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Large-Scale Dynamical Models
and Estimation for Permeation
in Biological Membrane
Ion Channels
Modeling the ways that certain ions pass through, or are blocked by,
ion channels is expected allow researchers to identify channel
functions from their atomic structure.

By Vikram Krishnamurthy, Fellow IEEE, and Shin-Ho Chung

ABSTRACT | Biological ion channels are water-filled angstrom-

unit ð1 angstrom unit ¼ 10#10 mÞ sized pores formed by

proteins in the cell membrane. They are responsible for

regulating the flow of ions into and out of a cell and hence

they control all electrical activities in a cell. This paper deals

with constructing large scale stochastic dynamical models for

explaining ion permeation; that is, how individual ions interact

with the protein atoms in an ion channel and travel through the

channel. These permeation models capture the dynamics of the

ions at a femto-second time scale and angstrom-unit spatial

scale. We review large scale multiparticle simulation methods

such as Brownian dynamics for modeling permeation. Then we

present a novel multiparticle simulation methodology, which

we call adaptive controlled Brownian dynamics, for estimating

the force experienced by a permeating ion at each discrete

position along the ion-conducting pathway. The profile of this

force, commonly known as the potential of mean force,

results from the electrostatic interactions between the ions in

the conduit and all the charges carried by atoms forming the

channel the protein, as well as the induced charges on the

protein wall. We illustrate the use of adaptive controlled

Brownian dynamics in gramicidin channels and shape estima-

tion of sodium channels.

KEYWORDS | Adaptive controlled Brownian dynamics (ACBD);

biological ion channels; permeation; stochastic optimization

I . INTRODUCTION

All living cells are surrounded by a thin cell membrane,
which is composed of two layers of phospholipid
molecules. The cell membrane acts as a hydrophobic,
low dielectric barrier that is impermeable to charged
particles such as Naþ, Kþ, Cl# ions. Indeed, the amount of
energy needed to transport one monovalent ion across the
cell membrane is insurmountably highVthis energy called
the Born energy is about 65 kT.1

So how do ions diffuse in and out of a cell? The
transport of ions across the cell membrane is regulated by
specialized water-filled conduits called ion channels. Ion
channels are biological subnanotubes formed by protein
molecules across the cell membrane through which
ions can freely move in and out when the gates are open.
These ion channels have typical pore diameters of
&10#9 m or 10 Å.

Ion channels in cell membranes play a crucial role in all
living organisms. They regulate all electrical activities in
the nervous system, including communication between
cells and the influence of hormones and drugs on cell
function. Because ion channels are elementary building
blocks of brain function, understanding their mechanisms
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at a molecular level is a fundamental problem in
biophysics. A remarkable property of ion channels is that
they are selectively conductive. For example, sodium (Na)
channels primarily allow sodium ions to permeate but do
not allow significant amounts of other types of ions such as
potassium or calcium ions. Several inherited neurological,
muscular, and renal disorders arise from malfunctioning of
ion channels. Examples of ion channel diseases include
(see [1] for details): hyperkalaemic muscle paralysis that can
result from malfunctioning of muscular Na channels;
epilepsy with febrile seizure, caused sometimes by the
abnormality of neuronal Na channels; migraines, believed
to be a neuronal calcium (Ca) channel disease; and
polycystic kidney disorder that arises from a mutation of the
Ca channel. In addition, genetic alteration of the proteins
forming chloride channels are known to be associated with
cystic fibrosis which is a fatal pancreatic and lung disease,
Bartter’s syndrome which is a salt-wasting renal tubular
disorder, and diabetes. Thus, the elucidation of how single
channels work will ultimately help find the causes of, and
potentially cures for, a number of inherited disorders. We
refer the reader to the special issue [2] and the recent book
[3] for a detailed exposition of recent results in ion chan-
nels written by several leading researchers in the area. Also
[4] is a classic exposition on ion channels.

This paper deals with ion channel permeation. The
permeation problem [5], [6] seeks to explain the working of
an ion channel at an angstrom ð1 Å = 10#10 mÞ spatial
scale by studying the propagation of individual ions
through the ion channel at a femto-second ð10#15Þ time
scale. In the past few years, there have been enormous
strides in our understanding of the structure–function re-
lationships in biological ion channels due to the combined
efforts of experimental and computational biophysicists. In
recent breakthroughs, the crystal structures of the po-
tassium channels, mechanosensitive channel, chloride
channel, and nicotinic acetylcholine receptor have been
determined from crystallographic analysis [7]–[13]. The
2003 Nobel prize in chemistry was awarded to
R. MacKinnon for determining the crystallographic
structures of several different ion channels including the
bacterial potassium channel.2 It is expected that crystal
structures of other ion channels will follow these
discoveries, ushering in a new era in ion channel studies,
where predicting function of channels from their atomic
structures will become the main quest. Parallel to these
landmark experimental findings, there have also been
important advances in computational biophysics. As new
analytical methods have been developed and the available

computational power increased, theoretical models of ion
permeation have become increasingly sophisticated. It has
now become possible to relate the atomic structure of an
ion channel to its function through the fundamental laws
of physics operating in electrolyte solutions. Many aspects
of macroscopic observable properties of ion channels are
being addressed by molecular and stochastic dynamics
simulations. Quantitative statements based on rigorous
physical laws are replacing qualitative explanations of how
ions permeate across narrow pores formed by the protein
wall and how ion channels allow one ionic species to pass
while blocking others. The computational methods of
solving complex biological problems, such as permeation,
selectivity, and gating mechanisms of ion channels, will
increasingly play prominent roles as the speed of com-
puters increases and theoretical approaches that are cur-
rently under development become refined further.

This paper highlights the ubiquitous nature of large
scale stochastic dynamical systems and their estimation
and control. Ion channel permeation is modeled as a large
scale multiparticle stochastic dynamical system comprising
several ions and water molecules that interact with the
protein atoms lining the inner wall of the ion channel. We
also show how stochastic optimization algorithms can be
used to estimate certain structural parameters of the ion
channel. The paper has the following main contributions.

1) In Section II, we give a brief account of several
different computational tools employed to study
the mechanisms of ion permeation across biolog-
ical ion channels. These are: ab initio and classical
molecular dynamics, Brownian dynamics (BD),
Poisson–Nernst–Planck (PNP) theory, and reac-
tion rate theory. The merits and shortcomings of
each of these approaches are discussed in detail in
several recent publications, to which the reader is
referred [4], [14]–[18].

2) Section III gives a detailed stochastic dynamical
formulation of BD in terms of a large scale multi-
particle system with dynamics evolving according
to the Langevin equation. The various forces
acting on the ion due to other ions and the protein
atoms lining the ion channel are formulated. A
probabilistic interpretation of BD simulation in
terms of mean first passage times is also given.

3) In Section IV, we show how BD simulations can
be used to explain ion permeation in three im-
portant types of ion channels namely, potassium
channels, CLC chloride channels, and calcium
channels. We describe how BD simulations can
replicate the macroscopic current–voltage-
concentration behavior of ion channels.

4) In Section V, we describe a novel stochastic op-
timization framework for dynamically controlling
BD simulation to estimate the potential of mean
force (PMF) of a gramicidin ion channel and the
shape of a sodium channel. We formulate these

2The 2003 Nobel prize in Chemistry Press Release reads: BRoderick
MacKinnon surprised the whole research community when in 1998 he
was able to determine the spatial structure of a potassium channel. Thanks
to this contribution we can now see ions flowing through channels that
can be opened and closed by different cellular signals. . . The ion channels
are important for, among other things, the function of the nervous system
and the muscles.[
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estimation problems as stochastic optimization
problems. In Section VI, we give several sto-
chastic optimization algorithms to estimate these
parameters. We call these adaptive controlled
Brownian dynamics (ACBD) algorithms [19], [20].
These stochastic optimization algorithms are
implemented as stochastic approximation algo-
rithms that dynamically control the behavior of the
BD simulation. Several novel discrete stochastic
approximation algorithms are presented together
with a kernel-based exploration-exploitation algo-
rithm. We present numerical examples imple-
mented on a multiprocessor supercomputer to
illustrate the ACBD algorithms for estimating the
PMF of gramicidin and shape of sodium channels.

II . LEVELS OF ABSTRACTION
FOR PERMEATION MODELING
IN ION CHANNELS

This section outlines four levels of abstraction that have
been widely used to model permeation in ion channels.
The section sets the stage for BD modeling for permeation
which is the main focus of the paper.

A fundamental goal in biophysics is to construct
accurate dynamical models for ion permeation in biolog-
ical ion channels. Such models link channel structure
(which is typically defined in terms of an atomic model at
the subnanoscale) to channel function (which is observed
via experimental measurements at the macroscopic time
scale). Any high-resolution dynamical model for ion
permeation needs to consider three ingredients: the ions,
water molecules, and the atoms of the protein that form
the ion channel. It is essential for such dynamical models
to be based on physical principles and to result in
computationally tractable simulation algorithms. Such
models also need to elucidate the detailed mechanisms
of ion permeationVwhere the binding sites are in the
channel, how fast an ion moves from one binding site to
another, and where the rate-limiting steps are in con-
duction. Finally, it will make predictions that can be
confirmed or refuted experimentally.

The computational tools of physics employed in this
endeavor, from fundamental to phenomenological, are
ab initio and classical molecular dynamics, Brownian dy-
namics, continuum theories, and reaction rate theory. These
approaches make various levels of abstractions in replacing
the complex reality with a model, the system composed of
channel macromolecules, lipid bilayer, ions, and water
molecules. Each of these approaches has its strengths and
limitations and involves a degree of approximation.

Ab Initio Quantum Mechanical Models: At the lowest
level of abstraction, we have the ab initio quantum mech-
anical approach, in which the interactions between the
ions, water molecules, and protein atoms are determined

from first-principle electronic structure calculations by
solving the many-body Schrödinger equation. There are
three terms in the Hamiltonian: the nuclear part, elec-
tronic part, and the Coulomb interaction between them
[21]. As there are no free parameters in this approach, it
represents the ultimate tool to the modeling of biomolec-
ular systems. Because a solution of the Schrödinger equa-
tion is formidable and is an extremely time-consuming
process, even with some simplifying assumptions, its
applications are limited to very small systems at present.

Molecular Dynamics (MD): By replacing the potential
energy featuring in the many-body quantum mechanical
equation with a phenomenological one, a purely classical
description of a system can be obtained. This is called
classical MD [22]. MD simulations are carried out using
empirically determined pair-wise interaction potentials
between the ions, water molecules, and protein atoms, and
their trajectories are followed using Newton’s equation of
motion. Although it is possible to model an entire ion
channel in this way, it is not computationally tractable to
simulate molecular dynamics long enough to see perme-
ation of ions across an ion channel and to determine its
conductance, which is the most important channel prop-
erty. Note, however, that molecular dynamics is widely
used to understand how the ions and protein of the ion
channel interact over small segments of the ion channel.
Indeed, MD is used to compute the potential of mean force
(PMF), which represents the forces an ion encounters due
to the protein that forms the ion channel [23] (we give a
more detailed exposition of the PMF and how to estimate
it in Section V). The resulting PMF is used conjunction
with Brownian dynamics, described as follows.

BD: The precise formulation of BD, which is the main
focus of the paper, is given in Section III. Here, we briefly
provide a comparison of BD with the other methodologies
particularly, MD and Poisson–Nernst–Planck (PNP)
theory.

Unlike MD, with BD it is computationally tractable to
run a computer simulation to see permeation of ions across
the ion channel. For this reason, BD constitutes an en-
gineering viable model for permeation. Using BD, one can
simulate channel conductances under various conditions
and compare these simulated results with experimental
observations with only a modest amount of computational
power. This ability to compute current flow across ion
channels confers a distinct advantage to BD compared to
simulation techniques. To trace the trajectories of about
100 ions interacting with a dielectric boundary for many
microseconds, a period long enough to deduce the con-
ductance of an ion channel, BD makes two simplifying
assumptions compared to MD.

1) First, water is not treated explicitly but as a con-
tinuum. Water molecules that form the bulk of the
system in ion channels are integrated out and only
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the ions themselves are explicitly simulated. The
net effects of incessant collisions between ions
and water molecules are lumped together and
treated as the frictional and random forces. This
treatment of explicit water molecules by implicit
water can be viewed as a functional central limit
theorem approximation.

2) Second, the atoms in the protein that form the ion
channel are considered to be fixed, whereas in
reality they will undergo rapid thermal fluctua-
tions. Several independent lines of evidence
suggest that root-mean-square (rms) fluctuations
of typical proteins are of the order of 0.75 Å,
suggesting that the transmembrane passage
through which ions traverse may be quite flexible
[24], [25]. The fixed protein assumption can be
explained via stochastic averaging theory. We may
construe that the dynamics of ion channel is
composed of two parts: protein fluctuations that
occur at the fast time scale and movement of ions
across the pore that occur at the slower time scale.
Then, stochastic averaging theory says that the
parts of the system moving on the fast time scale
(namely, the protein) will perceive the slowly
moving portions (namely, the ions) as constant
and the slowly moving portions (ions) only see a
time-averaged effect from the fast time scale parts
(protein). We refer the reader to [26] and [27] for
an extensive treatment of stochastic averaging
theory. Stochastic averaging theory is widely used
to analyze the convergence of adaptive filters in
statistical signal processing [28].

