
MULTISCALE MODEL. SIMUL. c⃝ 2009 Society for Industrial and Applied Mathematics
Vol. 7, No. 4, pp. 1898–1927

CONSENSUS FORMATION IN A TWO-TIME-SCALE MARKOVIAN
SYSTEM∗

VIKRAM KRISHNAMURTHY†, KEVIN TOPLEY† , AND GEORGE YIN‡

Abstract. This work analyzes distributed linear averaging within a connected network of sensors
that each track the stationary distribution of an ergodic Markov chain with a slowly switching regime.
Our approach is based on a two-time-scale stochastic approximation. A hyperparameter modeled as
a Markov chain on a slower time-scale modulates the regime of each observed Markov chain. The
average of all currently observed stationary distributions constitutes the average-consensus estimate
to be reached by all sensors. Assuming the Markov chains do not share a common stationary
distribution conditioned on their regime, then under the proposed linear averaging algorithm, the
exchange graph conditions required for the sequence of sensor state values to converge weakly to
the average-consensus are obtained. Estimation of a weighted average of all observed stationary
distributions, not only the current ones, is proved feasible over a long-run time horizon, provided
an additional communication condition holds. The sensor state values are also shown to converge
weakly to solutions of a differential inclusion when the communication exchange graphs or observed
Markov chains belong to a family of possible values, thus leading to a set-valued consensus formation.
The rate of convergence of the consensus algorithm is studied by considering the scaled tracking
errors when oriented about their steady-state for each regime of the hyperparameter. In addition,
a Brownian bridge limit is obtained for a centered and scaled sequence of empirical measures. An
adaptation rate is proposed as the minimum exponential rate of the sensor trajectories to the average-
consensus estimate. Various optimization problems related to this adaptation rate are posed, as well
as an approximate ratio that relates between any two sets of exchange graphs the adaptation rate,
sensor scaled error, and absolute sum total averaging weights. Simulations illustrate our results and
observation model.
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1. Introduction. The coordination of a consensus within a multiagent system is
a problem that has been considered in a variety of general settings and solved under
a wide range of assumptions regarding the interagent communication capabilities.
Algorithms that result in “consensus” have thus in general taken on a variety of
forms; for some examples see [13, 43, 42, 18, 45, 19, 3, 15, 12, 41, 17, 7, 8, 37, 33].
Here we will focus on a specific consensus algorithm, also referred to as a consensus
“protocol” [30, 31, 35, 2, 36], under which a network consensus is obtained by linear
averaging of the data held at neighboring sensor nodes.

Linear averaging has, understandably, been a particular research focal point re-
garding consensus formation; see [10, 50, 21, 38, 5, 40]. In these and many other
works on consensus, the multiagent system is generally defined as a collection (or
“network”) of coupled sensors (or “nodes”) with no extensive memory base; hence the

∗Received by the editors December 2, 2008; accepted for publication (in revised form) May 6,
2009; published electronically July 30, 2009.

http://www.siam.org/journals/mms/7-4/74365.html
†Department of Electrical Engineering and Department of Electrical and Electronic Engineering,

University of British Columbia, Vancouver V6T 1Z4, Canada (vikramk@ece.ubc.ca, kevint@ece.ubc.
ca). The research of these authors was supported by Defense Research Development Canada and the
Natural Sciences and Engineering Research Council of Canada.

‡Department of Mathematics, Wayne State University, Detroit, MI 48202 (gyin@math.wayne.
edu). The research of this author was supported in part by the National Science Foundation under
DMS-0603287 and in part by the National Security Agency under grant MSPF-068-029.

1898



CONSENSUS FORMATION 1899

linear averaging scheme is analyzed with respect to a group of decentralized and dis-
tributed agents. This particular network paradigm and consensus mechanism will be
together referred to here as decentralized distributed averaging (DDA). Under a DDA
algorithm, every sensor has a direct linear effect on the estimates of each of its neigh-
bors. Thus the DDA algorithm is scalable and is robust under a variety of network
communication conditions [23, 9, 30, 31]. This is in contrast to consensus protocols for
specialized data fusion problems [43, 42, 18], which have complex algorithmic forms
that cannot be simplified to mere averaging; see also [38, 21].

In precise terms, the DDA consensus algorithm is an iterative procedure wherein
each sensor node linearly averages the information it holds with the information it
receives from other sensors with whom it directly communicates. This computation
is performed unanimously by all sensors; thus it is clear that DDA requires minimum
data storage, labeling of data, or specialization of individual sensors, i.e., use of base
nodes. For a network of n sensors, the DDA algorithm can be parameterized by a
weighted digraph G = {V , E ,W}, where V = {1, . . . , n} denotes the set of sensor
nodes, E ⊆ V × V is a set of directed edges specifying which sensors are coupled (i.e.,
can transmit or receive information), and W ∈ Rn×n denotes the weights with which
neighboring sensors average their held information. By definition the (i, j)th element
of W is zero if (i, j) /∈ E ; with abuse of notation we denote this W ∈ E .

Distributed consensus-tracking algorithm. In this paper, a discrete-time
DDA algorithm is considered to operate together with a linear stochastic approxima-
tion (SA) tracking algorithm based locally at each sensor i ∈ V . Each SA tracking
algorithm aims to estimate the stationary distribution πi ∈ RS of a fast S-state er-
godic Markov chain X i ∈ RS that is observed privately by sensor node i. Motivated
by applications in adaptive tracking in sensor networks, we assume the transition
matrix of each Markov chain {X i : i ∈ V} jump changes slowly with time. More
specifically, we assume that the transition matrix of each Markov chain {X i : i ∈ V}
is conditioned on a hyperparameter θ taking values in a finite set M. The dynam-
ics of θ is provided by θk, a slowly varying m-state Markov chain with state-space
M = {θ1, . . . , θm}, and transition matrix P ε = I + εQ, where ε > 0 is a small param-
eter and Q = (qij) ∈ Rm×m is a generator of a continuous-time Markov chain. Since
ε is small, θ is a slowly varying process and will jump infrequently among different
states.

For each θ ∈ M and i ∈ V , X i
k is an S-state Markov chain with a transi-

tion matrix modulated by the slow Markov chain θk; thus we describe the sequence
{θk, X i

k : i ∈ V , k ∈ N} as a switched Markovian system. As a result, each station-
ary distribution πi(θ) is θ-dependent. When θk switches its values from one state to
another within M, πi(θk) switches accordingly, and so it is necessary for the sensor
network to track these time-varying distributions.

Let us give an intuitive explanation of consensus formation. Given the averaging
weightsW and graph edge set E of the sensor network described above, each node i ∈ V
computes via the distributed consensus tracking algorithm (iteration (1.1) below) a
state-value, denoted si ∈ RS. We will prove that a suitably scaled continuous-time
version of the state-value si converges weakly to a linear combination π̃i(θ(t)) =∑n

l=1 ψ
i
lπ

l(θ(t)) ∈ RS of the stationary distributions {πi(θ(t)) : i ∈ V}. Here the
coefficients ψi

l are determined by the choices of W and E . Consensus formation
deals with the assumptions on the information exchange between sensors required to
obtain a specific structure of π̃i(θ(t)) in the above expression. The sensor network
achieves a consensus if for any given l ∈ V , ψi

l = ψj
l for all i, j ∈ V . The average-

consensus occurs if ψi
l = 1

n for all i, l. Due to the dependence of πi on θ, the values
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of π̃i(θ) stochastically switch among a finite set of values, each corresponding to a
particular θ ∈ M. The average-consensus in this setting is thus a random process.
To supplement the weak convergence results, we derive conditions on the averaging
weights required for each sensor to obtain the stochastic average-consensus π̄(θ(t)).

