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Reduced Complexity HMM Filtering
With Stochastic Dominance Bounds:
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Abstract—This paper uses stochastic dominance principles
to construct upper and lower sample path bounds for Hidden
Markov Model (HMM) filters. We consider an HMM consisting
of an -state Markov chain with transition matrix . By using
convex optimization methods for nuclear norm minimization with
copositive constraints, we construct low rank stochastic matrices
and so that the optimal filters using provably lower

and upper bound (with respect to a partially ordered set) the true
filtered distribution at each time instant. Since and are low
rank (say ), the computational cost of evaluating the filtering
bounds is instead of . A Monte-Carlo importance
sampling filter is presented that exploits these upper and lower
bounds to estimate the optimal posterior. Finally, explicit bounds
are given on the variational norm between the true posterior and
the upper and lower bounds in terms of the Dobrushin coefficient.

Index Terms—Hidden Markov model filter, stochastic domi-
nance, copositive matrix, nuclear norm minimization, importance
sampling filter, Dobrushin coefficient.

I. INTRODUCTION

T HIS paper is motivated by the filtering problem involving
estimating a large dimensional finite state Markov chain

given noisy observations. With denoting discrete time, con-
sider an -state discrete time Markov chain observed via
a noisy process . Here where de-
notes the dimension of the state space. Let denote the
transition matrix and denote the
observation likelihood probabilities. With denoting the se-
quence of observations from time 1 to , define the posterior
state probability mass function (pmf)

(1)
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It is well known [1], [2] that the optimal Bayesian filter (Hidden
Markov Model filter) for computing the -dimensional poste-
rior vector at each time is of the form

(2)

Here, is a diagonal -dimensional
matrix of observation likelihoods and denotes the -dimen-
sional column vector of ones.
Due to the matrix-vector multiplication in (2), the com-

putational cost for evaluating the posterior at each time
is . This quadratic computational cost can be ex-
cessive for large state space dimension .

A. Main Results

This paper addresses the question: Can the optimal filter be
approximated with reduced complexity filters with provable
sample path bounds? We derive reduced-complexity filters
with computational cost where . There are
four main results in this paper.
1) Stochastic Dominance Bounds: Theorem 1 presented in

Section II asserts that for any transition matrix , one can con-
struct two new transition matrices and , such that
. Here denotes a copositive ordering defined in Section II.

The Bayesian filters using and , are guaranteed to sandwich
the true posterior distribution at any time as

(3)

where denotes the filtering recursion (2) and denotes
monotone likelihood ratio (MLR) stochastic dominance defined
in Section II. What (3) says is that at any time , the true pos-
terior can be sandwiched in the partially
ordered set specified by the above stochastic dominance con-
straints. Moreover, if is a TP2 matrix1, then (3) can be glob-
alized to say that if , then

(4)

where and denote posteriors computed using and .
The MLR stochastic order used in (3) and (4) is a partial

order on the set of distributions. A crucial property of the MLR
order is that it is closed under conditional expectations. This
1TP2 matrices are defined in Definition 3.
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makes it very useful in Bayesian estimation [3]–[6]. An impor-
tant consequence of the sandwich result (4) is that the condi-
tional mean state estimates are sandwiched as
for all time . Indeed, the second and all higher moments also
are sandwiched.
Finally, in Section II-D we generalize the above result to mul-

tivariate HMMs by using the multivariate TP2 stochastic order.
Such multivariate HMMs provide a useful example of large
scale HMMs. The TP2 order was pioneered by Karlin [7], see
also Whitt’s classic paper [8].
2) Construction of Low Rank Transition Matrices via Nu-

clear Norm Minimization: Section III uses state-of-the-art
convex optimization methods to construct low rank transition
matrices and . A low rank ensures that the lower and
upper bounds to the posterior can be computed with
rather than computational cost. The transition matrices
and are constructed as low rank matrices by minimizing

their nuclear norms. Matrices with small nuclear norm exhibit
sparseness in the set of eigenvalues or equivalently low rank.
The nuclear norm is the sum of the singular values of a matrix
and serves as a convex surrogate of the rank of a matrix [9].
The construction of low rank transition matrices and
is formulated as a convex optimization problem on the cone
of copositive matrices.2 These computations are performed
offline without affecting the computational cost of the real time
filtering algorithm.
3) Stochastic Dominance Constrained Monte-Carlo Im-

portance Sampling Filter: In monitoring systems, it is of
interest to detect when the underlying Markov chain is close
to a target state. Using the reduced complexity filtering bounds
outlined above, a monitoring system would want to switch to
the full complexity filter when the filtering bounds approach
the target state. A natural question is: How can the reduced
complexity filtering bounds (3) or (4) be exploited to estimate
the true posterior? Section IV presents an importance sampling
Monte-Carlo method for matrix vector multiplication that is
inspired by recent results in stochastic linear solvers. The
algorithm uses Gibbs sampling to ensure that the estimated
posterior lies in the partially ordered set
at each time . Numerical experiments show that this sto-
chastic dominance constrained algorithm yields estimates
with substantially reduced mean square errors compared to
the unconstrained algorithm—in addition, by construction the
estimates are provably sandwiched between and .
4) Analytical Bounds on Variational Distance: Given the

low complexity bounds and such that ,
a natural question is: How tight are the bounds? Theorem 3
presents explicit analytical bounds on the deviation of the true
posterior (which is expensive to compute) from the lower and
upper bounds and in terms of the Dobrushin coefficient of
the transition matrix. This yields useful analytical bounds (that
can be computed without evaluating the posterior ) for quan-
tifying how the stochastic dominance constraints sandwich the
true posterior as time evolves.
2A symmetric matrix is copositive if for all positive vectors
. (Thus the set of positive definite matrices is a subset of the set of copositive
matrices. In this paper, are probability mass function vectors.)