PNP Theory: A still higher level of abstraction is the PNP
theory [29]–[32], which is based on the continuum
hypothesis of electrostatics. In this and other electro-
diffusion theories, one makes a further simplification,
known as the mean-field approximation. In this approach,
ions are treated not as discrete entities but as continuous
charge densities that represent the space-time average of
the microscopic motion of ions. In the PNP theory, the flux
of an ionic species is described by the Nernst–Planck
equation that combines Ohm’s law with Fick’s law of
diffusion, and the potential at each position is determined
from the solution of Poisson’s equation using the total
charge density (ions plus fixed charges). The PNP theory
thus incorporates the channel structure, and its solution
yields the potential, concentration, and flux of ions in the
system in a self-consistent manner.

Reaction Rate Theory: Finally, there is one other
approach that has been employed to model biological ion
channels, namely, the reaction rate theory [4], [33]. In this
approach, an ion channel is represented by a series of ion
binding sites separated by barriers, and ions are assumed to
hop from one biding site to another, with the probability of

each hop determined by the height of the energy barrier.
Although the model parameters have no direct physical
relation to the channel structure, many useful insights
have been gleaned in the past about ion permeation using
this approach.

Several comprehensive recent review articles give de-
tailed expositions of each of the these approaches. As the
primary focus of this paper is BD, these other approaches
are not discussed further here. Instead, for details, the
reader is referred to [3], [18], and [21]. We also refer the
reader to [34], where a novel birth–death Markov chain is
used to model permeation.

A. Discussion
The three computational tools discussed in this section,

namely PNP theory, MD, and BD, play important roles in
understanding ion channel permeation. Each of these
approaches has its strengths and limitations and involves a
degree of approximation. The main defects of PNP are
errors stemming from the mean-field assumption. In par-
ticular, it ignores the effects of induced surface charges
created as a charged particle in electrolyte solutions
approaches the protein boundary. The magnitude of the
errors introduced by the mean-field approximation
become large when the theory is applied to narrow ion
channels. By incorporating a term in the PNP equations to
account for the barrier created by induced surface charges,
the magnitude of the errors can be reduced somewhat.
However, doing this removes much of the simplicity of the
theory, one of its main advantages over the other ap-
proaches, and also it is still hard to know the accuracy of
the results without comparison to a more detailed model.

The greatest limitation of MD is its prohibitive
computational cost. This computational cost limits the
time horizon over which an ion permeation simulation can
be carried out. While the calculation of free energy profiles
provides useful information on ion permeation, it is not a
substitute for a direct estimation of conductance from
simulations. Thus, virtually no predictions derived from
molecular dynamics simulations can be directly compared
with experimental data. If no such comparisons can be
made, there can only be a limited interaction between
experimenters and theoreticians. With the current dou-
bling of computer speeds every two years, this computa-
tional limitation will eventually be overcome. Then, the
force fields employed in molecular dynamics simulations
may need to be improved to include polarization effects,
perhaps using ab initio molecular dynamics as a guide.

One of the main caveats to the application of BD to
biological ion channels is the use of the macroscopic (bulk)
Poisson’s equation (7) to estimate the forces encountered
by permeating ionsVsee Section III-C. The issue here is
whether one can legitimately employ macroscopic elec-
trostatics in regions that are not much larger than the
diameters of the water molecules and ions. In the narrow
constricted region of the channel, such as a gramicidin
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channel or the selectivity filter of the potassium channel,
the representation of the channel contents as a continuous
medium is a poor approximation. A major focus of the rest
of this paper (Section V and Section VI) is to overcome this
limitation of BD by directly estimating the PMF via
stochastic optimization algorithms.

MD, BD, and PNP approaches are useful in elucidating
the mechanisms underlying selectivity and permeation of
ions across biological ion channels. For ion channels with
large pore radii, such as mechano-sensitive channels, PNP
theory can be fruitfully utilized. Also, if one is interested in
simply obtaining order-of-magnitude estimates of conduc-
tances of various model channels, this simple theory will
provide the answers with little computational cost. To
study the mechanisms underlying the selectivity sequences
of monovalent ions or to determine the precise conforma-
tional changes of the protein when a channel undergoes
the transition from the closed to the open state, one has to
rely on MD simulations.

III . BD FORMULATION FOR ION
PERMEATION

As described, BD offers a computationally tractable
method for following the trajectories of interacting ions
through an ion channel. In this section, we give a complete
description of the BD dynamics and associated BD
simulation algorithm for ion channel permeation. The
main idea is to formulate BD as a multiparticle stochastic
dynamical system comprising ions interacting with the
protein atoms that form the ion channel. The reader
should keep in mind that our eventual goal is to use BD to
relate the atomic structure of the ion channel to its
macroscopic behavior, i.e., the experimentally determined
current-concentration-voltage behavior of the ion chan-
nel. By running BD simulations under different experi-
mental conditions, one can compute current–voltage and
conductance–concentration curves, which can be directly
compared to the physiological measurements to assess the
reliability and predictive power of the method. One can
carry out a trajectory analysis of ions in the system to
determine the steps involved in conduction such as the
binding sites and the average number of ions in the
channel, both of which are experimentally observable
quantities. It is also possible to study the mechanisms of
blocking of channels by larger molecules or other ion
species.

This section is organized as follows. In Section III-A,
the key BD system equations for evolution of the ions are
presented. Section III-B outlines the BD simulation
algorithm at a conceptual level. Section III-C gives a
detailed description of all the forces acting on the ions that
need to be considered in the BD simulation algorithm.
Section III-D gives a probabilistic interpretation of BD in
terms of mean first passage times of a diffusion. It shows
that the BD algorithm can be viewed as a Monte Carlo

simulation algorithm for solving a boundary valued partial
differential equation. Finally, in Section III-E, we discuss
some of the limitations of BD.

A. BD Formulation
Fig. 1 shows a schematic illustration of a BD simulation

assembly. An ion channel is placed at the center of the
assembly. The positions in three-dimensional (3-D) space
of all the atoms forming the channel are given by its X-ray
crystallographic structure, and the charge on each atom is
assigned. (For ion channels with known structure such as

Fig. 1. BD simulation system for ion channel with complete atomic

structure. Figure shows a CLC chloride channel imbedded in a

lipid-bilayer is placed at the center of the simulation assembly

and a large, cylindrical reservoir is attached at each end of the

protein. Reservoirs are denoted asR1 and R2. In the figure,

front half of the atoms are removed to reveal ion-conducting

pathway. Four Cl# ions in the pore are shown in green. Uniform

electric field is applied across the channel to mimic the

membrane potential. This arrangement is equivalent to

having two voltage plates far away from the channel.
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gramicidin, CLC chloride channels, and KcsA potassium
channels, the complete atomic structure can be down-
loaded from the protein data bank. The force field due to
the fixed charges in the protein, see Section III-C, can then
be obtained using a software package such as CHARMM
(Chemistry at Harvard Macromolecular Mechanics) [35]).

Then, two large cylindrical reservoirs R1 and R2 are
attached to the ion channel C as depicted in Fig. 1. These
reservoirs mimic the extracellular and intracellular space.
2N ions are inserted into these reservoirs where N denotes
a positive integer. These 2N ions are comprised of the
following.

1) N pos i t ive ly charged ions indexed by
i ¼ 1; 2; . . . ;N. Of these, N=2 ions indexed by
i ¼ 1; 2; . . .N=2 are in R1 and N=2 ions indexed
by i ¼ N=2 þ 1; . . . ; 2N are in R2. Each positive
ion has charge qþ, mass mðiÞ ¼ mþ, frictional
coefficient mþ!þ, and radius rþ. For example, a
Kþ ion has charge qðiÞ ¼ qþ ¼ 1:6' 10#19 C,
mass mðiÞ ¼ mþ ¼ 6:5' 10#26 kg and frictional
coefficient mþ!þ, where from the Einstein–
Smoluchowski relation

mþ!þ ¼ kT

D
; D ¼ 1:96 ' 10#9 m2= s: (1)

Here , k ¼ 1:38' 10#23 J/T denotes the
Boltzmann constant and T denotes the tempera-
ture in Kelvin. Kþ ions have a radius rþ ¼ 1:33 Å.

2) N negatively charged ions. We index these by
i ¼ N þ 1;N þ 2; . . . ; 2N. Of these, N=2 ions
indexed by i ¼ N þ 1; . . . ; 3N=2 are placed in
R1 and the remaining N=2 ions indexed by
i ¼ ð3N=2Þ þ 1; . . . ; 2N are placed in R2. Each
negative ion has charge qðiÞ ¼ q#, mass mðiÞ ¼ m#,
frictional coefficient m#!#, and radius r#. For
example, a Cl# ion has charge qðiÞ ¼ q# ¼ #1:6 '
10#19 C, mass mðiÞ ¼ m# ¼ 5:9 ' 10#26 kg, and
frictional coefficient m#!# ¼ kT=D where
D ¼ 2:03 ' 10#9 m/s2. Cl# ions have a radius
r# ¼ 1:81 Å.

The membrane potential is imposed by applying a uniform
electric field across the channel (Fig. 1). This is equivalent
to placing a pair of large plates far away from the channel
and applying a potential difference between them. Since
the space between the voltage plates is filled with
electrolyte solution, each reservoir is in iso-potential.
That is, the average potential anywhere in the reservoir is
identical to the applied potential at the voltage plate on
that side, and the potential drop occurs almost entirely
across the channel. Note that, as described in the
following, the applied electric field is modified inside the
channel by induced surface charges on the protein wall as
well as fixed charges in the protein. The applied potential
within the ion conducting pathway is highly nonuniform

with the largest changes occurring typically across
narrowest segments.

Let t ( 0 denote continuous time. Each ion i moves in
3-D space over time. Let xðiÞ

t ¼ ðxðiÞt ; yðiÞt ; zðiÞt Þ
0
2 R and

vðiÞ
t 2 R3 denote the position and velocity of ion i at time t.

Let Xt ¼ ðxð1Þ0
t ;xð2Þ0

t ;xð3Þ0
t ; . . . ;xð2NÞ0

t Þ
0
denote the posi-

tions and Vt ¼ ðvð1Þ0
t ;vð2Þ0

t ;vð3Þ0
t ; . . . ;vð2NÞ0

t Þ
0
, denote the

velocities of all the 2N ions at time t ( 0.
The algorithm for performing BD simulations is

conceptually simple. The position and velocity of each
individual ion evolves according to a continuous time
stochastic dynamical system. The velocity of the ion with
mass m and charge q located at a given position is
determined by the force acting on it at time t. This velocity
is computed by integrating the equation of motion, known
as the Langevin equation (recall i ¼ 1; 2; . . . ;N denote
positive ions and i ¼ N þ 1; . . . ; 2N denote negative ions)

xðiÞ
t ¼xðiÞ

0 þ
Z t

0

vðiÞ
s ds (2)

m)vðiÞ
t ¼m)vðiÞ

0 #
Z t

0

m)!þ xðiÞ
s

! "
vðiÞ
s ds

þ
Z t

0

FðiÞ
" ðXsÞds þ

Z t

0

b) xðiÞ
s

! "
dwðiÞ

s : (3)

Here, !)ðxðiÞ
s Þ ¼ !) (defined in the beginning of this

section) if the ion is in the reservoir, and !ðxðiÞ
s Þ is

determined by molecular dynamics simulation when the
ion is in the ion channel [36]. The process fwðiÞ

t g denotes a
3-D zero mean Brownian motion, which is component-wise
independent. The constants bþ and b# are, respectively,

bþ2ðxðiÞ
s Þ ¼ 2mþ!þðxðiÞ

s ÞkT, b#2ðxðiÞ
s Þ ¼ 2m#!#ðxðiÞ

s ÞkT.
The noise processes fwðiÞ

t g and fwðjÞ
t g, that drive any two

different ions, j 6¼ i, are assumed to be statistically
independent.

The Langevin equation (3) is often written in-
formally as

m) dvðiÞ
t

dt
¼ #m)!þ xðiÞ

t

! "
vðiÞ
t þ FðiÞ

" ðXtÞ þ b) xðiÞ
t

! "
eðiÞ
t

where eðiÞ
t denotes continuous time white noise.

The above dynamics show that there are two main
sources of the forces influencing the motion of ions in or in
the vicinity of an ion channel that result in the ion channel
current. These are the stochastic force and electric force.
The former arises from the effects of collisions between
ions and water molecules. Ions in electrolyte solutions are

Krishnamurthy and Chung: Large-Scale Dynamical Models and Estimation for Permeation in Biological Channels

858 Proceedings of the IEEE | Vol. 95, No. 5, May 2007



tightly bound by shells of water molecules and these
hydrated ions collide incessantly with surrounding water
molecules. As a result of such bombardments, the motion
of an ion is retarded by the friction term m!vðiÞ

t , and it
undergoes random fluctuations from an equilibrium
position via the Brownian motion term wðiÞ

t . The term
F"ð*Þ in (3) models the systematic electrical forces acting
on the ions when the external experimental condition is
" 2 ! and is described in Section III-C.

