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INTRODUCTION

Physical sensor–based target tracking is a classical problem that 
has been studied in great detail [1], [2]. This article presents 
metalevel tracking middleware algorithms to help human ra-
dar operators interpret tracks in order to detect and visualize 
suspicious spatiotemporal target trajectories. While state space 
models are ideal for target tracking, the main idea in this article 
is that stochastic context-free grammar (SCFG) models are also 
useful for modeling and interpreting trajectories.

In our previous articles [3], [4], several SCFG models were 
SUHVHQWHG� IRU� VSHFL¿F� WDUJHW� WUDMHFWRULHV� VLJQLI\LQJ� PDOLFLRXV�
intent. The current article generalizes these trajectory models 
and extends them toward novel multitarget anomalous pat-
WHUQV��0RUH�VSHFL¿FDOO\��HLJKW�WUDMHFWRU\�PRGHOV�DUH�SUHVHQWHG��
(a) random walk, (b) reciprocal process, (c) linear, (d) arclike, 
(e) rectangular, (f) destination-aware, (g) palindromic, and (h) 
target rendezvous trajectories. Our modeling framework fo-
cuses on the human–sensor interface (middleware) tasked with 
high-level reasoning and visualization from lower-level sensor 
measurements. Bayesian signal processing algorithms are also 
GHYHORSHG�WR�SHUIRUP�PRGHO�FODVVL¿FDWLRQ�DQG�FKDQJH�GHWHFWLRQ�
using novel SCFG models.

EXAMPLE

Consider the scenario in Figure 1, where a target executing a 
trapezoidal trajectory (dashed blue line) is observed in noise. 
This trajectory could signify a target avoiding an obstacle by 
deviating away, passing the obstacle, and then returning to its 
previous path. Given noisy point measurements, how can one 

devise algorithms to detect whether the target executed such 
a pattern? This is a nontrivial estimation problem (it cannot 
EH� VROYHG�HI¿FLHQWO\�ZLWK� WHPSODWH�PDWFKLQJ� WHFKQLTXHV���EH-
cause exponentially many–scaled versions of the shape need to 
be considered.1�6&)*�PRGHOV�RIIHU�DQ�HI¿FLHQW�IUDPHZRUN�WR�
model common shapes (Figure 2a) in a scale-invariant man-
QHU��7KH� WUDMHFWRU\� FODVVL¿FDWLRQ� DQG�PRGHOLQJ� DSSURDFK�SUR-
posed in this article can also be viewed as a visualization layer 
that is able to assist the human analyst by extracting suspicious 
spatiotemporal patterns embedded in noisy tracks, as depicted 
LQ�)LJXUH����(I¿FLHQW�SRO\QRPLDO�WLPH�DOJRULWKPV�H[LVW�WR�SHU-
IRUP�FODVVL¿FDWLRQ�XVLQJ�6&)*�PRGHOV��ZKLFK�DUH�XVHG�LQ�WKH�
section on numerical examples to demonstrate the effective-
ness of SCFG models over competing hidden Markov models 
(HMMs).

MOTIVATION: METALEVEL TRACKING AND INTENT 

INFERENCE

Classical target tracking assumes a Markovian state space 
model for the target kinematics. Such models are useful on 
short timescales (on the order of several seconds), and many 
well-known target tracking algorithms based on such Markov 
models have been developed in the literature [1]. This article 
is motivated by metalevel target tracking applications on lon-
ger timescales (on the order of several minutes). In metalevel 
tracking, one is interested in devising automated procedures 
that assist a human analyst to interpret the tracks obtained from 
a conventional tracking algorithm. On such longer timescales, 
most real-world targets are driven by a premeditated intent. The 
intent of a target can manifest in the shape of the target trajecto-
U\�RU�LWV�¿QDO�GHVWLQDWLRQ��DPRQJ�RWKHU�DWWULEXWHV���,Q�WKLV�DUWLFOH��
trajectory shape is modeled using SCFG models that are ideally 
suited to model patterns due to scale invariance, which emerges 
from their self-embedding properties. Moreover, time-varying 
6&)*V�DUH�XVHG�LQ�WKLV�DUWLFOH�WR�UHÀHFW�WKH�LQWHQW�RI�WKH�WDUJHW�

1  As an equivalent example, consider a string al bm cm dn, where l, 
m, and n are unknown positive integers such that l + 2m + n = k. 
How can one extract the arc trajectory bm cm from a noisy ver-
sion of the string? If b and c were composite alphabets that were the 
union of r other symbols, template matching would require listing 
an exponential number  of possibilities for all 
possible choices of l, m, and n, since the values of these integers are 
not known.
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to move toward its destination. Such a characterization emerges 
from the observation that local target dynamics at the metalevel 
may be anticipative (destination aware) or noncausal to termi-
nate a trajectory in a known destination. Our previous article 
[3] utilized reciprocal stochastic models for such destination-
aware trajectories, which are generalized in this article using 
time-varying SCFGs. The use of SCFGs in metalevel tasks is 
mainly motivated by their ability to capture arbitrary-range (as 
RSSRVHG�WR�¿[HG�OHQJWK��ORQJ�WHUP�GHSHQGHQFLHV�LQ�WKH�WDUJHW�
WUDMHFWRU\�>�@��&RQVHTXHQWO\��PHWDOHYHO�DQDO\VLV�RI�WDUJHW�WUDMHF-
tories can serve as a visualization tool for suspicious trajectories 
and anomalous target behavior.

LITERATURE SURVEY

7KH�FODVVL¿FDWLRQ�DQG�WUDFNLQJ�RI�DQRPDORXV�VSDWLRWHPSRUDO�WUD-
jectories arise in many application areas, such as target tracking 
using radars [3], gesture recognition using optical [6] and time-
RI�ÀLJKW� >�@� VHQVRUV��KXPDQ�DFWLRQ� UHFRJQLWLRQ� LQ�FDPHUD�QHW-
works [8], gait analysis [9], network packet traces [10], and ve-
hicular geoposition coordinates [11]. The maritime surveillance 
literature has also recently seen an interest in trajectory anomaly 

detection applications [12], [13]. 
In particular, [13] examined the 
target rendezvous problem. A 
common approach in such se-
TXHQWLDO�SDWWHUQ�UHFRJQLWLRQ�SURE-
lems is the use of HMMs to cap-
ture the temporal dependence of 
observations. Such an approach 
ZDV� WDNHQ� LQ� >��@� E\� XVLQJ� ÀRZ�
vectors on objects being tracked 
LQ�YLGHR�VHTXHQFHV��6SDWLDO�QRGHV�
RI�LQWHUHVW�DUH�¿UVW�LVRODWHG�XVLQJ�D�
Gaussian mixture modeling tech-
QLTXH��5RXWHV�DUH�WKHQ�FUHDWHG�E\�
clustering different trajectories, 
and a high-level HMM is learned 
for each route. However, such a 
model cannot incorporate destina-
WLRQ�VSHFL¿F� LQIRUPDWLRQ�� 0RUH-
over, long-term dependencies in 
the trajectory are lost due to the 
Markov assumption.

Figure 1. 
A radar makes noisy observations (green dots) that can be tracked by a 
conventional tracker, as shown by the solid red line. However, useful in-
formation like shape and destination is often obscured by the estimation 
process. The main aim of this article is to detect and track higher-level 
characteristics of a trajectory like the movement patterns shown as blue 
arrows. In this example, a target executes an arc movement (the open 
trapezoidal shape) that can be associated with various anomalous behav-
iors. Our two-scale approach uses the base-level tracker output to track 
intent-driven trajectories with long-range dependencies.

Figure 2. 
(a) A conceptual sketch of a citywide radar surveillance application. Target trajectories evolve over roads and are 
constrained to certain shapes due to the geometry imposed by urban environments. The trajectory in red depicts an 
m-rectangle, while that in blue represents an arc. (b) The road network in a city can be treated as a directed graph 
with nodes representing intersections and edges representing connecting streets. The trajectory in blue shows a pal-
indrome path representing a target retracing its path. Such paths can be considered anomalous in many settings. The 
red trajectory depicts rendezvousing targets, which is of great interest in many crime-related events. Such targets 
DUH�FDOOHG�³GHVWLQDWLRQ�DZDUH´�EHFDXVH�WKH�HYROXWLRQ�RI�WKHLU�WUDMHFWRU\�LV�LQÀXHQFHG�E\�WKH�GHVWLQDWLRQ�HQGSRLQW�
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Our article is related to the 
approach taken in [15] and [16]. 
A nonprobabilistic context-free 
grammar approach was used in 
[15] to identify two-person in-
teractions like hugs, handshakes, 
kicks, and punches to enforce 
syntactic structure on detected 
events. In [16], SCFGs were used 
to recognize cheating actions in 
card games at casinos. Our article 
GHSDUWV�IURP�WKHP�VLJQL¿FDQWO\�DV�
we consider trajectory modeling 
in a tracking situation and not an 
action recognition system. This 
article generalizes the treatment in 
[3] and presents novel models for 
multitarget anomalous trajectories.