Assuming both the DDA and local tracking algorithms use a constant step-size
µ at each discrete-time iteration k ∈ N, it will be seen that in order for all sensors
to track the average distribution π̄(θ) each sensor must distributively average both its
observed signal, denoted X i

k, and its state-value si
k. Define the observation exchange

graph Go = {V , Eo,Wo} and state-value exchange graph Gv = {V , Ev,Wv} that,
respectively, determine how each type of data, X i (observation) and si (state), is dis-
tributively averaged. The distributed consensus-tracking algorithm we then consider
is as follows:

sk+1 = (I − µDv + µWv − µDo)sk + µWoXk , s(0) = X(0), Dp = diag(Wp11), p ∈ {o, v}
= sk − µHsk + µWoXk , H = Do + Dv −Wv,

(1.1)

where sk = [s1
k, . . . , sn

k ]′ ∈ RSn×1, Xk = [X1
k , . . . , Xn

k ]′ ∈ RSn×1, the term 11 denotes
a column vector of ones with appropriate dimension, and we let diag(r) be the n × n
diagonal matrix with elements corresponding to those of the vector r ∈ Rn. We
will henceforth let each element of the weight matrices {Wv,Wo} represent an S × S
identity matrix scaled by the respective element; that is, we let W = W

⊗
IS×S ,

where
⊗

denotes the Kronecker product [22]. As a final note, throughout the paper
we let subscript k indicate dependence on a discrete-time in N (e.g., θk), whereas
dependence on continuous-time t ≥ 0 will be denoted (t) (e.g., θ(t)). The single
exception to this rule is the initial data, which is always denoted (0) for both discrete-
time and continuous-time systems; see (1.1).

The above algorithm can be viewed as comprising two DDA algorithms together
with a family of local stochastic approximations; each DDA algorithm averages with
the local state-value either the state-values at neighboring nodes (determined by Gv)
or the observations at neighboring nodes (determined by Go). For a sufficiently small
step-size µ, the iteration (1.1) implies that at each discrete-time k ∈ N, the state-
value si

k computed at any sensor i ∈ V is updated linearly in three ways as follows
(the superscripts * and ** below are intermediate variables for illustration only and
will not be used subsequently):

1. by its own local observation X i
k,

(1.2) (si
k)∗ = si

k + µWo
ii(X

i
k − si

k);

2. by the local observation Xj
k of each neighboring sensor j ∈ {j : (i, j) ∈ Eo},

(si
k)∗∗ = (si

k)∗ + µ
∑

j ̸=i

Wo
ij(X

j
k − (si

k)∗);

3. by the state-value sj
k of each neighboring sensor j ∈ {j : (i, j) ∈ Ev},

si
k+1 = (si

k)∗∗ + µ
∑

j ̸=i

Wv
ij(s

j
k − (si

k)∗∗).

As µ vanishes, these three nested steps may be written as the single iteration (1.1)
because in this limit all second and third order terms in µ become negligible compared
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to the first order terms that are retained in (1.1). We also note that due to the
similarity between steps 1 and 2, each row i ∈ V of the exchange graph Go may
either specify which sensors communicate their observed information Xj to sensor i,
or equivalently which Markov chains Xj sensor i can actually observe, assuming that
the same SA algorithm (1.2) with update weights Wo

ij are applied to each Markov
chain Xj.

Context. The tracking algorithm (1.1) was first introduced in [35] as the dis-
tributed consensus filter. However, in [35] it is assumed (1) Wo = Wv + I, (2) the
diagonal of Wv is zero, and (3) each nonzero averaging weight is unity. Furthermore,
the observation variables {X1

k , . . . , Xn
k } are reduced to a single time-varying scalar

observed in independent and identically distributed Gaussian noise by all sensors. In
contrast to [35], recall that we assume a Markov-modulated dynamic model where
each sensor i ∈ V observes the Markov chain X i

k. Our observation model involves a
two-time-scale formulation with parameters µ and ε. The step-size µ is used in the
recursive tracking and averaging algorithms, whereas the step-size ε represents the
transition rate of the Markov chain θ.

To analyze the continuous-time limit of (1.1), it is assumed in [35] that the ob-
served scalar has a uniformly bounded derivative as the step-size µ approaches zero.
Here, we assume ε = O(µ), indicating that (1.1) has a tracking rate on the same time-
scale as the Markov modulating process. Our main result shows that under suitable
conditions on the network exchange graphs {Gv,Go}, the assumption ε = O(µ) im-
plies the limit of a piecewise constant continuous-time interpolation of the sequence
of each sensor’s estimates si converges weakly to the solution of a Markov modu-
lated ODE as µ → 0. Considering also the sequence of sensor tracking errors, we
demonstrate under similar conditions that an interpolation of the normalized errors
converges weakly to a switching diffusion. Under additional weight constraints it then
follows as a special case of the above results that the estimates si converge weakly to
the average-consensus π̄(θ).

Within this general framework we also address two modifications of the consensus-
tracking algorithm (1.1). One modification assumes that rather than a single chain
X i each sensor i observes a family of Markov chains X i

k ∈ Xi
k, thus implying the

sensor state-values converge weakly to solutions of a switched differential inclusion.
The second modification considers sensor estimation of the cumulative distribution
function (CDF) Πi(θ), i ∈ V , θ ∈ M = {θ1, . . . , θm}, by using empirical measures.
In this case the sensor scaled tracking error converges weakly to a switched Brownian
bridge. We deal with each of these modifications separately in sections 2 and 3.

Related work. We briefly review here the related literature on consensus for-
mation. The distributed consensus-tracking algorithm (1.1) can be viewed as the
combination and extension of two subalgorithms: a local sensor adaptive SA tracking
algorithm,

si
k+1 = si

k + µ(X i
k − si

k), si(0) = X i(0), 0 < µ ≪ 1,

operating in parallel with the well-known (DDA) Laplacian consensus algorithm,

(1.3) sk+1 = (I − µL)sk, L = Dv − Wv.

The consensus algorithm (1.3) has been explored in works such as [31, 9] regarding
its ability to achieve an average-consensus of sensor (or “node”) initial state-values
s(0) = [s1(0), . . . , sn(0)], that is, s̄(0) = 1

n

∑n
i=1 si(0). It is clear the average-consensus

s̄(0) is constant at all times; thus the algorithm (1.3) by itself can result in a static
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consensus that need not be driven by some external parameters, such as the observed
Markov chains Xk considered here (see also [50] and the references therein).