RemarkVGeneralized Langevin Dynamics (GLD): A gen-
eralization of the above BD system called the GLD [37],
[38] replaces ! in (3) with a time-varying friction kernel
!t. The terms b) depend on !t, and m)!þðxðiÞ

s ÞvðiÞ
s ds in (3)

is replaced with m)!)
t#sðx

ðiÞ
t#sÞvðiÞ

s ds. In [37] and [38], !t is
chosen as an exponentially decaying function of time t. It is
concluded in [38] that GLD may be a more accurate model
in regions of the ion channel where the energy barrier is
present.

B. Brownian Dynamics Simulation Algorithm
To implement the BD simulation algorithm on a digital

computer, it is necessary to discretize the continuous-time
dynamical equation of the 2N ions (2), (3). There are
several possible methods for time discretization of the
stochastic differential equation (3), as described in detail
by [39]. We used the second-order discretization de-
scribed in [40]. In addition, to save computational
resources, we used a two-time scale discretization in our
simulations of the BD simulation algorithm. For dynamics
of ions within the ion channel, the BD simulation
algorithm uses a sampling interval of " ¼ 2 ' 10#15 s.
For dynamics of ions within the reservoirs a sampling
interval of " ¼ 2 ' 10#12 s is used in the reservoirs. The
forces acting on each ion are calculated and the Langevin
equation is used to determine where it will move in the
next time step. By repeating this process many billions of
times, usually for a simulation period lasting T time points
(typically T is chosen in the order of 1 #s), we can trace
the movement of each ion in space during a simulation
period and count how many ions have crossed the
channel.

Denote the number of positive (respectively, negative)
charges that cross from R1 to R2 over time T as Lþ

R1;R2

(respectively, L#
R1;R2

). Also, denote the number of positive
(respectively, negative) charges that cross from R2 to R1

as Lþ
R2;R1

(respectively, L#
R2;R1

).

Algorithm 1 Brownian Dynamics Simulation Algorithm
for ion permeation given experimental condition "

1) Input experimental condition ".
2) For T discrete time points, propagate all 2N ions

according to the time discretized BD system (2), (3).

Each time an ion crosses the channel from reservoir
Ri to Rj, i; j 2 f1; 2g, uniformly pick an ion from
Rj and replace in Ri.

3) Compute BD current estimate as

Îð"Þ ¼ qþ

T
Lþ
R1;R2

# Lþ
R2;R1

! "
# q#

T
L#
R1;R2

# L#
R2;R1

! "
:

(4)

The sampling and replacement of ions in Algorithm 1
is required so that the concentration of ions in reservoirs
R1 and R2 is approximately constant and equal to the
desired experimental concentration specified by the
experimental condition ". Note that if the system was
allowed to evolve for an infinite time without replacement,
then eventually due to the external applied potential, more
ions will be in R2 than R1. This would violate the
condition that the concentration of particles in R1 and R2

remains constant.
In [20], it is shown how the expected current

Ið"Þ ¼" EfÎð"Þg (where Ef*g denotes mathematical expec-
tation) can be expressed in terms of the mean first passage
times of ions crossing the ion channel. We briefly describe
such a probabilistic construction in Section III-D. We show
in Section III-D that these mean first passage times satisfy
a boundary valued partial differential equation that is
similar to the Kolmogorov equation. Strong consistency of
the estimated current Îð"Þ from the above BD algorithm
can be established as shown in [20].

To carry out the above BD simulation algorithm for ion
permeation through an ion channel, one needs to specify
the boundaries of the system. This is a simple problem for
1-D BD simulations [41]–[43] but requires the addition of
reservoirs to the channel system in the more realistic case
of 3-D BD simulations. In several recent studies, a simple
stochastic boundary has been used successfully in applica-
tions of BD simulations to a number of ion channels [14],
[44], [45]. When an ion strikes the reservoir boundary
during simulations, it is elastically scattered back into the
reservoir, equivalent to letting an ion enter the reservoir
whenever one leaves the simulation system. Thus, the
concentrations of ions in the reservoirs are maintained at
the desired values at all times. During simulations of
current measurements, the chosen concentration values in
the reservoirs are maintained by recycling ions from one
side to the other whenever there is an imbalance due to a
conduction event, mimicking the current flow through a
closed circuit.

C. Systematic Force Acting on Ions
We now account for the various terms in the systematic

force F"ð*Þ in (3) acting on the ions in a BD formulation of
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ion channel permeation. The systematic force experienced
by each ion i is

FðiÞ
" ðXtÞ ¼ #qðiÞr

xðiÞ
t
#ðiÞ

" ðXtÞ

where the scalar valued process #ðiÞ
" ðXtÞ denotes the total

electric potential experienced by ion i given the position
Xt of all the 2N ions. We now give a detailed formulation
of these systematic forces.

The potential #ðiÞ
" ðXtÞ experienced by each ion i is

comprised of the following five components:

#ðiÞ
" ðXtÞ ¼ U xðiÞ

t

! "
þ #ext

" xðiÞ
t

! "
þ #IW xðiÞ

t

! "

þ #C;iðXtÞ þ #SR;iðXtÞ: (5)

The first three terms in (5), namely UzðxðiÞ
t Þ,

#ext
" ðxðiÞ

t Þ#IWðxðiÞ
t Þ depend only on the position xðiÞ

t of
ion i, whereas the last two terms in (5) #C;iðXtÞ, #SR;iðXtÞ
depend on the distance of ion i to all the other ions,
namely, the position Xt of all the ions. The five
components in (5) are now defined.

1) Potential of Mean Force (PMF), denoted UðxðiÞ
t Þ in

(5), is comprised of electric forces acting on ion i
when it is in or near the ion channel C in Fig. 1.
The PMF U originates from three different sources
defined as follows and computation of the PMF
requires solving three Poisson partial differential
equations and adding the resulting solutions
[which are potentials denoted $ð*Þ]. Poisson’s
equation relates the electric potential to the
charge density. It reads3

r %ðxÞr$ðxÞð Þ ¼ # &ðxÞ
%0

: (6)

Here, $ð*Þ denotes the potential and %ð*Þ denotes
the dielectric constant. Also, &ð*Þ denotes the charge
density and %0 + 8:85' 10#12 farad per meter is
the permittivity of free space. We then make the
assumption that the space is divided into two
regions, water and protein, with %water ¼ 80 in
water and %protein ¼ 2 in protein. This implies that

in each region, (6) can be expressed as the macro-
scopic Poisson equation

r2$ðxÞ ¼ &ðxÞ
%protein=water ' %0

(7)

subject to a boundary condition that the potential
$ð*Þ is continuous at the dielectric boundary and
%waterr$0

watern̂ ¼ %proteinr0
proteinn̂, where n̂ is a unit

normal to the surface. Unlike (6), (7) is no longer a
fundamental equation, but rather a macroscopic
(bulk) approximation (we discuss this further in
Section III-E). The PMF U is computed as the sum
of the solutions (potentials) of the following three
Poisson equations.
a) Fixed Charges in Protein: First, there are

charges in the channel protein and the
electric field emanating from them renders
the pore attractive to one ionic species and
repulsive to another. Because this is inde-
pendent of the of ions, the potential $ðxÞ in
(7) does not change during simulations. Thus,
Poisson’s equation can be solved numerically
on a spatial grid in the absence of ions and the
results stored on a 3-D lookup table.

b) Induced Surface Charges: When any ion in the
assembly comes near the protein wall, it in-
duces surface charges of the same polarity at
the water–protein interface. These are known
as the induced surface charges. To compute
this potential, Poisson’s equation (7) is solved
for a single ion with the external applied field
and fixed charges switched off. The ion is
moved through a spatial grid of points and the
calculated self potentials are stored in a 3-D
lookup table. If the channel boundary is axially
symmetric, then a 2-D table suffices.

c) Reaction Potential: Finally, the reaction
potential needs to be taken into account.
This is potential due to charges induced by
an ion j when another ion i is kept at a fixed
position. The computation is similar to that
of the induced surface charges above. How-
ever, since the solution to Poisson’s equation
(7) contains the Coulomb and self potentials
with respect to ion i, these need to be
subtracted from the solution. The results can
then be precomputed and stored in a 6-D
table. For an axially symmetric channel, a
5-D table suffices.

2) External Applied Potential: In the vicinity of living
cells, there is a strong electric field resulting from
the membrane potential, which is generated by
diffuse, unpaired, ionic clouds on each side of the

3It is interesting to note that the so-called self-consistent approxima-
tion [46] used to evaluate the current voltage response of a Carbon
nanotube involves solving Poisson’s equation coupled with Schrödinger’s
equation. In comparison, BD for ion permeation requires solving Poisson’s
equation (7) coupled with the Langevin equation (2), (3) which is
distributionally equivalent to the Fokker–Planck equation.
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membrane. Typically, this resting potential across
a cell membrane, whose thickness is about 50 Å, is
70 mV, the cell interior being negative with
respect to the extracellular space.
For ion i at position xðiÞ

t ¼ ðx; y; zÞ,#ext
" ðxÞ ¼ #"z

denotes the potential on ion i due to the applied
external field. The electrical field acting on each
ion due to the applied potential is therefore
#r

xðiÞ
t
#ext

" ¼ ð0; 0; "Þ V/m at all x 2 R. It is this
applied external field that causes a drift of ions
from the reservoirR1 toR2 via the ion channel C.
As a result of this drift of ions within the
electrolyte in the two reservoirs, eventually the
measured potential drop across the reservoirs is
zero and all the potential drop occurs across the
ion channel. The applied external potential also
results in an induced surface charge at the protein
water dielectric boundary. The resulting potential
within the channel is computed using Poisson’s
equation and stored in a 3-D lookup table. Indeed,
in our BD simulation package, we combine the
external applied potential with the fixed charges
in protein (see discussion of PMF above) and then
solve Poisson’s equation as described above.

3) Inter-ion Coulomb Potential: In (5), #C;iðXtÞ
denotes the Coulomb interaction between ion i
and all the other ions

#C;iðXtÞ ¼ 1

4'%0

X2N

j¼1;j6¼i

qðjÞ

%w xðiÞ
t # xðjÞ

t

###
###
: (8)

4) Ion-wall Interaction Potential: The ion-wall poten-
tial #IW , also called the ð(=rÞ9 potential, ensures
that the position of all ions i ¼ 1; . . . ; 2N lie in

Ro. With xðiÞ
t ¼ ðxðiÞt ; yðiÞt ; zðiÞt Þ

0
, it is modeled as

#IW xðiÞ
t

! "
¼ F0

9

rðiÞ þ rw
$ %9

rc þ rw #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðiÞt

2
þ yðiÞt

2!r' () *9 (9)

where for positive ions rðiÞ ¼ rþ (radius of positive
ion) and for negative ions rðiÞ ¼ r# (radius of
negative ion), rw ¼ 1:4 Å is the radius of atoms
making up the wall, rc denotes the radius of the ion
channel, and F0 ¼ 2 ' 10#10 N, which is estimat-
ed from the ST2 water model used in molecular
dynamics [47]. This ion-wall potential results in
short range forces that are only significant when
the ion is close to the wall of the reservoirs R1

and R2 or anywhere in the ion channel C
(since the narrow segment of an ion channel can
be comparable in radius to the ions).

5) Short Range Potential: Finally, at short ranges, the
Coulomb interaction between two ions is modified
by adding a potential #SR;iðXtÞ, which replicates
the effects of the overlap of electron clouds. Thus

#SR;iðXtÞ ¼ F0
9

X2N

j¼1;j6¼i

rðiÞ þ rðjÞ
$ %

xðiÞ
t # x

ðjÞ
t

###
###
9 : (10)

Similar to the ion-wall potential,#SR;i is significant
only when ion i gets very close to another ion. It
ensures that two opposite charge ions attracted by
inter ion Coulomb forces (8) cannot collide and
annihilate each other. Molecular dynamics simu-
lations show that the hydration forces between two

ions add further structure to the 1=kxðiÞ
t # x

ðjÞ
t k

9

repulsive potential due to the overlap of electron
clouds in the form of damped oscillations [48],
[49]. Reference [45] incorporated the effect of the
hydration forces in (10) in such a way that the
maxima of the radial distribution functions for
Naþ # Naþ, Naþ # Cl# and Cl# # Cl# would
correspond to the values obtained experimentally.

D. Probabilistic Interpretation
of Brownian Dynamics

The aim of this subsection is to give a probabilistic
characterization of the ion channel current. That is,
Theorem 1 states that the mean ion channel current
satisfies a boundary valued partial differential equation
related to the Fokker–Planck equation. The BD simulation
Algorithm 1 can then be viewed as a Monte Carlo
simulation method for solving this partial differential
equation. For simplicity of exposition, we assume in this
subsection that as a result of the applied external potential,
only positive ions traverse through the channel fromR1 to
R2. In cationic channels, for example, only Kþ or Naþ ions
flow through to cause the channel currentVso we do not
need to consider the mean passage time of negative ions.

