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Abstract—This paper considers models and algorithms for
interactive sensing in social networks in which individuals act as
sensors and the information exchange between individuals is
exploited to optimize sensing. Social learning is used to model the
interaction between individuals that aim to estimate an underlying
state of nature. In this context, the following questions are addressed:
howcan self-interestedagents that interact via social learningachieve
a tradeoff between individual privacy and reputation of the social
group? How can protocols be designed to prevent data incest in
online reputation blogs where individuals make recommendations?
How can sensing by individuals that interact with each other be used
bya global decisionmaker todetect changes in the underlying state of
nature? When individual agents possess limited sensing, computa-
tion, and communication capabilities, can a network of agents
achieve sophisticated global behavior? Social and game-theoretic
learning are natural settings for addressing these questions. This
article presents an overview, insights, and discussion of social learn-
ing models in the context of data incest propagation, change detec-
tion, and coordination of decision-making.

Index Terms—Coordination, correlated equilibria, data incest,
game-theoretic learning, information diffusion, reputation systems,
social learning, social sampling.

I. INTRODUCTION AND MOTIVATION

T HE proliferation of social media such as real-time micro-
blogging services (Twitter1), online reputation, and rating

systems (Yelp) together with app-enabled smartphones, facilitate
real-time sensing of social activities, social patterns, and behavior.

Social sensing, also called participatory sensing [1]–[5], is
defined as a process by which physical sensors present in mobile
devices such as GPS are used to infer social relationships and
human activities. In this paper, we work at a higher level of
abstraction.We use the term social sensor or human-based sensor
to denote an agent that provides information about its environment

(state of nature) on a social network after interaction with other
agents. Examples of such social sensors include Twitter posts,
Facebook status updates, and ratings on online reputation systems
such as Yelp and Tripadvisor. Such social sensors go beyond
physical sensors for social sensing. For example [6], user opi-
nions/ratings (such as the quality of a restaurant) are available on
Tripadvisor but are difficult to measure via physical sensors.
Similarly, future situations revealed by the Facebook status of
a user are impossible to predict using physical sensors.

Statistical inference using social sensors is relevant in a variety
of applications including localizing special events for targeted
advertising [7], [8], marketing [9], localization of natural disasters
[10], and predicting sentiment of investors in financial markets
[11], [12]. It is demonstrated in [13] thatmodels built from the rate
of tweets for particular products can outperform market-based
predictors. However, social sensors present unique challenges
fromastatistical estimationviewpoint.First, social sensors interact
with and influence other social sensors. For example, ratings
posted on online reputation systems strongly influence the behav-
ior of individuals.2 Such interacting sensing can result in nonstan-
dard information patterns due to correlations introduced by the
structure of the underlying social network. Second, due to privacy
concerns and time constraints, social sensors typically do not
reveal raw observations of the underlying state of nature. Instead,
they reveal their decisions (ratings, recommendations, and votes),
which can be viewed as a low-resolution (quantized) function of
their rawmeasurements and interactionswith other social sensors.

As it is apparent from the above discussion, there is a strong
motivation to construct mathematical models that capture the
dynamics of interactive sensing involving social sensors. Such
models facilitate understanding the dynamics of information flow
in social networks and, therefore, the design of algorithms that can
exploit these dynamics to estimate the underlying state of nature.

In this paper, social learning [16]–[18] serves as a useful
mathematical abstraction for modeling the interaction of social
sensors. Social learning in multiagent systems seeks to answer
the following question:

A. How do Decisions Made by Agents Affect Decisions Made by
Subsequent Agents?

In social learning, each agent chooses its action by optimizing
its local utility function. Subsequent agents then use their private
observations together with the actions of previous agents to
estimate (learn) an underlying state. The setup is fundamentally
different from classical signal processing in which sensors use
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noisy observations to compute estimates—in social learning,
agents use noisy observations together with decisions made by
previous agents to estimate the underlying state of nature.

In the last decade, social learning has been used widely in
economics, marketing, political science, and sociology to model
the behavior of financial markets, crowds, social groups, and
social networks; see [16]–[21] and numerous references therein.
Related models have been studied in the context of sequential
decision-making in information theory [22], [23] and statistical
signalprocessing [24], [25] in theelectrical engineering literature.

Social learning models for interactive sensing can predict
unusual behavior. Indeed, a key result in social learning of an
underlying random variable is that rational agents eventually
herd [17], i.e., they eventually end up choosing the same action
irrespective of their private observations. As a result, the actions
contain no information about the private observations and so the
Bayesianestimateof theunderlying randomvariable freezes.For
a multiagent sensing system, such behavior can be undesirable,
particularly if individuals herd and make incorrect decisions.

B. Main Results and Organization

In the context of social learningmodels for interactive sensing,
the main ideas and organization of this paper are as follows:

1) Social Learning Protocol: Section II presents a tutorial
formulation of the classical Bayesian social learning model,
which forms the mathematical basis for modeling interactive
sensing among humans. We illustrate the social-learning model
in the context of Bayesian signal processing (for easy access to an
electrical engineering audience). We then address how self-
interested agents performing social learning can achieve
useful behavior in terms of optimizing a social welfare
function. Such problems are motivated by privacy issues in
sensing. If an agent reveals less information in its decisions, it
maintains its privacy; on the other hand, as part of a social group,
it has an incentive to optimize a social welfare function that helps
estimate the state of nature.

2) Data Incest in Online Reputation Systems: Section III deals
with the question: how can data incest (misinformation
propagation) be prevented in online reputation blogs where
social sensors make recommendations?

In the classical social learningmodel, each agent acts once in a
predetermined order. However, in online reputation systems
such as Yelp or Tripadvisor, which maintain logs of votes
(actions) by agents, social learning takes place with information
exchange over a loopy graph (where the agents form the vertices
of the graph). Due to the loops in the information exchange
graph, data incest (misinformation) can propagate: suppose an
agent wrote a poor rating of a restaurant on a social media site.
Another agent is influenced by this rating, visits the restaurant,
and then also gives a poor rating on the socialmedia site. The first
agent visits the social media site and notices that another agent
has also given the restaurant a poor rating—this confirms his/her
rating and he/she enters another poor rating.

In a fair reputation system, such “double counting” or data
incest should have been prevented by making the first agent
aware that the rating of the second agent was influenced by his/
her own rating. Data incest results in a bias in the estimate of state

of nature. How can automated protocols be designed to prevent
data incest and therebymaintain a fair3 online reputation system?
Section III describes how the administrator of a social network
can maintain an unbiased (fair) reputation system.

3) Interaction of Local and Global Decision Makers for
Change Detection: Section IV deals with the question: in
sensing where individual agents perform social learning to
estimate an underlying state of nature, how can changes in the
state of nature be detected? Section IV considers a sensing
problem that involves change detection. Such sensing
problems arise in a variety of applications such as financial
trading where individuals react to financial shocks [26];
marketing and advertising [27], [28] where consumers react to
a new product; and localization of natural disasters (earthquake
and typhoons) [10].

For example, consider measurement of the adoption of a new
product using a microblogging platform such as Twitter. The
adoption of the technology diffuses through the market but its
effects can only be observed through the tweets of selectmembers
of the population. These selected members act as sensors for the
parameter of interest. Suppose the state of nature suddenly
changes due to a sudden market shock or presence of a new
competitor. Based on the local actions of the multiagent system
that is performing social learning, a global decisionmaker (such as
a market monitor or technology manufacturer) needs to decide
whether or not to declare if a change has occurred. How can the
global decisionmaker achieve such change detection to minimize
a cost function comprising false alarm rate and delay penalty? The
local and global decisionmakers interact, since the local decisions
determine the posterior distribution of subsequent agents, which
determines the global decision (stop or continue), which deter-
mines subsequent local decisions. We show that this social
learning-based change detection problem leads to unusual behav-
ior. The optimal decision policy of the stopping time problem has
multiple thresholds. This is unusual: if it is optimal to declare that a
change has occurred based on the posterior probability of change,
it may not be optimal to declare a change when the posterior
probability of change is higher.

4) Coordination of Decisions as a Noncooperative
Game: Section V reviews game-theoretic learning in the
context of social networks. A large body of research on social
networks has been devoted to the diffusion of information (e.g.,
ideas, behaviors, and trends) [29], [30], and particularly on
finding a set of target nodes so as to maximize the spread of a
given product [31], [32]. Often customers end up choosing a
specific product among several competitors. A natural approach
tomodel this competitive process is via the use of noncooperative
game theory [33], [34].

Game theory has traditionally been used in economics and
social sciences with a focus on fully rational interactions where
strong assumptions aremade on the information patterns available
to individual agents. In comparison, social sensors are agents with
partial information, and it is the dynamic interactions between
agents that are of interest. This motivates the need for game-
theoretic learningmodels for agents interacting in social networks.

