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Tracking Infection Diffusion in Social Networks:
Filtering Algorithms and Threshold Bounds

Vikram Krishnamurthy, Fellow, IEEE, Sujay Bhatt, and Tavis Pedersen

Abstract—This paper deals with the statistical signal processing
over graphs for tracking infection diffusion in social networks.
Infection (or Information) diffusion is modeled using the
susceptible-infected-susceptible (SIS) model. Mean field approx-
imation is employed to approximate the discrete valued infection
dynamics by a deterministic difference equation, thereby yielding
a generative model for the infection diffusion. The infection is
shown to follow polynomial dynamics and is estimated using an
exact nonlinear Bayesian filter. We compute posterior Cramér-Rao
bounds to obtain the fundamental limits of the filter that depend on
the structure of the network. The SIS model is extended to include
homophily, and filtering on these networks is illustrated. Consider-
ing the randomly evolving nature of real world networks, a filtering
algorithm for estimating the underlying degree distribution is also
investigated using generative models for the time evolution of the
network. We validate the efficacy of the proposed models and
algorithms with synthetic data and Twitter datasets. We find that
the SIS model is a satisfactory fit for the information diffusion, and
the nonlinear filter effectively tracks the information diffusion.

Index Terms—Cramér-Rao bounds, diffusion threshold, ho-
mophily, mean-field dynamics, non-linear Bayesian filter, social
Networks, stochastic dominance, twitter dataset.

I. INTRODUCTION

S TATISTICAL signal processing on graphs is an emerging
field in which the structural properties of the graph are

utilized to derive statistical inference algorithms. As described
in [1], there is a wide range of social phenomena such as diffu-
sion of technological innovations, cultural fads, and economic
conventions [2] where individual decisions are influenced by the
decisions of others. In this paper, we consider social networks
represented as graphs and we are interested in analyzing the
manner in which information (or infection) spreads through the
network. A large body of research on social networks has been
devoted to the diffusion of information (e.g., ideas, behaviors,
trends) [3], and particularly on finding a set of target nodes so
as to maximize the spread of a given product [4].
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A. Organization and Main Results

Section II presents the Susceptible Infected Susceptible (SIS)
model for infection diffusion in the network. The key result
is that the mean field dynamics approximates the discrete-
valued infection dynamics by a deterministic ordinary differen-
tial equation. The mean field dynamics yield a tractable model
for Bayesian filtering in order to estimate the infection dynamics
given a sampling procedure for the social network. From a sig-
nal processing point of view, the mean field dynamics (MFD)
has an interesting interpretation: it resembles a stochastic ap-
proximation algorithm; however, in our case, it constitutes a
generative model1 instead of an algorithm.

The mean field dynamics of Section II yields a dynamical sys-
tem whose state (infected population state) evolves with poly-
nomial dynamics. Section III uses a recent result in Bayesian
filtering to obtain an exact (finite dimensional) filter for the
infected population state given noisy observations. We exam-
ine via numerical examples and posterior Cramér-Rao lower
bounds, how state estimation over large networks is affected
by the network; see [5] for posterior Cramér-Rao bounds for
non-linear filters. Numerical examples illustrate the difference
in performance between power law (scale free) and Erdős-Rényi
graphs. Scale free networks arise in online social networks
such as Twitter [6] and in the link network of the World Wide
Web [7].

The classical SIS model assumes a fixed underlying social
network. Section IV analyzes the diffusion threshold of a SIS
model when the social network evolves over time. Since in-
formation diffusion occurs at a faster time scale compared to
forming connections in social networks, we consider a two time
scale formulation: the degree distribution of the underlying net-
work changes on a slow time scale, and the infection diffuses
over a faster time scale. Our results generalize the results in [1],
where the network was assumed to be fixed.

Section V illustrates the SIS model and the performance of the
Bayesian filter on simulated data and examines the sensitivity
of the filter to the underlying graph model (Erdős-Rényi vs
Scale Free). We also present the analysis in an SIS model with
homophily and illustrate the improved mean field approximation
and filter performance. Finally, we present a detailed example
using a real Twitter dataset. It is shown via a goodness of fit test
that SIS is a reasonable model for information propagation in

1From Theorem 1 (see Section II-B), the maximum deviation - over the entire
infection dynamics trajectory - between the deterministic approximation (MFD)
and the actual infection dynamics, satisfies an exponential bound.
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the Twitter dataset and that the infected population state can be
tracked satisfactorily over time via the Bayesian filter.

B. Related Literature

There are several models for studying the spread of infec-
tion and technology in complex networks including Susceptible-
Infected-Susceptible (SIS), Susceptible-Alert-Infected-Suscep-
tible (SAIS), and Susceptible-Exposed-Infected-Vigilant
(SEIV); see [8], [9]. Susceptible-Infected-Susceptible (SIS)
models have been extensively studied in [1], [10]–[13] to model
information/infection diffusion, for example, the adoption of a
new technology in a consumer market.

Degree-based mean field dynamics approximations for SIS
models have been derived in [1], [14]. Pair approximations
(PA) and approximate master equations (AME) yield more gen-
eral models for the complex dynamics of large scale networks
[14]. However, the resulting differential/difference equations
that characterize the dynamics in PA and AME are no longer
polynomial functions of the state. In this more general case,
however, a suboptimal filter such as a particle filter can be used
to track the infection diffusion.

In this paper, since we focus on optimal Bayesian estimation
(filtering) of the infection dynamics by sampling the network,
we use the SIS model. In comparison, [15] provides a stochas-
tic approximation algorithm and analysis on a Hilbert space
for tracking the degree distribution of evolving random net-
works with a duplication-deletion model. In small sized sensor
networks represented by graphs, [16] derived an optimal esti-
mation algorithm, based on the Kalman filter, to estimate the
state at each sensor. Further, on specific structures like trees,
[16] provides expressions for the steady-state covariance.

On networks having fixed degree distribution, [1] identified
conditions under which a network is susceptible to an epidemic
using a mean-field approach and provided a closed form solution
for the infection diffusion threshold. The diffusion properties
of networks was investigated using stochastic dominance of
their underlying degree distributions like in [17]. We generalize
these stochastic dominance results for evolving networks by
considering a simple preferential attachment model as this can
generate a scale-free network [18].

Finally, [11] studies the link between the power law expo-
nent and the diffusion threshold. For the preferential attachment
model, [18] studies the connection between the parameters that
dictate the evolution (node and edge addition probability) and
the degree distribution. We obtain similar results in this paper us-
ing stochastic dominance, but, the key emphasis is on providing
a structured way to study such ordinal sensitivity relationships
in large networks.

II. SIS MODEL AND MEAN FIELD DYNAMICS

This section discusses the discrete time SIS model [19], [20]
and mean field dynamics for the diffusion of information in
a social network. We also formulate sampling of nodes in the
network. The final outcome is a state space model with poly-
nomial dynamics and noisy observations which is amenable to
Bayesian filtering.

Consider social network represented by an undirected
graph G:

G = (V,E), where V = {1, . . . , M}, and E ⊆ V × V. (1)

Here V denotes the set of M vertices (nodes) and E denotes
the set of edges (relationships). The degree of a node m is its
number of neighbors2:

Ξ(m ) = |{g ∈ V : g,m ∈ E}|, | · | denotes cardinality.

Let M(d) denote the number of nodes in the network G with
degree d, and let ρ(d) denotes the degree distribution. That is,
for degree d = 0, 1, . . . ,D,

M(d) =
∑

m∈V

I
(
Ξ(m ) = d

)
, ρ(d) =

M(d)
M

.

Here I(·) denotes the indicator function and D denotes the
maximum degree. Since

∑
d ρ(d) = 1, ρ(d) can be viewed as

the probability that a node selected randomly on V has degree
d. At each time instant n = 0, 1, . . ., each node m has state:

s(m )
n ∈ {1 (infected) , 2 (susceptible) }.

Define the infected population state x̄n at time n as the fraction
of nodes with degree d at time n that are infected:

x̄n (d) =
1

M(d)

∑

m

I
(
Ξ(m ) = d, s(m )

n = 1
)
, d = 0, . . . , D.

(2)

A. Individual Dynamics & Discrete Time SIS Model

In the SIS model, the state of nodes evolves over time as a
discrete time Markov chain. The transition probabilities depend
on the degree of the node and the number of infected neighbors.
The infection dynamics evolves as follows3,4:

Step 1: A node m is chosen uniformly from the vertices in V .
Suppose the node has degree Ξ(m ) = d and the num-
ber of infected neighbors F

(m )
n = a. The state s

(m )
n of

an individual node m at time n evolves from state i to j
with transition probabilities P̄ij , where i, j ∈ {1, 2}.
P̄21 is known as the infection probability and P̄12
is known as the recovery probability. These transi-
tion probabilities of individual nodes depend on the
node’s degree d and its number of infected neighbors

2A vertex g is adjacent to a vertex m if there is an edge between them. The
neighbors of a node m are all the vertices that are adjacent to m.

3The state of the network (1) at time n is given by an M dimensional vector
with elements 1 or 2. The state space is given by {1, 2}M and the dynamics
can be formulated in terms of a transition matrix between all possible states
[14],[21]. In this paper, we group the 2M states into D subsets, one for each
degree, resulting in a state space of dimension 2M (d ) for each degree d.

4Example: Suppose there are M = 130 nodes, with d ∈ {1, 2, 3} and
[M (1), M (2), M (3)] = [50, 50, 30]. Suppose the fraction of infected nodes
of degree 1, 2 and 3, are respectively, x̄n (1) = 5/50, x̄n (2) = 20/50 and
x̄n (3) = 6/30. Then x̄n +1 (1) ∈ {4/50, 5/50, 6/50} if a node of degree 1
is chosen in Step 1), x̄n +1 (2) ∈ {19/50, 20/50, 21/50} if a node of de-
gree 2 is chosen in Step 1), and x̄n +1 (2) ∈ {5/30, 6/30, 7/30} if a node of
degree 3 is chosen in Step 1).
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a. Therefore,

P̄ij(d, a) = P
(
s

(m )
n+1 = j|s(m )

n

= i,Ξ(m ) = d, F (m )
n = a

)
. (3)

One possible parametrization we will consider is
P̄ij(d, a) = μijFij(d, a), where μij is interpreted as the
spreading rate and Fij(d, a) is the neighborhood de-
pendent diffusion function in [1]. This parametrization
is used in Section IV to define the diffusion threshold.