The dynamics of the BD simulation has an inherent
two-time scale property. Typically, the time for an ion to
enter and propagate through the ion channel is several
orders of magnitude larger compared to the time it takes
for an ions to move within a reservoir. That is the time
constant for the particles in the reservoirs to attain steady
state is much smaller than the time it takes for a particle to
enter and propagate through the channel.

The following two-step probabilistic construction
formalizes the probabilistic construction of BD.

Procedure 1: Probabilistic Construction of Brownian
Dynamics Ion Permeation in Ion Channel:

Step 1: The 2N ions in the system are initialized in the
reservoir and the ion channel C is closed. The system
evolves and attains stationarity.
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Step 2: After stationarity is achieved, the ion channel
is opened. The ions evolve according to (2) and (3). As
soon as an ion from R1 crosses the ion channel C and
enters R2, the experiment is stopped. Similarly, if an
ion from R2 crosses C and enters R1, the experiment is
stopped. Theorem 1 gives a partial differential equation
for the mean time an ion in R1 takes to cross the ion
channel and reach R2. From this an expression for the
mean ion channel current is constructed (13).

Remark: The above construction is a mathematical
idealization. In the BD simulation Algorithm 1, the ion
channel is kept open and ions that cross the channel are
simply removed and replaced in their original reservoir.
However, the above mathematical construction is a
satisfactory approximation since due to the two time scale
property, the time taken to attain this stationary distribu-
tion is much smaller than the time it takes for a single ion
to cross the ion channel.

Let 'ð"Þ
t ðX;VÞ denote the joint probability density

function of the position and velocity of all the 2N ions at
time t ( 0. We explicitly denote the " dependence of the
probability density functions since they depend on the

experimental condition " 2 !. The marginal probability

density function 'ð"Þ
t ðXÞ ¼ pð"Þðxð1Þ

t ;xð2Þ
t ; . . . ;xð2NÞ

t Þ of
the positions of all 2N ions at time t is obtained as

'ð"Þ
t ðXÞ ¼

Z

R6N

'ð"Þ
t ðX;VÞdV:

It is shown in [20] that 'ð"Þ
t ðX;VÞ converges

exponentially fast to its stationary (invariant) distribution

'ð"Þ
1 ðX;VÞ. That is, the ions in the two reservoirs attain

steady state exponentially fast.
We now proceed to Step 2 of the BD construction of

Procedure 1. Assume that the BD system (2), (3) comprised
2N ions has attained stationarity with the ion channel C
closed according to Step 1. Now in Step 2 of Procedure 1,
the ion channel is opened so that ions can diffuse into it.

Let ) ð"Þ
R1;R2

denote the mean minimum time for any of
theN=2 positive ions inR1 to travel toR2 via the channel C

) ð"Þ
R1;R2

¼ Eft*g: (11)

To define the first passage time t+, it is convenient to define

, ¼ðX;VÞ

P2 ¼ , : zð1Þ (*
n o

[ zð2Þ (*
n o

[ * * * [ zðN=2Þ (*
n on o

P1 ¼ , : zðN=2þ1Þ ,+
n o

\ * * * \ zð2NÞ ,+
n on o

: (12)

Here, zðiÞ denotes the z-axis spatial coordinate of the ith ion.
Then, t* ¼ infft : ,t 2 P2j,0 2 P1g.

In terms of the mean first passage time ) ð"Þ
R1;R2

defined
in (11), the mean current flowing from R1 via the ion
channel C into R2 is defined as

Ið"Þð-Þ ¼ qþ

) ð"Þ
R1;R2

: (13)

The following result adapted from [50, p. 306] shows

the mean passage time ) ð"Þ
R1;R2

and satisfies a boundary
valued partial differential equation (see also [51]). In
particular, the expressions for the mean passage time
below, together with (13), give a complete characterization
of the ion channel current.

Theorem 1: Consider the two step BD probabilistic
construction in Procedure 1. Then, the mean first passage
time ) ð"Þ

R1;R2
[defined in (13)] for ions to diffuse through the

ion channel are obtained as

) ð"Þ
R1;R2

¼
Z

P1

) ð"Þ
R1;R2

ð,Þ'ð"Þ
1 ð,Þd,: (14)

Here, ) ð"Þ
R1;R2

ð,Þ satisfies the following boundary value
partial differential equations:

L ) ð"Þ
R1;R2

ð,Þ
! "

¼#1 , 62 P2; ) ð"Þ
R1;R2

ð,Þ¼0 ,2P2

(15)

where for any test function $ð*Þ, L denotes the backward
elliptic operator (infinitesimal generator)

Lð$Þ ¼ 1

2
Tr $r2

,$ð,Þ
h i

þ f -;"ð,Þ þA,
$ %0r,$ð,Þ: (16)

Remark: The previous partial differential equation
cannot be solved in closed formVso the BD simulation
Algorithm 1 can be viewed as a randomized numerical
method for solving this partial differential equation. We
show in Section IV that the BD simulation algorithm can
be successfully used to predict the function of several
important types of ion channels.

E. Discussion
In the above BD formulation the forces acting on

charged particles were calculated by solving the macro-
scopic (bulk) Poisson’s equation (7). In bulk water,
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molecules polarize to shield electrostatic interactions by a
factor of approximately 1/80. However, given the likely
preferential alignment of water in narrow pores and
regions of high charge, this shielding is likely to be far less
effective in an ion channel. Thus, one should use a lower
value of the dielectric constant %water for the water in the
channel when solving Poisson’s equation (7). But exactly
what value of the dielectric constant should be used is
unknown. Determining the appropriate values using
molecular dynamics simulations or otherwise would be a
useful project.

Assigning the appropriate value of the dielectric
constant of protein %protein in (7) is also nontrivial. Unlike
water and lipids, which form homogeneous media,
proteins are quite heterogeneous, exhibiting large varia-
tions in polarizability depending on whether we are
dealing with the interior or exterior of a protein [52].
There are several molecular dynamics studies of the
dielectric constant of protein [53]–[55]. The dielectric
constant for the whole protein varies between 10 and 40,
but when only the interior region of the protein consisting
of the backbone and uncharged residues is considered, the
value drops to 2 or 4. The effects of changing the dielectric
constant of protein from to 3.5 and 5 were examined by
[56] using the KcsA potassium channel. They showed that
the precise value adopted in solving Poisson’s equation has
negligible effects on the macroscopic properties derived
from BD simulations.

The validity of treating the channel protein as a static
structure in BD also deserves further investigation. It
should be noted that thermal fluctuations of proteins
occur in the time-scale of femto seconds, whereas a con-
duction event across a typical ion channel takes place once
in 100 nsVapproximately six to seven orders of magnitude
slower time scale. Thus, it is likely that rapid thermal
fluctuations of the atoms forming the channel are not
important for channel selectivity and conduction. This can
be shown using stochastic averaging methods in nonlinear
dynamical systems (e.g., [27]). Alterations in the average
positions of the protein atoms caused by the presence of
permeating ions may play a role, and their effects should
be examined both experimentally and by using molecular
dynamics simulations. If found to be important, some of
the motions of the protein, such as the bending of
carbonyl groups, can readily be incorporated in BD
modeling of ion channels. Finally, size-dependent selec-
tivity among ions with the same valence cannot be easily
understood within the BD framework, and one has to
appeal to molecular dynamics or semi-microscopic Monte
Carlo simulations [57].

IV. APPLICATION OF BD
IN ION CHANNELS

The BD modeling and simulation methodology described
in Section III has been been fruitfully utilized in

satisfactorily capturing the macroscopic behavior of
several specific ion channels. In this section, we summa-
rize the performance of BD for three important classes of
biological ion channels: the KcsA potassium channel, the
L-type calcium channel, and the anionic CLC Cl# channel.

A. Potassium Channels

KcsA Kþ Channel: A number of computational studies
using molecular dynamics [24], [58]–[63] and semi-
microscopic approaches [44], [64], [65] have been carried
out on the KcsA potassium channel, the first biological
channel whose crystal structure has been determined.
These studies have elucidated, among others, the basis of
ion selectivity, the mechanisms underlying the permeation
of ions across the channel, and the conformational changes
that occur in the KcsA protein when the channel opens.
Detailed summaries of the main findings are given in
several recent review articles [66], [67]. Here, we outline
the main results obtained from BD simulations on the
KcsA channel.

The KcsA structure determined from X-ray diffraction
consists of 396 amino acid residues, or 3504 atoms
excluding polar hydrogens. The channel is constructed
from four subunits of peptide chains, each subunit
consisting of an outer helix, inner helix, pore helix, and
a threonine–valine–glycine–tyrosine–glycine (TVGYG)
amino acid sequence that forms the selectivity filter. The
protein atoms form a central pore between these subunits.
The shape of the ion-conducting pathway across the KcsA
protein is illustrated in Fig. 2, where two of the four
subunits of the full experimentally determined protein are
shown. Water molecules residing inside and just outside of
the pore shown as gold balls in Fig. 2(a). An outline of the
pore reveals that the channel is composed of three
segmentsVa long intracellular region of length 20 Å lined
with hydrophobic amino acids extending towards the
intracellular space (left-hand side), a wide water-filled
chamber of length 10 Å, and a narrow selectivity filter of
length 12 Å, extending towards the extracellular space. The
selectivity filter is the most important element in this
structure as it can distinguish Kþ ions from those of Naþ

on the basis of their sizes (the crystal radius of Kþ is 1.33 Å
and that of Naþ is 0.95 Å). The aspartate–arginine pair
near the extracellular entrance (right-hand side) and the
glutamate-arginine pair near the intracellular entrance
(left-hand side) are indicated in red and silver. BD
simulations show that there are three regions in the
selectivity filter and cavity where Kþ ions dwell preferen-
tially. There is also another prominent binding site near
the intracellular entrance of the channel. The preferred
positions where ions dwell preferentially are in close
agreement with the positions observed in Rbþ X-ray
diffraction maps [7].

To illustrate the permeation mechanism across the
potassium channel, we bisect the channel such that ions in
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the chamber and filter found during BD simulations are
consigned to the right side, and the rest to the left side.
The most common situation in the conducting state of the
channel has one ion in the left half, and two ions in the
right half. We refer to this configuration as the [1, 2] state.
A typical conduction event consists of the following
transitions: ½1; 2. ! ½0; 3. ! ½0; 2. ! ½1; 2.. In other
words, the ion waiting near the intracellular mouth
overcomes a small energy barrier in the intracellular
pore to enter the chamber region. Because this system is
unstable in the presence of an applied potential, the right-
most ion is ejected from the channel. Another ion enters
the intracellular mouth, leaving the system in its original
configuration. The precise sequence of events taking place
for conduction of ions depends on their concentration,
applied potential, and the ionization state of charged
residues at the intracellular gate, and many other states
can be involved in the conduction process depending on
the values of these variables. Simulations also reveal that
permeation across the filter is much faster than in other
parts of the channel. That is, once a third ion reaches the
oval cavity, the outermost ion in the selectivity filter is
expelled almost instantaneously. Thus, although the filter
plays a crucial role in selecting the Kþ ions, its role in
influencing their conductance properties is minimal.

Fig. 3(a) and (b) shows the current–voltage and
current-concentration curves obtained from BD simu-
lations [56]. The results of BD simulations are in
broad agreement with those determined experimentally
[68]–[70]. With the radius of the intracellular gate
expanded to 4 Å, we obtain the conductances at þ150 mV
and #150 mV of, respectively, 147 ) 7 and 96 ) 4 pS.
The relationship is linear when the applied potential is in
the physiological range but deviates from Ohm’s law at a
higher applied potential, especially at high positive
potentials. The current saturates with increasing ionic
concentrations, as shown in Fig. 3(b). Experimentally, the
current Ið"Þ across many channels first increases with an
increasing potassium ionic concentration " ¼ ½K. and then
saturates. (As usual, " denotes the experimental condition,
i.e., the potassium concentration denoted [K] in this case.)

Fig. 3. Current–voltage–concentration profile deduced from BD

simulations. (a) Current passing through channel with a symmetric

solution of 300 mM KCl in both reservoirs is plotted against

applied potential. Relationship is linear when applied potential

is less than )150 mV but deviates systematically from Ohm’s

law with a further increase in the membrane potential. (b) The

current–concentration relationship is obtained with symmetrical

solutions of varying concentrations of KCl in the reservoirs, with

applied potential of 221 mV. Data points are fitted by a solid

line using (17). Half-saturation value ½Ks. deduced from

the fitted curve is 277 ) 54 mM.

Fig. 2. Model potassium channel. (a) Two of four subunits of full

experimentally determined KcsA potassium channel and positions

of water molecules (gold) inside pore are illustrated. Here,

helices of channel protein are represented in ribbon form.