3Maintaining fair reputation systems hasfinancial implications, as it is apparent
from footnote 2.
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Section V deals with the question: when individuals are self-
interested and possess limited sensing, computation, and com-
munication capabilities, can a network of such individuals
achieve sophisticated global behavior? In Section V, we discuss
a noncooperative game-theoretic learning approach for adap-
tive decision-making in social networks. This can be viewed as
a non-Bayesian version of social learning, The aim is to ensure
that all agents eventually choose actions from a common
polytope of randomized strategies—namely, the set of corre-
lated equilibria of a noncooperative game. Correlated equilibria
are a generalization of Nash equilibria and were introduced by
Aumann [35].4

5) Extensions: Section VI surveys briefly several extensions
of the interactive sensing paradigm of this paper. In particular,
the topics of global Bayesian games for coordinated sensing
and sensing with information diffusion over large-scale
social networks are discussed. These areas have witnessed
much recent activity in the economics and computer science
literature. Finally, a brief survey of how to obtain representative
samples of a social network is given.

C. Perspective

The social learning and game-theoretic learning formalisms
mentioned above can be used either as descriptive tools, to
predict the outcome of complex interactions among agents in
sensing, or as prescriptive tools, to design social networks and
sensing systems around given interaction rules. Information
aggregation, misinformation propagation, and privacy are im-
portant issues in sensing using social sensors. In this paper, we
treat these issues in a highly stylized manner so as to provide
easy accessibility to an electrical engineering audience. The
underlying tools used in this paper are widely used by the
electrical engineering research community in the areas of
signal processing, control, information theory, and network
communications.

In Bayesian estimation, the twin effects of social learning
(information aggregation with interaction among agents) and
data incest (misinformation propagation) lead to nonstandard
information patterns in estimating the underlying state of nature.
Herding occurs when the public belief overrides the private
observations and thus actions of agents are independent of their
private observations. Data incest results in bias in the public
belief as a consequence of the unintentional reuse of identical
actions in the formation of public belief in social learning; the
information gathered by each agent is mistakenly considered to
be independent. This results in overconfidence and bias in
estimates of the state of nature.

Privacy issues impose important constraints on social sensors.
Typically, individuals are not willing to disclose private obser-
vations. Optimizing interactive sensing with privacy constraints
is an important problem. Privacy and trust pose conflicting
requirements on human-based sensing: privacy requirements

result in noisier measurements or lower resolution actions, while
maintaining a high degree of trust (reputation) requires accurate
measurements. Utility functions, noisy private measurements,
and quantized actions are the essential ingredients of the social
and game-theoretic learning models presented in this paper that
facilitate modeling this tradeoff between reputation and privacy.

The literature in the areas of social learning, sensing, and
networking is extensive. Due to page restrictions, in each of the
following sections, we provide only a brief review of relevant
works. Seminal books in social networks include [36] and [37].
The book [18] contains a complete treatment of social learning
models with several remarkable insights. For further refer-
ences, we refer the reader to [38]–[42]. In [43], a nice descrip-
tion is given of how, if individual agents deploy simple
heuristics, the global system behavior can achieve “rational”
behavior. The related problem of achieving coherence (i.e.,
agents eventually choosing the same action or the same deci-
sion policy) among disparate sensors of decision agents with-
out cooperation has also witnessed intense research; see [44]
and [45]. Non-Bayesian social learning models are also studied
in [46] and [47].

There is also a growing literature dealing with the interplay of
technological networks and social networks [48]. For example,
social networks overlaid on technological networks account for a
significant fraction of Internet use. Indeed, as discussed in [48],
three key aspects of that cut across social and technological
networks are the emergence of global coordination through local
actions, resource sharing models, and the wisdom of crowds
(diversity and efficiency gain). These themes are addressed in the
current paper in the context of social learning.

II. MULTIAGENT SOCIAL LEARNING

This section starts with a brief description of the classical
social learning model. In this paper, we use social learning as the
mathematical basis for modeling interaction of social sensors. A
key result in social learning is that rational agents eventually
herd, i.e., they choose the same action irrespective of their private
observations, and social learning stops. To delay the effect of
herding, and thereby enhance social learning, Chamley [18] (see
also [49] for related work) has proposed a novel constrained
optimal social learning protocol. We review this protocol, which
is formulated as a sequential stopping time problem. We show
that the constrained optimal social learning proposed by
Chamley [18] has a threshold switching curve in the space of
public belief states. Thus, the global decision to stop can be
implemented efficiently in a social learning model.

A. Motivation: What is Social Learning?

We start with a brief description of the “vanilla”5 social
learning model. In social learning [18], agents estimate the

4Aumann’s 2005 Nobel prize in economics press release reads: “Aumann also
introduced a new equilibrium concept, correlated equilibrium, which is weaker
than Nash equilibrium, the solution concept developed by John Nash, an
economics laureate in 1994. Correlated equilibrium can explain why it may be
advantageous for negotiating parties to allow an impartialmediator to speak to the
parties either jointly or separately ”

5In typical formulations of social learning, the underlying state is assumed to be
a random variable and not a Markov chain. Our description below is given in
terms of a Markov chain since we wish to highlight the unusual structure of the
social learningfilter below to a signal processing reader who is familiar with basic
ideas in Bayesian filtering. Further, we are interested in change detection
problems in which the change time distribution can be modeled as the absorption
time of a Markov chain.
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underlying state of nature not only from their local measure-
ments, but also from the actions of previous agents. (These
previous actions were taken by agents in response to their local
measurements; therefore, these actions convey information
about the underlying state.) As we describe below, the state
estimation update in social learning has a drastically different
structure compared to the standard optimalfiltering recursion and
can result in unusual behavior.

Consider a countable number of agents performing social
learning to estimate the state of an underlying finite stateMarkov
chain . LetX denote a finite state space, the
transition matrix, and the initial distribution of the Markov
chain.

Each agent acts once in a predetermined sequential order
indexed by The index can also be viewed as the
discrete time instant when agent acts. A multiagent system
seeks to estimate . Assume at the beginning of iteration ,
all agents have access to the public belief defined in
Step iv) below. The social learning protocol proceeds as
follows [17], [18]:

1) Private Observation: At time , agent records a private
observation Y from the observation distribution

, X. Throughout this section, we
assume that Y is finite.

2) Private Belief: Using the public belief available at
time (defined in Step iv) below), agent updates its
private posterior belief

as the following Bayesian update (this is the
classical Hidden Markov Model filter [50]):

X

Here denotes the -dimensional vector of ones, is
an -dimensional probability mass function (pmf) and
denotes transpose of the matrix .

3) Myopic Action: Agent takes action A
to minimize its expected cost

A

A

Here X denotes an -dimensional
cost vector, and denotes the cost incurred when the
underlying state is and the agent chooses action . Agent
then broadcasts its action to subsequent agents.

4) Social Learning Filter: Given the action of agent ,
and the public belief , each subsequent agent

> performs social learning to compute the public
belief according to the following “social learning
filter”:

where is the normalization
factor of the Bayesian update. In (3), the public belief

and
X has elements

Y

0 0 A

The derivation of the social learning filter (3) is given in the
discussion as follows.

B. Discussion

Let us pause to give some intuition about the above-mentioned
social learning protocol.

1) Information Exchange Structure: Fig. 1 illustrates the
above-mentioned social learning protocol in which the
information exchange is sequential. Agents send their hard
decisions (actions) to subsequent agents. In the social learning
protocol, we have assumed that each agent acts once. Another
way of viewing the social learning protocol is that there are
finitelymany agents that act repeatedly in some predefined order.
If each agent chooses its local decision using the current public
belief, then the setting is identical to the social learning setup.We
also refer the reader to [19] for several recent results in social
learning over several types of network adjacency matrices.

2) Filtering with Hard Decisions: Social learning can be
viewed as agents making hard decision estimates at each time
and sending these estimates to subsequent agents. In
conventional Bayesian state estimation, a soft decision is
made, namely, the posterior distribution (or equivalently,
observation) is sent to subsequent agents. For example, if
A X, and the costs are chosen as where
denotes the unit indicator with 1 in the th position, then

, i.e., the maximum aposteriori
probability (MAP) state estimate. For this example, social
learning is equivalent to agents sending the hard MAP
estimates to subsequent agents.

Note that rather than sending a hard decision estimate, if each
agent chooses its action (i.e., agents send their private
observations), then the right-hand side of (4) becomes

Y and so the prob-
lem becomes a standard Bayesian filtering problem.

