering density from which the
target can be simultaneously detected and tracked. In addition,

the mode estimates can be used as a trajectory visualization

tool. The mode estimates can also be used in a feedback loop to

aid a higher level decision-layer in situational awareness type

applications.

C. Literature Survey

A brief survey of the literature on the two major components

of this paper a) non-linear filtering and b) trajectory pattern
recognition are presented in this section.

On Non-Linear Filtering in TBD: The main difficulty in the
TBD problem is the highly non-linear relationship between the

sensor measurement image and the target state. A rich history

of non-linear filtering exists in the TBD literature starting

from the use of an extended Kalman filter in [9] and point
mass (HMM) filter approximations in [10], [11]. An efficient
alternative to state-space discretization is to use particle filters
to solve the non-linear estimation problem, see [12], [13]. The

histogram probabilistic multi-hypothesis tracking (H-PMHT)

algorithm [14] is an efficient multi-target alternative to TBD
as it does not threshold the sensor observations and also does

not use likelihood ratios. A random finite set approach is
taken in [15] for multiple targets which uses the probability

hypothesis density of a multi-Bernoulli random finite set.
This approach has been shown to be equivalent to a particle

filter TBD approach in [16]. Finally, the recent work [17]

addresses the computational complexity of TBD algorithms

by using two detection thresholds to first produce a small set
of detections and then exploiting space-time correlations. A

textbook treatment of hybrid (mixed continuous and discrete

state variables) state estimation techniques can be found in [1].

The target dynamical model used in this paper is similar to

that used in road-constrained target tracking [18], [19] which is

philosophically similar to the notion of trajectory constraints.

On Trajectory Pattern Recognition: The modeling of com-
plex spatial trajectories considered in this paper stems from

research in the syntactic pattern recognition community [20].

Trajectory modeling has been widely studied in the action

recognition community. The study in [21] uses a two-tier

approach towards goal recognition in a wireless LAN scenario.

A hidden Markov model (HMM) is used as a feature-detector

in the lower tier while a higher-order HMM is used to enforce

syntactic structure in the upper tier. However, a standard HMM

suffers from an exponential self-transition probability when the

same state is visited for a long duration. As a result, repeatedly

visiting the same state exponentially decreases the model like-

lihood. Consequently, a non-stationary hidden semi-Markov

model is proposed in [22] to account for self-transitions.

SCFGs can also effectively model such self-transitions using

its self-embedding property (explained in Section III-A).

The grammar modeling approach in this paper is also related

to the approach taken in [23] where attributes are associated

with a stochastic context-free grammar to enforce constraints on

the applicability of the production rules. The domain of interest

is the detection of certain anomalous activities like carjacking

in parking lots. In this paper, constraints are also enforced albeit

on system-theoretic quantities resulting in a convenient initial-

ization for the rule probabilities of an SCFG.

To the best of our knowledge, constraints on the trajectory

patterns have not been examined in the context of track-be-

fore-detect algorithms in the literature. In contrast to our past

work [24], this paper considers a highly non-linear measure-

ment function for which linear approximations like the extended

Kalman filter and extensions like the variable-state interacting
multiple model (VS-IMM) used in [24] cannot be suitably ap-

plied. Moreover, the particle filtering solution applied in this
paper is different from the approximations used in [24]. The
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Fig. 1. (a) shows the Chomsky hierarchy of grammars. Polynomial time algorithms for inference are only known for the class of context-free and regular grammars.

SCFGs belong to the class of context-free grammars which are more general and expressive than regular grammars (that contain HMMs). (b) shows examples of

target trajectories that are scale-invariant and display recursive embedding. This is a conceptual sketch of a road network on which target trajectories are evolving.

An urban landscape constrains targets to travel predominantly along certain directions. The rectangular trajectories shown have the same destination but are of

different sizes. They can be captured by the same stochastic context free grammar model without a corresponding increase in computational complexity even

though they exhibit memory of different orders.

Fig. 2. (a) shows the perimeter surveillance proof-of-concept application. A dismounted target walks around the compound wall in a rectangular trajectory. In

(b), a TBD particle filter algorithm with a standard constant velocity model together with a constant turn model is used in a 2 dB SNR scenario. The filter diverges
midway through the evolution of the target trajectory. In (c), the probability of detection is shown with the selected threshold. We observe that almost half the time,

the target is not even detected reliably. In Section V, we demonstrate the performance increase obtained by using SCFG trajectory models as shown in Fig. 8(a).

more recent work [25] uses similar trajectory models but is sig-

nificantly different because it completely bypasses the tracker
and builds a meta-level inference layer on top of the base-level

tracker. This approach was taken to ensure legacy-compatibility

with older tracking systems yet providing the prediction and de-

tection capabilities of SCFGs to pick out anomalous trajectories.