Aspartate–arginine pairs near the extracellular entrance of the

channel (right-hand side) and glutamate–arginine pair near

intracellular entrance of the channel are indicated in red

and silver. (b) Outline of the water-protein boundary

of a channel is shown. For clarity, top and bottom

subunits are removed.
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This behavior leads to a current-concentration relationship
of the Michaelis–Menten form

Ið"Þ ¼ Imax

1þ ½Ks.=½K.
: (17)

Here, ½Ks. denotes the half-saturation point of the ion
channel. According to (17), the current Ið"Þ approaches the
saturation current Imax when ½K. / ½Ks.. Theoretically, the
conductance-concentration curve is expected to saturate if
the transport of ions across the channel is determined by
two independent processes: the time it takes for an ion to
enter the channel mouth depends on the concentration,
while the time it takes for the ion to reach the oval
chamber is independent of the concentration but depends
solely on the applied potential.

Modeling Other Potassium Channels: There are many
different types of potassium channels, which differ widely
in their conductances and gating characteristics while
having a similar primary structure. Conductance levels of
various types of potassium channels range from 4 to 270 pS
(1 pS equals 0.1 pA of current across the channel with the
driving force of 100 mV). Despite this diversity, they all
share the common feature of being highly selective to
potassium ions and display broadly similar selectivity
sequences for monovalent cations. Also, the amino acid
sequence of the peptide chains lining the selectivity filter
of all potassium channels is known to be highly conserved.
Thus, it is likely that the diversity of potassium channels
results from structural changes on the protein architecture
near the intracellular segment of the pore, which have very
different sequences.

Using BD simulations, [71] explored whether the
widely differing properties of potassium channels found
in nature can be understood by small modifications of the
channel geometry. Using the experimentally determined
potassium channel structure as a template, as shown in
Fig. 4(a), they systematically changed the radius of the
intracellular pore entrance, leaving the dimensions of
the selectivity filter and cavity unaltered. By examining the
energy profiles and the probabilities of ion occupancies in
various segments of the channel, they deduce the rate-
limiting step for conduction in the potassium channels.
Ion distributions revealed that the selectivity filter is
occupied by two Kþ ions most of the time. Potential
energy profiles encountered by a third ion traversing along
the central axis of the channel when there are two ions in
or near the selectivity filter are shown for the channels
with radii 2 Å [solid line in Fig. 4(b)], 3 Å (long-dashed
line), and 4 Å (dashed line). Ions need to climb over the
energy barrier, whose height is denoted as "U, to move
across the channel. This barrier is the rate-limiting step in
the permeation process: as its height increases with a

decreasing intra-pore radius, the channel conductance
drops exponentially. As the intra-pore radius is increased
from 2 to 5 Å, the channel conductance changes from 0.7
to 197 pS (0.17 to 48 pA). In Fig. 4(c), the simulated
current across the model ion channel determined from BD

Fig. 4. Models of potassium channels. (a) Shape of KcsA channel is

modified such that minimal radius of the wider segment is 3 Å. Solid

line shows outline of a simplified model channel. Three-dimensional

channel is obtained by rotating curves about the central axis by

1800. The 10 of 20 oxygen atoms lining the pore are shown in filled

circles. Locations of aspartate and glutamate residues guarding

extracellular and intracellular gates are shown in filled diamonds.

Radii of intracellular gate were varied from 2 to 5 Å. (b) Potential

energy profiles encountered by an ion traversing along central

axis of channel, when there are two other ions in or near the

selectivity filter, are shown for the channels with radii 2, 3,

and 4 Å. Ions need to climb over energy barrier, whose height is

denoted as"U, to move across channel. (c) Outward current is

plotted against radius of intracellular aspect of channel entrance.
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is plotted against the radius of the intra-pore gate. Thus,
the diversity of potassium channels seen in nature is
achieved by slightly altering the geometry of the intracel-
lular aspect of the channel macromolecule.

B. CLC Chloride Channels
BD simulations were similarly applied to elucidate the

dynamics of ion permeation across CLC-type channels
[72]. The prototype channel, known as CLC-0, first
discovered and characterized by [73], is found in Torpedo
electroplax. Since then, nine different human CLC genes
and four plant and bacterial CLC genes have been
identified. The CLC family of Cl# channels is present in
virtually all tissuesVin muscle, heart, brain, kidney and
liverVand is widely expressed in most mammalian cells.
By allowing Cl# ions to cross the membrane, CLC channels
perform diverse physiological roles, such as control of
cellular excitability, cell volume regulation, and regulation
of intracellular pH [74]. Dutzler et al. [8], [9] determined
the X-ray structure of a transmembrane CLC protein in
bacteria that has subsequently been shown to be a
transporter, not an ion channel [75]. Nevertheless, many
amino acid sequences of the bacterial CLC protein are
conserved in their eukaryotic CLC relatives, which are
selectively permeable to Cl# ions.

We refer the reader to [72] for details on the homology
model construction of a CLC-0 channel atomic model. As
illustrated in Fig. 5(a), the ionic pathway of CLC-0 takes a
tortuous course through the protein, unlike that of the
potassium channel, which is straight and perpendicular to
the membrane surface. The channel is quite narrow,
having a minimum radius of 2.5 Å near the center, but
opens up quite rapidly at each end. The distance from
one end of the pore to the other is 55 Å and it is lined
with many charged and polar amino acid residues. Incor-
porating this homology model into BD, they determined
the current–voltage-concentration profile of CLC-0. A
current–voltage relationship obtained with symmetrical
solutions of 150 mM in both reservoirs is shown in
Fig. 5(b). The relationship is linear, with a conductance
of 11.3 ) 0.5 pS that agrees well with experimental
measurements reported by [73] (superimposed open
circles). The slope conductance determined from the
experimental data is 9.4 ) 0.1 pS. The current-
concentration relationship obtained from the homology
model using BD (filled circles) is also in accord with the
experimental observations as shown in open circles in
Fig. 5(c). The lines fitted through the data points are
calculated from the Michaelis–Menten equation (17).
There is a good agreement between the simulated data
and experimental measurements for CLC-0.

BD simulations also reveal the steps involved in
permeation of Cl# ions across the CLC channel. The
pore is normally occupied by two Cl# ions. When a third
ion enters the pore from the intracellular space [left-hand
side in the inset of Fig. 5(a)], the stable equilibrium is

disrupted, and the outermost Cl# ion is expelled to the
extracellular space.

C. Calcium Channels
Calcium channels are necessary for several important

physiological functions, such as the contraction of cardiac

Fig. 5. BD simulations of CLC-0. (a) Locations of charged residues

lining the pore of CLC-0 are illustrated. The locations of arginine (R )

and lysine (K) (positively charged) residues and aspartate (D)

and glutamate (E) (negatively charged) residues lining the

ion-conducting path are shown. Intracellular aspect of channel is on

left-hand side. (b) Current measured at various applied potentials

(filled circles) is obtained with symmetrical solutions of 150 mM

in both reservoirs. Superimposed on the simulated data are

experimental measurements obtained in [73], shown in open circles.

(c) Outward currents (filled circles) are obtained with symmetrical

solutions of varying concentrations of NaCl in reservoirs under an

applied potential of #80 mV. Data points are fitted by solid line

using the Michaelis–Menten equation. Unpublished experimental

measurements obtained by Dr. T.-Y. Chen (personal communication)

are shown in open circles.
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and skeletal muscles and communication between cells. To
perform these roles, they must exhibit remarkable
selectivity while conducting millions of ions into the cell
every second. Biophysical studies on calcium channels
reveal many complex properties. Sodium ions can move
across calcium channels in the absence of calcium ions, but
as soon as a small concentration of calcium ions is
introduced, conduction of sodium ions is completely
blocked. Channels become exquisitely selective, selecting
calcium over sodium at a ratio of 1000 : 1. To date, the
crystal structure of any type of calcium channels has not
been determined. Reference [45] constructed a minimal
model of the L-type calcium channel, making use of many
of their known experimental properties. A 3-D model was
generated by rotating the curves shown in Fig. 6 by 1800.
The important features of the model are a wide
extracellular entrance chamber, a narrow selectivity filter
ðr ¼ 2:8 ÅÞ with four point charges, representing gluta-

mate residues, placed in a helical pattern (two of which are
shown in filled squares), and a long chamber region that
tapers toward the intracelluar entrance (left-hand side).
Four mouth dipoles (two of which are shown in filled
diamonds) were placed at the intracellular entrance to
overcome the image forces. These dipoles are also
represented as point charges. Thus, the channel is con-
strued as a homogeneous, featureless low dielectric
material with the dielectric constant of 2, through which
an ion-conducting pathway is bored.

Despite its simplicity, the model, when incorporated
into a BD simulation assembly, reproduced many of the
remarkable biophysical findings. The deep energy well
created by four point charges along the selectivity filter
attracted two sodium ions when the reservoirs contained
150 mM NaCl and one calcium ion when NaCl was re-
placed with CaCl2. A third Naþ ion entering the selectivity
filter from the intracellular reservoir disrupts the stable
equilibrium established by the two resident Naþ ions and
expels the outermost ion to the extracellular reservoir.
Similarly, a second Ca2þ ion entering the selectivity filter
expels the resident Ca2þ ion. Thus, the conduction across
the channel for both monovalent and divalent ions is a
multi-ion process. The current–voltage-concentration pro-
files for Naþ and Ca2þ ions obtained from BD simulations
broadly mirrored the experimental findings.

Experimental studies of mixtures of Ca2þ and Naþ ions
in calcium channels have shown a remarkable behavior. As
the relative concentration of Ca2þ to Naþ is decreased, the
conductance of the channel first decreases to a minimum
and then increases again to a maximum where there is no
Ca2þ present [76]. This so-called Banomalous mole
fraction effect[ has been a major subject of attention in
calcium literature. Using the minimal model illustrated in
Fig. 6(a), [45] investigated this behavior using electrostatic
calculations as well as in BD simulations. They showed
that when a Ca2þ entered the selectivity filter of the
channel, it would bind there tightly so that a Naþ ion could
not displace it via Coulomb repulsion. Thus, sodium con-
duction, once a Ca2þ entered the channel, would cease. On
the other hand, another Ca2þ ion entering the selectivity
filter, owing to a greater Coulomb force it could exert on
the resident ion, was able to displace it, allowing calcium
conduction to take place. In BD simulations, they fixed the
Naþ concentration at 150 mM and measured the channel
current at different Ca2þ concentrations. The values of the
calcium and sodium current at different calcium concen-
trations, normalized by the maximum value of each, are
shown by the filled and open circles in Fig. 6. As the
calcium concentration decreased, the Ca2þ current also
decreased. With further reduction in calcium concentra-
tion, it would take longer for a calcium ion to enter and
block the channel, thus allowing more Naþ ions to pass
through the channel. The experimental measurements of
[76] are shown in the inset for comparison. The figure
shows how the complex behavior of the calcium channel

Fig. 6.Minimal model of L-type calcium channel and anomalous mole

fraction curve deduced from BD simulations. (a) Three-dimensional

channel model is generated by rotating curves about central axis by

1800. Positions of two of four glutamate groups are shown by the

filled squares, and inner end of two of four mouth dipoles by the

filled diamonds. Intracellular side of the channel is on left-hand

side. (b) Ca2þ (filled circles) and Naþ (open circles) currents across

channel determined with different symmetrical calcium

concentrations in reservoirs from BD simulations are plotted.

Sodium concentration is held fixed at 150 mM in both reservoirs,

and current was measured with an applied potential of #200 mV.

Experimental measurements obtained by [76] are shown in

inset for comparison.
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can arise from simple electrostatic interactions between
ions, the channel boundary, and the charges therein.

V. ACBD FOR ION CHANNELS:
FORMULATION

In Section IV, we illustrated how BD can be used as a valid
theory for explaining permeation in several types of ion
channels. What this means is that the simulated BD
current Îð"Þ under various simulated experimental condi-
tions " 2 ! matches the actual experimental observed
current Ið"Þ. (Recall that ! denotes the set of experimental
conditions.) Thus, for such channels BD provides a valid
theory for relating atomic structure of the ion channel to
macroscopic function. However, as discussed in Section II
and Section III-E, BD does not explain permeation for
particularly narrow ion channels such as gramicidin or
within the selectivity filter of a sodium channel.

The method of ACBD we propose in this section is
designed to circumvent the limitations posed by the
traditional BD simulation approach. In ACBD, we solve an
inverse estimation problem. That is, given the 3-D atomic
model of an ion channel, we directly estimate the PMF of a
gramicidin channel or the shape of a sodium channel that
best replicates experimental observations Ið"Þ for a variety
of experimental conditions " 2 !. Thus, ACBD estimates
the effective PMF or effective shape that minimizes the mean
square error between the BD simulated current and the
actual observed experimental current. The advantage of
directly estimating the effective PMF or shape is that it
completely removes the requirement of solving Poisson’s
equation (7). Thus, the problem of assigning the effective
dielectric constants of the pore and of the protein is
avoided. Second, no assumption about the ionization state
of some of the residues lining the pore has to be made.