Fig. 1. Interaction of agents in social learning.
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3) Dependence of Observation Likelihood on Prior: The most
unusual feature of the above-mentioned protocol (to a signal
processing audience) is the social learning filter (3). In standard
state estimation via a Bayesian filter, the observation likelihood
given the state is completely parametrized by the observation
noise distribution and is functionally independent of the current
prior distribution. In the social learning filter, the likelihood of
the action given the state (which is denoted by ) is an explicit
function of the prior ! Not only does the action likelihood
depend on the prior, but it is also a discontinuous function, due to
the presence of the in (2).

4) Derivation of Social Learning Filter: The derivation of the
social learning filter (3) is as follows: define the posterior as

. Then

where the normalization term is

The above-mentioned social learning protocol and social learn-
ing filter (3) result in interesting dynamics in state estimation and
decision-making. We will illustrate two interesting consequences
that are unusual to an electrical engineering audience.

1) Rational Agents form herds and information cascades and
blindly follow previous agents. This is discussed in Sec-
tion II-C.

2) Making global decisions on change detection in a multia-
gent system performing social learning results in multi-
threshold behavior. This is discussed in Section IV.

C. Rational Agents form Information Cascades

The first consequence of the unusual nature of the social
learning filter (3) is that social learning can result in multiple
rational agents taking the same action independently of their
observations. To illustrate this behavior, throughout this section,
we assume that is a finite state random variable (instead of a
Markov chain) with prior distribution .

We start with the following definitions; see also [18].
1) An individual agent herds on the public belief if it

chooses its action in (2) independently of
its observation .

2) A herd of agents takes place at time if the actions of all
agents after time are identical, i.e., , for all time
> .

3) An information cascade occurs at time if the public
beliefs of all agents after time are identical, i.e., ,
for all < .

Note that if an information cascade occurs, then since the
public belief freezes, social learning ceases. Moreover, from the
above-mentioned definitions, it is clear that an information
cascade implies a herd of agents, but the reverse is not true; see
Section IV-C for an example.

The following result, which is well known in the economics
literature [17], [18], states that if agents follow the above-
mentioned social learning protocol, then after some finite
time , an information cascade occurs.6 The proof follows
via an elementary application of the martingale convergence
theorem.

Theorem 2.1 [17]: The social learning protocol described in
Section II-A leads to an information cascade in finite time with
probability 1; i.e., there exists a finite time after which social
learning ceases, i.e., public belief , , and all
agents choose the same action, i.e., , . ◽

Instead of reproducing the proof, let us give some insight as to
why Theorem 2.1 holds. It can be shown using martingale
methods that at some finite time , the agent’s probability

becomes independent of the private observation
. Then clearly from (4),
. Substituting this into the social learning filter (3), we see

that . Thus after some finite time , the social learning
filter hits a fixed point and social learning stops. As a result, all
subsequent agents > completely disregard their private
observations and take the same action , thereby forming an
information cascade (and therefore a herd).

D. Constrained Interactive Sensing: Individual Privacy Versus
Group Reputation

The above-mentioned social learning protocol can be inter-
preted as follows. Agents seek to estimate an underlying state of
nature but reveal their actions by maximizing their privacy
according to the optimization (2). This leads to an information
cascade and social learning stops. In other words, agents are
interested in optimizing their own costs (such as maximizing
privacy) and ignore the information benefits that their action
provides to others.

6A nice analogy is provided in [18]. If I see someone walking down the street
with an umbrella, I assume (based on rationality) that he has checked the weather
forecast and is carrying an umbrella since it might rain. Therefore, I also take an
umbrella. So now there are two peoplewalking down the street carrying umbrellas.
A third person sees two people with umbrellas and based on the same inference
logic, also takes an umbrella. Even though each individual is rational, such herding
behavior might be irrational since the first person who took the umbrella, may not
have checked the weather forecast.

Another example is that of patrons who decide to choose a restaurant. Despite
their menu preferences, each patron chooses the restaurant with the most custo-
mers. So, eventually all patrons herd to one restaurant.

Trusov et al. [9] quote the following anecdote on user influence in a social
network which can be interpreted as herding: “... when a popular blogger left his
blogging site for a two-week vacation, the site’s visitor tally fell, and content
produced by three invited substitute bloggers could not stem the decline.”
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1) Partially Observed Markov Decision Process
Formulation: We now describe an optimized social learning
procedure that delays herding.7 This approach, see [18] for an
excellent discussion, is motivated by the following question:
how can agents assist social learning by choosing their actions to
trade off individual privacy (local costs) with optimizing the
reputation8 of the entire social group?

Suppose agents seek to maximize the reputation of their social
group by minimizing the following social welfare cost involving
all agents in the social group (compared to the myopic objective
(2) used in standard social learning):

In (5), denotes the decision rule that agents use
to choose their actions, as explained below. Furtheremore,

is an economic discount factor, and denotes the
initial probability (prior) of the state . and denote
the probability measure and expectation of the evolution of the
observations and underlying state, which are strategy dependent.

The key attribute of (5) is that each agent chooses its action
according to the privacy constrained rule

Here, the policy

maps the available public belief to the set of privacy values.
The higher the privacy value, the lesser the agent reveals through
its action. This is in contrast to standard social learning (2) in
which the action chosen is , namely a myopic function of
the private observation and public belief.

The above-mentioned formulation can be interpreted as fol-
lows: individual agents seek tomaximize their privacy according
to social learning (6) but also seek to maximize the reputation of
their entire social group (5).

Determining the policy that minimizes (5), and thereby
maximizes the social group reputation, is equivalent to solving a
stochastic control problem that is called a partially observed
Markov decision process (POMDP) problem [41], [53]. A
POMDP comprises a noisy observed Markov chain, such that
the dynamics of the posterior distribution (belief state) are
controlled by a policy ( in our case).

2) Structure of Privacy Constrained Sensing Policy: In
general, POMDPs are computationally intractable to solve
and, therefore, one cannot say anything useful about the
structure of the optimal policy . However, useful insight
can be obtained by considering the following extreme case of

the above-mentioned problem. Suppose there are two privacy
values and each agent chooses action

That is, an agent either reveals its raw observation (no privacy)
or chooses its action by completely neglecting its observation
(full privacy). Once an agent chooses the full privacy option, then
all subsequent agents choose exactly the same option and
therefore herd—this follows since each agent’s action reveals
nothing about the underlying state of nature. Therefore, for this
extreme example, determining the optimal policy is
equivalent to solving a stopping time problem: determine the
earliest time for agents to herd (maintain full privacy) subject to
maximizing the social group reputation.

For such a quickest herding stopping time problem, one can say
a lot about the structure of . Suppose the sensing system
wishes to determine if the state of nature is a specific target state
(say state 1). Then, Krishnamurthy [41] shows that under reason-
able conditions on the observation distribution and supermodular
conditions on the costs ([31] discusses supermodularity of influ-
ence in social networks), the dynamic programming recursion has
a supermodular structure (see also [42], [54]–[57] for related
results). This implies that the optimal policy has the following
structure: there exists a threshold curve that partitions the belief
space, such that when the belief state is on one side of the curve, it
is optimal for agents to reveal full observations; if the belief state is
on the other side of the curve, then it is optimal to herd.Moreover,
the target state 1 belongs to the region in which it is optimal to
herd.9 This threshold structure of the optimal policy means that if
individuals deploy the simple heuristic of “Choose increased
privacy when belief is close to the target state,”

then the group behavior is sophisticated—herding is delayed
and accurate estimates of the state of nature can be obtained.

III. DATA INCEST IN ONLINE REPUTATION SYSTEMS

This section generalizes the previous section by considering
social learning in a social network. How can multiple social
sensors interacting over a social network estimate an underlying
state of nature? The state could be the position coordinates of an
event [10] or the quality of a social parameter such as quality of a
restaurant or a political party.

The motivation for this section can be understood in terms of
the following sensing example. Consider the following interac-
tions in a multiagent social network where agents seek to
estimate an underlying state of nature. Each agent visits a
restaurant based on reviews on an online reputation website.
The agent then obtains a private measurement of the state (e.g.,
the quality of food in a restaurant) in noise. After that, he/she
reviews the restaurant on the same online reputationwebsite. The
information exchange in the social network is modeled by a7In the restaurant problem, an obvious approach to prevent herding is as

follows. If a restaurant knew that patrons choose the restaurant with the most
customers, then the restaurant could deliberately pay actors to sit in the restaurant,
so that it appears popular thereby attracting customers. The methodology in this
section where herding is delayed by benevolent agents is a different approach.

8[51] and [52] contain lucid descriptions of quantitative models for trust,
reputation, and privacy.