As proposed in [35], we extend the Laplacian consensus algorithm to include
not only averaging of the sensor state-values si but also of the sensor observations
X i

k. This extension is in fact necessary for DDA to ensure average-consensus when
considered within the generality of the current setting, specifically when each sensor
observes and estimates a unique parameter, as we assume here (see (4.1) below).
Unlike certain works on distributed averaging such as [35, 21, 5], we allow {Gv,Go} to
be both directed and weighted, such as those considered, for instance, in [31, 49, 2].
By directed it is meant (i, j) ∈ E ! (j, i) ∈ E , and by weighted it is meant W
need not have every element belong to the set {0, 1}. We also note that if (i, j) ∈ E
implies Wij ̸= 0, as we may assume here, then knowledge of {Wv,Wo} is sufficient to
completely define {Gv,Go}.

The Laplacian consensus algorithm (1.3) derives its name due to its asymptotic
equivalence with the gradient system ṡ(t) = −∇ΦG(s(0)) associated with the Lapla-
cian potential

ΦG(s(0)) =
1
2

n∑

i,j=1

Wv
ij(s

j(0) − si(0))2 =
1
2
s(0)′Ls(0),

where L = diag(Wv11) − Wv is defined as the Laplacian matrix of an undirected
graph G = {V , Ev,Wv} and each node i ∈ V has an initial state-value si(0) ∈ R [31].
Many works [38, 30, 28, 21, 46] consider the Laplacian consensus dynamics (1.3) in
isolation from any tracking model; such works are thus concerned with a static, rather
than time-varying, consensus formation. The general theme addressed in these works
regards the network graph conditions under which (1.3) solves the static average-
consensus problem, that is, having all sensors reach s̄(0), given that Ev has time-
varying or stochastic properties. These concerns are closely related to the issues
of time-delayed or asynchronous communication within sensor networks and other
multiagent systems; we refer the reader to works such as [44, 2, 20, 11, 7, 39, 31, 28, 29]
for detailed consideration.

In contrast, [10] assumes the communication edge set Ev is fixed, undirected, and
connected (that is, there exists at least one node from which all other nodes can be
reached by traversing the edges in Ev). Under these conditions it is shown in the cited
work that the matrix W = I − µL satisfying

(1.4)
minimize ∥ W − 1

n1111′ ∥2

subject to W ∈ Ev, W11 = 11, 11′W = 11′

will imply the maximum asymptotic per-step convergence factor rstep(W ) of the sensor
state-value estimates sk to the average-consensus value s̄(0), where

rstep(W ) = sup
sk ̸=s̄(0)

∥ sk+1 − s̄(0) ∥2

∥ sk − s̄(0) ∥2
.

In (1.4) we note that || · ||2 indicates spectral norm; thus (1.4) is a convex optimization
problem and in [10] is cast as a semidefinite program. The relation of [10] to the
present work is noted since the same constraints of (1.4) are sufficient to ensure sensor
estimation of the average-consensus π̄(θ), and thus the weights W that solve (1.4) may
also be argued as the optimal weights for fast convergence to π̄(θ); see section 4.
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The consensus-tracking framework of our paper is also similar to recent works
[34, 35, 32, 1, 39]. These papers deploy (1.3) as part of a distributed Kalman filter or
in conjunction with local sensor estimation of a time-varying parameter; thus these
works also deal with a time-varying consensus value. For example, assuming that
each sensor node i observes in continuous-time the m-dimensional signal data pair
{zi(t), żi(t)}, the following result is proved in [32]: For any sequence of weighting
matrices Wi(t) the dynamical system

(1.5) ẋi = W−1
i (xj − xi) + żi + W−1

i Ẇi(zi − xi), xi(0) = zi(0),

ensures that every sensor estimate xi tracks the weighted-average consensus

lim
t→∞

xi(t) =

(
n∑

i=1

Wi(∞)

)−1

(Wi(∞) zi(∞)), i = 1, . . . , n,

with zero steady-state error, provided the Laplace transforms of both zi(t) and Wi(t)
each have all poles in the left-hand plane with at most one pole at zero. In the switched
Markovian observation model considered here, we do not assume knowledge of żi(t)
since this would imply direct observation of the parameter {θk}. In our framework
each sensor observes θ only indirectly through changes in the approximated stationary
distribution of the observed Markov chains Xk; thus an algorithm such as (1.5) is not
applicable.

In light of extensive research conducted regarding multiagent coordination, there
are several practical applications of the DDA algorithm in sensor networks, for in-
stance the synchronization of node clocks [36] or distributed load balancing [14]. The
problem of synchronizing coupled oscillators by means of DDA was discussed in [16],
whereas in [4] the authors consider DDA as a mechanism to ensure a team of UAVs
(unmanned air vehicles) will approach a steady-state wherein each UAV surveys an
equal portion of a one-dimensional perimeter. Conversely, [47] models a set of mobile
agents in the plane and develops a distributed control law for stable flocking behavior.
Similarly, [24] applies the decentralized network paradigm of coupled agents to explain
the consensus behavior of a group of self-driven particles during phase transition as
was previously considered in [48].

Outline. Section 2 formulates the observed Markovian system and fundamental
exchange graph requirements and then presents the resulting weak convergence of
the sensor state-value estimates si under (1.1). The scaled sensor tracking error is
discussed in section 3, with particular focus on sensor estimation of the stationary
CDF Πi(θ) associated with πi(θ). Discussion and rationale of the network graph con-
ditions required for average-consensus are detailed in section 4, as well as a discussion
regarding the factors concerning the sensor adaption rates. Numerical simulations are
presented in section 5. The remaining proofs are contained in section 6.

2. Asymptotic consensus dynamics. In this section, we show that (1.1) is
sufficient for each sensor si

k for i ∈ V to track a linear combination of the stationary
distributions {π1(θ), . . . ,πn(θ)}. Let X i

k be an S-state Markov chain with state-
space {e1, . . . , eS}, where each ei is an S × 1 standard unit vector. Each X i

k is
θ-dependent for θ ∈ M = {θ1, . . . , θm}, a finite set such that the transition matrix of
X i

k conditioned on θ is given by Ai(θ) = (ai
lj(θ)), where

ai
lj(θ) = P (X i

k+1 = ej |X i
k = el, θk = θ).

To proceed, we pose the following conditions.
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(A) 1. For each θ ∈ M, the transition matrix Ai(θ) is irreducible and aperiodic
for each i ∈ V .

2. Parameterize the transition probability matrix of θ as

P ε = I + εQ,

where ε is a small parameter satisfying 0 < ε ≪ 1 and Q is the generator
of a continuous-time finite-state Markov chain.

3. The process θk is slow in the sense that ε = O(µ). For simplicity, we
take ε = µ henceforth.

(B) All eigenvalues of the matrix H = (L + Do) have positive real parts or non-
negative real parts. We denote these exchange graph conditions as 0 ≺ H
and 0 ! H , respectively.

Condition (A) specifies our observation model as a two-time-scale Markovian
system. Condition (B) is a constraint on the network exchange graphs {Go,Gv} and
ensures bounded stability of (1.1) in the limit as µ → 0. We note that 0 ≺ H implies
−H is a Hurwitz matrix; under this or 0 ! H we later show in section 4 that further
weight conditions can ensure an average-consensus is obtained.

Theorem 2.1. Assume conditions (A)–(B) and suppose s(0) is independent of
µ. Define the continuous-time interpolated sequences of iterates

sµ(t) = sk, θµ(t) = θk for t ∈ [kµ, (k + 1)µ).