A. ACBD as Stochastic Optimization Problem
Let - denote a finite-dimensional parameter that

characterizes either the PMF of a gramicidin channel or
the shape of a sodium channel. From experimental data, an
accurate estimate of the current–voltage-concentration
profiles of an ion channel can be obtained. These curves
depict the actual current Ið"Þ flowing through an ion
channel for various external applied potentials " 2 ! and
ionic concentrations. Suppose that the BD simulation
Algorithm 1 is run in batches indexed by batch number
n ¼ 1; 2; . . .. In each batch n, the PMF parameter -n is
selected (as described in the following), the experimental
condition (applied potential and concentration) " 2 ! is
applied, and the BD Algorithm 1 is run over L iterations,
then the estimated current Îð"Þn ð-Þ is computed using (4).
Define the square error loss function as

Cð-Þ ¼ E Cnð-Þf g; Cnð-Þ ¼
X

"2!
Îð"Þn ð-Þ # Ið"Þ

! "2
: (18)

The total loss function Cð-Þ is obtained by adding the
square error over all the applied fields " 2 ! on the
current–voltage or current-concentration curve. Our aim
is to compute the optimal parameter -1 2 % where %
denotes the set of feasible parameters and

-1 ¼ argmin
-2%

Cð-Þ: (19)

Note that (18) and (19) constitute a stochastic optimiza-
tion problem, since we do not have a closed form
expression for Cð-ÞVinstead only noisy estimates Cnð-Þ
of the cost function are available in terms of the BD
simulated current Îð"Þn ð-Þ for different experimental
conditions " 2 !.

Depending on whether the parameter space % is a
compact subset of the reals or a finite set, (19) can be
formulated as a continuous-valued or discrete-valued
stochastic optimization problem. For example, we consid-
er the continuous case where % is a compact subset of the
reals representing the means and variances of Gaussian
basis functions used to fit the PMF U- for gramicidin
channels. Another example, considered as follows, is the
discrete case where % ¼ ð1; 2; . . . ; SÞ denotes S feasible
shapes of the sodium channel.

B. Example 1: Estimating PMF of
Gramicidin Channels

Gramicidin is an antibiotic produced by Bacillus brevis
[77, p. 130]. In this section, we formulate the PMF
estimation problem for a gramicidin channel as a sto-
chastic optimization problem of the form (18).

Why PMF estimation of Gramicidin? Since the structure
of gramicidin channels are simple and well known, they
are a useful benchmark for computational models that seek
to explain ion permeation. Also, since the radius of
gramicidin channels is much smaller than other biological
ion channels, it has been recently been shown that the
PMF U in (5) obtained by solving the macroscopic
Poisson’s equation (7) does not yield accurate results
that fit experimental data [23]. Moreover, the PMF
calculated along the gramicidin channel axis using
molecular dynamics (MD) yields unrealistically large
central barriers for a permeating ion, e.g., [25], [78].
When such a PMF is incorporated into nonequilibrium
permeation models, it fails to replicate the experimental
measurements.

Let us parameterize the PMF U in (5) by U-, where
- 2 % denotes a finite-dimensional parameter vector. We
will consider the case where % is a compact subset of the
reals and also the case where % is a finite set. For the
gramicidin channel, we will represent U-ð*Þ by a Gaussian
mixture with parameter vector - and then present a
stochastic algorithm to estimate -. Any basis function
approximation of the gramicidin PMF U-ðxÞ needs to
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capture the following important properties of the grami-
cidin channel.

1) The PMF U-ðxÞ (where x ¼ ð0; 0; zÞ) experienced
by the ion within the gramicidin channel is
symmetric with respect to z, i.e., U-ðxÞ ¼
U-ð0; 0; zÞ ¼ U-ð0; 0;#zÞ for all x 2 C.

2) For z G #20 Å or z > 20 Å, U-ð; zÞ should be
close to zero since the PMF only acts on ions in or
near the ion channel.

By using physiological data of the gramicidin channel, we
find that the following scaled Gaussian mixture comprised
of a linear combination of three Gaussian density functions
gives an excellent fit:

U- ½0; 0; z.ð Þ ¼m exp #1

2

ðz #WÞ2

(2

' (

þ m exp #1

2

ðz þ WÞ2

(2

' (

þ m0 exp #1

2

z2

(2
0

' (
(20)

- ¼ W; (2;m; (2
0;m0

$ %0
: (21)

It is obvious that the parameterization satisfies the sym-
metry property 1. Also, for a suitable choice of the parameter
vector - in (21), property 2 holds. The structure of the
gramicidin channel implies that the parameters - defined in
(21) need to be constrained to the set % defined as follows:

%¼ W2 ½0; 30 Å.; (2;(2
02 0;(2

max

+ ,
; m;m0 2 ½0;M.

-

(22)

where M and (max are positive bounded constants.

C. Example 2: Estimating Shape of Sodium Channel
Here, we formulate the estimation of the shape a

sodium channel as a discrete stochastic optimization
problem of the form (18).

To motivate the shape estimation problem for sodium
channels, let us first describe several of its salient features.
A sodium channel has several unique properties that need
to be captured by a simulation model. First, the sodium
channel allows over 106 ions through the channel every
second and yet is able to distinguish between sodium and
other ions. Second, it has a high affinity for monovalent
ions, is rapidly blocked by divalent ions, and allows no
anions through. Third, the channel exhibits a symmetric,
linear current–voltage curve when there are symmetric
concentrations of NaCl in the intra-cellular and extra-
cellular regions, and the current rapidly saturates with
increasing concentrations. Finally, the channel is com-
pletely blocked when divalent ions are present in the

external solution but only marginally reduced in presence
of intracellular divalent ions.

A sodium channel is comprised of four functional
components: external vestibule, selectivity filter, internal
pore, and internal entrance region. The family of sodium
channels is believed to be structurally similar to the family
of potassium ion channels. Thus, we have based the feasible
shapes of the sodium channel on the KcsA potassium
channel, the structure of which was recently crystallized by
Doyle et al. [7]. We have shortened the selectivity filter and
added an external vestibule to the existing potassium
channel shape. Here, we describe in detail how by varying
the dimensions of the above structural components there is
a finite number of distinct possibilities for the shape. The
candidate channels are depicted in Fig. 7 and the various
parameters of these candidate channels are given in Table 1.

1) Outer Vestibule: The outer regions making up the
sodium channel protein are believed to be
composed of the P loops of the protein that form
a conical outer vestibule [79], [80].

2) Selectivity filter: Similar to the KcsA, we include a
short selectivity filter followed by an internal pore
region. All channel models contain a selectivity
filter with a radius of r ¼ 2:2 Å derived from
permeant cation studies in [81]. As the length of
the filter is unknown, we vary this parameter to fit
the current. We use only the two charged rings
suspected to lie in the selectivity filter and known
from mutation studies to have a large effect on
selectivity and conductance of the sodium channel
[82]–[84]. The two charged rings are placed
around the filter region as point charges, 1 Å
behind the protein boundary, at a distance of
z ¼ 14 Å and z ¼ 18:5 Å from the central axis of
the channel. The inner ring contains a positively
charged lysine and a negatively charged glutamate
and aspartate amino acid group, and the outer ring
contains two negatively charged glutamates and
two negatively charged aspartates. The positive
lysine in the inner ring is fully charged, but we
believe that more than one negative residue is
likely to be protonated. For the position and
charged states of these residues we have used the
data of [85]. They find that two residues must be
protonated at any given time to reproduce the
experimental data. The inner ring has a total
charge of #1.0 ' 10#19 C on average, where the
lysine has the charge of one proton, and the
negative residues in the inner ring a charge of
#1.3' 10#19 C each. The outer ring contains a
total charge of 3.8 ' 10#19 C where the total
charge is shared equally among all four negative
residues, giving each residue a charge of
0.95 ' 10#19 C. We distribute equal charges
among all residues in a ring because the exact
charge state of any residue at a given time is
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difficult to calculate; only the average behavior of
the charged residue can be estimated.

3) Inner pore: Followed by the selectivity filter is an
inner vestibule region. This is again adopted from
the KcsA structure. The diameter and length of
this region is unknown and has been varied in the
shape estimation of the channel.

4) Internal entrance: The internal entrance leads into
the inside of the cell. This region contains the

carboxyl end of the protein making up the
sodium channel. For this reason, we include a
set of dipole charges at z ¼ #20 Å, mimicking
the intracellular helix dipoles of the channel
protein. The magnitude of charge on the helix
dipoles is 0.6 ' 10#19 C. The negative end is
nearer to the channel entrance; the positive ends
are buried deep inside the protein, and its effect
is negligible.

Fig. 7. Nine candidate channel shapes for sodium channels considered in this paper. Six dots in each figure denote point charges in

protein lining inner wall of ion channelVall units are in angstrom units Å ð1 Å ¼ 10#10 mÞ. Upper four dots represent point
charge approximations of two charged rings in selectivity filter, and bottom two dots in internal entrance of ion

channel represent dipole charges that mimic intracellular helix dipoles of sodium channel protein.
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The channel model is generated by creating an initial
outline of the channel pore and then rotating it by 1800 to
create a 3-D shape. Cylindrical symmetry is assumed with
the channel centered around z ¼ 0 Å and extending out to
z ¼ )27. An extracellular and intracellular reservoir, R1
and R2, is attached to either ends of the channel. The
channel model has been varied systematically, all shapes
used are given in Fig. 7 and Table 1. On the above-stated
basic outline (of outer vestibule, selectivity filter, inner
pore, and internal entrance), we have varied the
dimensions of the channel to obtain currents through
each individual channel. The parameters that were varied
are stated in Table 1. We have varied the width and
height of the outer vestibule (shapes 1 and 2), length of
the selectivity filter (shapes 3 and 4), width of the inner
pore (shape 5), and the width of the intracellular pore
(shapes 4, 6, and 7) and the width, and height of the
outer vestibule and length of the selectivity filter simul-
taneously (shapes 8 and 9). We have maintained a fixed
length of 54 Å for all channel shapes, as this is close to
the length of the potassium channel.

VI. ACBDVALGORITHMS

In the previous section, we formulated ACBD as a sto-
chastic optimization problem (18) and provided two
examples, namely PMF estimation of gramicidin channels
and shape estimation of sodium channels. In this section, we
focus on continuous and discrete stochastic optimization
algorithms that optimize (18). Apart from Section VI-A,
most of the discussion will focus on discrete stochastic
optimization algorithms since they are of independent
interest in the control of large scale dynamical systems.

A. Continuous Stochastic Optimization-Based ACBD
Simulation Algorithm for PMF Estimation

Consider the PMF estimation problem for gramicidin
formulated in Section V-B. Here, we parameterize the
PMF U- in (5) by a finite-dimensional basis function
representation with coefficients - 2 % where % 2 Rp is a
compact set in Euclidean space. We then solve the

continuous stochastic optimization problem (18) to
estimate the effective PMF. Recall n ¼ 0; 1; . . . denotes
batch number.

Algorithm 2 Continuous ACBD Simulation Algorithm

Step 0: Set batch index n ¼ 0, and initialize -0 2 %.
Step 1 (Evaluation of loss function): At batch n,
evaluate loss function Cnð-nÞ in (18) over the set of
experimental conditions " 2 !. This involves comput-
ing Îð"Þn ð-Þ using the BD Algorithm 1.
Step 2 (Gradient Estimation): Compute cr-Cnð-nÞ
Step 3 (Stochastic Approximation Algorithm): Update
PMF estimate

-nþ1 ¼ -n # %nþ1
cr-Cnð-nÞ (23)

where %n denotes a decreasing step size (see discussion
below for choice of step size).
Set n to n þ 1 and go to Step 1.

The step size is typically chosen as %n ¼ %=ðn þ 1þ RÞ.,
where 0:5 G . , 1 and R is some positive constant. This
choice of step size satisfies the condition

P1
n¼1 %n ¼ 1

which is required for convergence of Algorithm 2.
A crucial aspect of the algorithm is the gradient

estimation Step 2. In this step, an estimate cr-Cnð-nÞ of
the gradient r-Cð-nÞ is computed. This gradient estimate
is then fed to the stochastic gradient algorithm (Step 3)
which updates the PMF. Note that since the explicit
dependence of Cnð-nÞ on - is not known, it is not possible
to analytically compute r-Cð-nÞ. Thus, we have to resort
to gradient estimation. One can use a simple finite dif-
ference gradient estimator such as the Kiefer–Wolfowitz
algorithm or Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm; see [86] and the web-
site http://www.jhuapl.edu/SPSA/. Alternatively, more so-
phisticated gradient estimators can be implemented such

Table 1 Nine Candidates for Channel Shapes of Sodium Channel
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as weak derivative estimators and Infinitesimal Perturba-
tion Analysis (IPA) Estimators (see [87]), which typically
have much smaller variances compared to finite difference
methods.

Convergence of Controlled Brownian Dynamics Simulation
Algorithm 2: By construction in Step 1 of Algorithm 2, for
fixed -, the loss function estimates Cnð-Þ are independent
and identically distributed random variables. Under this
assumption, it is straightforward to prove that the
estimates -n generated by ACBD Algorithm 2 (whether
using the Kiefer–Wolfowitz or SPSA algorithm) converge
to a local minimum of the loss function. We refer the
reader to [26] for more sophisticated results that deal with
convergence of stochastic gradient algorithms for state-
dependent Markovian noise.