Step 2: The population state of degree d is updated as5

[
x̄n+1(d)
1 − x̄n+1(d)

]
=
[

x̄n (d)
1 − x̄n (d)

]
+

1
M(d)

×
⎡

⎢⎢⎢⎢⎣

I
(
s

(m )
n+1 = 1, s

(m )
n = 2

)

−I
(
s

(m )
n+1 = 2, s

(m )
n = 1

)

I
(
s

(m )
n+1 = 2, s

(m )
n = 1

)

−I
(
s

(m )
n+1 = 1, s

(m )
n = 2

)

⎤

⎥⎥⎥⎥⎦
. (5)

Here 1 − x̄n+1(d) denotes the fraction of susceptible
nodes of degree d at time n + 1.
The following example illustrates the SIS model. Con-
sider a network where the nodes (users) sequentially
adopt an innovation. A node m pays a cost Cm to
adopt the innovation at time k, where the costs Cm

for m = 1, 2, . . . are i.i.d random variables with a cu-
mulative distribution function PC . Adopting the inno-
vation endows node m with a benefit (b̄m ) propor-
tional to the number of adopted neighbours a, i.e,
node m adopts the innovation if b̄m a > Cm . Hence
P̄21(d, a) = PC(b̄m a), and P̄12(d, a) could model an
outdated innovation due to adoption of a different in-
novation by the neighbours.

B. Mean Field Population Dynamics

In practice even for small network size, the dimensionality
of the SIS model, namely 2M states, becomes intractable for
modeling or signal processing algorithms. To obtain a useful
generative model, this section presents a mean field dynamics
approximation to the SIS model.

In the formulation of the mean field dynamics below, the
following statistic forms a convenient parametrization of the
transition probabilities of x̄n . Define α(x̄n ) as the probability

5The stochastic difference equation (4) can be derived as follows. The mar-
tingale representation of a Markov chain Xk says that [22]:

Xk+1 = T ′Xk + Mk (4)

where T is the transition matrix with elements (3), Mk is a martingale differ-
ence, Xk = ei for some i ∈ {1, . . . , (M (d) + 1)} and ei ∈ RM (d )+1 is the
unit indicator vector. Define

G =

[
1 (M (d )−1)

M (d ) · · · (M (d )−j )
M (d ) · · · 1

M (d ) 0

0 1
M (d ) · · · j

M (d ) · · · (M (d )−1)
M (d ) 1

]

Then from (4) it follows that GXk =
[

x̄n (d)
1 − x̄n (d)

]
with x̄n (d) ∈

{0, 1
M (d ) , ...1} and so (5) follows.

that a uniformly sampled link6 in the network, at time n, points
to an infected node [1], [11]. We call α(x̄n ) as the infected link
probability. Clearly,

α(x̄n ) =

×
∑D

d=1 (# of links pointing to infected nodes of degree d)
∑D

d=1 (# of links pointing to nodes of degree d)

=
∑D

d=1 d ρ(d) x̄n (d)
∑D

d=1 d ρ(d)
. (6)

With αn , the probability that a susceptible node of degree
d, has exactly a infected neighbors is given by the binomial
distribution7 as

(
d
a

)
αa

n (1 − αn )d−a .
We can now characterize the transition probabilities of the

entire population process x̄n (d), whose sample path evolves
according to (5). The transition probability of the population
process from susceptible to infected is:

P

(
x̄n+1(d) = x̄n (d) +

1
M(d)

)

=
d∑

a=0

P̄21(d, a)P (a out of d neighbours infected)

=
d∑

a=0

P̄21(d, a)
(

d

a

)
αa

n (1 − αn )d−a . (7)

The transition probability of the population process from in-
fected to susceptible is evaluated similarly as:

P

(
x̄n+1(d) = x̄n (d) − 1

M(d)

)

=
d∑

a=0

P̄12(d, a)P (a out of d neighbours infected)

=
d∑

a=0

P̄12(d, a)
(

d

a

)
αa

n (1 − αn )d−a . (8)

With the transition probabilities (7) and (8) of the population
process, define the change in the fraction of infected and sus-
ceptible nodes in the population as:

P21(d, x̄n (d)) Δ= (1 − x̄n (d))ρ(d)P

×
(

x̄n+1(d) = x̄n (d) +
1

M(d)

)

P12(d, x̄n (d)) Δ= x̄n (d)ρ(d)P

×
(

x̄n+1(d) = x̄n (d) − 1
M(d)

)
(9)

Thus the change in the fraction of population from susceptible
to infected and vice versa, depends on the individual transition

6By link we mean a node and its associated edge. So for a graph with two
nodes and one edge, there are two links: (node 1, edge), and (node 2, edge).

7Implicit to this binomial expression is the assumption that nodes associate
randomly with other nodes in a network, or the homogeneous mixing assump-
tion. This is a common assumption in modelling SIS dynamics [1].
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probabilities P̄12(d, a), P̄21(d, a) from (7) and (8); current in-
fected population state, x̄n (d); and the degree distribution of the
network, ρ(d).

Define the following 2-dimensional simplices for d =
1, 2, . . . ,D,

Sd =
{[

x̄n (d)
1 − x̄n (d)

]
: x̄n (d) ∈ [0, 1]

}

and the following product space,

S = S1 × S2 × . . . × SD .

With 1 denoting the D dimensional vector of ones and x̄′
n

denoting the vector transpose of x̄n , let

x̄n = [x̄′
n , (1 − x̄n )′]′,

P21(x̄n ) = [P21(1, x̄n (1)), . . . , P21(D, x̄n (D)),

× P12(1, x̄n (1)), . . . , P12(D, x̄n (D))]′

P12(x̄n ) = [P12(1, x̄n (1)), . . . , P12(D, x̄n (D)),

× P21(1, x̄n (1)), . . . , P21(D, x̄n (D))]′. (10)

where x̄n is the infected population state defined in (2).
With the above notation, the following theorem is the main

result of this section. It gives a martingale representation of the
population process x̄n and then asserts that for large population
size M , the population process converges to a deterministic
difference equation with high probability.

Theorem 1 (Mean Field Dynamics): (1) The population
dynamics Markov chain x̄n defined in (10) evolves ac-
cording to the following martingale difference driven
stochastic difference equation:

x̄n+1 = x̄n +
1
M

[P21(x̄n ) − P12(x̄n )] + ζn . (11)

Here ζn is a 2D-dimensional martingale difference
process8 with ‖ζn‖2 ≤ Γ

M for some positive constant Γ.
2) Consider the following deterministic mean field dynamics

process associated with the population state:

xn+1 = xn +
1
M

[P21(xn ) − P12(xn )] (12)

where xn ∈ S, xn = [x′
n , (1 − xn )′]′, P21(xn ) and

P12(xn ) are defined as in (10) and x0 = x̄0 .
Then for a time horizon of T points, the deviation between

the mean field dynamics xn in (12) and actual population state
x̄n in (11) satisfies9

P
{

max
0≤n≤T

‖xn+1 − x̄n+1‖∞ ≥ ε
}
≤ C1 exp(−C2ε

2M)

for some positive constants C1 and C2 providing T = O(M).
Theorem 1 says that the maximum deviation between the

mean field dynamics (12) and actual population state (11), over
the entire T point sample path, satisfies an exponential bound.
Since the exponential bound

∑
M exp(−Cε2M) is summable,

8ζn is a martingale difference process if E{ζn |Fn−1} = 0, where Fn−1
denotes the sigma-algebra generated by {x̄0 , x̄1 , . . . , x̄n−1}.

9Here ‖x‖∞ = maxi |x| denotes the l∞ norm of vector x.

the Borel-Cantelli lemma applies. This in turn implies that, if the
deterministic population flow remains forever in some subset of
the state space, then the stochastic process will remain in the
same subset space with a probability arbitrarily close to one,
provided that the population is large enough, see [23].

The proof of Theorem 1 given in the appendix, is inspired
by the proof in [23] for approximating stochastic evolution in
games. An important feature of the mean field dynamics is that
it has a state of dimension D compared to the intractable state

dimension
D∏

d=1
(M(d) + 1) of the infected population state x̄n ,

with x̄n (d) ∈ {0, 1
M (d) ,

2
M (d) , . . . , 1}.

For the purposes of this paper, the key outcome of Theorem 1
is that the mean field systemxn has polynomial dynamics, where
for every d ∈ {1, 2, . . . ,D} we have for the infected population
state,

xn+1(d) = xn (d) +
1
M

[P21(d, xn (d)) − P12(d, xn (d))] .
(13)

These polynomial dynamics will be exploited in Section III
for estimating the infected population state given noisy
measurements.

C. Sampling

We now consider sampling the social network (1). For social
networks with large number of nodes, it is prohibitive to query
each node. This necessitates choosing a sampling methodology
to estimate the infected population state x. We assume that the
degree distribution ρ of the underlying network is known10.
Each sampled node is asked if it is infected or not and the
reply (measurement) noted. Below, we consider two popular
methods for sampling large networks, see [13], [24]–[29] for an
overview:

1) Uniform Sampling: At each time n, ν(d) individuals are
sampled11 independently and uniformly from the population
M(d) comprising of agents with degree d. Thus a uniformly
distributed independent sequence of nodes, denoted by {ml, l ∈
{1, 2, . . . , ν(d)}}, is generated from the population M(d). From
these independent samples, the empirical infected population
state x̂n (d) of degree d nodes at each time n is

x̂n (d) =
1

ν(d)

ν (d)∑

l=1

I(s(ml )
n = 1). (14)

At each time n, x̂n can be viewed as noisy observation of the
infected population state xn .

2) MCMC Based Respondent-Driven Sampling (RDS):
Respondent-driven sampling (RDS) was introduced by
Heckathorn [27], [28] as an approach for sampling from hid-
den populations in social networks and has gained enormous
popularity in recent years. In RDS sampling, current sample
members recruit future sample members. The RDS procedure

10In Section IV, an optimal filter for estimating the underlying degree distri-
bution ρ is outlined.

11For large population where M (d) is large, sampling with and without
replacement are equivalent.
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is as follows: A small number of people in the target population
serve as seeds. After participating in the study, the seeds recruit
other people they know through the social network in the target
population. The sampling continues according to this procedure
with current sample members recruiting the next wave of sample
members until the desired sampling size is reached.