The paper is organized as follows. The track-before-de-

tect problem is formulated as an SCFG-driven multiple-model

tracking problem. Details about the switching state space model

used and the sensor characteristics are provided in Section II. In

Section III, a brief review of SCFGs is provided together with

grammar models for common trajectories which can be used as

building blocks of more complex trajectories. In Section IV, a

particle filtering solution for the SCFG-driven TBD problem
is presented together with a Rao-Blackwellised version. This

solution is then used to present numerical experiments in

comparison with a Markov-modulated multiple-model TBD

particle filter in Section V. Finally, we present concluding
remarks in Section VI.

II. SCFG-DRIVEN MULTIPLE MODEL TRACK-BEFORE-DETECT

In this section, the track-before-detect problem is formu-

lated as a constrained search within trajectories satisfying

syntactic patterns. The trajectory dynamics are modeled using

an SCFG-mode sequence, the target state dynamics follow

a switching constant velocity model with directional process

noise and the sensor characteristics are described assuming a

line-of-sight radar sensor measurement.

A. Trajectory-Constrained Model
Consider a target moving in the x-y plane according to a dis-

crete-time dynamic model of the form

(1)
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where is the discrete-time index, is a mode, is the

state process noise and is the state vector

comprising of the position and velocity components in the and

coordinate axes. The transition matrix and noise gain are

respectively,

where is sampling interval. The mode-dependent state

process noise is a white Gaussian process with co-variance

matrix

(2)

where the superscript denotes the transpose operation, is

the uncertainty along the direction indicated by and is the

uncertainty along the orthogonal direction to . The modes

serve to modulate the state process noise and cause it

to switch between different variance values. The noise can be

uncoupled across each state variable using the equivalent repre-

sentation . The process noise is

a zero-mean Gaussian [1], [26] with co-variance matrix

(3)

where refers to a 4 4 matrix obtained by diago-

nally concatenating from (2) and setting the extra entries to 0.

Such a representation results in a non-singular co-variance ma-

trix more amenable towards use in the particle filters presented
in Section IV.

The observations from the radar sensor provide data over

a discretized two-dimensional domain consisting of an

grid of resolution bins of side length . In particular, the

measurement is

an image of measured intensities given by

,

where is the target spread function that represents

the contribution of the target intensity to the th bin. The

target existence is a binary variable representing the absence

or the presence of a target. The target spread

function is modeled by a Gaussian spread

(4)

where is the constant amplitude of the target and is the

variance of the Gaussian spread function. The measurement

noise is assumed to be dominated by Rayleigh distributed

clutter. When no target is present, the likelihood of the obser-

vation at bin , follows a Rayleigh distribution

where is the average Rayleigh clutter power determined by

calculating the mean power across the measurement frame.

When a target is present, the likelihood of the observation

follows a Ricean distribution

where is the modified Bessel function of zero order. The
filtering solution in the sequel requires us to introduce the mea-
surement likelihood ratio in a bin as

(5)

The target existence is modeled as a two state Markov chain

with transition matrix

(6)

When the mode sequence is considered to arise from a Markov

chain, the transition matrix of the modes is given by

(7)

This transition probability function assigns maximum proba-

bility to the same mode such that and assigns an expo-

nentially decaying probability to neighboring modes. We use

to parametrize the Markov chain model

generating trajectory sequences (as an alternative to SCFG

models).

B. Estimation Objective

We seek to obtain filtered state, mode and target existence
estimates given the measurement sequence

of sensor images . For each instant , the presence (or

absence) of the target is indicated by the random variable

which is modeled as a two-state Markov chain. The target

is assumed to follow a trajectory which switches between

constant velocity models in certain acceleration directions

. These acceleration

directions are shown in Fig. 3. A sequence of target modes (or

maneuvers) is defined as a trajectory which is modeled

using SCFGs. The precise formulation of the SCFG trajectory

models is presented in Section III. As shown in Fig. 4, a par-

ticle filter is combined together with the Earley-Stolcke parser
to perform multi-model state estimation for a jump SCFG

non-linear state space model.
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Fig. 3. The modes of operation of a target which are represented by directional

motion models in the 8 quantized radial directions. We refer to ‘North-East’,

‘South’ etc. as cardinal directions in the paper.

Fig. 4. The syntactic TBD system architecture. An image-based sensor mea-

surement from a radar or FLIR (forward-looking infra-red) can form the input

to our system. A knowledge base of radar operator intuition can be used to build

SCFG models which help the particle filter to operate in low SNR conditions
when certain trajectories are exhibited by a target.

III. TRAJECTORY MODELING AND INFERENCE USING

STOCHASTIC CONTEXT-FREE GRAMMARS

Suppose we are interested in tracking dimly lit targets fol-

lowing a specific trajectory pattern such as a circling behavior
shown in Fig. 2(a). How can this information be encoded

into a tractable model and be used with a TBD algorithm?