Multitarget tracking (MTT) 
has a rich literature comprising 
various powerful tracking algo-
rithms like the joint probabilis-
WLF�GDWD�DVVRFLDWLRQ�>��@�� LQWHUDFWLQJ�PXOWLSOH�PRGHO�¿OWHU� >�@��
multiple hypothesis tracking [18], and probability hypothesis 
GHQVLW\�¿OWHU�>��@��$�WD[RQRP\�RI�077�DSSURDFKHV�LV�SURYLGHG�
in [20]. The proposed work is not an alternative to a compre-
hensive tracker but a complementary tool to pick out anomalous 
trajectories at a coarser scale. Tracking errors manifesting as 
missed or spurious detections, incomplete or false tracks, and 
errors in data association are assumed to have originated and/or 
EHHQ�FRUUHFWHG�DW�WKH�¿QH�WLPHVFDOH��6XFK�HUURUV�DUH�QRW�H[SOLF-
itly treated in this article but are regarded as noise parameters, 
which can be incorporated into the higher-level logic. Previous 
articles [21] and [22] dealt with some of these tracker limita-
tions more explicitly.

HIERARCHICAL TRACKING FRAMEWORK TO ASSIST 

HUMAN OPERATORS

In this section, a system-level description of the tracking frame-
work is presented (Figure 3). A conventional (base-level) target 
tracker operates on the fast timescale, while the higher-level 
middleware layer operates on a slower timescale.

BASE-LEVEL TRACKER

7KH�EDVH�OHYHO�WUDFNHU�LV�D�%D\HVLDQ�¿OWHU�RSHUDWLQJ�RQ�WKH�IDVW�
timescale (order of seconds) denoted by Ĳ = 1, 2, …. The base-
level tracker can be represented as an operator  that uses sen-
sor measurements zĲ�WR�XSGDWH�D�SRVWHULRU�¿OWHULQJ�GLVWULEXWLRQ�
FĲ over the position and velocity of the target by

 (1)

For example, consider a target represented by its kinematic 
state s = [sx, sy, , ]T, The state variables (sx, sy) refer to the 

position of the target, while  refer to the velocity of the 
target in Cartesian coordinates. Classical target tracking uses a 
state space model

 

where wĲ and vĲ represent the state and the measurement noise, 
respectively. The state transition and measurement functions 
are represented by f(u) and h(u), respectively. A base-level track-
er estimates the target state trajectory from the radar measure-
PHQWV�LQ�D�FDXVDO�PDQQHU��7KLV�LV�D�¿OWHULQJ�SUREOHP�LQYROYLQJ�
FRPSXWDWLRQ�RI��DQG�DSSUR[LPDWLRQ�WR��WKH�D�SRVWHULRUL�¿OWHULQJ�
distribution FĲ = P{sĲ|z0, z1, …, zĲ}, where P{A} refers to the 
probability of event A.

TRACKLET ESTIMATION

Let t = 1, 2, … denote a slower timescale (on the order of min-
utes), which we call the epoch scale and at which the human 
analyst makes decisions. The human analyst reduces the poste-
rior distributions FĲ�WR�WKH�PHDQ�SRVLWLRQ�YHORFLW\�DQG�TXDOLW\�RI�
HVWLPDWH��H�J���YDULDQFH���0RUH�VSHFL¿FDOO\��JLYHQ�WKH�VHTXHQFH�
of track distributions, ��GH¿QH�D�WUDFNOHW�RQ�
the slow timescale as

 (2)

Here, the tracklet ât�GHQRWHV��D�TXDQWL]DWLRQ�RI�DQ�DYHUDJH�VWDWH�
vector ǆt of the target obtained from the tracklet estimator at 
epoch t and can be viewed as a noisy version of the “true” un-
GHUO\LQJ�TXDQWL]HG�SRVLWLRQ�DQG�RU�XQLW�YHORFLW\�YHFWRU�RI� WKH�
target denoted as at.

7ZR�W\SHV�RI�WUDFNOHWV�DUH�FRQVLGHUHG���D��WKH�SRVLWLRQ�WUDFN-
lets , which are output by the position tracklet estimator 

Figure 3. 
The proposed hierarchical tracking framework to assist human radar operators. A base-level tracker  outputs 
¿OWHUHG�VWDWH�HVWLPDWHV�DW�D�IDVW�WLPHVFDOH�Ĳ. The tracklet estimator aggregates state estimates from the base 
WUDFNHU�DQG�HPLWV�TXDQWL]HG�WUDFNOHWV�ât at a slower timescale t. A set of SCFG models for different threat sce-
QDULRV�LV�FRQVLGHUHG�LQ�WKH�FODVVL¿FDWLRQ�SUREOHP��7KH�VHTXHQFH�RI�QRLV\�WUDFNOHWV�â��T is fed into the Earley-
6WROFNH�SDUVHU�HLWKHU�WR�SHUIRUP�PRGHO�FODVVL¿FDWLRQ�WR�JHQHUDWH�DODUPV�RU��DV�D�YLVXDOL]DWLRQ�WRRO��WR�UHFRYHU�
the suspicious trajectory.
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pos, and (b) the velocity tracklets 
��ZKLFK�DUH�TXDQWL]HG�WKURXJK�

vel. Tracklets are used as syntac-
tic subunits of target trajectories. 
The SCFG shape models utilize 
velocity tracklets as subunits of 
the trajectory shape, while SCFG 
GHVWLQDWLRQ�VSHFL¿F�SDWWHUQ�PRG-
els utilize position tracklets as 
subunits of a goal-directed tra-
MHFWRU\��IROORZLQJ�D�VSHFL¿F�SDW-
tern of visited sites).

The position tracklet estima-
tor operates on a discretized sur-
veillance space R over which the 
target is observed. At each time 
instant, the position tracklet es-
WLPDWRU� TXDQWL]HV� WKH� DYHUDJH�

 state estimates to the clos-
est element  on the 
discretized two-dimensional grid 
R, as shown in Figure 4a. The velocity tracklet estimator utilizes 
the average velocity estimate �WR�¿QG�WKH�GLUHFWLRQ�RI�PR-
tion of the target. The possible directions of motion of the target 
DUH�TXDQWL]HG�LQWR�HLJKW�UDGLDO�FDUGLQDO�GLUHFWLRQV�IURP�WKH�VHW�

 
The cardinal directions represented by mode are shown in Fig-
ure 4b. Each mode is represented with a lowercase letter under 
an arrow to denote that it is a unit directional vector.

The framework presented in this section and the prior sec-
tion on the base-level tracker does not consider the effects of 
missed and/or spurious detections. The SCFG framework, how-
ever, can also be used to deal with such scenarios, as shown in 
[22]. A simpler approach based on modifying the grammar was 
presented in [21].

TRAJECTORY CLASSIFICATION OBJECTIVE

$�WDUJHW�WUDMHFWRU\�LV�DVVRFLDWHG�ZLWK�D�VSHFL¿F�VSDWLRWHPSRUDO�SDW-
tern depending on its shape and/or the pattern of sites visited by 
the target. Each trajectory is assumed to be generated by a model 

 where there are  different types of 
anomalous patterns under consideration. Development of these 
models is the main idea of this article and is described in the next 
section. As a target moves in a region of interest, it generates 
tracklets �7KH�DQRPDORXV�WUDMHFWRU\�FODVVL¿FDWLRQ�WDVN�
LV�WKHQ�GH¿QHG�DV�¿QGLQJ�WKH�PRGHO�  that has the highest 
SUREDELOLW\�RI�H[SODLQLQJ�WKH�REVHUYHG�WUDFNOHW�VHTXHQFH�a

0
, …, aT�

 (3)

SCFG MODELS FOR ANOMALOUS PATTERNS

In this section, eight types of models for anomalous target tra-
MHFWRULHV� DUH� SUHVHQWHG�� 5HDGHUV�ZKR� DUH� XQIDPLOLDU�ZLWK� WKH�

SCFG formalism should read the tutorial material in Appen-
dix A. The motivation behind using SCFG models like arcs, 
rectangles, and palindromes is that such trajectories cannot be 
exclusively generated by Markov models.2 A formal proof of 
this assertion can be constructed using the pumping lemma for 
regular languages (HMMs) [23], [24].