9In standard POMDPs where agents do not perform social learning, it is well
known [58] that the set of beliefs for which it is optimal to stop is convex. Such
convexity of the herding set does not hold in the current problem. But it is shown
in [41] that the set of beliefs for which it is optimal to herd is connected and so is
the set of beliefs for which it is optimal to reveal full observations.
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directed graph. Asmentioned in the introduction, data incest [59]
arises due to loops in the information exchange graph. This is
illustrated in the graph of Fig. 2. Agents 1 and 2 exchange beliefs
(or actions) as depicted in Fig. 2. The fact that there are two
distinct paths between Agent 1 at time 1 and Agent 1 at time 3
(these two paths are denoted in red) implies that the information
of Agent 1 at time 1 is double counted, thereby leading to a data
incest event.

How can data incest be removed, so that agents obtain a fair
(unbiased) estimate of the underlying state? The methodology of
this section can be interpreted in terms of the recent Time article
[60], which provides interesting rules for online reputation
systems. These include: 1) review the reviewers and 2) censor
fake (malicious) reviewers. The data incest removal algorithm
proposed in this paper can be viewed as “reviewing the reviews"
of other agents to see if they are associated with data incest or not.

The rest of this section is organized as follows:
1) Section III-A describes the social learning model that is

used to mimic the behavior of agents in online reputation
systems. The information exchange between agents in the
social network is formulated on a family of time-dependent
directed acyclic graphs.

2) In Section III-B, a fair reputation protocol is presented and
the criterion for achieving a fair rating is defined.

3) Section III-C presents an incest removal algorithm, so that
the online reputation system achieves a fair rating. A
necessary and sufficient condition is given on the graph
structure of information exchange between agents, so that a
fair rating is achievable.

Related work: Collaborative recommendation systems are
reviewed and studied in [61] and [62]. In [63], a model of
Bayesian social learning is considered in which agents receive
private information about the state of nature and observe actions
of their neighbors in a tree-based network. Another type of
misinformation caused by influential agents (agents who heavily
affect actions of other agents in social networks) is investigated
in [19]. Misinformation in the context of this paper is motivated
by sensor networks where the term “data incest” is used [59].
Data incest also arises in Belief Propagation (BP) algorithms [64],
[65], which are used in computer vision and error-correcting
coding theory. BP algorithms require passing local messages over

the graph (Bayesian network) at each iteration. For graphical
models with loops, BP algorithms are only approximate due to
the over-counting of local messages [66], which is similar to data
incest in social learning. With the algorithms presented in this
section, data incest can be mitigated from Bayesian social learn-
ing over nontree graphs that satisfy a topological constraint. The
closest work to the current paper is [59]. However, in [59], data
incest is considered in a network where agents exchange their
private belief states—i.e., no social learning is considered. Simpler
versions of this information exchangeprocess and estimationwere
investigated in [67]–[69]. We also refer the reader to [48] for a
discussion of recommender systems.

A. Information Exchange Graph in Social Network

Consider an online reputation system comprising social sen-
sors that aim to estimate an underlying state of
nature (a random variable). Let X repre-
sent the state of nature (such as the quality of a hotel) with known
prior distribution . Let depict epochs at which
events occur. These events involve taking observations, evalu-
ating beliefs, and choosing actions as described below. The index
marks the historical order of events and not necessarily absolute

time. However, for simplicity, we refer to as “time.”
To model the information exchange in the social network, we

will use a family of directed acyclic graphs. It is convenient also
to reduce the coordinates of time and agent to a single integer
index , which is used to represent agent at time :

≜

We refer to as a “node” of a time-dependent information
flow graph , which we now define.

1) Some Graph Theoretic Definitions: Let

denote a sequence of time-dependent graphs of information flow
in the social network until and including time where

. Each vertex in represents an agent in
the social network at time and each edge ( ) in

shows that the information (action) of node
(agent at time ) reaches node (agent at time ). It is
clear that the communication graph is a subgraph of .
This means that the diffusion of actions can be modeled via a
family of time-dependent directed acyclic graphs (a directed
graph with no directed cycles).

The algorithms below will involve specific columns of the
adjacency matrix and transitive closure matrix of the graph .
The Adjacency Matrix of is an matrix with
elements given by

The transitive closure matrix is the matrix

Fig. 2. Example of the information flow (communication graph) in a social
network with two agents and over three event epochs. The arrows represent
exchange of information.
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where for any matrix , the matrix ! " has elements

! "

Note that if there is a single hop path between
nodes and , and in comparison, if there exists a
path (possible multi-hop) between node and .

The information reaching node depends on the information
flow graph . The following two sets will be used to specify the
following incest removal algorithms:

H
F

Thus,H denotes the set of previous nodes that communi-
cate with node in a single hop. In comparison, F denotes the
set of previous nodes whose information eventually arrives at
node . Thus, F contains all possible multihop connections by
which information from a node eventually reaches node .

2) Example: To illustrate the above-mentioned notation,
consider a social network consisting of two groups with
the following information flow graph for three time points

.
Fig. 3 shows the nodes , where

.
Note that in this example, as it is apparent from Fig. 2, each

node remembers all its previous actions. The information flow is
characterized by the family of directed acyclic graphs

with adjacency matrices

Since nodes 1 and 2 do not communicate, clearly and
are zero matrices. Nodes 1 and 3 communicate as do nodes 2 and
3, hence has two ones, etc. Finally, from (11) and (12),

H F

where H denotes all one hop links to node 5, whereas F
denotes all multihop links to node 5.

Note that is always the upper left submatrix of
. Moreover, due to causality with respect to the time index

, the adjacency matrices are always upper triangular.

B. Fair Online Reputation System

1) Protocol for Fair Online Reputation System:The procedure
summarized in Protocol 1 aims to evaluate a fair reputation that
uses social learning over a social network by eliminating incest.

Aim: Our aim is to design algorithm A in the automated
recommender system (14) of Protocol 1, so that the following
requirement is met:

X

F

We call in (13) the true or fair online rating available to
node , sinceF defined in (12) denotes
all information (multihop links) available to node . By defini-
tion, is incest-free since it is the desired conditional proba-
bility that we want. If algorithm A is designed, so that
satisfies (13), then the computation (15) and Step v) yield

F X

F X

which are, respectively, the correct private belief for node and
the correct after-action public belief.

2) Discussion of Protocol 1: a) Data Incest: It is important to
note that without careful design of algorithm A, due to loops in
the the public rating, computed using (14) can be
substantially different from the fair online rating of (13).
As a result, computed via (15) will not be the correct private
belief and incest will propagate in the network. In other words,
, , and are defined purely in terms of their computational

expressions in Protocol 1—at this stage, they are not necessarily
the desired conditional probabilities, unless algorithm A is
designed to remove incest.

Protocol 1 Incest Removal for Social Learning in an Online
Reputation System

(i) Information from Social Network:

1) Recommendation from Friends: Node receives past actions
H from previous nodes H in the network.H

is defined in (11).

2) Automated Recommender System: For these past actions
H , the network administrator has already computed

the public beliefs H using Step v).
The automated recommender system fuses public beliefs

H into the single recommendation belief as

A H

The fusion algorithm A will be designed as follows.

Fig. 3. Example of an information flow network with two agents, namely
and time points . Circles represent the nodes indexed by

in the social network, and each edge depicts a communication
link between two nodes.
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(ii)Observation: Node records private observation from the
distribution , X.

(iii) Private Belief: Node then uses and public belief to
update its private belief via Bayes’ formula as

(iv) Myopic Action: Node takes action

and inputs its action to the online reputation system.

(v) Public Belief Update by Network Administrator: Based on
action , the network administrator (automated algorithm)
computes the public belief using the social learning filter
(3) with .