Then as µ → 0, (sµ(·), θµ(·)) converges weakly to (s(·), θ(·)) such that θ(·) is a
continuous-time Markov chain with generator Q and s(·) satisfies

(2.1)
ds(t)
dt

= −Hs(t) + W0π(θ(t)), t ≥ 0, s(0) = X(0).

Note that if s(0) = sµ(0), we require that sµ(0) converge to s(0) weakly. However,
for simplicity, we choose s(0) to be independent of µ. The above theorem implies the
sensor iterates resulting from (1.1) converge weakly to a Markovian switched ODE.
This is in contrast to the “standard” analysis of SA algorithms [27], where the limiting
process is a deterministic ODE. The proof of the theorem uses the martingale problem
formulation of Stroock and Varadhan; see also [51]. If a consensus is obtained by all
sensors, that is, si(t) = sj(t) for all i, j ∈ V , then this consensus is a stochastic process
dictated by θ. Again this is in contrast to works concerned with a static consensus
formation (i.e., [31, 38, 21, 30, 9]), as well as others wherein the average-consensus
estimate is a linear combination of time-varying signals unanimously observed by
all sensors [35] or with observed rates of change [32]. In comparison, the consensus
estimate we obtain is an average of piecewise fixed finite-state Markov chain stationary
distributions, where it may be assumed each Markov chain is observed by only one
sensor.

Long-time horizon. Theorem 2.1 states a convergence result for small µ and
large k such that µk remains bounded. However, if the consensus-tracking algorithm
(1.1) is in operation for a long time, we would like to establish its behavior for a
large-time horizon. We thus next consider the case when µ is small and k is large
such that µk → ∞. This is essentially a stability result corresponding to the limit of
the switching ODE (2.1) as t → ∞. For this result we assume that Q is irreducible, or
equivalently the associated continuous-time Markov chain θ(t) is irreducible. Recall
that the irreducibility means that the system of equations
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(2.2)

⎧
⎪⎨

⎪⎩

ν′Q = 0,

11′ν =
m∑

j=1

νj = 1

has a unique solution satisfying νj > 0 for all j = 1, . . . , m. The vector ν =
(ν1, . . . , νm)′ ∈ Rm is then the stationary distribution of θ. Since θ is a finite-state
Markov chain, we note that if 0 ≺ H , then

m∑

i=1

∫ T

0
exp(−H(T − u))W0π(θi)I{θ(u)=θi}du

converges with probability 1 (w.p.1) as T → ∞ due to the exponential dominance
of the term exp(−H(t − u)). A closer scrutiny permits an expression of this limit in
closed form. Denote

s∗ = H−1
m∑

i=1

Woπ(θi)νi.

Theorem 2.2. Assume the conditions of Theorem 2.1 with the modifications
that Q is irreducible and −H is Hurwitz. Then for any sequence {tµ} satisfying
tµ → ∞ as µ → 0, sµ(· + tµ) converges weakly to s∗. Moreover, for any 0 < T < ∞,
sup|t|≤T |sµ(t + tµ) − s∗| → 0 in probability.

In Theorem 2.2, the generator Q is assumed irreducible. We may also consider the
case when Q has an absorbing state and thus the remaining m−1 states are transient.
This implies there is a zero row in Q. In this case, although the Markov chain is not
irreducible, the limit probability distribution still exists. This distribution is a vector
with one component equal to unity (corresponding to the absorbing state) and the
remaining components equal to zero. As a result, the techniques used in Theorem 2.2
can still be applied. We state the following result but omit its proof for brevity.

Theorem 2.3. Assume the conditions of Theorem 2.2 with the modification that
the Markov chain θ has an absorbing state. Without loss of generality, denote this
state by θ1. Then for any sequence {tµ} satisfying tµ → ∞ as µ → 0, sµ(· + tµ)
converges weakly to sa, where

sa = H−1W0π(θ1).

Moreover, for any 0 < T < ∞, sup|t|≤T |sµ(t + tµ) − sa| → 0 in probability.
Set-valued consensus formation. In Theorem 2.1, it is assumed that for each

θ, the observed Markov chains {X i
k : i ∈ V} will each have a respective transition

matrix Ai(θ) that is irreducible and aperiodic. This is an ergodicity condition that
may be generalized to the case when the observed stationary distributions are not
unique, but instead each belong to a set Ai(θ) of transition matrices with correspond-
ing set of stationary distributions Γi

π(θ). By the same DDA algorithm (1.1), then
each sensor can reach a set-valued average-consensus regarding the collection of sets
Γ(θ) = [Γ1

π(θ), . . . ,Γn
π(θ)]. As each observed Markov chain X i

k will have a stationary
distribution belonging to exactly one element in the set Γi

π(θ), then under (1.1) the
collection of values that the estimate si will converge weakly to is given by

(2.3) P i(θ) =
⋃

πj∈Γj
π(θ)

{
n∑

j=1

ψijπ
j(θ)

}
,
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where Λ = (ψij) is a constant matrix later defined in (6.12). The set-valued average-
consensus P̄(θ) may likewise be expressed by

(2.4) P̄(θ) =
⋃

πi∈Γi
π(θ)

{
1
n

n∑

i=1

πi(θ)

}
.

Due to the linearity of (1.1), the assumption of set-valued transition matrices
Ai(θ) is in fact equivalent to considering set-valued exchange graphs {Gv,Go}, since
different exchange graphs result in each sensor’s estimation of a different linear com-
bination of the time-varying singletons, {π1(θk), . . . ,πn(θk)}. Although some of these
combinations may imply the formation of a consensus (i.e., limt→∞ si(t) = sj(t) for
all i, j ∈ V and each θ ∈ M), this is certainly not in general true, and thus this again
leads to consideration of consensus formation not to a fixed point but rather to a set
such as (2.3) or (2.4). We next consider the case of set-valued transition matrices
Ai(θ) and demonstrate that, in the limit as µ vanishes, the switching ODE (2.1) is
replaced by a switching differential inclusion.

Theorem 2.4. Assume the conditions of Theorem 2.1 with the following mod-
ification. In lieu of the irreducibility and aperiodicity assumption of A(θ) in (A),
assume for each θ ∈ M there is an invariant measure π ∈ Γπ(θ) such that

dist

(
1
n

n+ℓ−1∑

k=ℓ

EℓXk(θ),Γπ(θ)

)
→ 0 in probability as n → ∞,

where dist(x, B) = infy∈B |x − y| is the usual distance function. The conclusion of
Theorem 2.1 is then modified as (sµ(·), θµ(·)) converges weakly to (s(·), θ(·)) such that

(2.5)
ds(t)
dt

∈ −Hs(t) + WoΓπ(θ(t)).

We note that the conditional set of estimates reached by each sensor may be
viewed as the result of uncertainty regarding the observed Markovian transition ma-
trices, or in other words uncertainty in the signal dynamics. Equivalently, the condi-
tional set of estimates can be seen as the result of uncertainty in the network exchange
graphs, and hence we use set-valued parameters rather than singletons.