RANDOM WALK MODELS

5DQGRP�ZDONV�DUH�WKH�PRVW�HOHPHQWDU\�RI�0DUNRY�PRGHOV�IRU�
target trajectories evolving on a road network represented as a 
¿QLWH�VHW�RI�QRGHV�  (Figure 4a). The target 
position at can be represented using the bin Ui ! pos in which it 
resides at instant t. A Markov chain model GMC of target dynam-
ics over such a road network can be parameterized using a prior 
distribution P{a

0
 = ȣi} over the initial state a

0
 at time t = 0 and 

a possibly time-varying transition matrix At(i, j) = P{at = ȣj|atí� 
= ȣi}. A transition matrix for such random walk models can be 
calculated based on physical distance between nodes. The state 
transition diagram of such a model is shown in Figure 5.

RECIPROCAL MODELS FOR DESTINATION-AWARE 

TRAJECTORIES

A human target following anomalous behavior rarely moves ac-
FRUGLQJ�WR�D�UDQGRP�ZDON�PRGHO��7KH�VHTXHQFH�RI�DFWLRQV�WDNHQ�
by an intelligent agent is often premeditated on a global scale 
with random variation at the local scale. With this assumption 
in mind, the local dynamics of a target are more appropriately 
modeled using a reciprocal process; see also our previous ar-
ticle [3].

2  This implies that a Markov chain can generate a sample path that is 
an instance of a shape with some finite probability. However, it can-
not do so with a probability of 1 unless the state space is extended 
artificially to the length of the trajectory.

Figure 4. 
(a) The discretization of a surveillance space R into grids (xi, yi���HDFK�RI�VL]H�ǻx =�ǻy. Each grid element is 
lexicographically ordered into a set pos. There are " pos" bins in the surveillance space. (b) The velocity track-
lets v ! vel, representing cardinal radial directions.
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A discrete-time reciprocal process at ! pos is a one-dimen-
VLRQDO�0DUNRY�UDQGRP�¿HOG�ZLWK�WKH�QRQFDXVDO�SURSHUW\

 (4)

parameterized by the homogeneous three-point transitions Q(i, 
j, l) = P{at = ȣj|atí� = ȣi, at+1 = ȣl} with ȣi, ȣj, and Ui ! pos. In 
XUEDQ�HQYLURQPHQWV��WUDI¿F�LQIRUPDWLRQ�FDQ�EH�XVHG�WR�HVWLPDWH�
the three-point transitions Q(i, j, l) between intersections in a 
road network. This is described in the section on single-target 
scenarios.

Using reciprocal dynamics, a destination-aware trajectory 
LV�GH¿QHG�E\�D�SULRUL�¿[LQJ�WKH�¿QDO�GHVWLQDWLRQ�RI�WKH�WDUJHW�aT 
= ȣk. The resulting Markov bridge is characterized by a prob-
ability transition law

 

which induces a backward recursion for time-varying two-point 
Markov transitions

 (5)

The second term on the right-hand side of (5) is the 
normalization constant. The time-varying transitions 

 refer to two-point transi-
WLRQV�RI�D� WDUJHW�ZLWK�¿QDO�GHVWLQDWLRQ�aT = ȣk. To ensure that 
WKH�¿QDO�GHVWLQDWLRQ�RI� WKH� WDUJHW�aT = ȣk, we initialize the re-
cursion with  for j = k and 0.0 otherwise. In ad-
dition, at time t = T� í� ��� WKH� WDUJHW� WUDQVLWLRQV� DFFRUGLQJ� WR�

 A more detailed treatment can be found in 
[3].

DESTINATION-AWARE PATHS

A destination-aware path is a target trajectory that is heading 
toward a known destination aT = ȣk while following local dy-
namics according to the three-point transitions Q(i, j, l). The 
Markov bridge approach can also be viewed as a time-varying 
6&)*�IRU�GHVWLQDWLRQ�VSHFL¿F�WUDMHFWRULHV�

$�GHVWLQDWLRQ�DZDUH�WUDMHFWRU\�VDWLV¿HV�WKH�FRQVWUDLQW�P{aT 
= ȣk`� ������$�GHVWLQDWLRQ�DZDUH�6&)*�PRGHO�FDQ�EH�GH¿QHG�
using a starting rule of the form S A ȣiXiȣk with rule probabil-
ity P{S A ȣiXiȣk} = P{a0 = ȣi|aT = ȣk}. The destination-con-
strained SCFG model is characterized by rules of the form Xi 
A ȣjXj with time-varying rule probabilities given by the Mar-
kov bridge transitions such that P{Xi A ȣjXj} =  where 

 represents the probability in (5). Such rules are only cre-
ated for neighboring nodes ȣi, ȣj that are connected by an edge. 
Suppose ȣk represented the position of a sensitive asset like an 
embassy or a checkpoint. Using the approach presented earlier, 
a grammatical model  represents all trajectories with the 
target destination ȣk.

TARGET RENDEZVOUS

Consider the trajectories followed by two targets3 represented 
by position tracklets  and ��$�UHQGH]YRXV� LV�GH¿QHG�DV�DQ�
anomalous event where two targets meet at the same position 
ȣk at time T��6XFK�D�VLWXDWLRQ�LV�GHSLFWHG�LQ�)LJXUH����7KH�UHQ-
dezvous of two targets at a given node ȣk can be considered 
a destination-aware trajectory and modeled using the grammar 
UXOHV� GHVFULEHG� LQ� WKH� SUHYLRXV� VHFWLRQ�� 'H¿QH� WKH� PXOWLSOH�
WDUJHW�SRVLWLRQ� WUDFNOHW�VHTXHQFH�  as a vector con-
catenation. The rendezvous of two targets is then modeled as 
a destination-aware trajectory , with the 
¿QDO�VWDWH�RI�ERWK�WDUJHWV�SLQQHG�WR�WKH�LQWHQGHG�PHHWLQJ�SRLQW�
ȣk at time T. The precomputed time-varying transition matrix 

� LV� XVHG� LQ� DQ� H[WHQGHG� VWDWH� VSDFH�PRGHO� WR� GH¿QH� D�
higher-order (two-target) transition matrix

 (6)

where i,j ! pos and m,n ! pos = pos. The � operator repre-
sents the Kronecker product between two matrices. The no-
tation  represents the time-varying transition prob-
ability  The grammar model for 
target rendezvous has the same structure as destination-aware 
trajectory models. However, the nonterminal and terminal sets 
are different due to the expansion in the state space. The time-
YDU\LQJ�UXOH�SUREDELOLWLHV�DUH�VSHFL¿HG�LQ�����

PALINDROME PATHS

$�SDOLQGURPH� UHIHUV� WR� D� VHTXHQFH�a0a1 … aTí�aT = aTaTí� … 
a1a0� VXFK� WKDW� UHYHUVLQJ� WKH�VHTXHQFH�UHVXOWV� LQ� WKH�VDPH�SDW-

3  The restriction to two targets is for simplification of notation; the 
model can be extended to an arbitrary number of targets. However, 
the state space increases exponentially with the number of targets.

Figure 5. 
The state transition diagram for target trajectories on a road network. 
For a random walk model, the transition probabilities pnbr are nonzero 
only for neighboring nodes that are connected by streets. The neighbor 
probabilities are uniformly distributed over all connected neighbors. For 
the Markov bridge model, the transition probabilities are time varying.
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tern. In the context of target trajectories using position track-
lets, a palindromic path refers to a target retracing its previ-
ously traversed path. Such paths can be indicative of behaviors 
such as searching for a dropped or lost item. A simple grammar 
for a palindromic path is shown later in Figure 15a, which is 
characterized by rules of the form Xi A ȣj Xj ȣj. Due to the in-
side–outside (branching) manner in which an SCFG generates 
D�VHTXHQFH��ZH�FDQ�HQVXUH�WKH�SDOLQGURPH�SURSHUW\�E\�HPLWWLQJ�
a matching terminal on the left- and right-hand sides when tran-
sitioning to a new node ȣj.
Remark: The next few models generate geometric shapes 

using velocity tracklets as geometric primitives. The clean ter-
minals at and noisy observations ât take values from the cardinal 
direction set vel shown in Figure 4b. These generalize our past 
article [3] by incorporating system uncertainty in the movement 
patterns of the target. This generalization is important because 
D�WDUJHW�DWWHPSWLQJ�WR�WUDYHO�LQ�D�VSHFL¿F�JHRPHWULF�VKDSH�GRHV�
not have a global view of the evolution of its trajectory. As a 
result, the local movement patterns of the target are subject to 
small perturbations. The internal process noise is incorporated 
E\�DOORZLQJ�HDFK�GLUHFWLRQDO�PRYHPHQW� WR�KDYH�D�¿QLWH�SURE-
ability of perturbation into neighboring radial directions.