Note that instead of (14), node could naively (and incorrectly)
assume that the public beliefs H that it received are
independent. It would then fuse these public beliefs as

H

H

This, of course, would result in data incest.
b) How much does an individual remember?: The above-

mentioned protocol has the flexibility of modeling cases where
each node remembers either some (or all) of its past actions or
none of its past actions. This facilitates modeling cases in which
people forget most of the past except for specific highlights.

c) Automated Recommender System: Steps i) and v) of Proto-
col 1 can be combined into an automated recommender system
thatmaps previous actions of agents in the social group to a single
recommendation (rating) of (14). This recommender system
can operate completely opaquely to the actual user (node ).
Node simply uses the automated rating as the current best
available rating from the reputation system.

d) Social Influence. Informational Message Versus Social
Message: In Protocol 1, it is important that each individual
deploys Algorithm A to fuse the beliefs H ; other-
wise, incest can propagate. Here,H can be viewed as the “social
message,” i.e., personal friends of node since they directly
communicate to node , while the associated beliefs can be
viewed as the “informationalmessage.”The socialmessage from
personal friends exerts a large social influence—it provides
significant incentive (peer pressure) for individual to comply
with Protocol 1 and thereby prevent incest. Indeed, a remarkable
recent study described in [70] shows that social messages (votes)
from known friends have significantly more influence on an
individual than the information in the messages themselves.
This study includes a comparison of information messages and
social messages on Facebook and their direct effect on voting
behavior. To quote [70], “The effect of social transmission on
real-world voting was greater than the direct effect of the
messages themselves ”

e) Agent Reputation: The cost function minimization in Step
iv) can be interpreted in terms of the reputation of agents in online
reputation systems. If an agent continues to write bad reviews for

high-quality restaurants on Yelp, his/her reputation becomes
lower among the users. Consequently, other people ignore
reviews of that (low-reputation) agent in evaluating their opi-
nions about the social unit under study (restaurant). Therefore,
agents minimize the penalty of writing inaccurate reviews (or
equivalently increase their reputations) by choosing proper
actions.

f) Think and Act: Steps ii), iii) iv), and v) of Protocol 1
constitute standard social learning as described in Section II-
A. The key difference with standard social learning is Steps i)
performed by the network administrator. Agents receive public
beliefs from the social network with arbitrary random delays.
These delays reflect the time an agent takes between reading the
publicly available reputation and making its decision. It is a
typical behavior of people to read published ratings multiple
times and then think for an arbitrary amount of time before
acting.

C. Incest Removal Algorithm in Online Reputation System

We design algorithm A in Protocol 1, so that it yields the fair
public rating of (13).

1) Fair Rating Algorithm: It is convenient to work with the
logarithm of the un-normalized belief10; accordingly define

X

The following theorem shows that the logarithm of the fair
rating defined in (13) can be obtained as a weighted linear
combination of the logarithms of previous public beliefs.

Theorem 3.1 (Fair Rating Algorithm): Consider the online
reputation system running Protocol 1. Suppose the following
algorithm A H is implemented in (14) of Protocol 1
by the network administrator:

Then, . That is, algorithmA computes the
fair rating defined in (13).

In (17), is an dimensional weight vector. Recall that
denotes the first elements of the th column of the

transitive closure matrix . ◽

Theorem 3.1 says that the fair rating can be expressed as a
linear function of the action log-likelihoods in terms of the
transitive closure matrix of graph . This is intuitive since

can be viewed as the sum of information collected by the
nodes, such that there are paths between all these nodes and .

2) Achievability of Fair Rating by Protocol 1:We are not quite
done.

1) On the one hand, algorithm A at node specified by (14)
has access only to beliefs H —equivalently, it

10The un-normalized belief proportional to is the numerator of the social
learning filter (3). The corresponding un-normalized fair rating corresponding to

is the joint distribution F . By taking the logarithm
of the un-normalized belief, Bayes formula merely becomes the sum of the log
likelihood and log prior. This allows us to devise a data incest removal algorithm
based on linear combinations of the log beliefs.
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has access only to beliefs from previous nodes specified by
, which denotes the last column of the adjacency

matrix .
2) On the other hand, to provide incest-free estimates, algo-

rithm A specified in (17) requires all previous beliefs
that are specified by the non-zero elements of

the vector . The only way to reconcile points 1 and 2 is
to ensure that implies for

. This condition means that the single
hop past estimates H available at node accord-
ing to (14) in Protocol 1 provide all the information
required to compute in (17). This is a condition
on the information flow graph . We formalize this
condition in the following theorem.

Theorem 3.2 (Achievability of Fair Rating): Consider the fair
rating algorithm specified by (17). For Protocol 1 with available
information ( H ) to achieve the estimates of
algorithm (17), a necessary and sufficient condition on the
information flow graph is

Therefore, for Protocol 1 to generate incest-free estimates for
nodes , condition (18) needs to hold for each .
[Recall that is specified in (17).] ◽

Note that the constraint (18) is purely in terms of the adjacency
matrix , since the transitive closurematrix (10) is a function of
the adjacency matrix.

Summary: Algorithm (17) together with the condition (18)
ensure that incest-free estimates are generated by Protocol 1.

3) Illustrative Example (continued): Let us continue with the
example of Fig. 2 where we already specified the adjacency
matrices of the graphs , , , , and . Using (10), the
transitive closure matrices obtained from the adjacency
matrices are given by

Note that is non-zero only for due to causality,
since information sent by a social group can only arrive at another
social group at a later time instant. The weight vectors are then
obtained from (17) as

Let us examine these weight vectors. means that node 2
does not use the estimate from node 1. This formula is consistent
with the constraints on information flow because the estimate
from node 1 is not available to node 2; see Fig. 3. means that
node 3 uses estimates from nodes 1 and 2; means that node 4
uses estimates only fromnodes 1 and 2. The estimate fromnode 3
is not available at node 4. As shown in Fig. 3, the misinformation
propagation occurs at node 5. The vector says that node 5
adds estimates from nodes 3 and 4 and removes estimates from
nodes 1 and 2 to avoid double counting of these estimates that is
already integrated into estimates from nodes 3 and 4. Indeed,
using the algorithm (17), incest is completely prevented in this
example.

Let us now illustrate an example in which exact incest removal
is impossible. Consider the information flow graph of Fig. 3 but
with the edge betweennodes 2 and5 deleted. Then, ,
while , and, therefore, the condition (18) does not hold.
Hence, exact incest removal is not possible for this case.

D. Summary

In this section, we have outlined a controlled sensing problem
over a social network in which the administrator controls (re-
moves) data incest and thereby maintains an unbiased (fair)
online reputation system. The state of nature could be geograph-
ical coordinates of an event (in a target localization problem) or
quality of a social unit (in an online reputation system). As
discussed earlier, data incest arises due to the recursive nature of
Bayesian estimation and nondeterminism in the timing of the
sensing by individuals. Details of proofs, extensions, and further
numerical studies are presented in [59] and [71].

IV. INTERACTIVE SENSING FOR QUICKEST CHANGE DETECTION

In this section, we consider interacting social sensors in the
context of detecting a change in the underlying state of nature.
Suppose amultiagent system performs social learning andmakes
local decisions as described in Section II. Given the public beliefs
from the social learning protocol, how can quickest change
detection be achieved? In other words, how can a global decision
maker use the local decisions from individual agents to decide
when a change has occurred? It is shown below that making a
global decision (change or no change) based on local decisions of
individual agents has an unusual structure resulting in a non-
convex stopping set.

A typical application of such social sensors arises in the
measurement of the adoption of a new product using a micro-
blogging platform such as Twitter. The adoption of the technol-
ogy diffuses through the market, but its effects can only be
observed through the tweets of select individuals of the popula-
tion. These selected individuals act as sensors for estimating the
diffusion. They interact and learn from the decisions (tweeted
sentiments) of other members and, therefore, perform social
learning. Suppose the state of nature suddenly changes due to
a suddenmarket shock or presence of a new competitor. The goal
for a market analyst or product manufacturer is to detect this
change as quickly as possible by minimizing a cost function that
involves the sum of the false alarm and decision delay.
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Related work: López-Pintado [27], [28] models diffusion in
networks over a random graph with arbitrary degree distribution.
The resulting diffusion is approximated using deterministic
dynamics via a mean field approach [72]. In the seminal paper
[1], a sensing system for complex social systems is presented
with data collected from cell phones. This data is used in [1] to
recognize social patterns, identify socially significant locations,
and infer relationships. In [10], people using a microblogging
service such as Twitter are considered as sensors. In particular,
Sakaki et al. [10] consider eachTwitter user as a sensor and uses a
particle filtering algorithm to estimate the centers of earthquakes
and trajectories of typhoons. As pointed out in [10], an important
characteristic of microblogging services such as Twitter is that
they provide real-time sensing—Twitter users tweet several
times a day, whereas standard blog users update information
once every several days.

Apart from the above-mentioned applications in real-time
sensing, change detection in social learning also arises in math-
ematical financemodels. For example, in agent-basedmodels for
the microstructure of asset prices in high-frequency trading in
financial systems [26], the state denotes the underlying asset
value that changes at a random time . Agents observe local
individual decisions of previous agents via an order book,
combine these observed decisionswith their noisy private signals
about the asset, selfishly optimize their expected local utilities,
and then make their own individual decisions (whether to buy,
sell, or do nothing). The market evolves through the orders of
trading agents. Given this order book information, the goal of the
market maker (global decision maker) is to achieve quickest
change point detection when a shock occurs to the value of the
asset [73].