RDS can be viewed as a form of Markov Chain Monte
Carlo (MCMC) sampling (see [30] for an excellent exposition).
Let {ml, l ∈ {1, 2, . . . , ν(d)}} be the realization of an aperiodic
irreducible Markov chain with state space M(d) comprising of
nodes of degree d. This Markov chain models the individuals
of degree d that are sampled, namely, the first individual m1
is sampled and then recruits the second individual m2 to be
sampled, who then recruits m3 and so on. Instead of the in-
dependent sample estimator (14), an asymptotically unbiased
MCMC estimate is computed as

∑ν (d)
l=1

I(s(m l )
n =1)
π (ml )∑ν (d)

l=1
1

π (ml )

(15)

where π(m), m ∈ M(d), denotes the stationary distribution of
the Markov chain ml .

In RDS, the transition matrix and, hence, the stationary distri-
bution π in the estimate (15) is specified as follows: Assume that
edges between any two nodes i and j have symmetric weights
Wij (i.e., Wij = Wji). Node i recruits node j with transition
probability Wij/

∑
j Wij . Then, it can be easily seen that the sta-

tionary distribution is π(i) =
∑

j∈V Wij/
∑

i∈V ,j∈V Wij . Using
this stationary distribution along with (15) yields the RDS al-
gorithm. Since a Markov chain over a non-bipartite connected
undirected network is aperiodic, the initial seed for RDS can
be picked arbitrarily, and the estimate (15) is asymptotically
unbiased [30].

The key outcome of this section is that by the central limit
theorem (for an irreducible aperiodic finite state Markov chain),
the estimate of the probability that a node is infected in a large
population (given its degree) is asymptotically Gaussian. For a
sufficiently large number of samples, observation of the infected
population state is approximately Gaussian, and the sample ob-
servations can be expressed as

yn = Cxn + vn (16)

where vn ∼ N (0,R) is the observation noise with the co-
variance matrix R and observation matrix C dependent on the
sampling process and xn ∈ RD is the infected population state
and evolves according to the polynomial dynamics (13).

III. NON-LINEAR FILTER AND PCRLB FOR BAYESIAN

TRACKING OF INFECTED POPULATIONS

In Section II, we formulated the mean field dynamics for the
infected population state as a system with polynomial dynamics
(13) and linear Gaussian observations (16) obtained by sampling
the network. In this section, we consider Bayesian filtering for
estimating the infected population state in large networks. Then
posterior Cramér-Rao lower bounds (PCRLB) are obtained for
these estimates.

A. Optimal Filtering of Infected Populations

We first describe how to express the mean field dynamics (13)
in a form amenable to employing the non-linear filter described
in [31].

1) Mean Field Polynomial Dynamics: Consider a D-
dimensional polynomial vector f(x) ∈ RD :

f(x) = A0 + A1x + A2xx′ + A3xxx′ + . . . (17)

where the co-coefficients A0 , A1 , . . . , Ai are dimension
1, 2, . . . , (i + 1) tensors, respectively. Note that Aixx . . . x′ is a
vector with rth entry given by

Aixx . . . x′(r) =
∑

j1 ,j2 ,j3 ,...,ji

Ai(r, j1 , j2 , . . . , ji)xj1 xj2 . . . xji

where Ai(r, j1 , j2 , . . . , ji) is the r, j1 , j2 , . . . , ji entry of tensor
Ai and xj is the jth entry of x.

In (13), xn+1 evolves according to a polynomial function of
xn . Thus it can be expressed in the form (17) by constructing the
tensors Ai from P̄12 , P̄21 and ρ(d). We illustrate how to express
the mean field dynamics of (13) in the form (17) for12 d = 2.
First, we note the average degree is

∑D
d=1 d ρ(d) and the link

probability given in (6) can be expressed as αn = φ′xn , where:

φ =

[
ρ(1)

∑D
d=1 d ρ(d)

,
2ρ(2)

∑D
d=1 d ρ(d)

, . . . ,
Dρ(D)

∑D
d=1 d ρ(d)

]′
.

The mean field dynamics for d = 2 in (13) is given as:

xn+1(2) = xn (2) +
1
M

[P21(2, xn ) − P12(2, xn )] . (18)

For all terms containing P̄12 there is a corresponding term con-
taining P̄21 , so for convenience we will account for all of the
former with Ω and the latter with Ω∗.

xn+1(2) = xn (2) + Ω − Ω∗ (19)

where from (13), for the case d = 2,

Ω =
[

1
M

P̄12(2, 0)(φ′xn )2 +
2
M

P̄12(2, 1)(φ′xn )

− 2
M

P̄12(2, 1)(φ′xn )2 +
1
M

P̄12(2, 2)

− 2
M

P̄12(2, 2)(φ′xn ) +
1
M

P̄12(2, 2)(φ′xn )2

− xn

M
P̄12(2, 0)(φ′xn )2 − 2xn

M
P̄12(2, 1)(φ′xn )

+
2xn

M
P̄12(2, 0)(φ′xn )2 − xn

M
P̄12(2, 2)

+
2xn

M
P̄12(2, 2)(φ′xn ) − xn

M
P̄12(2, 2)(φ′xn )2

]
. (20)

By grouping terms in (19) by their powers in xn (d), we can
generate the tensors of (17). The contributions to the tensors of

12The procedure is same for all degrees.
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(17) by Ω are:

A0(2) =
P̄12(2, 2)

M

A1(2, :) = φ

[
2(P̄12(2, 1) − P̄12(2, 0))

M

]

A2(2, :, :) = φφ′
[
(P̄12(2, 0) − 2P̄12(2, 1) + P̄12(2, 2))

M

]

A2(2, 2, :) = φ

[
2(P̄12(2, 1) − P̄12(2, 0))

M

]

A3(2, 2, :, :) = −φφ′
[
(P̄12(2, 0) − 2P̄12(2, 1) + P̄12(2, 2))

M

]

(21)

where Ai(j1 , j2 , . . . , ji−1 , :, :) is a submatrix of tensor Ai and
Ai(j1 , j2 , . . . , ji , :) is a subvector of tensor Ai . By following
(21) for Ω and Ω∗ for all d, we can generate all the coefficients
in the tensors of (17) from P̄12 , P̄21 , and ρ(d). We note that
the polynomial that defines the dynamics of the network is
of order D∗ + 1, where D∗ is the highest degree node with
complex dynamics, i.e: P̄21(d, a) = P̄12(d, a) = κ for all d >
D∗ and all a, where κ is constant with respect to d and a.

2) Optimal Filter for Polynomial Dynamics: With the above
formulation, we are now ready to describe the optimal filter
to estimate the infected population state. Optimal Bayesian fil-
tering refers to recursively computing the conditional density
(posterior) p(xk |Yk ), for k = 1, 2, · · · , where Yk denotes the
observation sequence y1 , . . . , yk . From this posterior density,
the conditional mean estimate E{xk |Yk} can be computed by
integration. (The term optimal refers to the fact that the con-
ditional mean estimate is the minimum variance estimate). In
general for nonlinear or non-Gaussian systems, there is no finite
dimensional filtering algorithm, that is, the posterior p(xk |Yk )
does not have a finite dimensional statistic. However, it is shown
in [31] that for Gaussian systems with polynomial dynamics,
one can devise a finite dimensional filter (based on the Kalman
filter) to compute the conditional mean estimate. That is, Bayes
rule can be implemented exactly (without numerical approxi-
mation) to compute the posterior, and the conditional mean can
be computed from the posterior. Therefore, to estimate the in-
fected population state using the sampled observations (16), we
employ this optimal filter.

The non-linear filter prediction and update equations are
given as:

Prediction step:

x̂−
n = E{xn |Yn−1} = E{f(xn−1)|Yn−1}

H−
n = E{(xn − x̂n )(xn − x̂n )′|Yn−1}

= E{(f(xn−1) − E{f(xn−1)|Yn−1} + vn−1)

× (f(xn−1) − E{f(xn−1)|Yn−1} + vn−1)′|Yn−1}
= E{f(xn−1)f(xn−1)′|Yn−1} − E{f(xn−1)|Yn−1}
× E{f(xn−1)|Yn−1}′ + Qn−1 (22)

where Yn = {Yn−1 , yn} denotes the observation process; H−
n

denotes the priori state co-variance estimate at time n; and vn

denotes the Gaussian state noise at time n, with covariance Qn .
The filter is initialized with mean x̂0 and covariance H−

0 .
The filter relies upon being able to compute the expectation
E{f(xn−1)f ′(xn−1)|Yn−1} in terms of x̂n−1 and H−

n . When
f(·) is a polynomial, f(xn−1)f(xn−1)′ is a function of xn−1 ,
and the conditional expectations in (23) can be expressed only
in terms of x̂n−1 and H−

n , permitting a closed form13 prediction
step.

Update step:

x̂n = E{xn |Yn}

= x̂−
n + H−

n C ′(Rn + CH−
n C ′)−1(yn − Cx̂−

n )

Kn = H−
n C ′(Rn + CH−

n C ′)−1

Hn = (I − KnC)H−
n (I − KnC)′ + KnRnK ′

n (23)

where x̂n denotes the conditional mean estimate of the state and
Hn the associated conditional covariance at time n. C denotes
the state observation matrix; Rn denotes the observation noise
co-variance matrix; Kn denotes the filter gain; and I denotes
the identity matrix.

Since the dynamics of (13) are polynomial, the prediction
and update steps of (22) and (23) can be implemented with-
out approximation. These expressions constitute the optimal
non-linear filter and can be used to track the evolving infected
population state.

B. Posterior Cramér-Rao Lower Bounds (PCRLB)

The PCRLB yields a useful deterministic lower bound to the
covariance of the infected population state estimate computed
by the optimal filter in Section III-A. In this section, we pro-
vide explicit expressions for the PCRLB. Recall that the CR
bound yields a lower bound to the covariance of an unbiased
estimator in the sense that the difference between the covari-
ance matrix and the inverse of the Fisher Information Matrix is
a positive semi-definite matrix. Here we are interested in deter-
mining lower bounds to the covariance of the conditional mean
estimate of the infected population state. This lower bound is
specified by the posterior CR lower bound (PCRLB). The main
result [32] states that,

E{(X̂ − X)(X̂ − X)′} ≥ J−1 (24)

where J is the Fisher Information matrix (FIM), X is the state,
X̂ = E{X|Y } is the conditional mean state estimate, and Y is
the observation. The elements of FIM matrix J are:

J(i, j) = E

{
∂2 log px,y (X,Y )

∂Xi∂Xj

}
.