In this section, we define SCFGs and present SCFG models
for geometric trajectory patterns like lines, arcs, m-rectangles

and closed-loops. We also provide further insight into SCFGs

by contrasting them with hidden Markov models. Finally, we

describe how inference using SCFG models can be used within

the trajectory-constrained framework. The development and

notation in this section follows our previous work in [25].

A. Review of Stochastic Context-Free Grammars

In this section, we provide a structural description of sto-

chastic context-free grammar (SCFG) models. A pedagogical

treatment relating to signal processing applications of SCFGs

can be found in [20]. A context-free grammar is a 4-tuple

, where is a finite set of non-terminals
, is a finite set of terminals

such that , is the chosen start symbol

(initial non-terminal) and is a finite set of production rules
of the form , and . The

set denotes all finite length strings of symbols in
, excluding strings of length 0. The symbol de-

notes a re-write operation which replaces the non-terminal

with the string . A stochastic context-free grammar is defined
as a pair , where is a probability func-

tion over the production rules such that ,

. The number of alternative production

rules associated with is denoted .

B. SCFG Models for Anomalous Trajectories

In this section, various trajectories of interest are modeled

using stochastic context-free grammars. Each trajectory pattern

considered in this paper has an associated grammar model

with a common set of terminals that represent the pos-

sible modes of operation. They may have different rule spaces

and/or non-terminal spaces . While modeling trajectory

shapes using grammar models, we will focus on the structure

of the production rules. The rule probabilities are chosen so

that certain system-theoretic conditions [25] are satisfied. The
models described below have previously been considered in

[25]. Only the grammatical descriptions are included to provide

a unified description in this paper.
Linear Trajectories: Straight paths are denoted as linear tra-

jectories that are generated by target dynamics obeying local

Markov dependency. Linear grammar models are represented

using the compact form implying that the model

can generate all trajectories involving movements of a target

in the direction represented by the unit vector . A simple reg-

ular grammar for lines is characterized by rules of the form

with representing the target’s direction of

motion.

Arc-Like Trajectories: Arc-like trajectories have the com-
pact form which is characterized by an equal

number of movements in opposing directions represented by

the unit vectors and . The notation denotes an arbitrary

number of movements in the direction represented by . A

simple grammar capable of generating arcs of all lengths is

shown in Fig. 5(a). The notion of arc-like patterns is used to

represent u-turn and open trapezoidal patterns.

Rectangle Trajectories: Rectangular trajectories are of the
sentential form , where the target

moves an equal number of times in opposing directions

and . However, it can be shown using a pumping lemma

that a complete rectangle cannot be modeled by a context-free

grammar [4]. A more expressive formalism called context-sen-

sitive grammars (see Fig. 1(a)) are required. However, there

are no known polynomial time algorithms to perform inference
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Fig. 5. An arc grammar in (a) and an m-rectangle grammar in (b). Only the

production rules are shown. Capital case refers to abstract non-terminals and

lower-case refers to terminal modes. A rule re-writing is analogous to a state

transition in Markov models. A non-terminal currently being considered for

expansion is replaced by the string on the right hand side of the rule chosen

(by sampling the conditional distribution induced by all alternative rules) for

expansion. Each rule in the conditional distribution is associated with a rule

probability .

with context-sensitive models. Instead, we consider the mod-

ified-rectangle language (with associated grammar shown in
Fig. 5(b)) as . The modified-rec-
tangle grammar can model any trajectory comprising of four

sides at right angles (not necessarily a closed curve) with at

least two opposite sides being of equal length. The notation

and represent an arbitrary number of movements in the

corresponding directions represented by that mode.

SCFG Model Estimation: The models presented in

Section III-B happen to have compact forms representing

simple geometric shapes. For more complicated trajectory

patterns, we advocate the construction of the rule structure

by domain experts incorporating intuitive knowledge into the

rule-based framework of SCFGs. For example, a radar operator

typically sees many anomalous trajectories and can subcon-

sciously codify the evolution of the trajectory into high-level

rules. A discussion of other grammar construction techniques is

provided in [4]. A learning based approach can also be under-

taken to estimate the rules through training data and a typical

approach based on Bayesian model merging is presented in [6].

In addition to the syntactic rules comprising a grammar

model, we are also required to choose the rule probabilities

governing the conditional application of a particular rule in

the generation of the trajectory sequence. Traditionally, a

maximum likelihood approach can be taken [6] by estimating

the rule probabilities that maximize the likelihood of some

pre-obtained training data given a candidate grammar model.