A. Classical Quickest Detection

The classical Bayesian quickest detection problem [74] is as
follows: an underlying discrete time state process jump-
changes at a geometrically distributed random time . Consider
a sequence of discrete time random measurements ,
such that conditioned on the event , , are
independent and identically distributed (i.i.d.) random variables
with distribution and > are i.i.d. random variables with
distribution . The quickest detection problem involves detect-
ing the change time with minimal cost. That is, at each time

, a decision
needs to be made to optimize a tradeoff between

false alarm frequency and linear delay penalty.

To formalize this setup, let denote the

transition matrix of a two stateMarkov chain in which state 1 is
absorbing. Then it is easily seen that the geometrically distribut-
ed change time is equivalent to the time at which the Markov
chain enters state 1. That is, and

. Let be the time at which the decision
(announce change) is taken. The goal of quickest detec-

tion is to minimize the Kolmogorov–Shiryaev criterion for
detection of a disorder [75]:

<

Here if and 0 otherwise. The non-negative
constants and denote the delay and false alarm penalties,
respectively. So, waiting too long to announce a change incurs a
delay penalty at each time instant after the system has changed,
while declaring a change before it happens incurs a false alarm
penalty . In (19), denotes the strategy of the decision maker.

and are the probability measure and expectation of the
evolution of the observations and Markov state, which are
strategy-dependent. denotes the initial distribution of the
Markov chain .

In classical quickest detection, the decision policy is a
function of the two-dimensional belief state (posterior pmf)

, , with
. So, it suffices to consider one element, say

, of this pmf. Classical quickest change detection (see for
example [74]) says that the policy , which optimizes (19),
has the following threshold structure: there exists a threshold
point , such that

<

B. Multiagent Quickest Detection Problem

With the above-mentioned classical formulation in mind,
consider now the following multiagent quickest change detection
problem. Suppose that a multiagent system performs social
learning to estimate an underlying state according to the social
learning protocol of Section II-A. That is, each agent acts once in a
predetermined sequential order indexed by (Equiva-
lently, as pointed out in the discussion in Section II-A, a finite
number of agents act repeatedly in somepredefinedorder andeach
agent chooses its local decision using the current public belief.)
Given these local decisions (or equivalently the public belief), the
goal of the global decision maker is to minimize the quickest
detection objective (19). The problem now is a nontrivial gener-
alization of classical quickest detection. The posterior is now the
public belief given by the social learning filter (3) instead of a
standard Bayesian filter. There is now interaction between the
local and the global decision makers. The local decision from
the social learning protocol determines the public belief state
via the social learning filter (3), which determines the global
decision (stop or continue), which determines the local decision at
the next time instant, and so on.

The global decision maker’s policy that
optimizes the quickest detection objective (19) and the cost

of this optimal policy are the solution of “Bellman’s
dynamic programming equation”

A

A

Here and are given by the social learning
filter (3)—recall that denotes the local decision. is called
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the “value function”—it is the cost incurred by the optimal policy
when the initial belief state (prior) is . As is shown in the
numerical example below, the optimal policy has a very
different structure compared to classical quickest detection.

C. Numerical Example

We now illustrate the unusual multithreshold property of the
global decision maker’s optimal policy in multiagent
quickest detection with social learning. Consider the social
learning model of Section II-A with the following parameters:
The underlying state is a 2-state Markov chain with state
space X and transition probability matrix

. So, the change time (i.e., the time the

Markov chain jumps from state 2 into absorbing state 1) is
geometrically distributed with .

Social Learning Parameters: Individual agents observe the
Markov chain in noise with the observation symbol set
Y . Suppose the observation likelihood matrix with

elements is . Agents

can choose their local actions from the action set A .
The state-dependent cost matrix of these actions is

A . Agents perform

social learning with the above-mentioned parameters. The inter-

vals and in Fig. 4(a) are regions where the optimal
local actions taken by agents are independent of their observa-
tions. For , the optimal local action is 2, and for

, the optimal local action is 1. Therefore, individ-
ual agents herd for belief states in these intervals (see the
definition in Section II-C) and the local actions do not yield
any information about the underlying state. Moreover, the
interval depicts a region where all agents herd (again
see the definition in Section II-C), meaning that once the belief

state is in this region, it remains so indefinitely and all agents
choose the same local action 1.11

Global Decision-Making: Based on the local actions of the
agents performing social learning, the global decision maker
needs to perform quickest change detection. The global decision
maker uses the delay penalty and false alarm penalty

in the objective function (19). The optimal policy of
the global decision maker where is plotted
versus in Fig. 4(a). Note means that with certainty,
no change has occurred; whereas, means that with
certainty, a change has occurred. The policy was computed
by constructing a uniform grid of 1000 points for
and then implementing the dynamic programming equation (21)
via a fixed point value iteration algorithm for 200 iterations. The
horizontal axis is the posterior probability of no change. The
vertical axis denotes the optimal decision: denotes stop
and declare change, while denotes continue.

The most remarkable feature of Fig. 4(a) is the multithreshold
behavior of the global decision maker’s optimal policy .
Recall that depicts the posterior probability of no change. So,
consider the region where and sandwiched between
two regionswhere . Then as (posterior probability
of no change) increases, the optimal policy switches from

to . In other words, the optimal global
decision policy “changes its mind”—it switches from no change
to change as the posterior probability of a change decreases! Thus,
the global decision (stop or continue) is a nonmonotone function
of the posterior probability obtained from local decisions.

Fig. 4(b) shows the associated value function obtained via
stochastic dynamic programming (21). Recall that is the
cost incurred by the optimal policy with initial belief state .
Unlike standard sequential detection problems inwhich the value

Fig. 4. Optimal global decision policy for social learning-based quickest change detection for a geometric distributed change time. The parameters are specified in
Section IV-C. The optimal policy is characterized by a triple threshold—i.e., it switches from 1 to 2 three times as the
posterior increases. The value function is nonconcave and discontinuous in . As explained in the text, for , all agents herd, while for

, individual agents herd (see definitions in Section II-C): (a) optimal global decision policy and (b) value function for the global decision
policy.

11Note that even if the agent herds so that its action provides no
information about its private observation , the public belief still evolves
according to the predictor . So an information cascade does not
occur in this example.
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function is concave, the figure shows that the value function is
nonconcave and discontinuous. To summarize, Fig. 4 shows that
social learning-based quickest detection results in fundamentally
different decision policies compared to classical quickest detec-
tion (which has a single threshold). Thus, making global deci-
sions (stop or continue) based on local decisions (from social
learning) is nontrivial. In [42], a detailed analysis of this problem
is given together with a characterization of this multithreshold
behavior. More general phase-distributed change times are
considered in [42].

V. COORDINATION OF DECISIONS IN SENSING—
NONCOOPERATIVE GAME APPROACH

The discussion so far has dealt with Bayesian social learning
models for sensing. In this section, we present a highly stylized
non-Bayesian noncooperative game-theoretic learning approach
for adaptive decision-making among agents.

Social and economic situations often involve interacting
decision-makingwith diverging interests. Decisionmakersmay
act independently or form collaborative groups, wherein en-
forceable binding agreements ensure coordination of joint
decisions. For instance, a person may choose the same cell-
phone carrier as the majority of family and friends to take
advantage of the free talk times. Social networks diffuse
information and hence facilitate coordination of such coopera-
tive/self-interested units. This section examines how global
coordination of decisions can be obtained when self-interested
agents form a social network.

As mentioned in the Introduction, human-based sensing sys-
tems comprise agents with partial information and it is the
dynamic interactions between agents that is of interest. This
motivates the need for game-theoretic learningmodels for agents
interacting in social networks. Learning dynamics in games
typically can be classified into Bayesian learning [18], [21],
adaptive learning [76], and evolutionary dynamics [77], [78].We
have already focussed on Bayesian social learning12 in previous
sections of the paper, and some further remarks are made in
Section VI on global Bayesian games.

In this section, we focus on adaptive learningwhere individual
agents deploy simple rule-of-thumb strategies. The aim is to
determine if such simple individual behavior can result in
sophisticated global behavior. We are interested in cases where
the global behavior converges to the set of correlated equilibria.

A. Related Works

1) Correlated Equilibria: The set of correlated equilibria is a
more natural construct in decentralized adaptive learning
environments than the set of Nash equilibria,13 since it allows
for individual players to coordinate their actions. This

coordination can lead to higher performance [35] than if each
player chooses actions independently as required by a Nash
equilibrium.As described in [79], it is unreasonable to expect in a
learning environment that players act independently (as required
by a Nash equilibrium), since the common history observed by
all players acts as a natural coordination device.14 The set of
correlated equilibria is also structurally simpler than the set of
Nash equilibria; the set of correlated equilibria is a convex
polytope in the set of randomized strategies, whereas Nash
equilibria are isolated points at the extrema of this set. Indeed,
a feasible point in the set of correlated equilibria is obtained
straightforwardly by a linear programming solver.