LINEAR TRAJECTORIES

Linear trajectories are straight paths that are generated by con-
stant velocity (CV) target dynamics obeying local Markov de-
pendency. Linear grammar models are represented using the 
compact form Gline = { }, implying that the model can generate 
all trajectories involving n movements of a target in the direc-
tion represented by the unit vector  A simple regular grammar 
for lines is characterized by rules of the form , with 

 representing the target’s direction of motion.

ARCLIKE TRAJECTORIES

The compact form for arclike trajectories is , 
ZKLFK�LV�FKDUDFWHUL]HG�E\�HTXDO�PRYHPHQWV�LQ�RSSRVLQJ�GLUHF-
tions represented by the unit vectors  and  (Figure 9a). The 
notation  denotes an arbitrary number of movements in the 
direction represented by  A simple grammar capable of gen-
erating arcs of all lengths is shown in Figure 9b. We use the 
notion of arcs to represent U-turn and open trapezoidal patterns.

RECTANGLE TRAJECTORIES

:H� FRQVLGHU� WKH� PRGL¿HG�UHFWDQJOH� �P�UHFWDQJOH�� ODQ-
guage (with associated grammar shown in Figure 10b) as 

 The m-rectangle grammar can model any 
trajectory comprising of four sides at right angles (not neces-
sarily a closed curve) with at least two opposite sides being 
RI�HTXDO�OHQJWK��7KH�QRWDWLRQV�  and  represent an arbitrary 
number of movements in the corresponding directions repre-
sented by that mode. A full rectangle with both opposite sides of 
HTXDO�OHQJWK�FDQQRW�EH�PRGHOHG�E\�DQ�6&)*�>��@�

SUMMARY

In formal language theory, it is known (and provable using 
pumping lemmas [23]) that trajectories like arcs, rectangles, 
and palindromes are impossible to generate using Markov 
models exclusively [23]. In addition, the incorporation of re-
ciprocal dynamics using time-varying rule probabilities allows 
GHVWLQDWLRQ�DZDUH�DQG�UHQGH]YRXV�WUDMHFWRULHV�WR�EH�HI¿FLHQWO\�
modeled. This section illustrated the use of such non-Markov-
LDQ�PRGHOV�LQ�WUDMHFWRU\�FODVVL¿FDWLRQ�

ILLUSTRATIVE EXAMPLE: MULTITARGET PATTERN OF LIFE 

CHANGE DETECTION

In this section, multiple targets are incorporated into anomaly 
detection as a change detection problem. The aggregate be-
havior of all targets moving in the surveillance space R is as-
sumed to arise from reciprocal dynamics characterized by the 
three-point transitions Q(i, j, l���$Q�DQRPDO\�FDQ�EH�GH¿QHG�DV�
a change in the underlying reciprocal dynamics such that a nor-
mal regime Q(1)(i, j, l) is in effect in the time interval t = {0, 1, 
…, t

0
�í��`�DQG�DQ�DEQRUPDO�UHJLPH�Q(2)(i, j, l) is in effect in the 

time interval t = {t
0
, t

0
 + 1, …, T}.

Figure 6. 
7KH�EOXH�VWDU�QRGH�LV�WKH�GHVWLQDWLRQ�QRGH�DQG�WKH�UHG�VTXDUH�QRGH�LV�WKH�
initial starting point. The target trajectory follows a destination-aware 
model to travel between the initial and the destination nodes.

Figure 7. 
The two targets, represented by their trajectories  and , follow a 
rendezvous model to meet at the blue star destination node.

Figure 8. 
7KH�UHG�VTXDUH�DQG�EOXH�VWDU�UHSUHVHQW�WKH�VDPH�VWDUWLQJ�DQG�HQGLQJ�
QRGH��7KH�JUHHQ�OLQHV�DUH�WKH�¿UVW�SDUW�RI�WKH�WUDMHFWRU\��ZKLOH�WKH�RUDQJH�
lines show the second half of the retraced trajectory. Such a pattern is 
called a palindrome.
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In [3], a surveillance application is described that seeks to 
detect changes in the pattern of life of a local population. Of-
ten, the local population is sympathetic toward insurgent and 
rebel groups. Information about anomalous events like the in-
VWDOODWLRQ�RI�DQ�LPSURYLVHG�H[SORVLYH�GHYLFH��,('��FDQ�TXLFNO\�
propagate through the local population, which manifests itself 
LQ�WKH�FKDQJH�RI�WUDI¿F�SDWWHUQV�DURXQG�WKH�DUHD�ZKHUH�WKH�,('�
was placed. A pictorial depiction of such a scenario is shown 
in Figure 11. A sensitive asset is located at node ȣk. The normal 
operation of targets follows the behavior shown using dashed 
green lines. However, a hypothetical anomaly in the vicinity 
of node ȣk�FDXVHV�WDUJHW�EHKDYLRU�WR�FKDQJH�VLJQL¿FDQWO\��DV�GH-
picted by the solid red lines.

Change detection can be described as the problem of deter-
mining if or when, during the observation interval, the under-
lying reciprocal dynamics switches between two known mod-
els. We impose no prior knowledge on the switching time (we 
FRQVLGHU�LW�WR�EH�DQ�XQNQRZQ�GHWHUPLQLVWLF�TXDQWLW\���&RQVLGHU�
a stacked vector  representing the noisy 
position tracklets  of each target n = {1, …, N} existing in 

the surveillance space R at time t. The total 
number of targets is denoted by N. For nota-
tional convenience, the number of targets is 
DVVXPHG�WR�EH�¿[HG�DQG�DOO�WDUJHWV�EHJLQ�PRY-
ing at epoch t = 0. The likelihood computa-
WLRQ�RI�WKH�PXOWLWDUJHW�WUDFNOHW�VHTXHQFH�  
factorizes over individual targets because the 
trajectory of each target is assumed to be in-
dependent of other targets and only depends 
RQ�WKH�XQGHUO\LQJ�UHFLSURFDO�G\QDPLFV��5HFDOO�
WKDW�GHVWLQDWLRQ�DZDUH� WDUJHWV�KDYH�WKHLU�¿QDO�
state pinned to some destination ȣk reached in 
D�¿[HG�QXPEHU�RI�PRYHPHQWV�IURP�HSRFK���WR�
epoch T��&RQVHTXHQWO\�� WKH\� DUH� H[SHFWHG� WR�
arrive at their destination after T time steps. 
7KH�YHFWRU�WUDFNOHW�VHTXHQFH�  obeys one of 
WKH�IROORZLQJ�K\SRWKHVHV�
H

1
�� 7KH� WUDFNOHW�VHTXHQFH�  of each 

target n being tracked was generated by an 
SCFG G(1) with underlying reciprocal dynam-
ics Q(1).

 For some t
0
 ! {1, …, T�í��`��WKH�

tracklets  were generated by an SCFG G(1) 
with normal underlying reciprocal dynamics 
Q(1) for t = {0, …, t

0
�í��`�DQG�E\�DQ�6&)*�G(2) 

with anomalous reciprocal dynamics Q(2) for t 
= {t

0
, …, T}.
HTí��� 7KH�HQWLUH�WUDFNOHW�VHTXHQFH�  of 

each target n was generated by an SCFG G(2) 
with underlying reciprocal dynamics Q(2).

Our aim is to provide a maximum likeli-
KRRG�WHFKQLTXH�WR�GHWHFW��D��ZKHWKHU�D�FKDQJH�
occurred from the normal operating regime 
and, if so, (b) the time t

0
 at which the change 

occurred. Toward this goal, consider the log-
likelihood  of the noisy ob-
VHUYHG�PXOWLWDUJHW�WUDFNOHW�VHTXHQFH�  of 

DOO�WDUJHWV�H[LVWLQJ�LQ�WKH�VXUYHLOODQFH�VSDFH�

� ���

The multitarget anomaly detection problem is cast as a 
change detection problem seeking the hypothesis  with the 
maximum likelihood of explaining the observed vector tracklet 
VHTXHQFH

 (8)

where it is understood that  = 1 implies that the normal regime 
was in operation during the observation period and  = T < 1 
implies that the anomalous regime was in operation during the 
entire observation period t = 0, …, T��7KH�ORJ�OLNHOLKRRG�LQ�����

Figure 9. 
(a) An arclike trajectory with system uncertainty. The incorporation of internal process noise 
serves the philosophical purpose of modeling overall geometry using self-embedding rules to 
JHQHUDWH�VKDSHV�WKDW�KDYH�VLGHV�ZLWK�HTXDO�OHQJWKV�ZKLOH�DOVR�DOORZLQJ�LQWHUQDO�SHUWXUEDWLRQV��
In the case of a human target, such a process noise models the inability of the target to globally 
monitor its trajectory. (b) A simple grammar model for arclike trajectories.