However, since our models have relatively simple structure,

we use the consistency and expected word length constraints

from [25] to estimate rule probabilities. Moreover, given that

expectation-maximization type algorithms for estimating the

rule probabilities of SCFGs are highly prone to getting stuck in

Fig. 6. (a) depicts the generation process of an SCFG as a branching process.

The tree on the right is also called a parse tree or a derivation because the se-

quence is derived by repeated application of the production rules shown in the

top left. The in the production rules denotes an alternate re-writing rule. Cir-

cles with double boundaries represent observations while regular circles repre-

sent latent states. The derived mode sequence is an arc with a trapezoidal

shape as shown in the bottom left. In (b), the generation process of an HMM is

depicted as a linear directed graph. While the SCFG can always ensure equal

opposing movements in every sample path due to self-embedding, the HMM

cannot ensure this as observed in the sample HMM sequence to the left.

local minima, such constraints can be used to find appropriate
initial values for the rule probabilities.

C. Comparison Between SCFGs and HMMs
In this section, for the reader’s convenience, we provide in-

sight into SCFGs by an analogy with hidden Markov models

(HMMs). In order to facilitate our comparison, an example sce-

nario is depicted in Fig. 6 in which we seek to generate the

mode sequence . This mode pattern represents an

arc-like trajectory with two movements in the ‘North-

East’ direction, one movement in the ‘East’ direction and two

matching movements in the ‘South-East’ direction. The gener-

ative SCFG model for such a trajectory is shown in Fig. 6(a).

It has a non-terminal set where

NE represents the ‘North-East’ direction as depicted in Fig. 3.

The special symbol is a self-embedding non-terminal because

it can repeatedly call itself while producing an equal number

of opposing NE and SE non-terminals. The SCFG terminal set

is comprised of the unit vectors corre-

sponding to the cardinal directions. For example, as depicted in

Fig. 3, the terminal corresponding to the ‘North-East’ cardinal

direction is represented by the unit vector . An equivalent dis-

crete-observation hidden Markov model is specified by a set of
unobserved states that is

similar to the non-terminal set of the SCFG. The HMM state

set does not have the self-embedding symbol and has been

augmented with a special END state to guarantee finite-length
termination. The HMM observation space is equivalent to the

terminal set of the SCFG.

In direct analogy to an HMM, the non-terminals of an SCFG

are abstract unobserved states while the terminals are observed
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symbols. In the context of trajectory modeling, the non-ter-

minals represent structural parts of a shape. For example, in

Fig. 6(a), an arc is structurally decomposed as NE, and SE

segments. The terminal symbols correspond to unit movements

in a cardinal direction. Fig. 6 shows that while the HMM state

sequence evolves as a linear directed graph, the SCFG behaves

like a branching process. The transitions of an HMM from one

state to the next can be written as regular grammar rules of the

form which represents a transition from the

current state to the next state while emitting an ob-

servation . This corresponds to the depiction of the HMM

evolution as a linear directed graph in Fig. 6(b). However, the

SCFG has more complex rules that manifest in a branching

process as shown in Fig. 6(a). SCFGs are known to be a

special class of multi-type Galton-Watson stochastic branching

processes [3], [27]. The defining characteristic of an SCFG
is the presence of self-embedding rules like

in Fig. 6(a). Such a rule, repeatedly calls itself to generate

equal opposing movements that manifests as an unbounded

dependency and imparts scale-invariance to SCFG trajectory

models.

Analogous to the (hidden) Markov model case, there are sev-

eral probabilistic queries that can be computed for a symbol

sequence generated from an SCFG. (a) We can compute the

likelihood of a sequence given a cer-

tain SCFG model. While the forward algorithm [28] is com-

monly used for HMMs, the inside algorithm [5] is a general-

ization that can be used for SCFGs. (b) We can estimate the

hidden sequence of rules used in the derivation of a sequence

analogous to hidden state sequence estimation in HMMs. The

Viterbi algorithm can be used in conjunction with the inside al-

gorithm for this purpose. (c) Finally, we can learn the rule prob-

abilities from a dataset using a maximum-likelihood approach

called the inside-outside algorithm [5] which is similar to the

forward-backward algorithm used in Baum-Welch [28] re-esti-

mation for HMMs.