B. Related Work
The area of constructing approximate filters for estimating

the state of large scale Markov chains has been well studied
both in discrete and continuous time. Most works [10], [11] as-
sume that the Markov chain has two-time scale dynamics (e.g.,
the Markov chain is nearly completely decomposable). This
two-time scale feature is then exploited to construct suitable fil-
tering approximations on the slower time scale. In comparison,
the framework in the current paper does not assume a two-time
scale Markov chain. Indeed, our contributions are finite sample
results that do not rely on asymptotics.
The main tools used in this paper are based on monotone like-

lihood ratio (MLR) stochastic dominance and associated mono-
tone structural results of the Bayesian filtering update. Such re-
sults have been developed in the context of stochastic control
and Bayesian games in [5], [12], [3], [13], [4] but have so far not
been exploited to devise efficient filtering approximations. To
the best of our knowledge, constructing upper and lower sample
path bounds to the optimal filter in terms of stochastic orders is
new—and the copositivity constraints presented in this paper
yield a constructive realization of these bounds. Recently, [3]
use similar copositive characterizations to derive structural re-
sults in stochastic control.
Optimizing the nuclear norm as a surrogate for rank has been

studied as a convex optimization problem in several papers, see
for example [9]. Inspired by the seminal work of Candès and Tao
[14], there has been much recent interest in minimizing nuclear
norms in the context of sparse matrix completion problems. Al-
gorithms for testing for copositive matrices and copositive pro-
gramming have been studied recently in [15], [16].
There has been extensive work in signal processing on pos-

terior Cramér-Rao bounds for nonlinear filtering [17]; see also
[18] for a textbook treatment. These yield lower bounds to the
achievable variance of the conditional mean estimate of the
optimal filter. However, unlike the current paper, such poste-
rior Cramér-Rao bounds do not give constructive algorithms for
computing upper and lower bounds for the sample path of the
filtered distribution. The sample path bounds proposed in this
paper have the attractive feature that they are guaranteed to yield
lower and upper bounds to both hard and soft estimates of the
optimal filter.

II. STOCHASTIC DOMINANCE OF FILTERS AND COPOSITIVITY
CONDITIONS

Theorem 1 below is the main result of this section—it shows
that if stochastic matrices and are constructed such that

(in terms of a copositive ordering), the filtered
estimates computed using and are guaranteed to sandwich
the optimal filtered estimate in terms of the monotone likeli-
hood ratio order. This section sets the stage for Section III where
the construction of low rank matrices and is formulated
as a convex optimization problem on a copositive cone; and
also Section IV where algorithms that exploit this result are pre-
sented.

A. Signal Model and Optimal Filter
Consider an -state discrete time Markov chain on the

state space . Suppose has a
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prior distribution . The -dimensional transition proba-
bility matrix comprises of elements
.
The Markov process is observed via a noisy process
where at each time or . As

is widely assumed in optimal filtering, we make the conditional
independence assumption that given is statistically inde-
pendent of . For the case , de-
note the observation likelihood probabilities as

. For the case is the conditional proba-
bility density. (For readability to an engineering audience, uni-
fied notation with respect to the Lebesgue and counting mea-
sures is avoided.)
With denoting the posterior defined in (1), the optimal

filter is given by (2). Note that the posterior lives in an
dimensional unit simplex comprising of -dimensional prob-
ability vectors . That is,

(5)

Finally, since the state space is , the conditional
mean estimate of the state computed using the observations
is (we avoid using the notation of sigma algebras)

(6)

In some applications, rather than the “soft” state estimate pro-
vided by the conditional mean, one is interested in the “hard”
valued maximum aposteriori estimate defined as

(7)

We refer to the posterior in (2) and state estimates (6),
(7) computed using transition matrix as the “optimal filtered
estimates” to distinguish them from the lower and upper bound
filters.

B. Some Preliminary Definitions
We introduce here some key definitions that will be used in

the rest of the paper.
1) Stochastic Dominance: We start with the following stan-

dard definitions involving stochastic dominance [19]. Recall
that is the unit simplex defined in (5).
Definition 1 (Monotone Likelihood Ratio (MLR) Domi-

nance): Let be any two probability vectors. Then
is greater than with respect to the MLR ordering—de-

noted as —if

(8)

Similarly if in (8) is replaced by a .
The MLR stochastic order is useful since it is closed
under conditional expectations. That is, implies

for any two random variables and
sigma-algebra [12], [7], [8], [19].
Definition 2 (First Order Stochastic Dominance, [19]):

Let . Then first order stochastically dominates

—denoted as —if for
.

The following result is well known [19]. It says that MLR
dominance implies first order stochastic dominance, and it gives
a necessary and sufficient condition for stochastic dominance.
Result 1 ([19]): (i) Let . Then implies

.
(ii) Let denote the set of all dimensional vectors with
nondecreasing components, i.e., . Then

iff for all .
Definition 3 (Total Positivity of Order 2): A transition matrix
is totally positive of order 2 (TP2) if every second order minor

of is non-negative. Equivalently, every row is dominated by
every subsequent row with respect to the MLR order.
2) Copositivity: The following definitions of copositive or-

dering of stochastic matrices will be used extensively in the
paper. Let denote the subset of comprised of non-neg-
ative vectors—this is termed as the positive orthant.
Definition 4 (Copositivity on Simplex): An arbitrary

matrix is copositive if for all , or equiva-
lently, if for all .
The definition says that copositivity on the unit simplex and pos-
itive orthant are equivalent. Clearly, positive semidefinite ma-
trices and non-negative matrices are copositive.
Given two dimensional transition matrices and ,

we now define a sequence of matrices , indexed
by , as follows: Each is a
symmetric matrix of the form:

(9)

Here and , respectively, denote the -th column of ma-
trix and .
Definition 5 (Copositive Ordering of Stochastic Matrices):

Given two transition matrices and , we say that
(equivalently, ) if all the matrices

, defined in (9), are copositive on the simplex .
Intuition: It will be proved in Theorem 1 below that

(10)

That is, the ordering of transition matrices is equivalent
to the MLR ordering of the optimal predictor updates for
all . Moreover, (10) is equivalent to the optimal filter up-
dates satisfying for any observation
and posterior . In other words the ordering of transition ma-
trices preserves the MLR ordering of posterior distributions
computed via the optimal filter. This is a crucial property that
will be used subsequently in deriving lower and upper bounds
to the optimal filtered posterior. It is easily verified that is a
partial order over the set of stochastic matrices, i.e., satisfies
reflexivity, antisymmetry and transitivity.