3. Scaled tracking error and cumulative distribution function (CDF)
estimation. Since the network consensus converges to a stochastic process, it is
important to examine the asymptotic convergence rate of the algorithm (1.1). We
proceed here with the study of the scaled tracking errors of the sensor state-values
sk. Then we consider consensus formation when sensors estimate the empirical CDF
instead of the probability mass function.

We show in section 6 that (2.1) implies the sensor estimates s(t) will converge
weakly to a stochastically switching steady-state Λπ(θ(t)) for some fixed equilibrium
matrix Λ ∈ RSn×Sn as expressed in (6.12). We then define the scaled tracking error

(3.1) vk =
sk − ΛE(π(θk))

√
µ

,

where sk is the vector of state-value estimates obtained from (1.1).
Next, assume that there exists a constant kµ > 0 sufficiently large such that

{vk : k ≥ kµ} is tight, which implies that the normalized error process scaled by
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1/
√

µ does not blow up as k → ∞ and µ → 0. Let us explain this assumption. The
requirement k ≥ kµ is owing to the effect of initial conditions; the sequence of scaled
errors needs to have some time to settle down. Recall that {vk : k ≥ kµ} is tight if
for any δ > 0 there is a Kδ such that for all n ≥ max(kµ, Kδ), P (|vk| ≥ Kδ) ≤ δ.
To verify this condition, by virtue of Chebyshev’s inequality, it suffices to have a
suitable Liapunov function Ũ(·) such that EŨ(vk) is bounded. If the random noise is
uncorrelated, this boundedness can be obtained easily. If correlated noise is involved,
tightness is established using the perturbed Liapunov function approach [51] (see
also [27, Chapter 10] for detailed discussion and references). In this approach, small
perturbations are added to the Liapunov function to deal with the correlation, and
the perturbations are constructed so as to result in the needed cancellations. We omit
the verbatim proof and refer the reader to the aforementioned references for further
details.

Theorem 3.1. Assume the conditions of Theorem 2.1. Then the interpolated
sequence of iterates vµ(·) defined by vµ(t) = vk for t ∈ [(k − kµ)µ, ((k + 1) − kµ)µ)
converges weakly to a solution v(·) of the switching diffusion

(3.2) dv(t) = −Hv(t)dt + (WoΣ(θ(t))Wo ′)1/2dw,

where w(·) is a standard Brownian motion and for a fixed θ, Σ(θ) is the covariance
given by

(3.3) Σ(θ) = lim
n→∞

1
n

E
n+ℓ−1∑

k=ℓ

n+ℓ−1∑

j=ℓ

(Xk(θ) − EXk(θ))(Xj(θ) − EXj(θ))′.

From (3.2) it is clear the sensor averaging weights Wo have a direct effect on the
sensor’s tracking error; in particular we see that any scaling of the averaging weights
Wo implies the same scaling of the sensor diffusion process. We further detail this
relation in section 4.

Average-consensus on the cumulative distribution function (CDF). So
far we have assumed each sensor j ∈ V observes the state of a fast Markov chain Xj

and tracks by (1.2) the associated stationary probability mass function πj(θ(t)). We
now consider, for a given j ∈ V , the approximation of the CDF of Xj

k by means of
empirical measures. For each θ ∈ M, the CDF associated with Xj is denoted by
Πj(θ, x) for any x ∈ RS . For any j ∈ V , 0 < T < ∞, and any x ∈ RS , define the
empirical measure

ηk =
1
k

k−1∑

k1=0

I{Xj
k1

≤x}, 0 ≤ k ≤ T

ε
.

Note that y ≤ x, with x = (xι) ∈ RS and y = (yι) ∈ RS, is understood to hold
componentwise (i.e., yι ≤ xι for ι = 1, . . . , S). The sequence ηk may be written
recursively as

ηk+1 = ηk − 1
k + 1

ηk +
1

k + 1
I{Xj

k≤x}.

So for sufficiently large k, the empirical CDF can be estimated as

(3.4) ηk+1 = ηk + µI{Xj
k≤x}
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for arbitrarily small µ > 0. Define the continuous-time interpolated process ηµ(t) = ηk

for t ∈ [µk, µk+µ). In the above, for simplicity, we have suppressed the j-dependence
in both ηk and ηµ(·).

The following theorem is analogous to Theorem 2.1 but deals with average-
consensus of the empirical CDF.

Theorem 3.2. Under condition (A), (ηµ(·), θµ(·)) converges weakly to (η(·), θ(·))
such that η(·) satisfies the switching ODE

(3.5) η̇ = πj(θ(t))Πj(θ(t), x).

Remark 3.3. In analogy to Theorem 3.1 (which dealt with the probability mass
function), we now comment on the scaled tracking error for average-consensus on the
CDF when using (3.4). To proceed, define

ξµ,j(t, x) =
√

µ

⌊t/µ⌋−1∑

k=0

[I{Xj
k≤x} −Πj(θk, x)].

Using a combination of the techniques in the proof, Markov averaging, and standard
results in centered and scaled errors for empirical measures, we can show that ξµ,j(t, x)
converges weakly to ξ(t, x), a switching Brownian bridge process. However, unlike
the proof of Theorem 2.1, we can no longer use the martingale problem formulation.
Nevertheless, we can use the basic techniques of weak convergence; see [6] for the
related study on Brownian bridge processes. We illustrate in section 5 a sample
path of the Brownian bridge resulting from the sensor scaled tracking error when a
consensus regarding the average Π̄(θ(t)) = 1

n

∑n
i=1Π

i(θ(t)) is obtained via (1.1).
Compared to π(θ(t)), estimation of Π(θ(t)) implies that one less state-value of

X i for each i ∈ V need be transmitted between sensors, thus reducing by a factor of
(1−1/S) any number of physical constraints on the sensor operations per communica-
tion link. If the number of states S is near unity, then estimation of Π(θ(t)) may result
in a significant reduction of the resources required for sensor communication and thus
consensus. The results of estimating Π(θ(t)) as compared to π(θ(t)) are illustrated in
section 5, where it is clear that estimation of the distribution function also results in
greater scaled tracking error among the midstates of S than the tracking error among
extremum states.

4. Average-consensus exchange graph conditions. The continuous-time
sensor estimates s(t) resulting from (1.1) were stated in section 2 to converge weakly
to the solutions of (2.1) under conditions (A)–(C). In particular we assumed {Gv,Go}
are such that all eigenvalues of H = (L + Do) have either positive real parts or non-
negative real parts. These basic constraints on the network exchange graphs are not
sufficient to ensure each sensor i ∈ V can asymptotically obtain the average-consensus
estimate π̄(θ(t)). To proceed we assume the following property of Gv holds in addition
to conditions (A)–(B) stated in section 2.

(C) The graph Gv is strongly connected (SC); thus for any two nodes i, j ∈ V ,
there exists a path (a sequence of directed edges in Ev) that starts at node i
and ends at j.