D. Inference Using SCFGs

The main quantity of interest for the hybrid state estima-

tion problem in Section II-B is the one-step ahead prediction

that can be computed from a left-right

pass over an observed terminal sequence. Calculation of the

one-step ahead prediction requires the notion of the “prefix”
probability of a symbol sequence given an SCFG model

. The computation of the prefix probability is represented
by

(8)

where denotes all possible arbitrary combinations of

non-terminal and terminal symbols. The expression in (8) repre-

sents the probability that the sequence is the prefix of a sen-
tence generated from a SCFGmodel and it conceptually

requires a summation over all possible suffixes. The one-step
prediction utilizes the probabilistic rules of the SCFG model to

predict the next mode in the sequence. This quantity is impor-

tant in describing a suitable transitional density for the particle

filter solution in Section IV. The one-step prediction probability

(9)

where is an element of the finite mode set and we

have implicitly assumed computation with respect to a partic-

ular SCFG model and excluded it from the expressions

for the sake of brevity. The Earley-Stolcke parser [6] provides

an efficient algorithm to compute the quantity in (8) and the re-
lated one-step prediction probability in (9). A brief algorithmic

description is provided in Appendix A.

IV. BAYESIAN FILTERING OF SYNTACTIC TBD

In this section, a particle-filter based solution is derived
for the multiple model track before detect problem outlined

in Section II. Finite-dimensional filters are not known for
non-linear and non-Gaussian measurement processes. The

switching state-space model also introduces a posterior density

with an exponentially increasing number of components. As a

result, a particle filtering approach is employed with efficient
use of the Earley-Stolcke parser as a proposal density gener-

ator. Finally, in Section IV-B, a Rao-Blackwellised scheme is

outlined for variance reduction in the estimates.

A. Multiple-Model SCFG Particle Filter
Consider the extended target density

that we are inter-

ested in for the multi-frame TBD problem. We define an
extended target state and

approximate the prior extended state density with an empirical

random measure such that

(10)

where is the number of particles used. A sequential impor-

tance sampling approach is used to obtain the posterior density

in the usual manner using a prediction step and an update step.

The prediction step can be decomposed as

(11)

In (11), the first term on the right hand side represents the

prior density from (10). To generate new samples for the

hybrid state , we use the respective transitional densities as

proposal functions for the particle filter propagation. The con-
tinuous-valued state is propagated by sampling from the state
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transition function in (1). The target existence is propagated

using the birth-death Markov transition matrix in (6). Finally,

the mode is propagated using the one-step prediction proba-

bility in (9). Mathematically, we sample particles from the

bootstrap proposal such that , where

(12)

If the predicted target existence , then the following

possibilities can occur:

Target Birth: When and , the target state is

drawn as a sample from a birth proposal density

that is obtained in the following manner. The target position

components are sampled from a uniform density over positions

in the surveillance region where , where is an inten-

sity threshold. The newborn particles are thus positioned in re-

gions of the surveillance area where the most recent sensor mea-

surement has a large value. The target velocity component is

sampled from a uniform proposal density ,

where is the maximum assumed velocity in the

and directions.

Target Continuance: When and , the par-

ticle stays alive and the target state is drawn from the continu-

ance proposal which is taken to be the transitional prior defined
in (1).

If the predicted target existence , the target state is un-

defined. This is represented by . A new sampled particle

is then appended to the particle represen-

tation such that . The measurement update

for the particle filter is given by

(13)

where is the like-

lihood of the sensor measurement given by (5) and

is the predicted density given

by (12). The measurement likelihood described in (5) is a

product of i.i.d random variables at each bin location .

However, it is common in TBD literature [12] to limit the

influence of a target in a spatial bin to a small neighbor-

hood centered around that bin. We denote this neighborhood

by indicating the affected bins in the X-dimension

and indicating the affected bins in the Y-dimension.

The incremental un-normalized importance weights for the

bootstrap particle filter are then

if

if .

(14)

Finally, the weights are normalized and an appropriate resam-

pling step is carried out. At each stage of the particle filtering

Algorithm 1: SCFG-driven Multiple Model Particle Filter

1: function SCFG-MMPF

2: Sample using (9)

3: Sample using (6)

4: for to do

5: if , (target birth) then

6: Sample

7: else if , (continuation) then

8: Sample

9: else if (target death) then

10:

11: Evaluate using (14)

12:

13: Normalize ,

14: if then

15: RESAMPLE

16: for to do

17:

18: return

algorithm, we can compute estimates from the particle repre-

sentation of the extended state Target existence

can be computed as

(15)

Target presence is then declared if is above a threshold value.

This can be used to initiate a track based on the estimated target

state given by

(16)

In a similar manner, we can also compute mode estimates at

each time instant by computing the proportion of particles in

each mode and selecting the most likely mode

(17)

An algorithmic description of the SCFG multiple model par-

ticle filter for syntactic track-before detect is presented in
Algorithm 1.