C. Upper and Lower Sample Path Stochastic Dominance
Bounds to Posterior

With the above definitions, we are now ready to state the main
result of this section. Recall that the original filtering problem
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seeks to compute using the filtering
update (2) with transition matrix and involves mul-
tiplications. This can be excessive for large . Our goal is to
construct low rank transition matrices and such that the
filtering recursion using these matrices form lower and upper
bounds to in the MLR stochastic dominance sense. Due to
the low rank of and , the cost involved in computing these
lower and upper bounds to at each time will be
where (for example, ).
Since we plan to compute filtered estimates using and

instead of the original transition matrix , we need further no-
tation to distinguish between the posteriors and estimates com-
puted using and . Let

denote the posterior updated using the optimal filter (2) with
transition matrices and , respectively. Also, as in (6),
with , the conditional mean estimates of the
underlying state computed using and , respectively, will be
denoted as

(11)

In analogy to (7), denote the “hard” MAP state estimates com-
puted using and as

(12)

The following is themain result of this section. Recall the def-
initions of copositivity ordering , MLR dominance and TP2 in
Section II-B.
Theorem 1 (Stochastic Dominance Sample-Path Bounds):

Consider the filtering updates and
where is defined in (2) and denotes the

transition matrix of the original filtering problem.
1) For any transition matrix , there exist transition matrices

and such that (recall is defined in
Definition 5).

2) Suppose transition matrices and are constructed such
that . Then for any and , the filtering
updates satisfy the sandwich result

3) Suppose is TP2 (Definition 3). Assume the filters
and are initialized with

common prior . Then the posteriors satisfy

As a consequence for all time ,

a) The “soft” conditional mean state estimates defined in
(6), (11) satisfy .

b) The “hard” MAP state estimates defined in (7), (12)
satisfy .

Statement 1 says that for any transition matrix , there al-
ways exist transition matrices and such that
(copositivity dominance). Actually if is TP2, then one can
trivially construct the tightest rank 1 bounds and as shown
in Section III-A.
Given existence of and , the next step is to optimize the

choice of and —that is the subject of Section III where nu-
clear norm minimization is used to construct sparse eigenvalue
matrices and .
Statement 2 says that for any prior and observation , the

one step filtering updates using and constitute lower and
upper bounds to the original filtering problem.
Statement 3 globalizes Statement 2 and asserts that with the

additional assumption that the transitionmatrix of the original
filtering problem is TP2, then the upper and lower bounds hold
for all time. SinceMLR dominance implies first order stochastic
dominance (see Result 1), the conditional mean estimates satisfy

.
Why MLR Dominance?: The proof of Theorem 1 in the

Appendix uses the result that implies that the filtered
update . Such a result does not hold
with first order stochastic dominance —that is, does
not imply that . In other words, the
MLR order is closed with respect to conditional expectations.
This the reason why we use the MLR order (and its multivariate
generalization called the TP2 order defined below) in this paper.
Examples of TP2 Matrices: Several classes of transition ma-

trices satisfy the TP2 property, see [20], [21], [7], ([22], pp.
99–100) and Karlin’s classic book [23]. They are widely used in
structural results in stochastic control [5], [12]. The left-to-right
Bakis HMM used in speech recognition [24] has an upper tri-
angular transition matrix which has a TP2 structure under mild
conditions, e.g., if the upper triangular elements in row are

then is TP2 if .
In the numerical examples section, we use the fact that the

matrix exponential of any tridiagonal generator matrix is TP2
([25], pp. 154). TP2 matrices can be constructed systematically
starting with the first row and then generating each subsequent
row to MLR dominate the previous row. Each new row can be
constructed via a LP feasibility test since given the previous row,
the elements of the next row lie in a convex polytope.

D. Stochastic Dominance Bounds for Multivariate HMMs

We conclude this section by showing how the above bounds
can be generalized to multivariate HMMs—the main idea is
that MLR dominance is replaced by the multivariate TP2 (to-
tally positive of order 2) stochastic dominance [19], [8], [7].
We consider a highly stylized example which will serve as a
reproducible way of constructing large scale HMMs in numer-
ical studies of Section VI.
Consider independent Markov chains,

with transition matrices . Define the joint process
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. Let and
denote the vector indices where each index

.
Suppose the observation process recorded at a sensor has

the conditional probabilities . Even
though the individual Markov chains are independent of each
other, since the observation process involves all Markov
chains, computing the filtered estimate of , requires com-
puting and propagating the joint posterior . This is
equivalent to HMM filtering of the process with transition
matrix where denotes Kronecker
product. If each process has states, then is an
matrix and the computational cost of the HMM filter at each
time is which is excessive for large .
A naive application of the results of the previous sections

will not work, since the MLR ordering does not apply to the
multivariate case (in general, mapping the vector index into a
scalar index does not yield univariate distributions that areMLR
orderable). We use the totally positive (TP2) stochastic order,
which is a natural multivariate generalization of the MLR order
[19], [8], [7]. Denote the element-wise minimum and maximum
vectors

(13)

Denote the -variate posterior at time as

and let denote the space of all such -variate posteriors.
Definition 6 (TP2 Ordering3): Let and denote any

two -variate probability mass functions. Then if

.
If and are univariate, then this definition is equivalent to
the MLR ordering . Indeed, just like the MLR order,
the TP2 order is closed under conditional expectations [7].
Next define such that its -th component is . In
analogy to Definition 5 and (10), given two transition matrices
and , we say that

(14)

The main result regarding filtering of multivariate HMMs is
as follows:
Theorem 2: Consider an -variate HMM where each tran-

sition matrix satisfies for (where is
interpreted as in Definition 5). Then
(i) .
(ii) Theorem 1 holds for the posterior and state estimates with
replaced by .