The reason for condition (C) is to greatly simplify the weight conditions required
for average-consensus. In fact, with regard to consensus formation, only when as-
suming this connectivity condition on Gv may we assume a completely decentral-
ized structure in Go. To see this, and as well to motivate condition (C), we note
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that if Ev were not SC, then there would exist a nonempty set of ordered pairs
V\SC = {(i1, j1) . . . , (ih, jh)} for each element of which Ev contains no path. To then
reach consensus by DDA would require (il, jl) ∈ Eo for each (il, jl) ∈ V\SC , thus
implying a nonscalable and “centralized” structure in Go. Furthermore, to ensure a
network agreement each node contained in an element of V\SC may require individual
treatment. Although this is possible, we assume Gv is SC to avoid centralization as-
sumptions on Go and as well avoid a more detailed scrutiny that may be left as future
research.

It is emphasized that for generality we seek to reach the average-consensus
π̄(θ(t)) under the condition that in each regime the observed stationary distributions
{π1(θ(t)), . . . ,πn(θ(t))} are distinct, that is,

(4.1) πi(θ(t)) ̸= πj(θ(t)) for all i, j ∈ V and any θ(t) ∈ M.

If it were specifically known that two sensors may observe the same stationary distri-
bution, i.e., πi(θ∗) = πj(θ∗) for some i, j ∈ V and θ∗ ∈ M, then the average-consensus
requirements stated in the lemma below could be relaxed conditional on the fact that
θ(t) = θ∗. We consider the most general case and do not make any assumptions
regarding equality among the πi(θ); in other words we assume (4.1) holds.

Lemma 4.1. Assuming conditions (A)–(C), each sensor estimate based on the
discrete-time algorithm (1.1) will in the limit as µ → 0 possess the steady-state π̄(θ(t))
conditional on θ(t) if and only if one of the following two conditions holds:

• Condition (1): 0 ! (L + Do), L is balanced, and Wo = α(L + Do), where
α ∈ R.

• Condition (2): 0 ≺ (L + Do), and the following equation holds:

(4.2) (L + Do)−1Wo = Λ

for any matrix Λ with the form

(4.3) Λ = I + β(1111′ − nI), β = diag(β1IS×S , . . . ,βnIS×S) ∈ RSn×Sn,

where β is nonsingular.
Remark 4.2. We here clarify that under condition (C), if 0 ! (L + Do), then

we have Do = 0 and the matrix H = L + Do will have only one eigenvalue with
a real part equal to zero, and the corresponding eigenvector will be 11. To see this
requires only noting that Do is diagonal and Lv = 0 if and only if v = 11 when Gv

is SC [31]; the result that Hv = 0 if and only if v = 11 follows immediately, as does
the requirement Do = 0. Thus under Condition (1) and condition (C) we have both
Wo = αL and Eo = Ev. Despite this simplification, we may still write Wo = α(L+Do)
since it technically holds and also maintains a clear notational consistency between
Conditions (1) and (2).

Rationale for Lemma 4.1. Assume all sensor computations possess the linear form
(1.1). Then the average-consensus π̄(θ(t)) can be obtained under Condition (1) if each
sensor maintains, in addition to (1.1), two distinct estimates based on the following
subalgorithms of (1.1):

1. the estimate ŝk based on only the local tracking subalgorithm of (1.1),

(4.4) ŝi
k+1 = ŝi

k + µ(X i
k − ŝi

k), ŝi(0) = X i(0), i ∈ V ;

2. the estimate si
k based only on the (static) Laplacian consensus subalgorithm

of (1.1),

sk+1 = (I − µL)sk, s(0) = X(0).
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As µ → 0, the local tracking estimates ŝi
k converge weakly to πi(θ(t)) for each i ∈ V . In

comparison, it is well known [31] that for any graph Laplacian 0 ! L with left-right
eigenvectors ωℓ,ωr corresponding to the zero eigenvalue and satisfying ω′

ℓωr = 1,
ωℓ > 0, the estimate si

k will then approach a convex-consensus s∞ = ωrω′
ℓs(0) =

ωrω′
ℓX(0) for all i ∈ V . Regardless, the linear combination denoted

(4.5) si(t)(1) =
1
α

(si(t) − si(t)) + ŝi(t)

has a steady-state π̄(θ(t)) for each i ∈ V ; see section 6 for details.
Under Condition (2) the linear combination

(4.6) si(t)(2) =
1

nβi
(si(t) + (nβi − 1)ŝi(t))

has a steady-state π̄(θ(t)) for each i ∈ V , as follows from (6.12) in section 6.
We make two remarks here.
1. The average-consensus estimate s(t)(1) in (4.5) assumes that L is balanced and

that each sensor knows the scale factor α between (L+Do) and Wo. In Condition (2),
the state-value exchange graph Laplacian L need not be balanced, but each sensor
i ∈ V must know the total network size n, as well as the ith diagonal element of the
matrix β in (4.3). Computation of any diagonal element in β will by (4.2) require near
complete knowledge of the exchange graphs {Go,Gv}, and so under Condition (2) we
must presume each sensor has this knowledge.

2. Under Condition (2), it follows by (4.6) that s(t)2 = s(t) if and only if β = 1
nI.

In this case the extra local tracking estimate ŝ(t) is not required. However, when
β = 1

nI, (4.2) cannot hold unless Go is complete; that is, Eo contains every ordered
pair of (i, j) ∈ V . Equivalently this implies every sensor observes all Markov chains
X i, i ∈ V , in which case consensus may be formed trivially.

4.1. Necessary exchange graph edge sets. The necessary and sufficient con-
dition for average-consensus to be obtained by sensors under (1.1) and its subalgo-
rithms is that either one of the conditions in Lemma 4.1 holds. Each of these con-
ditions specifically assume either 0 ≺ H or 0 ! H (recall H = L + Do). In both
cases, the constraints posed on the exchange graphs {Go,Gv} are based on the re-
quirement that for average-consensus Λ must have, in each row, identical nondiagonal
terms that do not equal zero. By then supplementing the estimates s(t) with the local
tracking estimates ŝ(t) and normalizing by (nB)−1, the average π̄(θ(t)) is obtained
under Condition (2). Under Condition (1) a similar procedure (4.5) results in the
estimate π̄(θ(t)) at all nodes.

We now characterize the exchange graph edge sets {Eo, Ev} for which either of
the conditions stated in Lemma 4.1 is feasible. Without loss of generality we take
S = 1, and we also define the neighborhood of sensor i as Ev

i = {j : (i, j) ∈ Ev} and
the complementary edge set of E as Ē ; that is, (i, j) ∈ Ē if and only if (i, j) /∈ E . We
assume that no sensor receives information directly from all other sensors. Otherwise
we would have a centralized data fusion problem that would render a distributed
algorithm such as (1.1) unnecessary. As a consequence of this assumption each row
of either matrix {Wo,Wv} has at least one nondiagonal element equal to zero; thus
there exists for each row i an element jo

i such that (i, jo
i ) /∈ Eo and an element jv

i such
that (i, jv

i ) /∈ Ev.
Lemma 4.3. If Eo = Ev, then average-consensus is possible only if Condition (1)

of Lemma 4.1 holds.
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Proof. We prove the above statement by showing (4.2) is infeasible when 0 ≺ H
and Eo = Ev. Since 0 ≺ H we can rearrange (4.2) such that Wo = HΛ. Denote
the ith row of H by the row vector wi. Since each row of Wv has at least one zero
nondiagonal element, there exists an element ji such that wji = 0 for each row i ∈ V .
Since Eo = Ev we then have by (4.3) and (4.2) that 11′βw′

i = 0 for each row i. This
implies the rows of H are linearly dependent and thus H has an eigenvalue at 0, which
contradicts our assumption 0 ≺ H . Thus (4.2) is infeasible when Eo = Ev and 0 ≺ H .
On the other hand, if Eo = Ev, then we may set Wo = α(L + Do) and Condition (1)
holds if L is balanced.