B. Rao-Blackwellised Multiple-Model SCFG Particle Filter
In this section, analytical sub-structure present in the problem

is used to reduce the variance of our estimates by using a Rao-
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Algorithm 2: Rao-Blackwellised Particle Filter for Syntactic
TBD

1: function RBPF
2: for to do

3: Predict using (19)

4: Sample using (20)

5: Update importance weights using (22)

6:

7: for to do

8: Normalize ,

9: Update using (21)

10: if then

11: RESAMPLE

12: for to do

13:

14: return

Blackwellised [29] version of the particle filter in Section IV-A.
Consider the filtering density
decomposed as

(18)

It can be observed that conditioned on the state sequence

and the mode sequence , the target existence is generated

by a Markov chain. Consequently, the HMM filter can be used
to exploit analytical sub-structure for the conditional target exis-

tence density .

The continuous-valued target state and the dis-

crete-valued mode are represented by an extended

state and their conditional density is

approximated by a set of weighted random particles as the

empirical random measure .

The prediction of the conditional target existence density is

given by

(19)

for and . The prediction for the random

measure is performed using a suitable pro-

posal density . We choose to use the

popular bootstrap proposal such that prediction of the extended

target state is given by

(20)

where is the state transition function in (1) and

is the one-step prediction in (9).

The measurement update for the target existence is given by

(21)

Finally, the measurement update for the extended state is done

using the incremental weight update such that

(22)

In (21) and (22), the term is evaluated using

the measurement likelihood in (14). An algorithmic description

of the Rao-Blackwellised particle filter is provided in Algorithm
2.

V. NUMERICAL EXAMPLES

In this section, two types of numerical examples are con-

sidered. First, a reduced state space “toy” example is detailed

to illustrate the concepts in the paper in a tutorial fashion.

Then, we perform simulations on a realistic real-world sce-

nario. The detection and tracking performance of syntactic

track-before-detect is evaluated at various SNR levels in a

Monte-Carlo fashion. There are two competing architectures

used in all simulations. The first type of architecture called
“Markov-MMPF” (Markov-switching multiple model particle

filter) considers multiple models switching according to a
Markov chain model as described by (7). The second archi-

tecture is called “SCFG-MMPF” (SCFG-switching multiple

model particle filter) which considers mode switching behavior
driven by an SCFG.

A. Reduced State-Space “Toy” Example
Consider the one-dimensional non-linear switching sto-

chastic volatility model [30] commonly used in quantitative

finance. The mode (called the drift parameter) represents a
“volatility” state which is assumed to be either a low-volatility

state or a high-volatility state . The modes

cause the log-volatility to switch between two states in a linear

auto-regressive process

where and , and

. The binary-valued mode is assumed to arise from

an SCFG with form having grammatical rules

and . Such a model

captures scenarios in which the volatility of a certain asset fol-

lows a pattern of being in the low volatility state for equal time

periods with a high volatility period of arbitrary length in be-

tween. We are interested in tracking the log-volatility under

such a scenario. The observations are conditionally independent

given the latent state such that
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Fig. 7. (a) shows the simulated and estimated log-volatility at a noise variance of 2.0 for one of the 1000 Monte Carlo runs. It can be visually observed that the

SCFG-MMPF performs better than the Markov-MMPF. (b) shows the RMS error between the true target state and the SCFG and Markov chain versions. Similarly,

(c) shows the mode estimation rate. In either case, the SCFG version performs better than the Markov chain version.

The conditional probability distributions for the state variables

and the observations are given by

Using the model specified above, 1000 Monte-Carlo runs were
simulated by changing the measurement noise variance from

1.0 to 20.0 and keeping the state noise variance fixed at 1.0.
We show the results of the Monte-Carlo experiment in Fig. 7.

The continuous-valued state estimates are evaluated by com-

puting the root mean square (RMS) error for each Monte-Carlo

run as

(23)

The discrete-valued mode is compared using the notion of

a confusion matrix. If the discrete mode takes values,

then a confusion matrix enumerates the

number of times the true mode is estimated as mode . The

mode detection rate is then taken as the trace of the normalized

confusion matrix. The normalization in each row is with re-

spect to the total number of times mode appears in the

simulated sequence. A perfect mode estimation would result in

.

The SCFG-MMPF of Algorithm 1 (without the existence

variable computations) is able to track the log-volatility with

a lower root mean square error (RMSE) and also detects the

modes with a higher accuracy. The Markov-MMPF uses the

same algorithm but the proposal density for the mode comes

from the corresponding Markov transition matrix representing

Markovian switching of the volatility modes. We also observe

that the variance of the RMSE over all Monte-Carlo runs at a

particular noise variance is smaller for the SCFG-MMPF.

B. Syntactic TBD Examples

We show, through numerical simulations, that constraining

a particle filter TBD solution along trajectory models results

in a reduced error in mode , existence and state esti-

mates compared to competing architectures. The detection per-

formance is analyzed by calculating the probability of detec-

tion over 1000 Monte Carlo runs of the corresponding TBD

filter. If represents the hypothesis that a target is absent

and represents the hypothesis that a target is

present , then the detection probability is given by

the number of times that is true and the syntactic TBD filter
chooses for each of the frames of available sensor mea-

surements. The tracking performance is measured using the root

mean square error (RMSE) of the target position and velocity.