3In general the TP2 order is not reflexive. A multivariate distribution is
said to be multivariate TP2 (MTP2) if holds, i.e.,

. Actually this definition of reflexivity also applies to stochastic ma-
trices. That is, if are scalar indices then MTP2 and TP2
(Definition 3) are identical for a stochastic matrix, see [7].

We need to qualify statement (ii) of Theorem 2 since for mul-
tivariate HMMs, the conditional mean and MAP estimate

are -dimensional vectors. The inequality of
statement (ii) is interpreted as the component-wise partial order
on , namely, for all . (A similar
result applies for the upper bounds.)

III. CONVEX OPTIMIZATION TO COMPUTE LOW RANK
TRANSITION MATRICES

It only remains to give algorithms for constructing low rank
transition matrices and that yield the lower and upper
bounds and . These involve convex optimization [26], [27]
for minimizing the nuclear norm. The computation of and
is independent of the observation sample path and so the asso-
ciated computational cost is irrelevant to the real time filtering.
Recall that the motivation is as follows: If and have rank ,
then the computational cost of the filtering recursion is
instead of at each time .

A. Construction of Without Rank Constraint

Given a TP2 matrix , the transition matrices and such
that can be constructed straightforwardly via
an LP solver. With denoting the rows of ,
a sufficient condition for is that for any row
. Hence, the rows satisfy linear constraints with respect to
and can be straightforwardly constructed via an LP solver.

A similar construction holds for the upper bound , where it is
sufficient to construct .
Rank 1 Bounds: If is TP2, an obvious construction is to

construct and as follows: Choose rows and
for . These yield rank 1 matrices and . It

is clear from Theorem 1 that and constructed in this manner
are the tightest rank 1 lower and upper bounds.

B. Nuclear Norm Minimization Algorithms to Compute Low
Rank Transition Matrices

In this subsection we construct and as low rank transition
matrices subject to the condition . To save space we
consider the lower bound transition matrix ; construction of
is similar. Consider the following optimization problem for :

(15)

subject to the constraints for
, where for

(16a)
(16b)
(16c)

Recall is defined in (9) and (16a) is equivalent to . The
constraints are convex in matrix , since (16a)
and (16c) are linear in the elements of , and (16b) is convex
(because norms are convex). The constraints (16a), (16c) are ex-
actly the conditions of Theorem 1, namely that is a stochastic
matrix satisfying .
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The convex constraint (16b) is equivalent to ,
where denotes the induced 1-norm for matrices.4
To solve the above problem, we proceed in two steps:
1) The objective (15) is replaced with the reweighted nuclear
norm (see Section III-B1 below).

2) Optimization over the copositive cone (16a) is achieved via
a sequence of simplicial decompositions (Section III-B2
below).

1) Reweighted Nuclear Norm: Since the rank is a
non-convex function of a matrix, direct minimization of the
rank (15) is computationally intractable. Instead, we follow the
approach developed by Boyd and coworkers [26], [27] to min-
imize the iteratively reweighted nuclear norm. As mentioned
earlier, inspired by Candès and Tao [14], there has been much
recent interest in minimizing nuclear norms for constructing
matrices with sparse eigenvalue sets or equivalently low rank.
Here we compute by minimizing their nuclear norms
subject to copositivity conditions that ensure .
Let denote the nuclear norm, which corresponds to the

sum of the singular values of a matrix, The re-weighted nuclear
norm minimization proceeds as a sequence of convex optimiza-
tion problems indexed by . Initialize . For

, compute matrix

(17)

Notice that at iteration , the previous estimate, ap-
pears in the cost function of (17) in terms of weighting matrices

. These weighting matrices are evaluated iteratively
as

(18)

Here is a reduced singular value de-
composition, starting with and .
Also is a small positive constant in the regularization term
. In numerical examples of Section VI, we used YALMIP

with MOSEK and CVX to solve the above convex optimization
problem.
The intuition behind the reweighting iterations is that as the

estimates converge to the limit , the cost function
becomes approximately equal to the rank of .
2) Simplicial Decomposition for Copositive Programming:

Problem (17) is a convex optimization problem in . However,
one additional issue needs to be resolved: the constraints (16a)
involve a copositive cone and cannot be solved directly by stan-
dard interior point methods. To deal with the copositive con-
straints (16a), we use the state-of-the-art simplicial decomposi-
4The three statements and

are all equivalent since because is a probability
vector (pmf)

tion method detailed in [16]. The nice key idea used in [16] is
summarized in the following proposition.
Proposition 1 ([16]): Let denote any sub-simplex of the

belief space , with vertices . Then a sufficient
condition for copositive condition (16a) to hold on is that

for all pairs of vertices .
Proposition 1 allows us to replace the constraints (16a)–(16c)
with constraints of the type

Let denote the set of subsimplices
at iteration that constitute a partition of , i.e., for each

is the convex hull
of the vertices . Proposition 1 along with the
nuclear norm minimization leads to a finite dimensional convex
optimization problem that can be solved via the following 2
step algorithm:

for iterations ,
1) Solve the sequence of convex optimization
problems (17), with constraints

.
2) if nuclear norm decreases
compared to that in iteration by more than
a pre-defined tolerance, partition into as
detailed in [16]: Among all subsimplices and pairs
of vertices, choose the pair satisfying

with the longest distance
between them and pick the two subsimplices that
share the edge formed by these vertices, .
Then, subdivide these subsimplices along the
midpoint of this edge, i.e.,
if ,
replace it in by the two new subsimplices

and
,

and similarly for .
Set and go to Step 1.
else Stop.