Figure 10. 
(a) An m-rectangle trajectory with internal perturbations and global shape. (b) The grammar 
is able to generate all sizes of trajectories satisfying such a shape.
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can also be computed in a recur-
sive manner for each target using 
WKH�SUH¿[�SUREDELOLW\�LQ������

NUMERICAL EXAMPLES

,Q�WKH�QH[W�VHFWLRQ��WKH�FODVVL¿FD-
tion performance of single-target 
trajectories is considered. The 
section on the pattern of life anal-
ysis explores the use of grammati-
cal models toward rendezvous de-
tection for two targets and change 
detection in aggregate target be-
havior for pattern of life analysis.

SINGLE-TARGET SCENARIOS

6&)*�PRGHOV� DUH� FRPSDUHG� WR� HTXLYDOHQW�+00V�ZKRVH� SD-
rameters are learned by a Baum-Welch estimation procedure 
RYHU� V\QWKHWLF� WUDFNOHW� VHTXHQFHV� JHQHUDWHG� WR� REH\� LWV� FKDU-
acteristic feature (such as its shape or destination). We demon-
strate the effectiveness of our approach using receiver operating 
FKDUDFWHULVWLF��52&��FXUYHV�IRU�GHWHFWLRQ�SHUIRUPDQFH�

Velocity Tracklet–Based Simulations

A continuous-valued target state trajectory s��T is generated for 
WKUHH�NLQGV�RI�VKDSHV��OLQHV��DUFV��DQG�P�UHFWDQJOHV��)RU�H[DP-
ple, an arc (like that shown in Figure 1) can be generated by 
concatenating the trajectories generated by three CV models. 
7KH� ¿UVW�&9�PRGHO� LV� LQLWLDOL]HG� XVLQJ� D� QRUPDO� GLVWULEXWLRQ�
that has a mean with the position at origin and a unit velocity 
in the northeast direction such that  
7KH�FRYDULDQFH�PDWUL[�Ȉ�FDQ�EH�FKRVHQ�WR�JHQHUDWH�WUDMHFWRULHV�
with different signal-to-noise ratios. This model is then used 
to generate the upward part of the arc for Ĳ = 0, …, Ĳ1 time 
SRLQWV��7KH�VHFRQG�&9�PRGHO�LV�LQLWLDOL]HG�XVLQJ�WKH�¿QDO�SRVL-
tion of the target in CV model 1 and with velocity magnitude 

�HTXDO�WR�WKH�¿QDO�YHORFLW\�RI�WKH�WDUJHW�LQ�&9�
model 1. However, the velocity magnitude is concentrated in 
the x-axis such that  Finally, the 
last part of the arc trajectory is created by running a third CV 
model for time points Ĳ = Ĳ2 + 1, …, T such that the initial state  

In all simulations, we generate trajectories of a length of 1,000 
WLPH�SRLQWV�DW� WKH�¿QH�WLPHVFDOH�Ĳ with randomly chosen seg-
ment lengths obeying shape characteristics. Monte-Carlo runs 
of more than 1,000 trajectories are used for the results shown in 
)LJXUH����DQG�DOO�VXEVHTXHQW�VLPXODWLRQV��$�QRLV\�UDGDU�REVHU-
vation process is used, and the measurements zĲ are fed into an 
H[WHQGHG�.DOPDQ�¿OWHU��,GHDO�GHWHFWLRQ�LV�DVVXPHG��DQG�WKH�GDWD�
association problem associated with multiple targets is not in-
FRUSRUDWHG�LQ�WKH�VLPXODWLRQV��7KH�¿OWHU�HVWLPDWHV�DUH�WKHQ�DJJUH-
gated every 20 time points, and velocity tracklets  are generat-

ed at the slower timescale t. For the shape-based trajectories, we 
FUHDWH�IRXU�W\SHV�RI�PRGHOV��  
and  using both SCFG and 
HMM frameworks. The Garbitrary models for arbitrary trajecto-
ries are also added to each model set. The transition matrix of 
the arbitrary HMM is set up such that the transition probabil-
ity from tracklet ȣi to ȣj is inversely proportional to the angular 
separation of the directions represented by ȣi and ȣj. It can repre-
sent jumps from any movement direction to all other directions. 
Such a model is the archetype of a random walk. A similar 
model is also used in grammatical form for the arbitrary SCFG 
PRGHO��(TXLYDOHQW�+00V�IRU�OLQHV��DUFV��DQG�UHFWDQJOHV�DUH�FUH-
ated using a left-to-right transition structure, and the transition 
probabilities are learned from synthetically generated example 
VHTXHQFHV�IRU�HDFK�VKDSH�

Position Tracklet–Based Simulations

Position-tracklet trajectories depend on the incorporation of 
the three-point transitions Q(i, j, l) described in the section on 
UDQGRP�ZDON�PRGHOV��7UDI¿F�DXWKRULWLHV� LQ�YDULRXV�FLWLHV�FRO-
OHFW�DQG�VWRUH�WKH�WXUQV�UDWLR�DQG�WUDI¿F�ÀRZ�LQIRUPDWLRQ�RYHU�
URDG� QHWZRUNV� XVLQJ� WUDI¿F� FDPHUDV� DQG� LQGXFWLRQ� ORRS� VHQ-
VRUV��7UDI¿F�ÀRZ�Ȧ(i, j) is a count of vehicles traveling between 
two neighboring nodes i and j��7KH�WUDI¿F�ÀRZ�LV�XQGH¿QHG�IRU�
nodes that are not connected by a road. The turns ratio ț(i, j, l) 
at node ȣj represents the proportion of cars turning toward node 
ȣl when arriving at node ȣj from node ȣi. The three-point transi-
tions �FDQ�EH�HPSLULFDOO\�HVWLPDWHG�XVLQJ�WKHVH�TXDQWL-
ties as

 (9)

where W(i,j)  W(j,l) denotes the number of vehicles that travel 
¿UVW� IURP�QRGH�ȣi to node ȣj� DQG�¿QDOO\� RQ� WR� QRGH�ȣl. How-
HYHU�� WKLV� TXDQWLW\� FDQQRW� EH� FRPSXWHG� ZLWKRXW� VSHFL¿FDOO\�
LGHQWLI\LQJ� HDFK� YHKLFOH�� &RQVHTXHQWO\�� WKH� DSSUR[LPDWLRQ� LQ�
����LV�XVHG��,Q�WKH�DEVHQFH�RI�WUDI¿F�GDWD��DX[LOLDU\�LQIRUPDWLRQ�
from cellular localization or vehicular global positioning sys-
tem traces can also be used to estimate Q(i, j, l). In such cases, 

Figure 11. 
(a) The node vk represents the location of a sensitive asset and forms the endpoint of a destination-aware 
trajectory model �,Q�D�QRUPDO�SDWWHUQ�RI�OLIH��ORFDO�WUDI¿F�ÀRZV�WRZDUG�vk, with sample trajectories shown 
as green dashed lines. (b) When an anomalous event occurs near the node vk, the pattern of life switches to an 
abnormal state, with sample trajectories (shown in solid red) arriving at vk using aberrant paths in an attempt 
to avoid the anomalous event.
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WKH� HVWLPDWLRQ� GRHV� QRW� UHTXLUH�
the approximation in (9), because 
each cell phone or vehicle can 
EH� XQLTXHO\� LGHQWL¿HG�� +RZHYHU��
WKH� WUDFHV� PXVW� EH� TXDQWL]HG� WR�
grid positions in the surveillance 
space. For the purposes of simu-
lations, a synthetic three-point 
transition matrix is used such that 
the three-point transitions Q(i, j, l) 
at each node ȣj are inversely pro-
portional to the distance between 
ȣl and destination node ȣk. Such a 
choice biases the target to make 
transitions to reach the destination 
ȣk in the shortest number of hops.

Destination-Aware Trajectories

Using the three-point transitions 
described earlier and the time-
varying transitions in (5), a des-
tination-aware trajectory model 

 is created for an arbitrary 
node ȣk, which was chosen as an 
interesting node hypothetically 
containing a sensitive asset. We 
then simulate multiple trajectories 
of length T with node ȣk as the 
destination. These trajectories are 
observed using a noisy process 
such that

 (10)

where j refers to the set of intersections connected to node ȣj 
by a street and | j| refers to the number of connected nodes. 
This noise distribution was chosen to incorporate averaging and 
TXDQWL]DWLRQ�HIIHFWV�IURP�WKH�WUDFNOHW�HVWLPDWRU�LQ������$V�EHIRUH��
models for both SCFG and HMM frameworks are created such 
that  and . 
The �PRGHOV�DUH�GHVWLQDWLRQ�FRQVWUDLQHG�EXW�KDYH�D�¿QDO�GHV-
tination at some node in & k. We chose several such nodes within 
2–3 hops of the intended destination k. The detection perfor-
mance can be seen in Figure 13a.