In all simulations, the time step . The

process noise co-variance is constructed using and

. A sequence of 100 frames is generated in each ex-

periment with , is dependent on the extents

of the trajectory for visualization purposes, the target intensity

is assumed constant at and the sensor spread parameter

. The Rayleigh clutter power . The sensor spread

function is also truncated to affect only the closest 8 neighbors

of the center pixel .

An example of a raw sensor measurement is shown in

Fig. 9. Each frame depicts the returned intensities at a single

time instant. A white pixel indicates a high returned intensity

while a black pixel indicates a small returned intensity. An

operator looking at thresholded sensor measurements would

find it impossible to extract target tracks from visual inspection
alone. The syntactic TBD particle filter uses the following
parameters. The target existence is modeled by a birth prob-

ability and a death probability .

The intensity threshold and the maximum

velocity is . The number of particles

used in the filter . Finally, a track is initiated and

a target is declared present if the estimated target existence

. A simulated rectangle trajectory and the TBD track

output is shown in Fig. 8(a). The input to the TBD tracker is

the sequence of sensor measurements shown in Fig. 9. This

particular configuration amounts to a 2 dB signal-to-noise ratio.
We observe that the SCFG derived mode sequence is able to

track the target better than the case of a Markov chain based

mode sequence.

In Fig. 8(c), the results of running 1000Monte Carlo runs of a

multiple model particle filter are shown as the SNR is changed.
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Fig. 8. (a) shows the simulated and estimated track at an SNR of 2 dB of one of the 1000 Monte Carlo runs. (b) shows the change in the detection probability with

SNR. (c) shows the RMS error in position (X and Y combined) of the SCFG and Markov chain versions. Similarly, (d) shows the RMS error in velocity (X and

Y combined) of the competing models. In either case, the SCFG trajectory models perform better than the Markov chain version. (e) shows the error in the mode

in terms of the trace of the confusion matrix as explained in Section V-A. (f) shows the effect of the number of particles on the performance of the proposed

filters. The performance (in terms of RMSE of the target state saturates at approximately 200 particles.

Fig. 9. Each sensor measurement is an image of returned intensity values. The

dark bins corresponds to weak radar returns while the lighter bins correspond

to strong radar returns.

A range of SNR values is swept by changing the target intensity

and the noise variance. The plot of versus SNR is shown in

Fig. 8(b) which does not show a significant difference between
the competing models. The detection probability reflects on the
performance of the filters in estimating the existence variable
. The existence variable behaves like a switching measure-

ment which is treated in the same manner (through Markovian

switching parameterized by and ) in both Markov

and SCFG-MMPF. As a result, there is little difference in the es-

timation error of . However, the SCFG trajectory models per-

form much better in terms of estimation error in the state vari-

able . The decrease in the root mean squared error (RMSE)

of the X and Y position is shown in Fig. 8(c). A similar decrease

in the RMSE of the and velocity estimates is obtained for

the SCFG trajectory models over theMarkov chain basedmodel

as depicted in Fig. 8(d). In addition, the SCFG-MMPF also es-

timates the mode more accurately than the Markov-MMPF

as seen in Fig. 8(e).

The SCFG-MMPF uses the expensive Earley-Stolcke

parser as a bootstrap proposal density generator as opposed to

the constant-time lookup afforded by the Markov chain

transitions. However, as seen in Fig. 8(f), the performance

of both filters saturates after 200 particles. Consequently, the
Markov-MMPF cannot achieve better performance by naively

increasing the number of particles.

VI. CONCLUSION

This paper has addressed the question: suppose one is inter-

ested in estimating the state of a dimly lit target that is moving

according to a specified class of trajectories (intent). How can
a TBD algorithm be derived to exploit this information? We

presented stochastic-context free grammar models arising in

natural language processing to model complex spatial trajectory

patterns. The syntactic modeling framework facilitates incorpo-

rating meta-level information from human operators regarding

suspicious trajectory patterns into the TBD problem. A novel

particle filtering algorithm coupled with the Earley-Stolcke

parser was derived to estimate the target state and existence.

Such a modeling approach can be viewed as a generalization

of jump Markov state-space models to jump SCFG state-space

models. We also derive a Rao-Blackwellised version of our



FANASWALA AND KRISHNAMURTHY: TRAJECTORY CONSTRAINED TRACK-BEFORE-DETECT 6141

proposed particle filter to reduce the variance in the estimates.
Finally, the numerical simulations demonstrate a marked

increase in tracking performance (RMSE) over competing

Markov chain based trajectory models.