The iterations of the above simplicial algorithm lead to a se-
quence of decreasing costs , hence the algo-
rithm can be terminated as soon as the decrease in the cost be-
comes smaller than a pre-defined value (set by the user); please
see [16] for details on simplex partitioning. We emphasize again
that the algorithms in this section for computing and are
off-line and do not affect the real time filtering computations.

IV. STOCHASTIC DOMINANCE CONSTRAINED IMPORTANCE
SAMPLING FILTER

So far we have constructed reduced complexity lower and
upper stochastic dominance bounds that confine the posterior
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sample path of the optimal filter to the partially ordered set
at each time . The next question is: Given these

estimates and , how to construct an algorithm to estimate
? That is, how can the reduced complexity bounds and

be exploited to estimate the posterior ? We present a filtering
algorithm that is inspired by recent results in stochastic linear
solvers [28], [29]. The algorithm uses importance sampling for
matrix-vector multiplication together with Gibbs sampling to
ensure that the estimated posterior lies in the partially or-
dered set . The resulting estimate that exploits the
upper and lower bounds has a lower variance than the uncondi-
tional estimator since .
Why? Running a reduced complexity estimator and then

switching to a high resolution estimator when an event of
interest occurs, arises in monitoring systems, cued sensing in
adaptive target tracking systems [30] and body area networks
[31], [32]. In these examples, it is of interest to detect when
the underlying Markov chain is close to a target state. A sensor
monitoring the state of a noisy Markov chain can compute the
reduced complexity filtering bounds cheaply. Since the reduced
complexity bounds provably sandwich the true posterior, as
soon as these bounds get close to a target state, the sensor
switches to a higher resolution (complexity) estimator. In cued
target tracking, when a target’s state approaches a high threat
level, the reduced complexity tracker can cue (deploy) a higher
resolution (complexity) tracker.

A. Stochastic Dominance Constrained Importance Sampling
Filtering Algorithm

Suppose at time , we have an estimate of the
optimal filtered estimate together with the reduced com-
plexity bounds and such that .
Algorithm 1 computes an estimate of the optimal filtered
estimate . Steps 0 and 1 were detailed in Sections II and
III. Step 2 computes an estimate of the optimal pre-
dictor using Monte-Carlo importance sampling for
matrix-vector multiplication so that the constraint

holds. Step 3 then computes the
filtered posterior at time with computations as

(Bayes rule). By Theorem 1, this updated
posterior is guaranteed to satisfy .
Discussion of Step 2 in Algorithm 1: Step 2 computes the

components of predicted estimate . At
the -th iteration of Step 2, the aim is to simulate samples

from the -th row of
so that these samples satisfy . It is
easily seen that this is equivalent to the MLR constraint

for the -th component in terms
of the -th component. Building up these samples se-
quentially for constitutes a Gibbs sampling
approach to ensure that the constraints hold and is a special case
of adaptive importance sampling.5 Equation (20) together with
the if-then statement preceding (21) achieves this objective.
Next, the update in (21), namely , is
simply an importance sampling Monte-Carlo estimator for the
-th component of matrix vector product . For example,
5We thank Eric Moulines and Olivier Cappe of ENST for mentioning this.

if the importance pmf is chosen as , then is simulated
from and .
The set consists of the indices of accepted samples

that satisfy the constraints. Finally,
(22) is the average of these accepted samples.

Algorithm 1 Stochastic Dominance Constrained
Importance Sampling Filter at time

Aim: Given posterior estimate , lower bound
and upper bound , evaluate .

Step 0 (offline): Given TP2 transition matrix , compute
low rank and with by minimizing nuclear
norm (Section III-B).

Step 1: Evaluate predicted & filtered upper/lower bounds

(19)

Step 2: Compute predicted estimate using .

for to do

Evaluate stochastic dominance path bounds and :
and for

(20)

for iterations to do

Sample from importance pmf .

if then

(21)

end if

end for

Compute estimated predictor as

(22)

(If is empty, set .)

end for

Step 3: Compute filtered estimate .

The key point in Algorithm 1 is the reduced variance compared
to the unconstrained estimator since
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. If the stochastic dominance constraints are not ex-
ploited, then instead of (20),

(23)

Choice of Importance Distribution: In Algorithm 1, the im-
portance distribution is an -dimension probability vector.
There are several choices for the importance distribution .
1) An obvious choice is , in which case (21)
becomes: If then .

2) The optimal importance function, which minimizes the
variance of , is . This is not
useful since evaluating it requires multiplications
for each and therefore multiplications in total.

3) A near optimal choice is to choose or
. These have already been computed

and therefore no extra computations are required. These
are particularly useful when and are constructed to
minimize the distance between the bounds and the actual
posterior (as discussed in Section III-B).

One can add an optional step below (21) to increase the sam-
pling efficiency—if a particular index does not satisfy the
constraint, then there is no need to simulate it again; simula-
tion of this index can be eliminated by setting the corresponding
probability .
Note that Algorithm 1 is not a particle filter. In particular, (21)

is simply a Monte-Carlo evaluation of the matrix multiplication
and ismotivated by techniques in [29], [28].Without the

sample path constraints, (21) reduces toAlgorithm 1 of [28]. De-
generacy issues that plague particle filtering do not arise. For
iterations at each time instant , Algorithm 1 has
computational costwhere is the rankof . In comparisonapar-
ticle filter with particles involves computational cost.