Below we compute the PCRLB for the conditional mean esti-
mate of the infected population state having polynomial dynam-
ics (13). Recall that the population state has linear observations
corrupted by Gaussian noise (16). The recursive computation

13For an explicit implementation of such a filter for a third order system with
an exact priori update equation for H−

n and x̂−
n , see [31].
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of the PCRLB was first proposed by [5]. We first consider the
dynamical system with mean zero Gaussian state noise having
the covariance matrix Q, then formulate the PCRLB for the
polynomial dynamical system (13) without any state noise.

Let Xn = {Xn−1 , xn} denote the state sequence up to time
n and J(Xn ) denote the ((n + 1)D × (n + 1)D) Fisher infor-
mation matrix of Xn . Let pn = px,y (Xn, Yn ) denote the joint
distribution at time n, and Δy

x = ∇x∇′
y denote the vector dif-

ferential operator. Let Jn denote the D × D right lower block
of J(Xn ). The matrix J−1

n will provide a lower bound on the
mean square error of estimating xn . Based on [5], Jn can be
evaluated as:

Jn = E{−Δxn
xn

log(pn )}

− E{−ΔXn −1
xn

log(pn )}[E{−ΔXn −1
Xn −1

log(pn )}]−1E

× {−Δxn

Xn −1
log(pn )}.

The recursion for Jn is given by:

Jn+1 = Λ22
n − Λ21

n

(
Jn + Λ11

n

)−1 Λ12
n (25)

where

Λ11
n = E{(∇xn

f ′
n (xn ))Q−1

n (∇xn
f ′

n (xn ))′}

Λ12
n = E{∇xn

f ′
n (xn )}Q−1

n

Λ21
n = {Λ12

n }′, Λ22
n = Q−1

n + CR−1
n C ′, (26)

C is the linear observation matrix and R is the observation noise
covariance matrix of (16) and

∇xn
f ′

n (xn ) =
[

∂f

∂xn (0)
,

∂f

∂xn (1)
, . . . ,

∂f

∂xn (D)

]′

∂f

∂xn (0)
= 0 +

∂

∂xn (0)
[A1xn ] +

∂

∂xn (0)
[A2xnx′

n ]

+
∂

∂xn (0)
[A3xnxnx′

n ] . (27)

Thus

∇xn
f ′

n (xn ) = A1 + (A2 + A′
2)xn

+ (A3i jk + A3jk i + A3k j i )xnx′
n (28)

where A3i jk indicates the ordering of indices of the tensor A3
and is analogous to a higher dimensional transpose.

Next consider the case when there is no state noise in the
system evolution (13). Then to compute the PCRLB, we perturb
the state evolution in (13) with pairwise independent Gaussian
random vectors having covariance matrix Qε = εI , replacing
the singular state evolution by a perturbed system pε(xn+1 |xn ).
For the perturbed system we have,

− log pε(xn+1 |xn ) = c +
1
2
{xn+1 − fn (xn )}′Q−1

ε

× {xn+1 − fn (xn )} (29)

where c is a constant. The recursion for Jn is then given by:

Jn+1 = Λ22
ε,n − Λ21

ε,n

(
Jn + Λ11

ε,n

)−1 Λ12
ε,n (30)

where

Λ11
ε,n =

1
ε

E{(∇xn
f ′

n (xn ))(∇xn
f ′

n (xn ))′}

Λ12
ε,n =

1
ε

E{∇xn
f ′

n (xn )}

Λ21
ε,n = {Λ12

n }′, Λ22
ε,n =

1
ε
I + CR−1

n C ′ (31)

PCRLB: Erdős-Rényi vs Scale Free Network: With the above
numerical procedure, we can compare the PCRLB for Erdős-
Rényi versus scale free networks. For comparing the perfor-
mance of the filter, it is convenient to consider a scalar version
of the matrix inequality (24). A suitable measure is the Mean
Square Error (MSE) given by the trace of (24),

E{(X̂ − X)′(X̂ − X)} ≥ tr(J−1). (32)

Below we use trace of the inverse of Fisher Information Ma-
trix (J−1) in (32) as a measure of PCRLB for the mean field
dynamics model (13), for two different network types:

i.) Scale-free network with degree distribution ρ(d) ∝
d−γ .

ii.) Erdős-Rényi network with degree distribution ρ(d) ∝
e−λd

d! .
MFD evolution is studied under two simulation schemes:

Scheme A.) Degree distribution based simulations: We sim-
ulate a deterministic mean field evolution with
a degree distribution corresponding to scale-free
and Erdős-Rényi networks, where the observa-
tions are corrupted by Gaussian noise. Parame-
ters for the simulating the mean field evolution:
the observation noise covariance matrix R is a
random positive definite matrix14 with entries in
[0, 10−6 ]; the state transition probability matrices
P̄12 and P̄21 were simulated with elements chosen
uniformly at random over [0, 1]; the observation
matrix C = I; and maximum degree D = 20.

Scheme B.) Network based simulation: The network based
simulation involves generating a network, propa-
gating an infection according to Section II-A over
this network, and then finally sampling that net-
work using uniform sampling described in Sec-
tion II-C. Scale free networks and Erdős-Rényi
networks having M = 10000 nodes were gener-
ated such that15 γ = 2.7 and λ = 2.7. Parameters
for the simulating the mean field evolution: the
state transition probability matrices P̄12 and P̄21
were simulated with elements chosen uniformly
at random over [0, 1]; and the state and observa-
tion noise covariance matrices Qn and Rn for
n = 1, 2, . . . , T were computed empirically. The
infection was propagated over these networks for
T = 10000 timesteps as follows: For each node

14One way of generating random samples of positive definite matrices is to
sample from the Inverse-Wishart distribution.

15The value λ = 2.7 was chosen since it is similar to the out-degree of the
World Wide Web
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Fig. 1. Mean square error of the filtered estimate and trace of the PCRLB
matrix for deterministic mean field evolution with Scale-free and Erdős-Rényi
degree distributions. It can be seen that the filter (23) is insensitive to the
underlying degree distribution. Both PCRLB (as in (32)) and its slope are
insensitive to the underlying distribution when observation noise covariance
does not depend on the network structure.

m, the state was initialized by P (s(m )
0 = 1) =

0.01. At each time n, a node is chosen at ran-
dom from the network. Depending on its cur-
rent state, the node becomes infected/susceptible
with probabilities P̄21(d, a)/P̄12(d, a). The time
is then incremented to n + 1 and another node is
chosen at random from the network. This process
repeats for T timesteps. At each timestep 5000
samples were obtained according to the uniform
sampling described in Section II-C to generate an
observation at that timestep.

Fig. 1 displays the PCRLB and mean square error of the
infected population state estimate using the optimal filter in
degree-distribution based simulations (Scheme A). Interest-
ingly, it can be seen from Fig. 1 that when observation noise
covariance, R in (16), is not network dependent both PCRLB
and its slope are insensitive to the underlying network structure.
The distinctions in PCRLB between the two network types can
therefore be attributed to different state or observation noise
covariances.

The PCRLB and mean square error of the infected popula-
tion state estimate using the optimal filter, in network based
simulations (Scheme B), are shown in Fig. 2. The slower con-
vergence of the filtered estimate for an Erdős-Rényi compared to
a Scale-Free network filter estimate is because the Erdős-Rényi
network observations have a larger observation noise covariance
as explained in Footnote 25 in Section V-A1.

IV. ANALYSIS OF INFECTION DIFFUSION IN EVOLVING

SOCIAL NETWORKS

So far in this paper, we have discussed estimating infec-
tion diffusion in a fixed network. In this section, we consider
networks that evolve with time, represented by time varying

Fig. 2. Mean square error of the filtered estimate and trace of the PCRLB ma-
trix in simulated networks - Scale-free and Erdős-Rényi. A network of 10000
nodes is generated and an infection is propagated through the network. This
infection is then sampled 5000 times at each timestep to generate observations
of the infected population states. State and observation covariances are com-
puted empirically and assumed constant throughout the duration of the system
dynamics. It is seen that PCRLB (as in (32)) gives a lower bound on the MSE.

degree distributions, and analyse their effect on the diffusion of
infection over time.

In social networks such as Twitter16, information diffusion
occurs at a faster time scale compared to underlying network
evolution. Therefore, we consider a two time scale formulation:
the degree distribution of the underlying network evolves on a
slow time scale (denoted by k) and the infection diffuses over
a fast time scale (denoted by n). There are various generative
models for time evolving networks in the literature, see [33],
[34], and the references therein. In this paper, we consider the
preferential attachment model discussed extensively in [33], to
model the time evolution of the underlying degree distribution.
The primary motivation for choosing a preferential attachment
graph is that it is the simplest graph whose steady state distribu-
tion obeys a power law [33], which commonly arises in several
real world networks, see [7], [35], [36].

A. Preferential Attachment Model for Network Evolution

A network evolving according to the preferential attachment
model is characterized by two parameters - a probability u and
an initial graph G0 . The graph evolves as follows:

1) Vertex-Step: A vertex of the existing graph is chosen in-
dependently with probability proportional to its degree.
Then a new vertex is connected to this chosen vertex.

2) Edge-Step: A new edge is added between two vertices of
the graph chosen independently with probability propor-
tional to their degrees.

16This is not true in general. Face-to-face interactions occur at a much faster
time-scale than the rate at which people change their political affiliation.
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At each time step, Vertex-step is realized with probability u,
while the Edge-step is realized with probability 1 − u, where
u ∈ (0, 1).

Let Mk (d) denote the number of vertices of degree d at time
k and let

ρk (d) =
E{Mk (d)}

Mk

denote the expected fraction (degree distribution) of vertices of
degree d at time k, where Mk denotes the total number of nodes
at time k in the network.

A vertex of degree d at time k can originate from two out-
comes, either it was a vertex of degree d at time k − 1 and had
no edge added to it, or it was a vertex of degree d − 1 at time
k − 1 and a new edge was added to it. The recursion for the
degree distribution ρd,k can be expressed as [33]:

ρk (d) =
(

1 − (2 − u)d
2k

)
ρk−1(d)

+
(

(d − 1)(2 − u)
2k

)
ρk−1(d − 1) (33)

Let

ρk = [ρk (1), ρk (2), . . . , ρk (N), ρk (N (+))]′

denote the degree distribution at time k. The state ρk (N (+))
represents the fraction of nodes of degree greater than N . In
matrix-vector notation, the recursion in equation (33) can be
written as

ρk = L′
kρk−1 , where Lk = I + εkF, εk =

1
2k

and

F =

⎡

⎢⎢⎢⎣

−(2 − u) (2 − u) 0 . . . 0 0
0 −(2(2 − u)) (2(2 − u)) . . . 0 0
...