The works [80] and [81] report experimental results that
explore the empirical validity of correlated equilibria. It is found
in [81] that when private recommendations from a mediator are
not available to the players, the global behavior is characterized
by mixed-strategy Nash equilibria. Their main result is that
players follow recommendations from a third party only if those
recommendations are drawn from a correlated equilibrium that is
“payoff-enhancing” relative to the available Nash equilibria. The
work [82] addresses the problem of information release in social
media via a game-theoretic formulation. The proposed model
captures a user’s willingness to release, withhold, or lie about
information depending on the behavior of the user’s circle of
friends. The empirical study infers a relationship between the
qualitative structure of the game equilibria and the automorphism
group of the social network.

2) Game-Theoretic Learning and Regret-Based
Algorithms: A comprehensive textbook in game-theoretic
learning is [83]. Algorithms for game-theoretic learning are
broadly classified into best response, fictitious play, and regret
matching. In general, it is impossible to guarantee convergence to
a Nash equilibriumwithout imposing conditions on the structure
of the utility functions in the game. For supermodular games
[84], best response algorithms can be designed to converge either
to the smallest or the largest Nash equilibrium. Fictitious play is
one of the oldest and the best-known models of learning in
games; we refer the reader to [85] for convergence of stochastic
fictitious play algorithms.

In this section, we focus on low internal regret algorithms as a
strategy of play in game-theoretic learning. The internal regret15

compares the loss of a strategy to the loss of a modified strategy,
which consistently replaces one action by another—for example,
“every time you bought Windows, you should have bought
Apple instead.” We refer the reader to [86] for an excellent
discussion of internal and external regret-based algorithms. Two
seminal papers in low internal regret algorithms for game-
theoretic learning are [76] and [79] where the terminology
“regret-matching” is used. In [79], it is proved that when all
agents share stage actions and follow the proposed regret-based
adaptive procedure, the collective behavior converges to the set
of correlated equilibria. In [76], the authors assumed that agents

12The social learning protocol of Section II-A can be viewed as a Bayesian
game comprising a countable number of agents, where each agent plays once in a
specified order to minimize its cost; see [18] for further details on this game-
theoretic interpretation.

13The set of correlated equilibria is defined in (25). Nash equilibria are a special
case of correlated equilibria where the joint strategy is chosen as the product
distribution for all players, i.e., all the agents choose their actions independently.

14Hart and Mas-Colell observe in [76] that for most simple adaptive proce-
dures, “...there is a natural coordination device: the common history, observed by
all players. It is thus reasonable to expect that, at the end, independence among
players will not obtain.”

15In comparison, the external regret compares the performance of a strategy
selecting actions to the performance of the best of those actions in hindsight.
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do not observe others’ actions and proposed a reinforcement
learning procedure that converges to the set of correlated equi-
libria. More recently, Krishnamurthy et al. [38], Maskery et al.
[39], and Namvar et al. [87], [88] consider learning in a dynamic
setting where a regret matching-type algorithm tracks a time
varying set of correlated equilibria.

It should be noted that the concept of regret is well-known in
the decision theory and random sampling literature [89]. Regret
minimization methods are of interest in the multiarmed bandit
literature, which is concerned with optimizing the cumulative
objective function values realized over a period of time [90],
which involves finding the best arm after a given number of arm
pulls.

B. Regret-Based Decision-Making

Consider a noncooperative repeated game comprising
agents. Each agent has a utility function . Here
denotes the action chosen by agent , and denote the actions

chosen by all agents excluding agent . The utility function can be
quite general. For example, Namvar et al. [91] consider the case
in which the agents are organized into nonoverlapping
social (friendship) groups, such that agents in a social group
share the same utility function. The utility function could also
reflect reputation or privacy using the models in [51] and [52].

Suppose each agent chooses its actions according to the
following adaptive algorithm running over time

1) At time , choose action from pmf , where

Here is a sufficiently large positive constant, so that
is a valid pmf.

2) Update the internal regretmatrix that determines the pmf
via the stochastic approximation algorithm

Step 1) corresponds to each agent choosing its action random-
ly from a Markov chain with transition probability . These
transition probabilities are computed in Step 2) in terms of the
internal regret matrix , which is the time-averaged regret agent
experiences for choosing action instead of action for each

possible action (i.e., how much better off it would be if it
had chosen action instead of ):

The above-mentioned algorithm can be generalized to con-
sider multiple social groups. If agents within each social group
share their actions and have a common utility, then they can fuse
their individual regrets into a regret for the social group. As

shown in [91], this fusion of regrets can be achieved via a linear
combination of the individual regrets where the weights of the
linear combination depend on the reputation of the agents that
constitute the social group.

C. Coordination in Sensing

We now address the following question:
If each agent chooses its action according to the above-

mentioned regret-based algorithm, what can one say about the
emergent global behavior?

By emergent global behavior, we mean the empirical frequen-
cy of actions taken over time by all agents. For each -tuple of
actions ( ), define the empirical frequency of actions taken
up to time as

The seminal papers [79] and [43] show that the empirical
frequency of actions converges as to the set of
correlated equilibria of a noncooperative game. As noted previ-
ously, correlated equilibria constitute a generalization of Nash
equilibria. The set of correlated equilibria C is the set of
probability distributions on the joint action profile ( ) that
satisfy

C

Here denotes the randomized
strategy (joint probability) of player choosing action and the
rest of the players choosing action . The correlated equilibri-
um condition (25) states that instead of taking action (which is
prescribed by the equilibrium strategy ), if player
cheats and takes action , it is worse off. So, there is no unilateral
incentive for any player to cheat.

To summarize, the above-mentioned algorithm ensures that all
agents eventually achieve coordination (consensus) in decision-
making—the randomized strategies of all agents converge to a
common convex polytope C . Step 2) of the algorithm requires
that each agent knows its own utility and the actions of other
agents—but agents do not need to know the utility functions of
other agents. In [76], a “blind” version of this regret-based
algorithm is presented in which agents do not need to know the
actions of other agents. These algorithms can be viewed as
examples, in which simple heuristic behavior by individual
agents (choosing actions according to the measured regret)
results in sophisticated global outcomes [43], namely conver-
gence to C , thereby coordinating decisions.

We refer to [38], [39], and [87] for generalizations of the
above-mentioned algorithm to the tracking case in which the step
size for the regret matrix update is a constant. Such algorithms
can track the correlated equilibria of games with time-varying
parameters. Moreover, Namvar et al. [88] give sufficient
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conditions for algorithm to converge to the set of correlated
equilibria when the regrets from one agent to other agents diffuse
over a social network.

VI. CLOSING REMARKS

In this paper, we have used social learning as a model for
interactive sensingwith social sensors.We summarize here some
extensions of the social learning framework that are relevant to
interactive sensing.

A. Crowd Behavior and Polling Agents

1) Wisdom of Crowds: Surowiecki’s book [92] is an excellent
popular piece that explains the wisdom-of-crowds hypothesis.
The wisdom-of-crowds hypothesis predicts that the independent
judgments of a crowd of individuals (as measured by any form
of central tendency) will be relatively accurate, even when most
of the individuals in the crowd are ignorant and error-prone.
The book also studies situations (such as rational bubbles) in
which crowds are not wiser than individuals. Collect enough
people on a street corner staring at the sky, and everyone who
walks past will look up. Such herding behavior is typical in social
learning.

2) In Which Order Should Agents Act? In the social learning
protocol, we assumed that the agents act sequentially in a
predefined order. However, in many social networking
applications, it is important to optimize the order in which
agents act. For example, consider an online review site where
individual reviewerswith different reputationsmake their reviews
publicly available. If a reviewer with high reputation publishes
his/her review first, this reviewwill unduly affect the decision of a
reviewer with lower reputation. In other words, if the most senior
agent “speaks” first, it would unduly affect the decisions of more
junior agents. This could lead to an increase in bias of the
underlying state estimate.16 On the other hand, if the most
junior agent is polled first, then since its variance is large,
several agents would need to be polled in order to reduce the
variance. We refer the reader to [94] for an interesting description
of who should speak first in a public debate.17 It turns out that for
two agents, the seniority rule is always optimal for any prior—i.e.,
the senior agent speaks first followed by the junior agent; see [94]
for the proof. However, for more than two agents, the optimal
order depends on the prior and the observations in general.

B. Global Games for Coordinating Sensing

In the classical Bayesian social learning model of Section II,
agents act sequentially in time. The global games model that has
been studied in economics during the last two decades considers

multiple agents that act simultaneously by predicting the behav-
ior of other agents. The theory of global games was first intro-
duced in [95] as a tool for refining equilibria in economic game
theory; see [96] for an excellent exposition. Global games
represent a useful method for decentralized coordination among
agents; they have been used to model speculative currency
attacks and regime change in social systems; see [96]–[98].