B. Importance Sampling Filter for Computing Lower Bound

Given the lower bound matrix of rank can be com-
puted exactly using (19) with computations. An al-
ternative method is to exploit the rank and estimate by
using Monte-Carlo importance sampling methods similar to Al-
gorithm 1. Consider the singular value decomposition of :

(24)

where we have minimized rank via the nuclear norm mini-
mization algorithm of Section III-B. Algorithm 2 presents the
importance sampling filter for (computing the upper bound
is similar).
The choice of importance sampling distributions is similar

to that for Algorithm 1.

C. Stochastic Dominance Constrained Particle Filter—A
Non-Result

Given the abundance of publications in particle filtering, it is
of interest to obtain a particle filtering algorithm that exploits
the upper and lower bound constraints to estimate the poste-
rior. Unfortunately, since particle filters propagate trajectories
and not marginals, we were unable to find a computationally

efficient way of enforcing the MLR constraints
in the computation of . (If we propagated the marginals, then
the algorithm becomes identical to Algorithm 1.) Also, since
MLR comparison of two -dimensional posteriors involves

multiplications, projecting particles to the polytope
involves computations. Finally, in the

particle filtering folklore, the so called ‘optimal’ choice for the
importance density is
with particle weight update .
For each particle, this requires computations and hence

for particles.

V. ANALYSIS OF BOUNDS

Algorithm 2 Importance Sampling Filter for estimating
lower bound at time

Aim: Given lower bound estimate , evaluate lower
bound .

for to do

for iterations to do

Sample from importance pmf .

Set .

end for

Set .

end for

Set (where the vectors
are precomputed).

Compute filtered posterior .

The main result, namely, Theorem 1 above, was an ordinal
bound: It said that we can compute reduced complexity fil-
ters and such that the posterior of the original
filtering problem is lower and upper bounded on the partially
ordered set for all time . Moreover, by mini-
mizing (17), we computed transition matrices and so that

and .
In this section we construct cardinal bounds—that is, an ex-

plicit analytical bound is developed for in terms of
. These bounds together with Theorem 1 give a complete char-
acterization of the reduced complexity filters.
In order to present the main result, we first define the Do-

brushin coefficient:
Definition 7 (Dobrushin Coefficient): For a transition matrix
, the Dobrushin coefficient of ergodicity is

(25)

Note that lies in the interval . Also implies
that the process is independent and identically distributed
(iid). In words: the Dobrushin coefficient of ergodicity is
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the maximum variational norm6 between two rows of the tran-
sition matrix .
The following is the main result of this section:
Theorem 3: Consider an HMM with transition matrix and

state levels . Let denote the user defined parameter in
constraint (16b) of convex optimization problem (17) and let
denote the solution. Then
1) The expected absolute deviation between one step of fil-
tering using versus is upper bounded as:

(26)

Here is with respect to the measure
which is the denomi-

nator of the Bayesian filtering update .
2) The sample paths of the filtered posteriors have the fol-
lowing explicit bounds at each time

(27)

Here denotes the Dobrushin coefficient of the transi-
tion matrix and is the posterior computed using the
HMM filter with , and

(28)

Theorem 3 gives explicit upper bounds between the filtered
distributions using transition matrices and . Similar bounds
hold for and are omitted. The approach used here in terms
of the Dobrushin coefficient is similar to that in [1]. We also
refer to [33] for stability results on filters involving mismatch
between the true system and the approximating filter model. In
[34] stability results are presented for filters involving mismatch
between the true system and the averaged system for two-time
scale systems.
The bounds are useful since their computation involves

the reduced complexity filter with transition matrices —the
original transition matrix is not used. In numerical examples
below, we illustrate (26).
6It is conventional to use the variational norm tomeasure the distance between

two probability distributions. Recall that given probability mass functions and
on , the variational norm is

. So the variational norm is just half the norm
between two probability mass functions.

VI. NUMERICAL EXAMPLES

In this section we present numerical examples to illustrate
the behavior of the reduced complexity filtering algorithms pro-
posed in this paper. To give the reader an easily reproducible nu-
merical example of large dimension, we construct a 3125 state
Markov chain according to the multivariate HMM construction
detailed in Section II-D. Consider independent Markov
chains , each with 5 states. The observation
process is

where the observation noise is zero mean iid Gaussian
with variance . Since the observation process involves all
5 Markov chains, computing the filtered estimate requires
propagating the joint posterior. This is equivalent to defining
a state Markov chain with transition matrix

where denotes Kronecker product. The

optimal HMM filter incurs million computations at
each time step .
1) Generating TP2 Transition Matrix: To illustrate the re-

duced complexity global sample path bounds developed in The-
orem 1, we consider the case where is TP2. We used the fol-
lowing approach to generate : First construct ,
where is a tridiagonal generator matrix (nonnegative off-diag-
onal entries and each row adds to 0) and . Karlin’s classic
book ([25], pp. 154) shows that is then TP2. Second, as shown
in [7], the Kronecker products of preserve the TP2 property
implying that is TP2.
Using the above procedure, we constructed a 3125 3125

TP2 transition matrix as shown in (29) at the bottom of the
page.
2) Off-Line Optimization of Lower Bound via Convex Opti-

mization: We used the semidefinite optimization solvesdp
solver from MOSEKwith YALMIP and CVX to solve7 the convex
optimization problem (17) for computing the upper and lower
bound transition matrices and . To estimate the rank of the
resulting transition matrices, we consider the costs (17), which
correspond approximately to the number of singular values
larger than (defined in (18)). The reweighted nuclear norm
algorithm is run for 5 iterations, and the simplicial algorithm is
stopped as soon as the cost decreased by less than 0.01.
7See http://web.cvxr.com/cvx/doc/ for a complete documentation of CVX.