. . .
0 0 . . . 0 0

⎤

⎥⎥⎥⎦ .

(34)

Here F is a generator matrix for a continuous time Markov
chain (zero row sum and negative diagonal elements) and Lk

is a stochastic matrix (row sum equal to 1) at each time k. The
compound state, ρk (N (+)), is modeled as an absorbing state as
either edges or vertices are added during network evolution and
no deletion takes place - once a node is of degree greater than
d, it will continue to have degree at least d.

Equation (34) is a generative model for the evolution of the
degree distribution. It is interesting to note that (34) has the
form of the Chapman-Kolmogorov equation for a Markov chain
η having the state space {1, 2, . . . , N+}. Thus, the Chapman-
Kolmogorov equation is a generative model for the evolution of
the network. In what follows, we will outline a filtering scheme
to estimate the degree distribution as it evolves over time.

B. Filtering for Estimating the Degree Distribution

So far in this paper, we assumed that the degree distribution
of the network is known. We now describe a Bayesian filter to

estimate the degree distribution, when the degree distribution
evolves according to the preferential attachment model17.

In a co-evolving system, the asymptotic infected population
state x∞ can in turn influence the network rearrangement, ρk ,
at a future time k + 1. For the preferential attachment model of
Section IV − A, this influence can be modeled as the probabil-
ity u being dependent on α∞ (which depends on x∞).

We exploit the Chapman-Kolmogorov generative model (34)
to estimate the degree distribution by deriving a representative
sample that captures the link between the degree distribution ρ
and the asymptotic population state x∞. This edge could be an
important factor in determining the way connections are formed
in social networks; see for example, [37]; where, similarity be-
tween individuals (homophily) breeds connection18. For nodes
which currently are not connected, being infected increases the
probability of forming an edge at a future time instant.

Below, we consider the mode of the asymptotic infected de-
gree distribution19 as the representative sample to estimate the
degree distribution. The mode of the asymptotic infected degree
distribution gives the degree with the largest fraction of infected
individuals and tracking the mode can provide useful informa-
tion on the nature of infection diffusion over the slow time
scale k.

Let the initial estimate be ρ̂0 , which denotes the probabil-
ity distribution of the mode over the set {1, 2, . . . , N (+)}. Let
zk ∈ {1, 2, . . . , N (+)} denote the mode of the infected degree
distribution ρk at time k. Given this observation zk ∼ P (z|ρk )20

at time k, and the dynamics of the degree distribution (34), define
the posterior distribution as

ρ̂k+1 = P (ρk+1 |z1 , . . . , zk+1).

Then it is easily seen that the evolution of the posterior distribu-
tion is given as the Hidden Markov Model (HMM) filter [22]:

ρ̂k+1 =
Bzk + 1 L

′
k+1 ρ̂k

1′Bzk + 1 L
′
k+1 ρ̂k

(35)

where Bzk
is a diagonal matrix having zth

k column of the (noisy)
mode observation distribution matrix21 B as its elements.

To summarize, (35) together with the filtering algorithm
in Section III-A constitutes a two time scale tracking algo-
rithm: on the slow time scale, the degree distribution of the
social network is updated based on sampling according to (35).

17Recall that Sec III deals with filtering to track the infected population state
in a fixed network with fixed known degree distribution.

18For numerical examples of homophily see Section V-B2
19The infected degree distribution is defined as the fraction of infected nodes

of each degree given by:

∑
m

I
(

Ξ(m ) = d ,s (m ) =1
)

∑
m

∑
d
I
(

Ξ(m ) = d ,s (m ) =1
) .

20As is conventional in filtering, we assume the following conditional inde-
pendence: P (z|ρk , zk−1 , · · · , z0 ) = P (z|ρk ).

21The mode observation distribution matrix B is assumed to be known for
estimating the degree distribution. However, it can be estimated as follows: A
network having the mode (of asymptotic infected degree distribution) as z, is
sampled either uniformly or using RDS. On each queried node, the state of
infection {1,2} and its degree is noted down. Using the samples, the asymptotic
infected degree distribution is estimated and a noisy estimate of the mode, ẑ, is
found. This is repeated many times and the fraction of the time mode is equal
to ẑ corresponds to the element B(z, ẑ): the probability of observing the mode
as ẑ given the (true) mode was z.
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On the fast time scale, these estimates are used in the filter
(Section III-A) to track the infected population state. We refer
to [38] for a formal proof of the optimality of this two-time scale
filtering algorithm.

C. Effect on Diffusion Threshold in SIS Model

On networks having fixed degree distribution, [1] identified
conditions under which a network is susceptible to an epidemic
using a mean-field approach and provided a closed form solu-
tion for the diffusion threshold for infection diffusion. It was
shown that under reasonable conditions on the infection proba-
bilities, the diffusion threshold decreases with the mean preserv-
ing spread. In this section, we extend this analysis of diffusion
thresholds to the case of evolving networks specified by the
preferential attachment model. By using results in stochastic
dominance, we show below that in a preferential attachment
model for a randomly evolving graph, the infection diffusion
threshold decreases with the attachment probability.

We first establish a relation between the addition probabil-
ity u in the preferential attachment model and the diffusion
threshold θ∗ (defined below) in the SIS model. While this has
been explored numerically in [11], [18]; below we prove that
an ordering of the transition probabilities u in (34) results in a
corresponding order of the diffusion thresholds. Such a result is
useful since it allows ordering preferential attachment models
in terms of their diffusion threshold. The proof relies on the
Chapman Kolmogorov generative model (34) for the dynamics
of the preferential attachment model.

Definition 1 ([1]): The diffusion threshold22 is

θ∗ = inf{θ > 0 : x∞ ∈ RD
+ }

where x∞ denotes the asymptotic infected population state in
(13) and θ = μ2 1

μ1 2
is the ratio of μ12 and μ21 in (3).

In words, the diffusion threshold θ∗ ∈ R+ is the value of θ
such that starting from a small fraction of infected agents in
the network, the dynamics converges to a positive fraction of
infected agents for all θ > θ∗. Note that Definition 1 requires the
existence of asymptotic infected degree distribution x∞. This is
specified in Lemma 1 below.

Let �(α) = 1
d

∑
d≥1 dρ(d) P (x̄n + 1 (d)= x̄n (d)+1/M (d))

P (x̄n + 1 (d)= x̄n (d)+1/M (d))+(1−x̄(d)) ,

where P
(
x̄n+1(d) = x̄n (d) + 1

M (d)

)
is a function of α and

(1 − x̄(d)) are as in (7).
Lemma 1 ([1]): x∞ exists iff d�(0)

dα > 1.
Lemma 1 asserts that there exists an asymptotic infected pop-

ulation state if �(α) has a slope greater than 450 at the origin.
The asymptotic infected link probability α∞ can be calculated
from x∞ using (6).

Theorem 2 below is the main result of this section. It char-
acterizes of the diffusion threshold of the SIS model as a

22The diffusion threshold can be evaluated explicitly as [1]:

θ∗ =

∑D

d=1 d ρ(d)∑
d≥1 d2 ρ(d)F21 (d, 1)

, where F21 (d, a) was defined in (3).

function of the addition probability u, for a preferential attach-
ment graph23. It is of interest since it is a monotone comparative
static result, i.e., it determines how the argument of the mini-
mum (namely, θ∗) behaves with respect to a partial ordering of
the transition matrices; we refer the reader to [39] for a compre-
hensive discussion of monotone statics.

Theorem 2: Consider a time evolving preferential attach-
ment network with transition matrix Lk given by (34), where
u > 0. For any initial degree distribution ρ0 , let ρu

k denote the
degree distribution at time k and θu

∗ (k) denote the diffusion
threshold for the network with addition probability u. Then,

1) ρu
k is first-order stochastically decreasing in u for every

k > 1, where k denotes the slow-time index.
2) θu

∗ (k) is increasing in u.
The proof of Theorem 2 is in the appendix. The first part

of Theorem 2 asserts that ρu2
k >sd ρu1

k , 24 for u1 > u2 , i.e.,
networks that have higher probability of edge addition always
have higher degree distributions as the network evolves. The
second part of Theorem 2 asserts that the diffusion threshold
increases with the probability u of adding new vertices.

V. NUMERICAL RESULTS

Section V-A below examines the effect of sampling and model
mis-specification on the performance of the non-linear filter
discussed in Section III-A. This analysis is useful for selecting
the sampling methodology and for assessing the performance
trade-off due to imperfect knowledge of the degree distribution
of the underlying network.

Section V-B presents an SIS model of networks with ho-
mophily, a numerical example of filtering on such a network,
and a numerical example of the role of homophily in modeling
SIS dynamics.

Section V-C presents the performance analysis on a real-
world Twitter dataset. First, using a goodness-of-fit test, we
validate the sufficiency of the SIS model to capture the infec-
tion propagation on the Twitter network. Second, the non-linear
filter of Section III-A is shown to track the infection diffusion
satisfactorily.

Section V-D illustrates the performance of the non-linear filter
of Section III-A and the HMM filter of Section IV on a simulated
co-evolving system. This two-time scale simulation illustrates
the choice of time scales for the propagation and tracking of
infection dynamics, and estimation of the degree distribution.

A. Factors Affecting Filter Performance

As in Section III-B, we consider ER and SF networks and
analyze the effect of sampling and model mis-specification
on the filter performance. To isolate these numerical examples
from the approximation of Rn , as well as state noise, we use
Scheme A of Section III-B, which simulates a deterministic
trajectory with noisy observations.

23It should be noted that the probability u itself can be a function of α∞ as
the degree distribution and infected degree distribution are evolving on different
time scales.

24>sd denotes first-order stochastic dominance (see Appendix for definition)
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1) Effect of Sampling on Filtering: The observation noise
variance R in (16) depends on the sampling method em-
ployed. Using the uniform sampling mechanism outlined in
Section II-C, the effect of sampling on filtering is illustrated.

Under uniform sampling, the noise variance of each observa-
tion depends upon the network degree distribution25 and conse-
quently parameters γ and λ. In Fig. 3, the mean square error of
the filter estimate is seen to depend on the network parameters
λ and γ.