Palindrome Trajectories

Examples are also provided for the detection of palindrome 
paths over the road network R A palindrome trajectory is arti-
¿FLDOO\�VLPXODWHG�E\�¿UVW�JHQHUDWLQJ�DQ�DUELWUDU\�WUDMHFWRU\�IRU�
[T��@�WLPH�SRLQWV�DQG�WKHQ�DSSHQGLQJ�WKH�UHYHUVHG�VHTXHQFH�WR�
create a retraced path. The same noisy observation process as 
in (10) is used to obtain tracklet measurements  We use a 
destination-aware model with the same start a

0
 = ȣk and end aT 

= ȣk points represented as Gk,k, as well as a more general SCFG 
model allowing random transitions like a random walk within 
the model set �� 7KH� HTXLYDOHQW�
HMM has a fully connected state transition diagram, and the 
rule probabilities are learned using Baum-Welch reestimation 
[25] from example palindrome trajectories generated from its 
generative SCFG model. The performance results are shown in 
Figure 13b.

The target rendezvous event can be considered an expanded 
state space version of the destination-aware trajectory model. 
Simulations show similar results to the single-target destina-
tion-aware case. As a result, simulation results are not shown 
for such events.

PATTERN OF LIFE ANALYSIS

The multitarget change detection problem presented in the sec-
tion with the illustrative example is examined in this section. 
The normal operating regime consists of a regular 50-node net-
work, as shown in Figure 2b. The normal regime is simulated 
by making the three-point transitions Q(i, j, l) inversely propor-
tional to the distance between the node ȣl and the destination 
node ȣk� WR� ELDV� WKH� WDUJHW� WR� UHDFK� WKH� GHVWLQDWLRQ� DV� TXLFNO\�
as possible. An anomalous regime is then created by remov-

Figure 12. 
�D��7KH�52&�FXUYH�IRU�6&)*�DUFOLNH�WUDMHFWRULHV�ZLWK�DQ�DUHD�XQGHU�WKH�FXUYH��$8&��HTXDO�WR�������VKRZV�
better performance than HMMs that have AUC = 0.664. The SCFG models also have a better absolute recog-
QLWLRQ�UDWH�IRU�KLJKHU�WKUHVKROGV��DV�VHHQ�LQ��F���,Q��E���WKH�52&�FXUYH�IRU�6&)*�P�UHFWDQJOH�WUDMHFWRULHV�ZLWK�
AUC = 0.928 shows better performance than HMMs with AUC = 0.841. The SCFG rectangle models also 
have better absolute recognition rates, as shown in (d).
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ing edges around a chosen interesting node ȣk. In addition, the 
three-point transitions at each node ȣj are chosen proportional 
to the distance between the node ȣl and the destination node ȣk. 
Such a choice is opposite to the normal regime, and it biases 
the target to avoid transitions, taking it closer to the destination 
node ȣk.

Various single-target destination-aware trajectories are sim-
ulated heading toward the destination node ȣk using the normal 
UHJLPH��$IWHU�D�VSHFL¿F�DPRXQW�RI�WLPH�t

0
, the trajectory models 

are switched to the abnormal regime. Using the procedure out-
lined in the section with the illustrative example, the different 
hypotheses  are tested. The change point detection perfor-
mance results are shown in Figure 14.

CONCLUSION

In this article, a hierarchical tracking framework is proposed 
to assist human radar operators in the detection and forensic 
analysis of anomalous trajectory patterns. Geometric primitives 

OLNH�PRYHPHQW�SDWWHUQV�DQG�TXDQWL]HG�SRVLWLRQV�DUH�XVHG�DV�V\Q-
tactic subunits within an SCFG framework to perform anomaly 
detection. The expressive power of SCFG models is able to 
capture long-term dependencies in intent-driven trajectories 
ZKLOH� XWLOL]LQJ� HI¿FLHQW� SRO\QRPLDO� WLPH� DOJRULWKPV� IRU� WKHLU�
LQIHUHQFH��7KH�(DUOH\�6WROFNH�SDUVHU�LV�PRGL¿HG�XVLQJ�D�VFDO-
LQJ�WULFN�WR�DOORZ�SURFHVVLQJ�RI�ORQJ�WUDFNOHW�VHTXHQFHV��$�QRYHO�
interpretation of reciprocal processes using time-varying SCFG 
rules is also presented. We devised novel models for anomalous 
events like target rendezvous and palindrome paths. Further-
more, the pattern-of-like-analysis problem was formulated as 
a change detection problem using multiple target trajectories. 
Finally, a comprehensive numerical evaluation of our proposed 
models was carried out to show an increase in the detection 
performance over conventional Markov models.

APPENDIX A: TUTORIAL OVERVIEW OF SCFGS

STRUCTURAL DESCRIPTION OF SCFG

A grammar �LV�D�TXDGUXSOH�FRQVLVWLQJ�RI�D�VHW�  
of latent variables Xi, i = 1, …, | | called nonterminals; a set 

 of discrete observations ȣi, i = 1, …, | | called terminals; a 
special start symbol S; and a set  of production rules rm, m = 1, 
…, | |. In the context of trajectory modeling, nonterminals rep-
resent hierarchical structural segments of a trajectory while ter-
minals represent actual subunits of a trajectory. The production 
rules rm describe the manner in which the trajectory can evolve 
by combining the hidden structural parts of the trajectory. Each 
nonterminal Xi can have  alternative rules that can be chosen 
when nonterminal Xi is being considering for rewriting.

A context-free grammar GCFG additionally has the property 
that its production rules can only have the form Xi A Į, such 
that a nonterminal Xi can be rewritten as an arbitrary string 

 The notation  denotes an arbitrary (pos-
sible empty) combination of nonterminal and terminal symbols. 
An SCFG  is a pair consisting of a context-free 
grammar and a rule probability set , assigning a prob-
ability  to each rule rm ! . The rule probabilities 
create a conditional probability distribution over all alternative 
expansions of a nonterminal Xi such that  for each 
Xi.

In the following discussion, an SCFG is treated as a triple 
stochastic process with two layers of latent variables. The rule 
FKRLFHV�XVHG� LQ� WKH�GHULYDWLRQ�RI�D� VHQWHQFH� LV� WKH�¿UVW� ODWHQW�
OD\HU��$�JUDSKLFDO� UHSUHVHQWDWLRQ�RI� WKH�VHTXHQFH�RI� UHZULWLQJ�
rules used until epoch t is called a partial parse tree Ȍt. The 
VHTXHQFH�RI�UXOH�FKRLFHV�LV�DOVR�FDOOHG�D�GHULYDWLRQ�WKDW�JHQHU-
DWHV� D� VHTXHQFH� RI� ³FOHDQ´� WHUPLQDO� V\PEROV�a��T on termina-
tion. The clean terminal symbols represent the second hidden 
OD\HU�EHFDXVH�WKH\�DUH�RQO\�REVHUYHG�LQ�QRLVH��7KH�¿QDO�REVHU-
YDWLRQ�SURFHVV�JHQHUDWHV�D�VHTXHQFH�  of “noisy” terminals. 
The SCFG measurements are represented by an observation 
distribution  The noisy observation 
layer can be subsumed into the grammar rules by creating a 
special “emitting” nonterminal for each terminal. However, this 

Figure 13. 
�D��7KH�52&�FXUYH�IRU�DQ�6&)*�GHVWLQDWLRQ�DZDUH�WUDMHFWRU\�VKRZV�D�
marked improvement over HMMs. The AUC for the SCFG models is 
�������ZKLOH�WKH�$8&�IRU�+00V�LV�HTXLYDOHQW�WR�D�UDQGRP�FODVVL¿HU�
ZLWK�$8&� �������,Q��E���WKH�52&�FXUYH�IRU�6&)*�SDOLQGURPH�WUDMHFWR-
ries with AUC = 0.91 also shows a marked improvement over an HMM 
learned from example palindromes generated by an SCFG.
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increases the size of the grammar and makes the rules less intui-
tive [26].