(29)
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TABLE I
RANKS OF LOWER BOUND TRANSITION MATRICES EACH OF DIMENSION
3125 3125 OBTAINED AS SOLUTIONS OF THE NUCLEAR NORMMINIMIZATION
PROBLEM (17) FOR SIX DIFFERENT CHOICES OF APPEARING IN CONSTRAINT
(16B). NOTE CORRESPONDS TO AND CORRESPONDS

TO THE IID CASE

Fig. 1. Plot of 3125 singular values of and singular values of five different
transition matrices parametrized by in Table I. The transition matrix
(corresponding to ) of dimension 3125 3125 is specified in (29).

To save space we present results only for the lower bounds.
We computed8 5 different lower bound transition matrices by
solving the nuclear norm minimization problem (17) for 5 dif-
ferent choices of defined in constraint
(16b).
Table I displays the ranks of these 5 transition matrices ,

and also the rank of which corresponds to the case .
The low rank property of can be visualized by displaying the
singular values. Fig. 1 displays the singular values of and .
When , the rank of is 1 and models an iid chain;
then simply comprises of repetitions of the first row of . As
is made smaller the number of singular values increases. For

coincides with .
3) Performance of Lower Complexity Filters: At each time
, the reduced complexity filter incurs
computational cost of where and is spec-
ified in Table I. For each matrix and noise variances in
the range we ran the reduced complexity HMM filter

for a million iterations and computed the average
8In practice the following preprocessing is required: computed via the

semidefinite optimization solver has several singular values close to zero—this
is the consequence of nuclear norm minimization. These small singular values
need to be truncated exactly to zero thereby resulting in the computational sav-
ings associated with the low rank. How to choose the truncation threshold?
We truncated those singular values of to zero so that the resulting matrix
(after rescaling to a stochastic matrix) satisfies the normalized error bound

, i.e., negligible error. The rescaling to a
stochastic matrix involved subtracting the minimum element of the matrix (so
every element is non-negative) and then normalizing the rows. This transforma-
tion does not affect the rank of the matrix thereby maintaining the low rank. For
notational convenience, we continue to use instead of .

Fig. 2. Mean Square Error of lower bound reduced complexity filters computed
using five different transition matrices summarized in Table I. The transition
matrix of dimension 3125 3125 is specified in (29). The four solid lines
(lowest to highest curve) are for . The optimal filter cor-
responds to , while the iid approximation corresponds to .

mean square error of the state estimate. These average mean
square error values are displayed in Fig. 2. As might be intu-
itively expected, Fig. 2 shows that the reduced complexity filters
yield amean square error that lies between the iid approximation

and the optimal filter . In all cases, as mentioned
in Theorem 1, the estimate provably lower bounds the true
posterior as for all time . Therefore the conditional
mean estimates satisfy for all .
4) Stochastic Dominance Constrained Importance Sampling

Algorithm 1: Here we illustrate the performance of three dif-
ferent suboptimal state predictors compared to the optimal pre-
dictor, namely
1) Stochastic dominance predictor based on the upper/lower
bounds using (22) of Algorithm 1. We ran this for 5 dif-
ferent values of , namely, 2,4,6,8,10 iterations at each
time.

2) Stochastic dominance predictor without exploiting bounds,
namely (22), (23), again for the 5 values of .

3) Reduced complexity lower bound predictor com-
puted using the lower bound transition matrix .

With denoting any of the above three suboptimal predic-
tors, we computed themean square error averaged over amillion
simulations as follows:

(30)

Here denotes the optimal predictor and was sam-
pled uniformly from the dimensional unit simplex.
Fig. 3(a) and (b) display MSE of all 3 predictors listed above.

Fig. 3(a) corresponds to , resulting in of rank 1. Fig. 3(b)
corresponds to , resulting in of rank 40. For the
constrained and unconstrained algorithms, naturally, more itera-
tions per time step yield more accurate estimates and a smaller
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Fig. 3. Average mean square error (MSE) defined in (30) between optimal pre-
dictor and three suboptimal predictors described in Section VI-4, namely the
constrained importance sampling predictor (denoted as “constrained”), the un-
constrained importance sampling predictor (denoted as “unconstrained”) and
the reduced complexity lower bound predictor (denoted as “lower bound”). The
transition matrix of dimension 3125 3125 is specified in (29). Recall from
Table I that corresponds to the iid transition matrix of rank 1, while

corresponds to of rank 40. (a) , (b) .

MSE. The MSE of the reduced complexity lower bound pre-
dictor is displayed with a dashed line. (Recall the performance
of the lower bound estimates with these transition matrices were
reported in Section VI-3.) The figures show that substantial re-
ductions in the mean square error occur by exploiting the sto-
chastic dominance constraints, even for the iid lower bound case

.
5) Explicit Bounds: We now illustrate the explicit bound

(26). We chose the same 3125 state Markov chain with
as above and a tridiagonal observation matrix

(31)

We evaluated the right hand side of the bound (26) normalized
by for 5 different choices of de-
fined in constraint (16b). (Recall from Table I that these corre-
spond to 5 different choices of .) Fig. 4 displays these bounds
for three different observation matrices, namely

Fig. 4. The “upper bound” in the figure denotes the right hand side of (26) nor-
malized by . The values displayed are for five different values of corre-
sponding to five different transition matrices whose ranks are given in Table I.
The observation matrix parametrized by is specified in (31).

and . The figure shows that the bounds have two
properties that are intuitive: First as get smaller, the approx-
imation gets tighter and so one would expect that

is smaller. This is reflected
in the upper bound displayed in the figure. Second, for larger
values of , the “smaller” the noise and so the higher the esti-
mation accuracy. Again the bounds reflect this.