In these simulations, the observation error covariance matri-
ces were chosen as the error covariance matrices from network
based simulations26 (Scheme B).

2) Sensitivity of Filter Performance to Mis-Specified Model:
The SIS model in Section II-A is said to be mis-specified if
the degree distribution ρ is not specified. The Bayesian filter
(Section III-A) implemented using a mis-specified model is
referred to as a mis-specified filter. Fig. 4 compares the MSE
of a Bayesian filter and a mis-specified filter, both formulated
for the same underlying network. The degree distribution of
the mis-specified filter is assumed to be ρ(d) = 1

D ∀d. For
comparison, we considered a moving average (linear) estimator:

ˆ̂xn = ϑ1yn−1 + ϑ2yn−2 + ϑ3yn−3 + . . . + ϑιyn−ι + ϑ0 .
(36)

Here ˆ̂xn is the moving average estimate at time n, the matrices
ϑi are computed using multivariate least squares estimation, and
time delay ι was chosen to be 10. It is observed in Fig. 4 that,
even when the degree distribution is mis-specified, the Bayesian
filters outperform the moving average filter with an MSE of the
order of 10−6 , compared to 10−4 of the moving average filter.

B. Infected Population Estimation in Homophily Networks

This section considers a small extension of the models con-
sidered in this paper to homophily networks. Homophily is the
tendency for individuals to engage with people similar to them-
selves [40]. These similarities characterize distinct groups which
can affect how infections spread in a network.

Below we show that the mean field dynamics model yields
a similar polynomial structure to Section II-B implying that
the optimal filers of Section III-A can be used to esti-
mate the infected population state. Section V-B1 presents
the SIS model with homophily using the approach in [41].
Section V-B2 illustrates the performance of the optimal filter
for estimating the underlying infected population state in a ho-
mophily network.

25In the uniform sampling of Section II-C, for any given degree, an obser-
vation at time n will have a variance which corresponds to that of a scaled

binomial distribution σ2 (x̂n (d)) = xn (d )(1−xn (d ))
ν (d ) , where ν(d) are the num-

ber of samples of nodes of degree d and ν =
∑

d
ν(d). For a large number

of independent samples, by the central limit theorem, ν(d) ≈ νρ(d), and the
observation noise variance is inversely related to the probability that a node is
of degree d.

26We isolate the experiment from finite network state noise, which can dom-
inate the MSE of the filter estimate. By simulating the system with Scheme
A, with observation noise informed by the synthetic network simulations of
Scheme B, we can observe the effect of sampling more clearly.

Fig. 3. Figures display the log mean square error of Bayesian filter estimates
for two networks: Erdős Rényi and scale free. The uniform sampling mechanism
described in Section II-C depend on the degree distribution of the underlying
network. These figures exhibit the effect uniform sampling has on filter per-
formance. (a) Log mean square error of filter estimates for an Erdős Rényi
network simulated using Scheme A in Section III-B. It can be seen that the
MSE decreases as Erdős Rényi parameter λ increases. (b) Log mean square
error of filter estimates for an scale-free network simulated using Scheme A in
Section III-B. For larger scale-free parameter γ , it is observed that the MSE
increases.

1) SIS Model with Homophily: Suppose the social network
consists of B distinct types of individuals27. Let μb denote
the fraction of individuals of type b, for b ∈ {1, 2 . . . ,B}. Let
T (m) ∈ {1, 2, . . . ,B} denote the type of node m. Then the
number of nodes of type b and the number of nodes of type b
and degree d, respectively, are

Mb =
∑

m∈V

I
(
T (m) = b

)
,

Mb(d) =
∑

m∈V

I
(
Ξ(m ) = d, T (m) = b

)
.

27For example these types may be groups characterized by political affiliation,
age, or income.
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Fig. 4. Comparison of the mean square error between a Bayesian filter, a
mis-specified Bayesian filter and a moving average estimator. The transition
probabilities matrices P̄12 and P̄21 were simulated with elements chosen uni-
formly at random over [0, 1]. The observation noise covariance matrix R is a
random positive definite matrix with entries in [0, 3 × 10−2 ]. The mis-specified
filter, derived with ρ(d) = 1

D , exhibits a plateau in performance. This plateau
corresponds to the incorrect computation of the priori state estimate, x̂−

n , due to
the misspecified filter parameters.

Then the degree distribution of each type b is

ρ[b](d) =
Mb(d)
Mb

. (37)

These different types interact according to a transition matrix
Υ, with elements28

ςbc = P (individual of type c meets individual of type b).

Let x̄n,b(d) denote the fraction of agents of type b and degree d
that are infected at time n. The main difference is that instead
of a single infected link probability, used in Section II-A, we
now need a vector of infected link probabilities, one for each
type:

αb(x̄n ) =
B∑

c=1

ςbc

∑D
d=1 d ρ[c](d) x̄n,c(d)
∑D

d=1 d ρ[c](d)
. (38)

As in Section II-B, we can define29 the probabilities Pb
12 and Pb

21 .
Similar to Theorem 1, we have following mean field dynamics

28The elements ςb c are constrained such that the number of interactions from
type b to type c are the same as those from type c to type b [41].

29The transition probabilities and the change in the fraction of in-
fected/susceptible nodes in the population are evaluated, respectively, as

P
(

x̄n +1 ,b (d) = x̄n ,b (d) − 1
M b (d)

)

=
d∑

a=0

P̄ b
12 (d, a)

(
d

a

)
αa

n ,b (1 − αn ,b )d−a .

P b
21 (d, x̄n ,b (d))

Δ
=(1 − x̄n ,b (d))ρ[b ] (d)P

×
(

x̄n +1 ,b (d) = x̄n ,b (d) +
1

M b (d)

)

Fig. 5. Diffusion of infected population states and their corresponding filtered
estimates in a scale-free network with d = 2 in (39). The network was simulated
using ’Scheme B’ of Section III-B. Each node was labeled as type b or c with
probability half. The infection transition probabilities of matrix P̄ b

21 were chosen
uniformly at random over [0, 1] and P̄ c

21 = 1
4 P̄ b

21 . ςbb = ςcc = 0.8. It can be
seen that the filtered estimates of the infected population state converge to the
true state for both population types.

for the infected population state:

xn+1,b(d) = xn,b(d) +
1
M

[
Pb

21(d, xn,b(d))

− Pb
12(d, xn,b(d))

]
. (39)

Notice that the infected population state xn,b(d) has polynomial
dynamics and is therefore amenable to the optimal filtering
algorithms of Section III-A.

2) Numerical Examples of Homophily: A network was sim-
ulated according to Scheme B of Section III-B with two popu-
lation types, b and c, as shown in Fig. 5. Fig. 5 shows that the
filtered estimate of the infected population state converges to the
true infected population state. However, the different population
types (b and c) behave differently. This can be attributed to the
fact that the insular structure and smaller infection probabilities
of type c, result in a small fraction of type c getting infected.

The SIS model with homophily also enables the use of addi-
tional degree distribution information30 so that the mean field
dynamics provide a more accurate representation of the popu-
lation dynamics. Fig. 6 illustrates the effect additional degree
distribution information has on the network dynamics. By com-
paring the deterministic mean field trajectories for two SIS
models, one with homophily and one without. We consider a
scale free network, where individuals with d neighbours asso-
ciate primarily with others having d neighbours. The network
has a degree distribution ρ(d) ∝ d−γ with γ = 3.0, and max-
imum degree D = 20. The degree distribution of each type

30For example, solitary people may be more likely to also associate with other
solitary people, resulting in high level of internal connections within nodes of
low degree. Thus the degree distribution of low degree nodes differs from that
of high degree nodes.
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Fig. 6. Comparison of deterministic mean field trajectories of an SIS model
with and without homophily for scale-free networks with γ = 3.0, and the
degree specific degree distributions, ρ[b ] (d), in the simulation with homophily
is given by (40) with ε = 0.02. Under the SIS model presented in Section II
the systems modeled here are identical, however, the model with homophily
incorporates additional degree distribution information so that the mean field
dynamics provide a more accurate representation of the population dynamics.

b ∈ {1, . . . ,B} is given by:

ρ[b](d) = (1 − ε)I(d = b − 1) + ερ(d). (40)

where I is an indicator function and ε ∈ [0, 1] is a parameter that
captures the interconnectedness of nodes of different degrees.
The key observation here is that we can utilize additional de-
gree distribution information and the SIS model with homophily
such that the mean field dynamics yield a more accurate repre-
sentation of the population dynamics.

C. Analysis and Validation on Twitter Dataset

This section illustrates the tracking of infection diffusion
on social networks using real diffusion data from the mi-
croblog platform Twitter. We analyze the diffusion of infor-
mation through the Twitter Social network to demonstrate the
effectiveness of the SIS model of Section II; see also [6], [42].
Twitter played a critical role in the Egyptian revolution of 2011
or January 25th (#Jan25) uprising [43]. Twitter was used by
protesters to organize the protest and recruit members and as
a medium to discuss and share information about the protest.
Below, we refer to the interest and engagement with the news
of the uprising as infection and track the distribution of infec-
tion over time. Modeling this online process as an epidemic is
supported by the virality of the #Jan25 hashtag.

1) Dataset: The dataset consists of tweets sampled between
January 23rd and February 8th , 2011 and are available from
Twitter (http://trec.nist.gov/data/tweets/). The tweet collection
period encapsulates the time-frame of the first major develop-
ments relating to the January 25th uprising event. In Twitter, a
“hashtag” follows the discussion topics, i.e., a word or a phrase
prefixed with the number sign #. We make use of the hashtags
to track the spreading of a specific topic on Twitter. The most
used hashtag related to this protest is “#Jan25”. To obtain the

information spreading among users participating in this protest,
we filtered 26,313 tweets containing “#Jan25” published by
13,341 different users, from around 10 million tweets. These
tweets contain the event of interest and the social network is
(re-)constructed from them as follows: two users are connected
if one user has mentioned another user (“@username”) in the
tweet containing “#Jan25” at least once over the duration of
interest. We analyze information diffusion on this constructed
social network.