The most widely studied form of a global game is a one-shot
Bayesian game, which proceeds as follows: consider a continuum
of agents in which each agent obtains noisy measurements of
an underlying state of nature . Assume all agents have the same
observation likelihood density but the individual measure-
ments obtained by agents are statistically independent of those
obtained by other agents. Based on its observation , each agent
takes an action to optimize its expected utility

where denotes the fraction of all
agents that take action2.Typically, theutility is set to zero.

For example, suppose (state of nature) denotes the quality of
a social group and denotes the measurement of this quality by
agent . The action means that agent decides not to join
the social group, while means that agent joins the group.
The utility function for joining the social group
depends on , where is the fraction of people who decide to
join the group. In [97], the utility function is chosen as follows: if

, i.e., too many people join the group, then the utility to
each agent is small, since the group is too congested and agents
do not receive sufficient individual service. On the other hand, if

, i.e., too few people join the group, then the utility is also
small, since there is not enough social interaction.

Since each agent is rational, it uses its observation to predict
, i.e., the fraction of other agents that choose action 2. The main

question is: what is the optimal strategy for each agent to
maximize its expected utility?

It has been shown that for a variety of measurement noise
models (observation likelihoods ) and utility functions ,
the symmetric Bayesian Nash equilibrium of the global game is
unique and has a threshold structure in the observation. This
means that given its observation , it is optimal for each agent
to choose its actions as follows:

<

where the threshold depends on the prior, noise distribution,
and utility function.

In the above-mentioned example of joining a social group, the
resultmeans that if agent receives ameasurement of the quality
of the group, and exceeds a threshold , then it should join. This
is yet another example of simple local behavior (act according to a
threshold strategy) resulting in global sophisticated behavior
(Bayesian Nash equilibrium). As can be seen, global games
provide a decentralized way of achieving coordination among
social sensors. In [98], the above-mentioned one-shot Bayesian
game is generalized to a dynamic (multistage) game operating
over a possibly infinite horizon. Such games facilitate modeling
the dynamics of howpeople join, interact, and leave social groups.

The papers [40] and [99] use global games tomodel networks of
sensors and cognitive radios. In [97], it has been shown that the

16To quote a recent paper from the Haas School of Business, U.C. Berkeley
[93]: “In 94% of cases, groups (of people) used the first answer provided as their
final answer... Groups tended to commit to the first answer provided by any group
member.” People with dominant personalities tend to speak first and most
forcefully “even when they actually lack competence.”

17As described in [94], seniority is considered in the rules of debate and voting
in theU.S. SupremeCourt. “In the past, a votewas taken after the newest justice to
the Court spoke, with the justices voting in order of ascending seniority largely, it
was said, to avoid the pressure from long-term members of the Court on their
junior colleagues."
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above-mentioned threshold structure (26) for the Bayesian Nash
equilibrium breaks down if the utility function decreases
too rapidly due to congestion. The equilibrium structure becomes
much more complex and can be described by the following
quotation [97]: Nobody goes there anymore. It’s too crowded.
—Yogi Berra

C. Sensing with Information Diffusion over Large-Scale Social
Networks

In this paper, we have not considered the dynamics of large-
scale random graphs. The fundamental theory of network science
is well documented in seminal books such as [37] and [100], and
involves the interplay of randomgraphs and game theory. In large-
scale social networks, it is of significant interest to consider how
information and, therefore, behavior of individuals diffuses over a
social network comprising a population of interacting agents
based on sampling the population. As described in [28], there is
a wide range of social phenomena such as diffusion of techno-
logical innovations, cultural fads, and economic conventions [18]
where individual decisions are influenced by the decisions of
others.

Several recent papers investigate the diffusion of information
in real-world social networks such as Facebook, Twitter, and
blogs. Motivated by marketing applications, Sun et al. [101]
study the diffusion (contagion) behavior in Facebook. Using data
on around 260 000 Facebook pages (which advertise products,
services, bands, and celebrities), Sun et al. [101] analyze how
information diffuse on Facebook. In [102], the spread of hash-
tags on Twitter is studied.

Consider a social network where the states of individual
nodes evolve over time as probabilistic functions of the states
of their neighbors and an underlying target process. The
evolution in the state of agents in the network can be viewed
as diffusion of information in the network. Such Susceptible-
Infected-Susceptible (SIS) models for diffusion of information
in social networks have been extensively studied in [27], [28],
[36], [37], and [103] to model, e.g., the adoption of a new
technology in a consumer market.

Consistent with the interactive sensing paradigm of this paper,
one can consider two extensions of the basic SIS model: first, the
states of individual nodes evolve over time as a probabilistic
function of the states of their neighbors and an underlying target
process. The underlying target process can be viewed as the
market conditions or competing technologies that evolve with
time and affect the information diffusion. Second, the nodes in
the social network are sampled randomly to determine their state.
As the adoption of the new technology diffuses through the
network, its effect is observed via sentiment (such as tweets) of
these selected members of the population. These selected nodes
act as social sensors. In signal processing terms, the underlying
target process can be viewed as a signal, and the social network
can be viewed as a sensor. The key difference compared to
classical signal processing is that the social network (sensor) has
dynamics due to the information diffusion.

The aim is to estimate the underlying target state and the state
probabilities of the nodes by sampling measurements at nodes in
the social network. In a Bayesian estimation context, this is

equivalent to a filtering problem involving estimating the state of
a prohibitively large-scaleMarkov chain in noise.A key idea is to
use mean field dynamics as an approximation (with provable
bounds) for the information diffusion and, thereby, obtain a
tractable model. Such mean field dynamics have been studied in
[72] and applied to social networks in [27], [28], and [36]. For an
excellent recent exposition of interacting particle systems com-
prising agents each with a finite state space, see [104], where the
more apt term “Finite Markov Information Exchange (FMIE)
process” is used.

D. Sampling Social Networks

An important question regarding sensing in a social network
is: how can one construct a small but representative sample of a
large-scale social network? Leskovec and Faloutsos [105] study
and compare several scale-down and back-in-time sampling
procedures.

An obvious sampling scheme for a population is uniform
samplingwith orwithout replacement. Recently, there has been a
significant progress in social sampling [106]. In social sampling,
participants in a poll respond with a summary of their friends’
responses. If the average degree of nodes in the network is , then
the savings in the number of samples is by a factor of , since a
randomly chosen node summarizes the results form of its
friends. However, the variance and bias of the estimate depend
strongly on the social network structure.18

Another important sampling methodology for social networks
is respondent-driven sampling (RDS). RDS can be viewed
as a Markov-chain Monte-Carlo sampling strategy and was
introduced by Heckathorn [107]–[109] sampling from hidden
populations in social networks. As mentioned in [110], the
U.S. Centers for Disease Control and Prevention (CDC) recently
selected RDS for a 25-city study of injection drug users that is part
of the National HIV Behavioral Surveillance System [111]. RDS
is a variant of thewell-knownmethodof snowball samplingwhere
current samplemembers recruit future samplemembers. TheRDS
procedure is as follows: a small number of people in the target
population serve as seeds. After participating in the study, the
seeds recruit other people they know through the social network in
the target population. The sampling continues according to this
procedure with current sample members recruiting the next wave
of sample members until the desired sampling size is reached.

VII. SUMMARY

This paper has considered social learning models for interac-
tion among sensors where agents use their private observations
along with actions of other agents to estimate an underlying state
of nature. We have considered extensions of the basic social
learning paradigm to online reputation systems in which agents
communicate over a social network. Despite the apparent

18Dasgupta et al. [106] also provide nice intuition in terms of intent polling and
expectation polling. In intent polling, individual are sampled and asked who they
intend to vote for. In expectation polling, individuals are sampled and asked who
they thinkwouldwin the election. For a given sample size, onewould believe that
expectation poling is more accurate than intent polling since in expectation
polling, an individual would typically consider its own intent together with the
intents of its friends.
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simplicity in these information flows, the systems exhibit un-
usual behavior such as herding and data incest. Further, an
example of social learning for change detection has been con-
sidered. Finally, we have discussed a non-Bayesian formulation,
where agents seek to achieve coordination in decision-making by
optimizing their own utility functions—this was formulated as a
game-theoretic learning model.

The motivation for this paper stems from understanding how
individuals interact in a social network and how simple local
behavior can result in complex global behavior. The underlying
tools used in this paper are widely used by the electrical
engineering research community in the areas of signal proces-
sing, control, information theory, and network communications.
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