VII. DISCUSSION
Reduced Complexity Predictors: If one were interested in

constructing reduced complexity HMM predictors (instead of
filters), the results in this paper are straightforwardly relaxed
using first order dominance instead of MLR dominance
as follows: Construct by nuclear norm minimization as in
(17), where (16a) is replaced by the linear constraints ,
on the rows , and (16b), (16c) hold. Thus the con-
struction of is a standard convex optimization problem and
the bound holds for the optimal predictor for all

.
Further, if is chosen so that its rows satisfy the linear con-

straints , then the following global
bound holds for the optimal predictor: for all
time and . A similar result holds for the upper bounds
in terms of .
It is instructive to compare this with the filtering case, where

we imposed a TP2 condition on for the global bounds (4) to
hold wrt . We could have equivalently imposed a TP2 con-
straint on and allow to be arbitrary for the global filtering
bounds (4) to hold, however the TP2 constraint is non-convex.
Finally, keep in mind that the predictor bounds in terms of
do not hold if a filtering update is performed since is not

closed wrt conditional expectations (unlike ).
Summary: The main idea of the paper was to develop

reduced complexity HMM filtering algorithms with provable
sample path bounds. At each iteration, the optimal HMM
filter has computations and our aim was to derive
reduced complexity upper and lower bounds with complexity

where . The paper consisted of 4 main results.
Theorem 1 showed that one can construct transition matrices
and and lower and upper bound beliefs and that
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sandwich the true posterior as , for all time
. Theorem 2 generalized this to multivariate TP2

orders. Section III used copositive programming methods to
construct low rank transition matrices and of rank by
minimizing the nuclear norm to guarantee
and over the space of all posteriors .
Finally, Theorem 3 derived explicit bounds between the optimal
estimates and the reduced complexity estimates.
It is interesting that the derivation of MLR stochastic dom-

inance bounds in this paper involves copositivity conditions.
There is a rich literature in copositivity including computational
aspects [15], [16]. In future work it is worthwhile extending the
bounds in this paper to copositive kernels for continuous state
filtering problems. Such results could yield guaranteed sample
path bounds for general nonlinear filtering problems.

APPENDIX

A. Proof of Theorem 1

1. Choose and where
is the unit -dimensional vector with 1 in the th position.

Then clearly, . These correspond to extreme points on
the space of matrices with respect to copositive dominance.
2. We show this in 2 steps. In the first step, we show that for

the predictor: . By definition
is equivalent to

for each . This is equivalent to the above condition
holding for and . This is equivalent
to the copositivity ordering of Definition 5.
In the second step, we show that the filtered updates satisfy

. Denote and and
from the first step . It is straightforwardly verified that

implies for any observation likelihood
. (This crucial property of closure under Bayes’ rule makes

the MLR stochastic order ideal for this paper.)
3. Suppose . Then by Statement 2,

. Next since
is TP2, it follows that implies

. Combining the
two inequalities yields , or
equivalently . Finally, MLR dominance implies
first order dominance which by Result 1 implies dominance of
means thereby proving 3(a).
To prove 3(b) we need to show that implies

. This is shown by contra-
diction: Let and . Suppose

. Then implies . Since
, we have which is a contradiction

since is the argmax for .

B. Proof of Theorem 2

If suffices to show that .
(The proof for repeated Kronecker products then follows by in-
duction.) Consider the TP2 ordering in Definition 6. The in-
dices and are each two dimensional.
There are four cases:

. TP2 dominance for the first and
last cases are trivial to establish. We now show TP2 dominance
for the third case (the second case follows similarly): Choosing
the indices and , it follows that

is equivalent to

So a sufficient condition is that for any non-negative numbers
and

which is equivalent to by Definition 5.

C. Proof of Theorem 3 and Auxiliary Results

We start with the following theorem that characterizes the
(equivalently, variational distance) in the classical Bayes’ rule.
Recall that the Bayes’ rule update using prior and observation
is

Theorem 4: Consider any two posterior probability mass
functions . Then:
1) The variational distance in the Bayesian update satisfies

(Recall that the variational distance is half the norm).
2) The normalization term in Bayes’ rule satisfies

Proof: We refer to [1] for a textbook treatment of similar
proofs on more general spaces.
1) Statement 1: For any

(32)

Applying the result9 (see Theorem 5 below for proof) that for
any vector

(33)

9This inequality is tighter than Holder’s inequality which is
.
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to the right hand side of the above equation yields,

where and
.

So

Since is a probability vector, clearly
. This together with the fact that are non-negative

implies

So denoting , we have

Finally applying the result that for
(see ([35], pp. 267)), yields

2) Statement 2: Applying Holder’s inequality yields

implying that

(34)

Also clearly . Combining
this with (34) proves the result.
3) Proof of Theorem 3: With the above results we are now

ready to prove the theorem.
Part 1: Since and is a

vector with increasing elements, therefore
. Applying (32) with and

yields

where . Then (33) yields

Since , taking expectations with respect to
the measure , completes the proof.

Part 2: The triangle inequality for norms yields

(35)

Consider the first normed term in the right hand side of (35).
Applying Theorem 4(1) with the notation and

yields

(36)

The second last inequality follows from the construction of
satisfying (16b) (recall the variational norm is half the norm).
The last inequality follows from Theorem 4(2).
Consider the second normed term in the right hand side of

(35). Applying Theorem 4(i) with notation and
yields

(37)

where the last inequality follows from the submultiplicative
property of the Dobrushin coefficient. Substituting (36) and
(37) into the right hand side of the triangle inequality (35)
proves the result.

Proof of (33): This is given in the following theorem. See
([1], pp. 93) for a more general setting.
Theorem 5: .
Let denote those elements of

that are non-negative. Let denote the
magnitude of elements of that are negative. Then

But .
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