All users in the constructed social network are assumed to be
susceptible initially. Users who initiate tweets on the event of
interest are assumed to be infected and act as seeds for the spread
of information. Once a user, say User#A, becomes infected, it
has some constant probability of becoming susceptible in each
time period. This modeling assumption is motivated by the fre-
quently observed Poisson-like decay of an individual’s interest
in social media topics [44]. The decay probability was chosen
to be 0.001, motivated heuristically by an average interest dura-
tion of 2 hours. Our dataset is thus a hybrid dataset, wherein the
network and infection process are informed by true Tweets be-
tween users, and these infected individuals become susceptible
according the synthetic Poisson-like process described above.

2) SIS Model for Twitter Data: Active users can be con-
sidered ‘infected’, and inactive users can become ‘infected’ by
interacting with other ‘infected’ individuals, in particular, any of
its active neighbors in a social network. In this way, engagement
and knowledge of a topic spreads throughout the network. Users
can also become disinterested in a subject they have already
been exposed to, in this way they are not currently engaged, but
may become engaged if contacted by an infected neighbor; thus
inactive individuals are assumed to be susceptible.

Model Evaluation (Goodness of Fit for SIS model): We used
the Kolmogorov Smirnov test on the empirical infected degree
distribution at the final timepoint to evaluate the goodness of
fit of the SIS model, where the infection was mapped to en-
gagement in the January 25th uprising. The KS test statistic was
0.2286 with p-value 0.2813. The null hypothesis for this statisti-
cal test is that both the observed Twitter and SIS model infected
degree distributions are samples of the same infected degree
distribution. At a confidence level of 0.01, the null hypothesis
cannot be rejected. This test therefore provides little evidence
for or against the quality of SIS model for Twitter. To further
explore the agreement between the model and the true data we
computed the average and maximum square difference between
the Twitter data and predicted SIS degree infection probabili-
ties. These values can be seen in Table I and the trajectories are
shown in Fig. 7.

The low magnitude of the model deviations in Table I and the
failure to reject the hypothesis that the Twitter data and model
infected degree distributions come from the same distribution,
suggest that the SIS model is a satisfactory model with respect to
the infection dynamics of interest in the January 25th uprising.

3) Sampling for Tracking the Infected Population State:
The mean field dynamics for the SIS model can be used to
track and predict the evolution of the infection on Twitter. We
must generate estimates of P̄12 , P̄21 , and determine the degree
distribution from samples obtained from (16). We compute the
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TABLE I
GOODNESS OF FIT OF THE SIS MODEL TO THE TWITTER DATASET: THE

AVERAGE AND MAXIMUM DEVIATIONS BETWEEN THE TWITTER DATA AND SIS
MODEL PREDICTIONS ARE PRESENTED. NETWORK IS SCALE FREE

Degree 1 2 3+

Average Square Difference 0.0011 0.0014 0.0235
Average Absolute Difference 0.0273 0.0294 0.1000
Maximum Absolute Difference 0.0644 0.0719 0.8403

Note that the degree distribution of the twitter

Fig. 7. The true Twitter infection and predicted Twitter infection using the
deterministic mean field dynamics are compared for nodes of degree d = 1, 2, 3.
The simulated trajectories use P̄12 = 0.001 and the empirically generated ρ and
ˆ̄P21 in (41). Recall that without added state noise, the mean field dynamics are
deterministic. The deterministic mean field dynamics satisfactorily capture the
trajectory of the Twitter infection.

empirical transmission rates ˆ̄P21 directly by observing the fre-
quency with which an infected individual with d neighbors, a of
which are infected, becomes infected over time horizon of length
T time points. Here T is the time horizon of the data as stated in
Section II-B.

ˆ̄P21(d, a) =

×

T∑
n=0

M∑
m=1

I
(
s

(m )
n+1 = 1|s(m )

n = 2,Ξ(m ) = d, F
(m )
n = a

)

T∑
n=0

M∑
m=1

I
(
s

(m )
n = 2,Ξ(m ) = d, F

(m )
n = a

)

(41)

The true degree infection probabilities are computed directly
from the entire network for each 1 minute time interval.

Next, we sample the data using the RDS sampling scheme
described in Section II-C, every 1 minute and track the infected
population states over time using the non-linear Bayesian Filter-
ing technique described in Section III-A. The parameters used

in the Bayesian filter are the empirically generated ρ, ˆ̄P21 and
all entries of P̄12 = 0.001. The filter estimates are shown in

Fig. 8. The true Twitter infection and the filter estimates of the Twitter infected
population state are compared. Samples are generated by RDS sampling on the
#Jan25 social network. At each timestep a 10,000 node walk is performed and
from this walk an observation of the infected population state is generated.

Fig. 9. The MSE of the filtered estimate of the true twitter infection probability
state and the MSE of the estimate of the infected population state of a simulated
network are shown. The MSE of the Twitter estimate starts extremely low.
During early timesteps in the Twitter data, there are almost no infected nodes.
The sampled observations similarly estimate nearly 0 infection, which is why
the filtered infection is more accurate at these early timesteps. As the system
evolves, the state observations become less accurate.

Fig. 8. It is seen that the filtered estimates satisfactorily track
the true infected population states over time. Fig. 9 shows the
mean square errors of the filter estimate of Twitter infection and
the mean square errors of the filter estimate of the numerical
example of Section V-D. This figure illustrates the superiority
of the filter on the numerical example. The filter performs ad-
equately for both the Twitter data and the simulated network,
however the estimate for the simulated network, the infection
of which follows the SIS model, performs dramatically better at
a filtered estimate MSE of 10−11 versus the filtered estimate of
the Twitter data around 10−6 .
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Fig. 10. Diffusion of infected population states and their corresponding fil-
tered estimates in a scale-free network. The network was simulated, sampled
and filtered according to ’Scheme B’ of Section III-B. It can be seen that the
estimates converge towards the true state for all degrees.

D. Two-Time Scale Simulation

This section presents a numerical example that encompasses
all the models used in this paper. It involves an evolving network
(on a slow time scale) and diffusion of infection with the SIS
model (on a fast time scale). For this simulation, the true state
of the infection and underlying network are exactly known (in
contrast with the Twitter data of Section V-C). This network
is sampled to generate observations of the infected population
state according to Section II-C, and then these observations are
filtered using the Bayesian filter of Section III-A. The parame-
ters of the network simulation are chosen to emulate the Twitter
network explored in Section V-C.

1) Tracking the Infected Population State: Following
Scheme B of Section III-B, we generated scale free networks
with M = 13000 (number of nodes) to emulate the Twitter So-
cial network. The infections were initialized by infecting nodes
at time 0 with probability 0.01. This infection was propagated
for 2 × 104 timesteps31 with a healing probability P̄12 = 0.001
and P̄21 generated empirically from Twitter data of Section V-C.
At each timestep, 104 samples were obtained according to the
uniform sampling described in Section II-C. The state and ob-
servation covariance matrices Qn and Rn used in filtering were
computed empirically from the true underlying state and obser-
vation data. The resulting observations and filtered estimates are
shown in Fig. 10. The mean square error of the filter estimates
are shown in Fig. 9 and compared to the filtered estimate for the
Twitter data of Section V-C. The displayed mean square errors
are the average of 50 independent simulations.

2) Tracking the Degree Distribution: In Section V-D1, we
estimated the infected population state, where the infection dy-
namics evolved on the fast time scale. The slow time scale
simulation is performed as follows: At each time k on the slow

31Recall from Theorem 1 that the duration is of the order of number of nodes.

Fig. 11. Optimal filter performance on a network generated using the pref-
erential attachment model (33), with N (+ ) = 3 in (34). At each time k the
true degree distribution evolves according to (34) and an infection is propa-
gated according to ’Scheme B’ of Section III-B on networks having 13000
nodes. The curves in the figure correspond to the true (ρ) and estimated (ρ̂)
degree distribution. The degree distribution is estimated using the procedure in
Section IV-B.

time scale, the infection dynamics is tracked using the filter dis-
cussed in Section III-A, for a duration of n = 2 × 104 points.
The length of the time window for tracking the infection dy-
namics is on the same order as the number of nodes in the
network, as discussed in Theorem 1. The probability u in the
degree evolution matrix for generating the true degree distribu-
tion is a function of the mode of the infected degree distribution
as discussed in Section IV-B. We chose uk = 1

zk +1 to capture
this link. This was motivated by the rationale that higher the
mode of infected degree distribution, smaller the u and hence
higher is the probability of forming edges at the next time k + 1.
The mode ẑk is observed in noise via the observation matrix Bk

estimated according to the procedure given in Footnote 21
(Section IV-B). Fig. 11 displays the performance of the HMM
filter for tracking the degree distribution of the co-evolving
system.

VI. CONCLUSION

We considered the problem of tracking infection diffusion
over large social networks by modeling the diffusion process
using a SIS model. Using mean field dynamics, the evolution
of infection has a generative model with polynomial dynam-
ics. This was exploited to track the infection using a finite di-
mensional non-linear filter. Posterior Cramér-Rao lower bounds
were computed for the mean field dynamics and it was shown
that these bounds are relatively insensitive to the type of un-
derlying social network (Erdős-Rényi vs Scale Free network).
In large co-evolving networks modeled using a preferential at-
tachment scheme, we provided a monotone comparative static
result on the relation between the transition probabilities and
the diffusion thresholds. A Bayesian filter to track the evolving
degree distribution was also provided. The SIS model was then
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extended to include homophily, and filtering on these networks
was illustrated. Finally, a Twitter dataset was used to illustrate
how infection diffusion can be modeled by a mean field dy-
namical SIS model, and we can filter and satisfactorily track the
infection diffusion over time.

APPENDIX A
PROOF OF THEOREM 1 (MEAN FIELD DYNAMICS)

Part 1 of the theorem is a standard martingale representation
of a Markov chain, see for example [22, page 20].

The proof of the mean field dynamics approximation in [23] is
not readily accessible to an engineering reader. We show below
that the proof is a simple consequence of Azuma-Hoeffding
inequality and Gronwall’s inequality; see [22].

Theorem 3 (Azuma-Hoeffding Inequality [45]): Suppose
ST =

∑T
τ =1 ζτ + S0 where {ζτ } is a martingale difference

process with bounded differences satisfying |ζτ | ≤ Δτ almost
surely where Δτ are finite constants. Then for any ε > 0,

P (|ST − S0 | ≥ ε) ≤ 2 exp

(
− ε2

2
∑T

τ =1 Δ2
τ

)
�

A bound on the deviation between the mean field dynamics
xn in (12) and infected population state x̄n in (11) is evaluated
in the form of two lemmas, namely, Lemma 2 and Lemma 3
below. Recall that ζτ is a 2D-dimensional finite-state martingale
increment process defined in (11) with ‖ζτ ‖2 ≤ Γ

M for some
positive constant Γ.