B. Discrete Stochastic Optimization-Based
ACBD Simulation Algorithm

In the remainder of this section, we propose discrete
stochastic optimization algorithms for shape estimation of
sodium channels as well as PMF estimation of gramicidin
channels (in this case, the parameter % in (22) comprised
of the Gaussian means, variances, and weights is quantized
to a finite set). For convenience of exposition, we will
primarily refer to shape estimation in this section.
Algorithms 4 and 5 are novel extensions of recent results
in discrete stochastic optimization [88], [89] and are
hence of independent interest. The algorithms have been
used in other diverse applications ranging from optimiza-
tion of wireless communication networks [90], [91] and
experimental control of ion channels [92].

Because in actual BD simulations, the loss function
Cnð-Þ of (18) is nonnegative and uniformly bounded from
above, it is convenient to normalize the objective (18) as
follows. Let + , Cnð-Þ , *, where + denotes a finite
lower bound and * > 0 denotes a finite upper bound. For
example, since Cnð-Þ is nonnegative, + can be chosen as
zero. Define the normalized costs mnð-Þ as

mnð-Þ ¼" Cnð-Þ # +

* # +
; where 0 , mnð-Þ , 1: (24)

Then, the stochastic optimization problem (18) is equiv-
alent to

-1 ¼ argmin
-2%

mð-Þ where mð-Þ ¼" E mnð-Þf g (25)

since scaling the cost function does not affect the
minimizing solution. Here, % ¼ f1; 2; . . . ; Sg is a finite
discrete set of possible shapes of the sodium channel.

Overview of Literature: There are several different classes
of methods that can be used to solve the discrete stochastic
optimization problem (25); see [88] and [93] for a recent
survey. Problem (25) can also be viewed as a multi-armed
bandit problemVwhich is a special kind of an infinite
horizon Markov decision process with an Bindexable[
optimal policy [94]. In recent years, a number of discrete
stochastic approximation algorithms have been proposed.
Several of these algorithms [88], [95]–[99] including
simulated annealing type procedures [100] and stochastic
rulers [98] fall into the category of random search. In this
paper, we construct algorithms based on the random
search procedures in [95] and [96]. The basic idea is to
generate a homogeneous Markov chain taking values in %
which spends more time at the global optimum than at any
other element of %.

An obvious brute force approach for computing the
optimal ion channel shape -1 is as follows. For each
possible shape - 2 %, run the BD simulation Algorithm 1
for a very long sample size T and compute the estimated
loss function mTð-Þ using (24) for each possible shape -.
Finally, pick -̂1

T ¼ argmin-2% mTð-Þ. Since for any fixed -,
mTð-Þ ! mð-Þ with probability one (w.p. 1) as T ! 1, it
follows that the brute force estimator is statistically
consistent, i.e., -̂1

T ! -1 with probability one (w.p. 1) as
T ! 1. Thus, in principle, the above brute force
simulation method can be used to compute the optimal
channel shape. However, the method is highly inefficient
since mTð-Þ needs to be evaluated for each - 2 % via
extensive BD simulation. The evaluations of mTð-Þ for
- 6¼ -1 are wasted because they contribute nothing to the
estimation of the optimal shape. Indeed, the above brute
force method was used manually in [85] to estimate the
optimal channel shapeVthis took the authors several
months.

The idea of discrete stochastic approximation [88],
[90], [95], [96], [101], [102] is to run more BD simulations
for -, where the optimal shape is expected and less in other
areas. More precisely, what is needed is a dynamic
resource allocation (control) algorithm that controls
(schedules) the BD simulation Algorithm 1 to efficiently
estimate the optimal shape -1. We propose a discrete
stochastic approximation algorithm that is both consistent
and attracted to the optimal shape. That is, the algorithm
provably spends more time at the optimal shape gathering
observations Îð"Þð-Þ at the optimal shape - ¼ -1 and less
time for other shapes - 2 %. Thus, in discrete stochastic
approximation the aim is to devise an efficient [87, Ch. 5.3]
adaptive search (sampling plan) which allows us to find
the minimizer -1 with as few samples as possible by not
making unnecessary observations at nonpromising
values of -.

1) Discrete Stochastic Approximation ACBD Algorithm: In
the algorithm that follows, the process f-n; n ¼ 1; 2 . . .g
denotes the Bstate[ of the algorithm. For the state -n, at
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batch time n, define the neighborhood set N -n ¼
%# f-ng. Finally, denote the S-dimensional standard
un i t vec to r s by em, m ¼ 1; . . . ; S, where em ¼
½0 * * * 0 1 0 * * * 0.0 with 1 in the mth position and
zeros elsewhere.

Consider the following algorithm.

Algorithm 3 Stochastic Search ACBD Algorithm for Ion
Channel Shape Estimation

Step 0: (Initialization.) At batch-time n ¼ 0, initialize
state of the algorithm -0 2 f1; . . . ; Sg randomly.
Initialize state occupation probabilities '0 ¼ e-0 . Ini-
tialize optimal shape estimate of ion channel as -1

0 ¼ -0.
Step 1: (Sampling and exploration.) At batch n, given
current algorithm state -n, evaluate mnð-nÞ according
to (24) by conducting ! independent BD simulation
runs of Algorithm 1 on the ion channel.

Generate an alternative candidate state ~-n by
sampling uniformly from the neighborhood N -n of
current state -n. Evaluate mnð~-nÞ.
Step 2: (Conditional acceptance test.) If mnð~-nÞ G
mnð-nÞ, set -nþ1 ¼ ~-n, else, set -nþ1 ¼ -n.
Step 3: Update empirical state occupation probabil-
ities 'n as

'nþ1 ¼ 'n þ #n e-nþ1
# 'n

$ %
; '0 ¼ e-0 : (26)

Step 4: (Update estimate of shape of ion channel.)
-1
n ¼ ~-ðm1Þ where m1 ¼ argmaxm2f1;...; Sg 'nþ1ðmÞ, set
n ! nþ 1, go to Step 1.

Remark: The elements 'nð-Þ of 'n generated by Step 3
are merely normalized counters for how many times the
algorithm state has visited any particular shape - 2 %. In
particular

'nð-Þ ¼ # of times state visits shape - in batches 1 to n

n
(27)

is the empirical occupation probability of state -. As we
will show, the attraction capability (efficiency) of
Algorithm 3 is captured by the fact that for sufficiently
larger n, 'nð-1Þ > 'nð-Þ, meaning that the algorithm
spends more time at the optimal shape -1 than at any other
shape - 2 %. As a consequence, -1

n (which according to
Step 4 is the shape at which the algorithm has spent
maximum time until time n) converges to the optimal
shape -1 with probability one. This is formalized as follows.

Convergence of Algorithm 3: In [96], the following
stochastic ordering assumption is used:

(O) For each -, ~- 2 %,

P mnð-1Þ G mnð-Þð Þ ( P mnð-Þ > mnð-1Þð Þ
P mnð~-Þ > mnð-1Þ
$ %

( P mnð~-Þ > mnð-Þ
$ %

:

Roughly speaking, this assumption ensures that the algo-
rithm is more likely to jump towards a global minimum
than away from it, see [96] for details.

The following convergence theorem for Algorithm 3 is
proved in [96].

Theorem 2 (Convergence and Efficiency of Algorithm 3):
Under condition (O), the estimated sequence f-1

ng gen-
erated by Step 4 of Algorithm 3 converges with probability
one to the global optimizer -1. Equivalently, Algorithm 3 is
attracted to -1 in that for sufficiently large n, the state
spends more time at -1 than any other value of - 2 %, i.e.,
the state occupation probabilities generated by Step 3 (26)
satisfy 'nð-1Þ > 'nð-Þ, - 2 % # f-1g.

A sufficient condition for Assumption (O) to hold (see
[96]) is that the probability density function of the mean
square error current mnð-Þ is symmetric, unimodal, and
identical for all - 2 %. Since the distribution of the mean
square error current mnð-Þ is not known, it is difficult to
verify Assumption (O). However, Algorithm 3 yields
excellent numerical results for estimating the shape of
the sodium channel (Section VII).

2) Discrete Search/Ruler-Based ACBD Algorithm: We
propose two alternative discrete stochastic optimization
algorithms that require much less restrictive conditions for
convergence than Algorithm 3. We start by expressing the
optimal ion channel shape -1 as the solution of the
following equivalent stochastic optimization problem.
Define the loss function

Ynð-; unÞ¼I mnð-Þ#unð Þ

where IðxÞ¼ 1; if x>0
0; otherwise.

.
(28)

Here, un is an independent uniform random number in
[0, 1]. The uniform random number un is a stochastic ruler
against which the candidate mnð-Þ is measured. The result
was originally used in devising stochastic ruler optimiza-
tion algorithms [89]; although, here we propose a more
efficient algorithm than the stochastic ruler. Applying
Algorithm 3 to the cost function EfYnð-; unÞg defined in
(28) yields the following search-ruler algorithm.
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Theorem 3 (Convergence and Efficiency of Algorithm 4):
The estimated sequence f-1

ng generated by Step 4 of the
search ruler Algorithm 4 converges with probability one to
the global optimizer -1. Equivalently, Algorithm 4 is
attracted to -1 in that for sufficiently large n, the state
spends more time at -1 than any other value of - 2 %, i.e.,
the state occupation probabilities generated by Step 3 (26)
satisfy 'ð-1Þ > 'ð-Þ, - 2 %# f-1g. Here

lim
n!1

'nð-1Þ
'nð-Þ

¼ 'ð-1Þ
'ð-Þ

¼ mð-Þ
mð-1Þ

1# mð-1Þð Þ
1# mð-Þð Þ

> 1: (29)

The proof is presented in Appendix.

Discussion: Inequality (29) gives an explicit representa-
tion of the discriminative power of the algorithms between
the optimum shape -1 and any other candidate - in terms
of the normalized expected costs mð-Þ and mð-1Þ.
Algorithm 4 is more efficient than the stochastic ruler
algorithm of [88] when the candidate samples are
chosen with equal probability. The stochastic ruler algo-
rithm of [88] has asymptotic efficiency 'ð-1Þ='ð-Þ ¼
ð1 # mð-1ÞÞ=ð1 # mð-ÞÞ. So, Algorithm 4 has the addi-
tional improvement in efficiency due to the additional
multiplicative term mð-Þ=mð-1Þ in (29).

C. Search Ruler With Antithetic Variable
Variance Reduction

A more efficient implementation of the search-ruler
Algorithm 4 can be obtained by using variance reduction
based on antithetic variables as follows. Since un is
uniformly distributed in [0, 1], so is 1# un. Similar to
Theorem 3, it can be shown that the optimal ion channel
shape -1 defined in (25) is the minimizing solution of the
following stochastic optimization problem -1 ¼
argmin- EfZnð-; unÞg where

Znð-; unÞ ¼ 1

2
Yn mnð-Þ; unð Þ þ Yn mnð-Þ; 1# unð Þ½ . (30)

where the normalized sample costmnð-Þ is defined in (25).
Since the indicator function Ið*Þ is a monotonic function of
its argument, the following well-known result in antithetic
variables applies; see [103, p. 136] for proof.

Result 4: For the variables Zn in (30) and Yn in (28),
varfZnð-; unÞg , varfYnð-; unÞg.

As a result, one would expect that the stochastic
optimization algorithm using Zn would converge faster.
Applying Algorithm 4 to the cost function EfZnð-Þg
defined in (30) yields the variance reduced search-ruler
algorithm.

D. Kernel-Based Constrained
Exploration Exploitation

The above discrete ACBD algorithms can be modified
to dynamically adapt their exploration of the possible
shapes as the number of iterations increases. Typically,
during initial iterations of a learning algorithm, it is
desirable to aggressively explore more candidates since
one is uncertain how good the current estimate is. After
more confidence has been obtained about the candidates,
it is desirable to reduce exploration and exploit the best
candidates. This adaptation is done via a kernel-based
learning algorithm. The key idea is Step 3, where a kernel-
based update is used.

Algorithm 5 Kernel-Based Adaptive Exploration/Exploita-
tion ACBD Algorithm

Step 0: Identical to Algorithm 3.
Step 1: (Adaptive Sampling and Exploration.) Evalu-
ate mnð-nÞ. Then perform the following two level sam-
pling procedure: Simulate a Bernoulli random variable
!n 2 f0; 1g with probabilities Pð!n ¼ 0Þ ¼ 2+n and
Pð!n ¼ 1Þ ¼ 1# 2+n, where 0 , +n , 1=2.
/ If !n ¼ 0, perform exploration as follows: sample

~-n uniformly fromN -n . Evaluate mnð~-nÞ and go to
Step 2.

/ If !n ¼ 1 (perform no exploration), go to Step 3.
Step 2: (Conditional Acceptance test.) If mnð ~-nÞ G
mnð-nÞ, set -nþ1 ¼ ~-n, else, set -nþ1 ¼ -n.
Step 3: (Update Kernel-based exploration probability
+n and state occupation probabilities 'n.)

'nþ1 ¼ 'n þ #n e-nþ1
# 'n

$ %
; '0 ¼ e-0 (31)

Tnþ1 ¼ Tn þ #n e-nþ1 # 'n # Tn
$ %

(32)

+nþ1 ¼ 0:5 1# K
Tnþ1

/nþ1

' () *
(33)

where /n ( 0, /n ! 0, and #n=/n ! 0 as n ! 1.
Step 4: Identical to Algorithm 3.