In its present form, the proposed particle filter requires run-
ning Earley-Stolcke parsers in parallel for each particle. We

attempted to exploit analytical sub-structure in the SCFG mode

sequence by deriving a Rao-Blackwellised version using a deci-

sion-directed scheme. In such a scheme, previous estimates of

the mode drive a single Earley-Stolcke parser rather than

maintaining separate Earley-Stolcke parsers for each particle.

However, we found that errors in the past estimates of the mode

cause the filter to diverge. In future work, we seek to explore ap-
proximations enabling more efficient conditioning on the mode.

APPENDIX A

THE EARLEY-STOLCKE PARSER

In this section, for completeness, we provide a brief descrip-

tion on the operation of the Earley-Stolcke [6] parser and its

use in computing the prefix probability . The Earley-Stolcke

parser scans an input terminal string

from left to right and is able to compute the probability

of the string given the parameters of

the SCFG. As each symbol is scanned, a set of states

are created which represent all

the different derivations that can explain the observations until

instant .

Each state represents (1) a re-writing rule

such that the portion of the input string being currently scanned

is derived from its right hand side, (2) a dot (marker) demar-

cating a position in the right hand side of that production rule.

The position of the dot represents the portion of the right hand

side that has already been recognized and (3) a pointer back

to the position in the input string at which we began to look

for an instance of the application of that production rule. Each

state is an incomplete portion of a sequence of rule choices

which could have generated the input string. These states are

the control structure used by the Earley-Stolcke parser to store

the incomplete derivation trees. They are denoted by the nota-

tion . The upper-case letters and are

non-terminals, and are substrings of non-terminals and ter-

minals, “.” is the marker that specifies the end position for the

partially parsed input, is the starting index of the substring that

is generated by the non-terminal . Each state is also associated

with a forward probability and an inner probability which

are explained in more detail in the sequel. For the purposes of

dealing with the start symbol, the Earley-Stolcke uses an initial

dummy state .

Earley-Stolcke Operations
The states in an Earley set are processed in order, by per-

forming one of three operations on each state. These operations

may add more states to and may also put states in a new state

set . Whenever an operation attempts to add a new state, it

is linked to an existing state. Such a sequence of linked states

represents different rules choices that could have generated the

Algorithm 3: Earley-Stolcke Parser

1: function EARLEY-STOLCKE PARSER
Scanning

2: for do
3: Add if .

4:

5:

6:

Completion

7: for do

8: for do
9: if then
10: Add

11:

12:

Prediction

13: for do
14: Add if ,

15:

16:

17: return

input string. The prediction operation is applied to states when
there is a non-terminal to the right of the dot. It causes the addi-

tion of one new state to for each alternative production rule

of that non-terminal. The dot is placed at the beginning of the

production rule in each new state. The pointer is set to , since

the state was created in . Thus the predictor adds to all pro-

ductions which might generate sub-strings beginning with .

More formally, for a state in the state set , the

predictor adds a new state for each of the alternative

production rules . A link is thus created between

these states. The state is called a predicted state.
The scanning operation, on the other hand, is applicable only

in the case when there is a terminal to the right of the dot. The

scanner compares that symbol with , and if they match, it

adds the state to , with the dot moved over one symbol in

the state to indicate that the terminal symbol has been scanned.

If exists and , the scanning operation

adds a new state to state set which is called

a scanned state. A link is also created between these states.
The third operation, the completion operation, is applicable

to a state if its dot is at the end of its production.

Such a state is called a “complete” state. For every complete

state, the parser back-tracks to the state set indicated by the

pointer in the complete state, and add all states from to

which have (the non-terminal corresponding to that produc-

tion) to the right of the dot. It moves the dot over in these

states. Intuitively, is the state set we were in when we went

looking for that . We have now found it, so we go back to all

the states in which caused us to look for a , and we move
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the dot over the in these states to show that it has been suc-

cessfully scanned. This process implies that the application of

a production rule in the past has been validated. A completion

operation adds a new state (called a completed

state) using and . A link pointing from

to is also created. In such a manner, the

Earley-Stolcke parser continues until all the observation sym-

bols have been scanned. If the final state set contains the

state , then the algorithm terminates successfully. It

represents a successful parse of the sentence .

Earley-Stolcke Probabilities

We mentioned earlier that each state is associated with a for-

ward probability which is the sum of the prob-

abilities of all paths of length which end in the state

and generate observations . The inner probability

of a state is defined as the sum of the prob-
ability of all paths of length which start in

and end in state and hence derive the observations

.

The recursive updates of the forward probability and inner

probability for each of the state operations is summarized

in Algorithm 3. and are pre-computed

matrices representing factors to account for looping

production rules [6]. The prefix probability referred to in

Section III-D can be computed as the sum over the forward

probabilities of all scanned states in as derived in [6].
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