Lemma 2: Let ϕn = xn − x̄n . Then ‖ϕn‖ satisfies

‖ϕn+1‖∞ ≤ ‖ϕ0‖∞ +
β

M

n∑

τ =1

‖ϕτ ‖∞ + ST .

where β is a positive constant (explicitly specified in (42) be-
low).

Lemma 3: Let ST = max1≤n≤T ‖
∑n

τ =1 ζτ ‖∞. Then

P
(
ST ≥ ε

)
≤ 2 exp

(
−ε2M 2

2ΓT

)

Proof of Theorem 1: With Lemmas 2 and 3, the proof of
Theorem 1 is as follows. Applying Gronwall’s inequality32 to

Lemma 2 yields ‖ϕn‖∞ ≤ ST exp
[

βn
M

]
, which in turn implies

max
1≤n≤T

‖ϕn‖∞ ≤ ST exp
[
βT

M

]
.

As a result

P ( max
1≤n≤T

‖ϕn‖∞ > ε) ≤ P

(
ST exp

[
βT

M

]
> ε

)

= P

(
ST > exp

[
−βT

M

]
ε

)

32Gronwall’s inequality: if {xn } and {bn } are non-negative sequences and
a ≥ 0, then

x̄n ≤ a +
n−1∑

j=1

xj bj ⇒ xn ≤ a exp

(
n−1∑

j=1

bj

)

Next applying Lemma 3 to the right hand side yields

P ( max
1≤n≤T

‖ϕn‖∞ > ε) ≤ 2 exp
(
− exp

(
−2βT

M

)
ε2 M 2

2ΓT

)

Finally choosing T = c1M , for some positive constant c1 yields

P ( max
1≤n≤T

‖ϕn‖∞ > ε) ≤ 2 exp(−C2ε
2M)

where C2 = exp(−2βc1) 1
2Γc1

. �
Proof of Lemma 2: Define the 2D− dimensional vectors:

H(xn ) = P21(xn ) − P12(xn ),

H(x̄n ) = P21(x̄n ) − P12(x̄n ).

Recall from (11) and (12),

ϕn+1 = ϕn +
1
M

[H(xn ) −H(x̄n )] + ζn

= ϕ0 +
1
M

n∑

τ =1

[H(xτ ) −H(x̄τ )] +
n∑

τ =1

ζτ

‖ϕn+1‖∞ ≤ ‖ϕ0‖∞ +
1
M

n∑

τ =1

‖H(xτ )

−H(x̄τ )‖∞ + ‖
n∑

τ =1

ζτ ‖∞

≤ ‖ϕ0‖∞ +
β

M

n∑

τ =1

‖ϕτ ‖∞ + ST

The last inequality is justified as follows: From (9), P21(d,
x̄n (d)) = ρ(d)(1 − x̄n (d))P̄21(d, a) and P12(d, x̄n (d)) = ρ(d)
x̄n (d)P̄12(d, a) for some a, where a is the number of infected
neighbors. Hence

H(xn , i) −H(x̄n , i) ≤ β(x̄n (i) − xn (i)) (42)

where β = max
d

[
ρ(d)(P̄21(d, a) + P̄12(d, a))

]
is bounded.

Proof of Lemma 3: ‖
∑n

τ =1 ζτ ‖∞ = maxi |
∑n

τ =1 e′iζτ | =
|
∑n

τ =1 e′i∗ζτ | for some i∗, where ei denotes the vector hav-
ing 1 at the ith position and zero elsewhere. Since e′i∗ζτ is a
martingale difference process with |e′i∗ζτ | ≤

√
Γ/M applying

the Azuma-Hoeffding inequality (Theorem 3) yields

P

(
‖

n∑

τ =1

ζτ ‖∞ ≥ ε

)
= P

(
|

n∑

τ =1

e′i∗ζτ | ≥ ε

)

≤ 2 exp
[
−ε2M 2

2Γn

]

The right hand side is increasing with n. So clearly,

P

(
max

1≤n≤T
‖

n∑

τ =1

ζτ ‖∞ ≥ ε

)
≤ 2 exp

[
−ε2M 2

2ΓT

]
�

APPENDIX B
PROOF OF THEOREM 2

A. Definitions: With 1 denoting the D-dimensional vec-

tor of ones, let Π(D)Δ={ρ ∈ RD : 1′ρ = 1, 0 ≤ ρ(i) ≤ 1, i ∈
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{1, 2, . . . ,D}} denote the D − 1 dimensional unit simplex com-
prised of probability vectors of dimension D.

Definition 2: First-Order Stochastic Dominance (≥sd ): Let
ρ1 , ρ2 ∈ Π(D) be any two probability vectors. Then ρ2 ≥sd
ρ1 if

D∑

i=j

ρ2(i) ≥
D∑

i=j

ρ1(i) for j ∈ {1, . . . , D}.

Let V denotes the space of D dimensional vectors ϑ, with non-
decreasing components, i.e., ϑ(1) ≤ ϑ(2) ≤ · · ·ϑ(D). Then
ρ2 ≥sd ρ1 iff for all ϑ ∈ V ,

ϑ′ρ2 ≥ ϑ′ρ1 . (43)

Definition 3: Second-Order Stochastic Dominance (≥ssd ):
Let ρ1 , ρ2 ∈ Π(D) be two probability vectors with cumulative
distribution functions F1 and F2 . Then ρ1 ≥ssd ρ2 if

i∑

j=1

F1(j) ≤
i∑

j=1

F2(j) for i ∈ {1, . . . , D}.

B. Proofs:
Theorem 4 ([1]): Consider two networks with degree dis-

tributions ρ1 and ρ2 respectively, where ρ1 ≤ssd ρ2 . Then the
diffusion thresholds satisfy θ1

∗ > θ2
∗ . �

An important consequence of Theorem 4 is that as the number
of nodes with higher degree increase, the probability of a large
fraction of agents becoming infected increases.

Lemma 4: For any u ∈ (0, 1), the transition matrix Lk (u)
in (33) satisfies

Li
k (u) ≤sd Li+1

k (u) i = 1, 2, . . .

where Li
k (u) denotes the ith row of Lk (u).

Lemma 5: Let Lk (u1) and Lk (u2) be two transition matrices
with ui > 0. If u1 > u2 , then

Li
k (u2)≥sdLi

k (u1)

where Li
k (u) denotes the ith row of Lk (u).

The proofs of Lemma 4 and 5 follow immediately since the
matrix Lk (u) is upper bidiagonal (34).

Lemma 6: (i) Let Lk (u) be such that Li
k (u) ≤sd Li+1

k (u) for
i = 1, 2, . . ., where Li

k (u) denotes the ith row of Lk (u). Then
for probability vectors ρ1 and ρ2 with ρ1 ≤sd ρ2 ,

L′
k (u)ρ1 ≤sd L′

k (u)ρ2 (44)

(ii) Let u1 > u2 and Li
k (u2)≥sdLi

k (u1) for i = 1, 2, · · · ,D.
Then for any probability vector ρ,

L′
k (u1)ρ ≤sd L′

k (u2)ρ (45)

Proof: From Definition 2, (44) is equivalent to

D∑

i=1

∑

j≥m

Lij
k (u)ρ1(i) ≤

D∑

i=1

∑

j≥m

Lij
k (u)ρ2(i) (46)

for m = 1, . . . , D. Since Li
k (u) ≤sd Li+1

k (u), it follows that∑
j≥m Lij

k (u) is increasing in i. Then since ρ1 ≤sd ρ2 , (43)
yields (46).

Similarly, (45) is equivalent to

D∑

i=1

∑

j≥m

(
Lij

k (u1) − Lij
k (u2)

)
ρ(i) ≤ 0 (47)

Since Li
k (u2)≥sdLi

k (u1), each term Lij
k (u1) − Lij

k (u2) ≤ 0,
thereby yielding (47).

Proof of Theorem 2:
1) Let u1 > u2 > 0. Assume by induction that at k − 1,

ρu1
k−1 ≤sd ρu2

k−1 . We have,

L′
k (u1)ρu1

k−1 ≤sd L′
k (u1)ρu2

k−1 from (44)

L′
k (u1)ρu2

k−1 ≤sd L′
k (u2)ρu2

k−1 from (45)

⇒ L′
k (u1)ρu1

k−1 ≤sd L′
k (u2)ρu2

k−1

⇒ ρu1
k ≤sd ρu2

k

2) Let u1 > u2 > 0. From the first part of Theorem 2 we
have, ρu1

k ≤sd ρu2
k . But ρu1

k ≤sd ρu2
k implies ρu1

k ≤ssd
ρu2

k . Then Theorem 4 implies θ1
∗ (k) > θ2

∗ (k).
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[31] M. Hern ández-González and M. V. Basin, “Discrete-time filtering for
nonlinear polynomial systems over linear observations,” Int. J. Syst. Sci.,
vol. 45, no. 7, pp. 1461–1472, 2014.

[32] H. L. Van Trees, Detection, Estimation, and Modulation Theory. Hoboken,
NJ, USA: Wiley, 2004.

[33] F. Chung and L. Lu, Complex Graphs and Networks, vol. 107. Providence,
RI, USA: American Mathematical Society, 2006.

[34] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic,
mathematically tractable graph generation and evolution, using Kronecker
multiplication,” in Proc. Eur. Conf. Principles Data Mining Knowl. Dis-
covery, 2005, pp. 133–145.

[35] A. L. Barabási and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, no. 5439, pp. 509–512, 1999.

[36] A.-L. Barabási, R. Albert, and H. Jeong, “Scale-free characteristics of
random networks: The topology of the world-wide web,” Physica A:
Statist. Mech. Appl., vol. 281, no. 1, pp. 69–77, 2000.

[37] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annu.Rev. Sociol., vol. 27, pp. 415–444,
2001.

[38] H. Kushner, Weak Convergence Methods and Singularly Perturbed
Stochastic Control and Filtering Problems. New York, NY, USA:
Springer-Verlag, 2012.

[39] D. Topkis, Supermodularity and Complementarity. Princeton, NJ, USA:
Princeton Univ. Press, 1998.

[40] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annu. Rev. Sociol., vol. 27, no. 1,
pp. 415–444, 2001.
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