EXAMPLE OF SCFG PATTERN GENERATION

To provide more intuition, we compare and contrast SCFGs to 
HMMs. Consider the grammar shown in Figure 15a. This is a 
simple grammar generating palindromes over a binary-valued 
alphabet  = {a,b}. The SCFG-generation process starts with a 
special start symbol S. Initially, only nonterminal S is present in 
the parse tree shown in Figure 15a. We then sample one of the 
rules from the conditional distribution over all alternative re-
write rules of the start symbol S. The next generation of the tree 

is created by replacing the nonterminal under expansion (the 
start symbol S in this case) with the right-hand side of the sam-
pled rewrite rule. In the example, rule r1 was chosen with proba-
bility p1 and the start symbol S is replaced by the right-hand side 
“a S a” of rule r1. The procedure is repeated in each generation 
by leftmost derivation in which only the leftmost nonterminal 
in the current symbol stack is rewritten with the right side of a 
chosen production rule. The resultant parse tree Ȍ is depicted 
on the right in Figure 15a. At the end of the derivation process, 
no more nonterminal symbols exist and the symbol stack only 
contains clean terminal symbols. The noisy observation process 
is represented by associating a discrete probability mass func-
tion C(i, j) = P{ȣj|ȣi} to each clean terminal ȣi. The right bottom 
part of Figure 15a depicts the noisy observation process. The 
hat accent is used to differentiate noisy terminals â from clean 
terminals a.

An HMM attempting to generate palindromes is also shown 
in Figure 15b. Markov models cannot exclusively generate pal-
indromes [23]; hence, the model in Figure 15b forms a poor 
generative model for palindromes. Nevertheless, it is instruc-

Figure 14. 
�D��7KH�6&)*�PRGHO�52&�FXUYHV�IRU�YDULRXV�VZLWFKLQJ�WLPHV�LQ�WUDMHF-
tories with a length of 25 time points. (b) In comparison, we observe 
that HMMs cannot capture the target dynamics and hence perform 
poorly for pattern of life analysis. This result is in agreement with the 
result shown in Fig. 13a, because HMMs cannot represent destination-
aware trajectories. 

Figure 15. 
The absolute recognition rates for both SCFG and HMMs are shown 
in (a) and (b), respectively. The best performance of the SCFG change 
point detection algorithm is when all target trajectories are entirely 
simulated under either the normal regime or the abnormal regime.
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WLYH� WR�FRPSDUH� WKH�VHTXHQFH�JHQHUDWLRQ�SURFHVV�RI�DQ�+00�
DQG�DQ�6&)*��:H�REVHUYH�WKDW�ZKLOH�WKH�+00�VWDWH�VHTXHQFH�
forms a linear directed graph, the SCFG parse tree exhibits a 
branching structure representing self-embedding rules of the 
form S A a S a. These rules are the basis for the ability of 
6&)*V�WR�PRGHO�ORQJ�WHUP�GHSHQGHQFLHV�LQ�D�V\PERO�VHTXHQFH��
SCFGs have been studied in probability theory under the um-

brella of random branching processes. In par-
ticular, they form a special class of branching 
processes called multitype Galton-Watson 
EUDQFKLQJ� SURFHVVHV� >��@�� )URP� WKH� FRP-
parison in Figure 15, it can also be observed 
that the number of parameters in the HMM 
is larger than the number in the analogous 
SCFG model. The predictive entropy of an 
SCFG has been shown in [28] to be great-
er than a comparative HMM with a similar 
number of parameters.

 INFERENCE USING SCFGS

In this article, we are mainly concerned 
with (a) computing trajectory likeli-
hoods  and (b) recovering 
WKH� PRVW� OLNHO\� FOHDQ� WHUPLQDO� VHTXHQFH�

 from an observed 
sentence  given an SCFG model GSCFG. 
The model likelihoods are used to classify 
anomalous patterns as formulated in (3) and 
in the change detection problem in the sec-
tion with the illustrative example. The most 
likely parse tree estimation is used to recover 
WKH�FOHDQ�WHUPLQDO�VHTXHQFH�RULJLQDOO\�JHQHU-
ated by the SCFG. As described in the intro-
duction, the Earley-Stolcke parser is used in 
this article due to its ability to deal with un-
restricted context-free rules. Moreover, it is 
capable of generating likelihoods for partial 
sentences  due to its incremental left-to-
right operation.

The Earley-Stolcke parser builds leftmost 
derivations of a string by keeping track of all 
possible derivations that are consistent with 
the observations  up to a certain epoch t. 
As more observations are revealed, the set 
of possible derivations (each of which cor-
responds to a partial parse tree) can either ex-
pand as new choices are introduced or shrink 
as a result of resolved ambiguities. As each 
observation ât is received by the parser, a set 
of states  is created that 
represents all derivations that can explain the 
observations â��t.

An Earley state is the basic control struc-
ture used in the operations of the Earley-
Stolcke parser. Each state  represents 
a rewrite rule rm !  such that the observa-

tion ât is derived from its right-hand side. An Earley state is 
denoted by  The uppercase letters X and Y are 
nonterminals, and Ȝ and ȝ are substrings of nonterminals and 

terminals. The index t represents the current epoch. The dot “u” 

demarcates the portion of the right-hand side that has already 

been recognized by the parser. The index tv is a backpointer to 

Figure 16. 
$�GHSLFWLRQ�RI�WKH�VHTXHQFH�JHQHUDWLRQ�SURFHVV�RI�D�IRXU�VWDWH�+00�ZLWK�REVHUYDWLRQV�FRPLQJ�
from a binary alphabet. (a) The state transitions form a linear directed graph with no inher-

ent branching. (b) The analogous SCFG model of a palindrome. We observe that the number 

of parameters in the grammar rules is fewer than the number in the HMM case. Moreover, 

WKH�VHTXHQFH�JHQHUDWLRQ�LV�D�EUDQFKLQJ�SURFHVV�ZLWK�D�FKDUDFWHULVWLF�LQVLGH±RXWVLGH�VWUXFWXUH�
represented using self-embedding rules. The noisy observations are differentiated from the clean 

terminals by a hat accent.
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the epoch at which the parser rewrote nonterminal X using an 
instance of production rule rm. Each state is a link in an incom-
plete chain of rule choices that could have generated the ob-
VHUYHG�VHTXHQFH�â��t.

Each state is also associated with a forward probability 
Į and an inner probability Ȗ. The forward probability  
of a state  represents the probability of the grammar GSCFG 
deriving the observations â��t. while passing through the state 

 at epoch t��7KLV�LV�DQDORJRXV�WR�WKH�GH¿QLWLRQ�
of forward probability for the case of an HMM GHMM [25]. The 
inner probability  of a state �LV�GH¿QHG�DV�WKH�SUREDELOLW\�
RI�D�SDUWLFXODU�UXOH�JHQHUDWLQJ�DQ�LQ¿[�RI�WKH�VHQWHQFH�  repre-
sented by the accumulated probabilities of all derivations start-
ing with a state  and ending at the state 

For the purposes of dealing with the start symbol, the 
Earley-Stolcke parser is initialized with a dummy state 

 At each epoch, the states in an Earley set ut 
are processed in order by performing one of three operations 
on each state. These operations may add more states to ut and 
may put states in a new state set ut+1. Whenever an operation at-
tempts to add a new state, it is linked to an existing state. Such a 
VHTXHQFH�RI�OLQNHG�VWDWHV�UHSUHVHQWV�GLIIHUHQW�UXOHV�FKRLFHV�WKDW�
FRXOG�KDYH�JHQHUDWHG�WKH�LQSXW�VWULQJ�

1) The prediction operation is applied to states when there 
is a nonterminal to the right of the dot. It causes the addition of 
one new state to ut for each alternative production rule of that 
nonterminal. The dot is placed at the beginning of the produc-
tion rule in each new state. The backpointer is set to t, since the 
state was created in ut. Thus, the predictor adds to ut all produc-
tions that might generate substrings beginning with at+1. More 
formally, for a state  in the state set ut, the predictor 
adds a new predicted state  for each of the alternative 
production rules  A link is thus created between 
these states.

2) The scanning operation is applicable only when there 
is a terminal a to the right of the dot. The scanner compares 
that symbol a with the observation  and if they match, it 
adds the state to ut+1, with the dot moved over one symbol in 
the state to indicate that the terminal symbol has been scanned. 
If  exists and  the scanning operation 
adds a new scanned state  to state set ut+1. The sym-
bol likelihood  allows us to incorporate a noisy ob-
servation process into SCFG generation.

3) The completion operation is applicable to a state if its 
dot is at the end  of its production rule. Such a state 
is called a complete state. For every complete state, the pars-
er backtracks to the state set utv indicated by the pointer in the 
complete state and adds all states from utv to ut that have Y (the 
nonterminal corresponding to that production) to the right of 
the dot. It moves the dot over Y in such states. Intuitively, utv is 
the state set where Y�ZDV�¿UVW�H[SDQGHG��7KH�SDUVHU�KDV�VHHQ�
evidence  that Y A v was used, so we move the dot over the Y 
in these states to show that its terminal yield been successfully 
scanned. A completion operation adds a new state  
(called a completed state) using  and  where 
tw���tv���t.