Lemma 4.4. If Eo ⊂ Ev, then average-consensus is not possible.
Proof. If Eo = Ev, then by Lemma 4.3 average-consensus is possible only if

Wo = α(L + Do). If Eo ⊂ Ev, then Wo = α(L + Do) cannot hold and so average-
consensus is not possible.

Lemma 4.5. If Eo ̸= Ev, then average-consensus is possible only if Condition (2)
of Lemma 4.1 holds and Eo

i ⊇ Ēv
i for at least one sensor i ∈ V.

Proof. By our assumption of a decentralized network, there exists for each row i
an element jo

i such that (i, jo
i ) /∈ Eo and an element jv

i such that (i, jv
i ) /∈ Ev. For any

row i, if jo
i = jv

i , then we have 11′βw′
i = 0. By Lemma 4.3, if 11′βw′

i = 0 holds for all
i ∈ V , then average-consensus is infeasible when Eo ̸= Ev; thus there must be at least
one row i∗ such that 11′βw′

i∗ ̸= 0. This implies (i∗, jv
i∗) ∈ Eo

i∗ for at least one jv
i∗ such

that (i∗, jv
i∗) /∈ Ev

i∗ , which implies (i∗, jv
i∗) ∈ Eo

i∗ for all jv
i∗ such that (i∗, jv

i∗) /∈ Ev
i∗ .

Thus Eo
i∗ ⊇ Ēv

i∗ . On the other hand, Condition (1) of Lemma 4.1 cannot be satisfied
if Eo ̸= Ev; thus in this case we require Condition (2).

The statement Eo
i ⊇ Ēv

i implies that every sensor that does not send sensor i
state-value data must send sensor i observation data. For sparse networks we might
presume the cardinality of Ev is |Ev| ≪ n, and thus when Eo ̸= Ev by Lemma 4.5
an average-consensus requires |Eo

i∗ | ≈ n for some i∗ ∈ V . We note that this implies
either that a large subgroup of sensors h ⊂ V sends observation data to sensor i∗, or
equivalently that sensor i∗ can itself observe the Markov chains that are observed by
sensors in h.

4.2. Minimum trajectory adaptation rates. We now derive the minimum
asymptotic exponential rate of the sensor trajectories to the average-consensus π̄(θ)
for any fixed θ ∈ M. We define a sensor trajectory as any solution to (2.1) conditional
on π(θ) as well as the initial conditions s(0).

Case 1: 0 !!! H. When 0 ! H , by Lemma 4.1 average-consensus requires that
L be balanced and Wo = αL for some α ∈ R (see Remark 4.2). For any fixed θ ∈ M
we have dπ(θ)

dt = 0, and thus (2.1) implies

dy(t)
dt

= −Ly(t), y(t) = s(t) − απ(θ).

Similar to (4.5) we define

(4.7) s̆(t)(1) =
1
α

(s(t) − y(t)) = e−Ltπ(θ),

where the second equality holds since s(0) = s(0). Since y(t) is a function of π(θ),
and π(θ) is unknown to the sensors, we indicate by the symbol ˘ that s̆(t)(1) is not an
actual sensor estimate. We use s̆(t)1 simply as a mathematical bounding device.

The initial conditions s(0) = s(0) imply s̆(0)(1) = π(θ), and thus (4.7) implies
ds̆(t)(1)

dt = −Ls̆(t)(1). As follows from Theorem 8 in [31], the Euclidean norm || · || of
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the sensor disagreement measure δ̆(t)(1) = s̆(t)(1) − π̄(θ) then vanishes exponentially
at the minimum rate λ2(L̃), where λ2(·) denotes the smallest positive real part of the
eigenvalues and L̃ is the Laplacian of the mirror graph G̃v induced by Gv. Specifically,

(4.8) L̃ =
1
2
(L + L′), G̃v =

{
V , E ∪ E ′,

1
2
(Wv + (Wv)′)

}
,

where (i, j) ∈ E ′ if and only if (j, i) ∈ E . For brevity we denote λ2 = λ2(L̃).
It is clear by (4.5) and (4.7), together with the initial conditions s(0) = s(0), that

s̆(t)(1) − s(t)(1) = e−γt(s(0) −π(θ)). Thus s(t)(1) approaches s̆(t)(1) at an exponential
rate γ. We now define s̆(0)(1) = s(0)+π(θ); in this case s(t)(1) approaches s̆(t)(1)+s(0)
asymptotically at an exponential rate γ. Together with s(0)(1) = s(0) this implies the
sensor disagreement measure δ(t)(1) = s(t)(1) − π̄(θ) will diminish exponentially with
the minimum asymptotic rate r = min(γ,λ2),

||δ(t)(1)|| = ||s(t)(1) − π̄(θ)||
≤ ||s(t)(1) − s̆(t)(1)|| + ||s̆(t)(1) − π̄(θ)||
≤ ||s0 − π(θ)||e−γt + ||s0 + π(θ) − π̄(θ) − s̄0||e−λ2t + ||s(0)||
≤ (||s0 − π(θ)|| + ||s0 − π̄(θ)||)e−rt + ||s̄0 − π(θ)||e−λ2t + ||s(0)||
≤ (||s0 − π(θ)|| + ||δ(0)(1)|| + ||s̄(0) − π(θ)||)e−rt + ||s(0)||.

(4.9)

We note that since s(0), θ, and π(θ) are independent of the exchange graphs {Go,Gv},
we obtain by (4.9) that r = min(γ,λ2) is the minimum asymptotic adaptation rate of
s(t)(1) to π̄(θ) for any fixed θ ∈ M.

Case 2: 0 ≺ H. We now show that δ(t)(2) = s(t)(2)−π̄(θ) vanishes exponentially
with the minimum asymptotic rate r = min(γ,λ2), where λ2 = λ2(H). Let Λ =
H−1Wo and define y(t) = s(t) − Λπ(θ); we then have

dy(t)
dt

= −Hy(t),

and thus s(t) −Λπ(θ) vanishes at a minimum rate λ2. Independent of s(t), it is clear
by (4.4) that the trajectory of ŝ(t) converges to π(θ) at an exponential rate γ; thus,

||δ(t)(2)|| = ||s(t)(2) − π̄(θ)|| =
∣∣∣∣(nβ)−1

(
s(t) − Λπ(θ) + (nβ − I)(ŝ(t) − π(θ))

)∣∣∣∣

≤ ∥ s(t)−Λπ(θ)
nβ ∥ + ∥ (nβ−I)(ŝ(t)−π(θ))

nβ ∥

≤ ∥ s(0)−Λπ(θ)
nβ ∥e−λ2t + ∥ (nβ−I)(ŝ(0)−π(θ))

nβ ∥e−γt

≤
(

∥ s(0)−Λπ(θ)
nβ ∥ + ∥ (nβ−I)(ŝ(0)−π(θ))

nβ ∥
)
e−rt.