In the above algorithm, for any x 2 RS the kernel

KðxÞ ¼ ð1 # x0xÞ; if kxk2 ¼
ffiffiffiffiffiffi
x0x

p
, 1

0; otherwise.

.

Algorithm 4 Stochastic Search Ruler-Based ACBD
Algorithm for Ion Channel Shape Estimation

Identical to Algorithm 3 with mnð-nÞ and mnð~-nÞ replaced
by Ynð-n; unÞ and Ynð~-n; ~unÞ. Here un and ~un are indepen-
dent uniform random numbers.
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The intuition in the above kernel-based learning in
Step 3 is as follows. In early iterations the algorithm
knows little about the optimal shape. Hence, the average
error Tn between e-n and the empirical occupation 'n is
large. When this average error Tn is large, then
KðTnþ1=/nÞ is close to zero and +n given in (33) is close
to 0.5. Thus, in early iterations the algorithm is forced to
explore the space of candidate shapes. As the iterations
progress and the algorithm learns the optimal shape, the
average error Tn is getting smaller, then KðTnþ1=/nÞ is close
to one and +n ! 0. As a result, as the algorithm becomes
more confident about the optimal shape estimate, it
reduces the exploration probability to reduce the explora-
tion cost.

Remark: Corresponding versions for Algorithm 4 and its
antithetic variable variance reduced version are obtained
by replacing mnð-Þ by Ynð-; unÞ and Znð-; unÞ.

The following theorem deals with the convergence of
the above algorithm. The proof is presented in [92].

Theorem 5: Assume that the conditions of Theorem 2
are satisfied. Then, the sequence ð'n; Tn;+nÞ0 given in
Step 3 above converges to ð'; 0; 0Þ0 w.p. 1. Also,
Algorithm 5 is attracted to the equilibrium potential -1.

Theorem 5 says that the exploration probability +n

converges to zero. This is intuitively appealing since it
means that as the algorithm becomes more confident in its
estimate of the optimal candidate, fewer computational
resources are spent running BD algorithms on other less
promising candidates. We refer the reader to [92] for
further motivation of the above adaptive kernel learning
algorithm. The rate of convergence of the algorithm is
studied in [92] by use of diffusion approximation methods;
see also [104, Ch. 10].

VII. NUMERICAL EXAMPLES

The ACBD simulation algorithms were run on the Linux
Cluster LC supercomputer of the Australian National
University Supercomputer Facility at the Glacier super-
computer at the University of British Columbia, Canada
(which is part of the Westgrid network). Glacier is
comprised of 840 dual processor nodes, each node being
an IBM blade Xeon 3.06 GHz processor.

A. Example 1: Estimating PMF of
Gramicidin Ion Channels

Here, we illustrate the performance of discrete
stochastic optimization-based ACBD Algorithm 3 in
estimating the PMF of a gramicidin channel formulated
in Section V-B. Further detailed numerical results are
presented in [105]. Consider the parameterization
- ¼ ðW; (2;m; (2

0;m0Þ0 defined in (21) for the PMF U-.
Since the positions of the potential wells for the gramicidin

channel are known to be around #9 Å and þ9 Å [25],
[78], we fix the components W ¼ 9, (2 ¼ 16, and
(20 ¼ 12:25 in -. In our numerical study, we have assumed,
for simplicity, prior knowledge of the position and number
of binding sites. Note that this assumption is not essential
since our algorithm can also estimate these parameters.
Thus, our aim is to estimate the two components ðm;m0Þ
which determines the depth of the two potential wells of
the gramicidin channel and the height of the potential
barrier between the wells. This is obtained by estimating
the parameter -1 that optimizes the fit between the BD
simulated current and experimentally determined current.
We thus construct %d to contain 25 possible values for
ðm;m0Þ corresponding to well depth 2 f5 kT; 6 kT; 7 kT;
8 kT; 9 kTg and barrier height 2 f4 kT; 4:5 kT; 5 kT;
5:5 kT; 6 kTg. The particular values of these parameters
were chosen after a preliminary study showed that choices
of well-depth and barrier-height outside the given range
lead to significant degradation in performance; we thus
find the best fit PMF from this subset which comprises a
reasonable range of values.

Each iteration runs 24 BD algorithms in parallel
(12 experimental conditions for -n and ~-n in Step 1 of the
adaptive BD) on the supercomputer. The experimentally
determined current Ið"Þ is evaluated at 12 different

Fig. 8. Figure depicts error surface Cð-Þ for PMF estimate of

gramicidin channel. Minimum is at a well depth of

6 kT and barrier height of 4.5 kT.
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voltages and concentrations on the current–voltage-
concentration profiles of the gramicidin channel. The
concentration-voltage pairs used cover voltages ranging
from 25–200 mV at a concentration of 500 mM as well
as concentrations ranging from 100–1000 mM at
voltages of 100 and 200 mV. Specifically, the conditions
we used are 25, 50, 75, 100, 150, and 200 mV from the
current–voltage curve obtained with an ionic concen-
tration of 500 mM; 100, 200, 500, and 1000 mM from
the current-concentration curves were obtained with the
applied potentials of 100 and 200 mV.

Moreover, Fig. 8 illustrates the profile of the loss
function obtained using Algorithm 3 with the varying well
depths and barrier heights in %d as well as an interpolated
version of this surface. The figure shows that the optimal
value for the loss function (in dark blue) occurs at well
depth and barrier height of 6 kT and 4:5 kT as mentioned
previously. It also suggests that there are several possible
PMF parameter values that produce near optimal values
for the loss function.

B. Example 2: Shape Estimation of Sodium Channels
Here, we illustrate the performance of Algorithm 3 in

estimating the shape of the sodium channel. In the BD
simulations we match the BD current Îð"Þð-Þ to 12
different experimental conditions " 2 ! where ! ¼
f"1 . . ."12g. These are described in Table 2 where each
condition corresponds to one value for ". The experimen-
tal currents Ið"Þ used to match our simulation currents are
from experimental data in [106]–[108] for actual sodium
channels under different experimental conditions. It took
approximately 38 h of simulation time to simulate all the
experimental conditions " 2 ! at each n 2 N and a total of
approximately &4500 h for 120 batches. With batch jobs

running in parallel, it took less than three weeks to obtain
all the results.

Fig. 9 shows the cost Cð-Þ for the nine different shapes.
It also shows the effort Algorithm 3 spends on the different
candidates. Fig. 9 also plots the empirical occupation
probabilities 'n at iteration n ¼ 120 for Algorithm 3. The
plot illustrates the attraction property of the algorithm. It
spends more time at the optimal shape (Case 4) than any
other shape. The closest candidate shape to Case 4 is Case 1
and the figures shows that the algorithm spends the second
largest time at Case 1.

Discussion: The reason why the loss function for shape
- ¼ 4 and - ¼ 1 are very similar can be explained as
follows. From Table 1, the only difference between the
two shapes is the diameter of the outer vestibule. In this
region, the ions filling up this external vestibule are
responsible for aiding the ions further in the selectivity
filter to conduct through the channel by providing them
with a repulsive kick. For shape - ¼ 1 the width of this
region is nearly 28 Å, and for shape - ¼ 4 it is only about
14 Å. There are no other differences between the two
models. We know from [85] that this outer vestibule
region contains on average about two ions during much of
the BD simulation. What we have learned from this new
set of simulations performed with Algorithm 2, is that, as
long as the vestibule is wide enough to accommodate two
ions, its exact width seems to be irrelevant. Once the two
ions are present in this outer vestibule, the ions inside the
channel are provided with enough repulsive force for
these resident ions to move through to the other side of
the channel. Thus, even though it might seem that two
shapes were selected by the algorithm as being almost
equally successful in satisfying all the experimental

Table 2 Simulation Conditions: Simulations Were Performed for Each Shape With All 12 Conditions. Concentrations Inside and Outside the Channels Were

Varied Between Solutions of NaCl and CaCl2 and Both. External Potentials of )70 and )100 mV Were Applied
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conditions presented, the important features for selectiv-
ity and permeation in the sodium channel are still
maintained.

VIII . CONCLUDING REMARKS

In this paper, we have given a detailed description of the
permeation problem in biological membrane ion channels.
The main theme of this paper is the formulation of the ion
channel permeation problem as a large scale interacting
particle dynamical system comprised of ions, protein
atoms, and water molecules.

In Section II, we discussed four widely used physical
models for ion channel permeation, namely quantum
mechanics, MD, BD, and PNP theory. Of these four
theories for permeation, as discussed in Section II, BD is

computationally tractable and yet sufficiently accurate for
modeling ion permeation in many important biological ion
channels.

In Section IV, we presented a detailed description of
BD. In BD, the propagation of ions in the ion channel is
modeled as a large-scale, multiparticle, continuous-time,
stochastic dynamical system satisfying the Langevin
equation. The key idea here is that instead of considering
the dynamics of individual water molecules, which is
computationally intractable, the BD system considers the
average effect of water molecules as a random force acting
on individual ions. We also presented a probabilistic
interpretation of BD.

One of the major caveats to using BD in studying the
permeation dynamics in biological ion channels is the use
of Poisson’s equation to calculate the forces encountered
by permeant ions. The issue here is whether one can
legitimately employ macroscopic electrostatics in regions
that are not much larger than the diameters of the water
molecules and ions. In the narrow, constricted region of
the channel, such as in the selectivity filter of the
potassium channel, the representation of the channel
contents as a continuous medium is a poor approximation.
The method of ACBD, which we discussed in Sections V
and VI, is designed to circumvent the limitations posed in
the conventional simulation approach. Using the ACBD
algorithm, we are able to solve the inverse problem. That
is, given the 3-D shape of a channel, we can deduce the
potential of mean force encountered by an ion traversing
the channel that correctly replicates experimental find-
ings, thus obviating the need to solve Poisson’s equation.
Another issue with BD is the replacement of ions to
maintain the fixed concentration; see remark following
Procedure 1 in Section III-D. We refer to [109] and [110]
for further discussion.

Since ions are assumed to be spherically symmetric,
the BD formulation in this paper only considers transla-
tional movement (2) and velocity (3). However, drug and
channel blocker molecules are large and asymmetric. To
model the effect of such large asymmetric molecules on
ion channel permeation, it is necessary to consider both
translational as well as rotational dynamics in a BD
formulation [111]. Such a methodology may be used to
explain how such drugs/blockers interact dynamically and
bind with the ion channel. Understanding the dynamics of
such a mechanism at a molecular level can eventually lead
to the design of more efficient drugs and channel
blockers. h

APPENDIX

. Proof of Theorem 3
We first show that the optimal ion channel shape -1

defined in (25) is the minimizing solution of the
following stochastic optimization problem -1 ¼
argmin- EfYnð-; unÞg.

Fig. 9. (a) Error surface Cð-Þ for nine different shapes for sodium

channel. (b) Computational effort spent on the nine different

candidates by ACBD discrete optimization Algorithm 3.

Figure shows attraction property of Algorithm 3 to

optimal shapeValgorithm spends more effort at

optimal shape compared to other shapes.
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The proof is as follows: Using the smoothing property
of conditional expectations yields

E I mnð-Þ # unð Þf g ¼E E I mnð-Þ # unð Þjmnð-Þf gf g
¼E P un G mnð-Þð Þf g
¼E mnð-Þf g
¼mð-Þ:

The second equality follows since expectation of an
indicator function is probability, and the third equality
holds because un is a uniform random number in [0, 1] so
that Pðun G aÞ ¼ a for any a in [0, 1].

Next, we show that the state process f-ng generated by
Algorithm 4 is a homogeneous, aperiodic, irreducible,
Markov chain on the state space % with transition
probability matrix A ¼ ðaij; i; j 2 %Þ where

aij ¼ Pð-n ¼ jj-n#1 ¼ iÞ ¼ 1

S# 1
mðiÞ 1 # mðjÞð Þ: (34)

That the process f-ng is a homogeneous aperiodic
irreducible Markov chain follows from its construction
in Algorithm 4Vindeed -n only depends probabilistically
on -n#1. From Algorithm 4, given candidate i and its

associated cost Ynði; unÞ, candidate j is accepted if its
associated cost ~Ynðj; ~unÞ is smaller. So, the probability of
the algorithm transitioning from state i to state j is

aij ¼
1

S # 1
P ~Ynðj; ~unÞ G Ynði; unÞ
$ %

¼ 1

S # 1
P mnðjÞ G ~unð ÞP mnðiÞ > unð Þ:

Finally, it is straightforward to verify that

'ð-Þ ¼ c 1# mð-Þð Þ
Y

j 6¼-

mðjÞ (35)

satisfies the invariant distribution where c denotes a
normalization constant. Hence

'ð-1Þ
'ð-Þ

¼ mð-Þ
mð-1Þ

1 # mð-1Þð Þ
1 # mð-Þð Þ

¼ 1=mð-1Þ # 1

1=mð-Þ # 1

which is clearly (1 since mð-1Þ is the global minimum;
therefore, mð-1Þ , mð-Þ.
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