The Earley-Stolcke parser continues in this manner until all 
observation â��T� V\PEROV�KDYH�EHHQ�VFDQQHG�� ,I� WKH�¿QDO� VWDWH�
set uT contains the state  then the algorithm terminates 
successfully. It represents a successful parse of the sentence a1, 
…, at, …, aT. The recursive updates of the forward probability Ȗ 
and inner probability Ȗ for each of the state operations are sum-
marized in Algorithm 1.

7R� GHDO� ZLWK� XQGHUÀRZ� LVVXHV�� VWDWH�LQGHSHQGHQW� VFDOLQJ�
PXVW�EH�DSSOLHG�DW�HYHU\�HSRFK��'H¿QH� WKH�SUH¿[�SUREDELOLW\�

 as the probability of the grammar GSCFG gener-
ating the observations â0,…,ât�DV�WKH�SUH¿[�RI�D�FRPSOHWH�VHQ-
tence â0,…,âT. Philosophically, this involves a summation over 
DOO�SRVVLEOH�VXI¿[HV�  However, in [29], it is shown 
WKDW�WKLV�LV�HTXLYDOHQW�WR�WKH�VXP�RI�WKH�IRUZDUG�SUREDELOLWLHV�Į 
of all scanned states in the state set ut such that

 (11)

where n is a scanned state. An appropriate choice for the scal-
ing factor ct in each state set is to use the inverse of the one-step 
SUHGLFWLRQ�SUREDELOLW\�GH¿QHG�DV

 (12)

The scaling factor c0 = 1/Ȣ0�LV�LQLWLDOL]HG�XVLQJ�WKH�SUH¿[�SURE-
DELOLW\�RI�WKH�¿UVW�REVHUYDWLRQ�  The scaling factor at all other 
epochs t = 1, …, T is computed as ct = 1/Ȣt|tí�. The forward Į 
and Ȗ probabilities of all scanned states are multiplied by the 
VFDOLQJ� IDFWRU� WR� SUHYHQW� XQGHUÀRZ� LVVXHV�� 7KH� OLNHOLKRRG�

�RI�WKH�REVHUYDWLRQ�VHTXHQFH�  can be com-
SXWHG�IURP�WKH�VHTXHQFH�RI�VFDOLQJ�IDFWRUV�c0, …, ct as

 (13)

An algorithmic description for one cycle of the Earley-
Stolcke parser operation is given in Algorithm 1. The notation 
�� �RQ�OLQHV�������������DQG����RI�$OJRULWKP���GHQRWHV�DQ�DF-
cumulated sum over all repeated states in the state set being 
processed. RL(Z, Y} and RU(Z, Y) are precomputed  
matrices representing collapsed factors to account for looping 
SURGXFWLRQ�UXOHV�LQWR�D�VLQJOH�VWHS�ZLWK�PRGL¿HG�SUREDELOLW\�XS-
dates. Further details can be found in [29].

Algorithm 1.
Earley-Stolcke Parser

�� function EARLEYSTOLCKEPARSER 

Scanning

��  for  do

��    Add 

��    
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��    

��  

��  Compute  by computing Ȣt|tí� from (12)

��  Scale Į, Ȗ for all scanned states using ct
Completion

��  for  do

���       for  do

���       if RU(Z, Y) & 0 then

���           Add 

���           Įv + = ĮȖw RU(Z, Y)

���           Ȗv + = ȖȖw RU(Z, Y)

Prediction

���  for  do

���    Add 

���    Įv + = Į5L(Z, Y)P{Y A v}

���    Ȗv + = P{Y A v}

���  return ut, ct

,Q�DGGLWLRQ�WR�VHTXHQFH�OLNHOLKRRGV�Lt, we are interested in 
UHFRYHULQJ� WKH� VHTXHQFH�RI� FOHDQ� WUDFNOHWV�a��T. For an SCFG 
model, this involves computing the Viterbi parse of the obser-
vations ��$�9LWHUEL�SDUVH�UHFRYHUV�WKH�VHTXHQFH�RI�UXOH�FKRLF-
es (or the parse tree Ȍ*) that assigns maximum probability to 

�DPRQJ�DOO�SRVVLEOH�SDUVHV��7KH�VDPH�VHTXHQFH�RI�RSHUDWLRQV�
as described in Algorithm 1 can be used to recover the Viterbi 
parse. However, each state  also keeps tracks of its Viterbi 
path probability ׋. The Viterbi probability ׋ is propagated in 
the same manner as the inner probability Ȗ. During completion, 
the accumulated sum + = is replaced by a maximum over all 
products that contribute to the completed state. The complete 
state  at the current epoch t associated with the maxi-
mum is recorded as the predecessor of  The Viterbi 
probability update also does not use the collapsing loop factor 
RU(Z, Y), because loops can only lower the probability of a deri-
YDWLRQ��2QFH�WKH�¿QDO�VWDWH�  is accepted by the parser, a 
recursive procedure can backtrack over the Earley state sets to 
recover the Viterbi parse Ȍ* [29]. The leaf nodes of the parse 
tree can then be traversed to recover the clean terminals a��T.

EXAMPLE OF PARSER OPERATION

The parser operations are illustrated with the use of a simple 
yet nontrivial example utilizing the palindrome grammar in 
Figure 15a. The grammar has four rules with the rule prob-
abilities p

1
 = 0.4, p

2
 = 0.2, p

3
 = 0.1, and p

4
 = 0.3. Suppose that 

ZH�DUH�SUHVHQWHG�ZLWK�WKH�TXHU\�SDWWHUQ�a b a��7KH�FODVVL¿FD-

Table 1.

Earley-Stolcke Operations on the Pattern {a b a} 
Using the Grammar Model in Figure 15

Operations State Attributes

State set t = 0
Predicted A = 1.0, a = 1.0

A = 0.4, a = 0.4

A = 0.2, a = 0.2

A = 0.1, a = 0.1

A = 0.3, a = 0.3

State set t = 1
Scanned A = 0.36, a = 0.36

A = 0.02, a = 0.02

A = 0.09, a = 0.09

A = 0.03, a = 0.03

Completed A = 0.12, a = 0.12

Predicted A = 0.152, a = 0.4

A = 0.076, a = 0.2

A = 0.038, a = 0.1

A = 0.114, a = 0.3

State set t = 2
Scanned A = 0.0152, a = 0.04

A = 0.0684, a = 0.18

A = 0.0038, a = 0.01

A = 0.1026, a = 0.27

Completed A = 0.1008, a = 0.1008

A = 0.0056, a = 0.0056

Predicted A = 0.03344, a = 0.4

A = 0.01672, a = 0.2

A = 0.00836, a = 0.1

A = 0.02508, a = 0.3

State set t = 3
Scanned A = 0.0.09072,  

a = 0.09072
A = 0.00056,  
a = 0.00056
A = 0.030096, a = 0.36

A = 0.001672, a = 0.02

A = 0.007524, a = 0.09

A = 0.002508, a = 0.03

Completed A = 0.001824,  
a = 0.0048
A = 0.008208,  
a = 0.0216
A = 0.09128,  
a = 0.09128
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tion problem seeks to evaluate the class conditional probability 
P{aba|Gpalindrome} of the input pattern aba given the grammar 
model Gpalindrome. In addition, the symbols a and b are not always 
reliably detected and the detection probability is parameterized 
by  and  where  are used to denote 
the noisy observations as opposed to the clean terminal sym-
bols a, b. The Earley-Stolcke parser state sets in each epoch are 
shown in Table 1. The accompanying code4 can also be run to 
see the details of the parsing operations and reproduce the Table 
1. In essence, the parser resolves four possible derivations of 
WKH�JUDPPDU� WKDW�FRXOG�JLYH� ULVH� WR� WKH�REVHUYDWLRQ�VHTXHQFH�
aba. These paths are shown in Figure 16. The most direct deri-
vation of the input pattern is the top path with the probability 
RI����������7KH�DFFXPXODWHG�VXP�RI�DOO�SRVVLEOH�GHULYHG�SDWKV�
is the class conditional probability of the input pattern. The for-
ward or inner probability of the completed dummy state  
LV� HTXLYDOHQW� WR� WKH� VHQWHQFH�SUREDELOLW\�� ,Q� WKLV�H[DPSOH�� WKH�
ambiguity arises from the uncertainty in detecting the symbols. 
However, ambiguity can also arise directly from the structural 
rules of the grammar. Many examples of such ambiguity can be 
found in [30]. 
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