(4.10)

Again the values of the initial conditions, θ, and π(θ) are independent of the weight
matrices {Wo,Wv}. Thus (4.10) yields the minimum asymptotic adaptation rate r
of s(t)(2) to π̄(θ) for any fixed θ ∈ M.

Together the above cases yield r = min(γ,λ2) as the minimum asymptotic adap-
tation rate of the adjusted sensor estimates to π̄(θ) for any fixed θ ∈ M, where we
define

(4.11) λ2 =
{

λ2(L̃) if 0 ! H,
λ2(H) if 0 ≺ H.
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4.3. Adaptation rate and sensor uncertainty. Let γ2 = mγ1 for some scale
factor m > 1. Assuming the weight matrices {Wo,Wv} and observed parameters
{X, θ} are unaffected by the scaling of γ, it is clear that the estimates {s(t)(1), s(t)(2)}
will possess

(a) a minimum adaptation rate r2 = min(γ2,λ2) that is greater than or equal to
r1 = min(γ1,λ2),

(b) increased uncertainty, measured here as the sampled scaled error averaged
across all sensors and sampling period [T0, T1],

(4.12) Usamp = U(T0, T1) =
1

T1 − T0 + 1

T1∑

k=T0

11′|vk − s(t)|
n

∈ RS .

Assume that we assign to each πi(θ) some prior distribution ζ(·). That is, for all
θ ∈ M, i ∈ V , and j ∈ {1, . . . , S} we have

(4.13) P [πi
j(θ) = x] = ζ(j, x), x ∈ R.

In this case the covariance resulting from (4.13), denoted Σζ , can be factored out of the
expression (WoΣWo ′). Let || · || indicate the Frobenius norm and tr(·) the trace of a
matrix. We define σ̄2 = ||(WoΣWo ′)1/2||2 = tr(WoΣWo ′). Since ||(WoWo ′)1/2||2 =
tr(WoWo ′) we have, under (4.13),

σ̄2 = ||Σ1/2
ζ (WoWo ′)1/2||2 ≤ ||Σ1/2

ζ ||2 tr(WoWo ′)

∝ 11′|Wo|211.
(4.14)

By (4.14) we may then expect the following ratio to hold for any two models that
assume constant prior distributions ζ1, ζ2 for each πi(θ):

U(T0,T1)1
U(T0,T1)2

=
σ̄2
1+σ̄2

γ1
σ̄2
2+σ̄2

γ2
=

( ||Σ1/2
ζ1

||

||Σ1/2
ζ2

||

)2
tr(Wo

1W
o
1

′)+nSγ2
1

tr(Wo
2Wo

2
′)+nSγ2

2

≈
( ||Σ1/2

ζ1
||

||Σ1/2
ζ2

||

)2
11′(|Wo

1 |
2+γ2

1)11
11′(|Wo

2 |2+γ2
2)11

,

(4.15)

where we now let the underscore indicate model, with the exception of the sampling
times T0, T1.

In our simulations the ratios of (4.15) were found to hold, as well as (4.14).
Interestingly, when Wo was replaced with H the ratio (4.15) still held. Our simulations
also consider the results of increasing λ2. An increase in λ2 has by logical necessity
an effect similar to (a). We are unable to prove the necessity of (b), although our
numerical examples support it.

Optimization. We now consider an optimization problem associated with max-
imizing λ2 as given by (4.11) under either condition of Lemma 4.1. As shown
in section 4.2, the minimum adaptation rate of the sensor trajectories is given by
r = min(γ,λ2). We consider γ a scale parameter and seek to maximize r with respect
to λ2; thus we here assume γ > λ2.

Case 1: 0 !!! H. When 0 ! H , average-consensus requires by Lemma 4.1
that L be balanced when assuming Gv is SC. The latter assumption implies the
graph associated with the undirected edge set (Ev ∪ Ev ′) is also SC, where we recall
(i, j) ∈ Ev ′ if and only if (j, i) ∈ Ev. Denoting ρ(·) as spectral radius and W = I −µL̃,
where L̃ is defined by (4.8), we note that for all (L̃, µ) such that µρ(L̃) < 1, the
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maximization of λ2(L̃) subject to ρ(W) < 1 implies minimization of ||W − 1
n1111′||2.

Thus solving (1.4) for W by the semidefinite program derived in [10],

(4.16)

minimize s

subject to
[

sI W − 1
n1111′

W − 1
n1111′ sI

]
,

W ∈ (Ev ∪ Ev ′), W11 = 11, 11′W = 11′

will yield both the fastest per-step convergence factor rstep(W) as well as the maximum
adaptation rate r = min(γ,λ2). We find, however, that for small µ the solution to
(4.16), denoted Ŵ , implies the optimal averaging weights Ŵv approach infinity by
the relation ˆ̃L = µ−1(I − Ŵ), in which case µρ(L̃) < 1 need not hold.

Consider then the problem equivalent to (1.4) when µ = 1 and L̃ is the optimi-
zation variable,

(4.17)
minimize ∥ I − L̃ − 1

n1111′ ∥2

subject to L̃ ∈ (Ev ∪ Ev ′), L̃11 = 0, 11′L̃ = 0.

The corresponding solution Ŵ to (4.16) then implies ˆ̃L = I − Ŵ will solve (4.17). By
convexity of the spectral norm, this implies L̃∗ = c(I − Ŵ) will, for any c ∈ [0, µ−1],
then solve

(4.18)
minimize ∥ I − µL̃ − 1

n1111′ ∥2

subject to L̃ ∈ (Ev ∪ Ev ′), L̃11 = 0, 11′L̃ = 0, 11′|L̃|11 = c11′| ˆ̃L|11,

as well as ensure µρ(L̃) < 1. The last constraint in (4.18) implies 11′|L|11 = c11′|L̂|11;
thus we find (4.16) yields the averaging weights {Wv∗ : L̃∗ = c(I − Ŵ)} that will
maximize λ2 (and also, for fixed µ, optimize rstep) under an absolute total weight
constraint. Besides its necessary role to bound µρ(L̃), the absolute weight constraint
is of practical significance since, given 0 ! H , an average-consensus formation requires
Wo = αL, and thus the total variance of the sensor diffusion σ̄2 = ||(WoΣWo ′)1/2||2
will increase in squared proportion to the constant c. We note that although (4.16)
maximizes λ2 subject to an absolute weight constraint (thus bounding σ̄2 for any fixed
Σ), the solution Ŵ to (4.16) does not necessarily minimize σ̄2.

We pose below the optimization problem related to minimizing σ̄2 when subject to
the average-consensus requirement Wo = αL as well as an absolute weight constraint,

(4.19)
minimize ∥ (WoΣWo ′)1/2 ∥2

subject to Wo ∈ Ev, Wo11 = 0, 11′Wo = 0, 11′|Wo|11 = c11′| ˆ̃L|11.

Given the constant prior distribution (4.13) we may factor Σζ out of the above opti-
mization function, thus yielding

(4.20)
minimize

n∑

i=1

υ2
i

subject to Wo ∈ Ev, Wo11 = 0, 11′Wo = 0, 11′|Wo|11 = c11′| ˆ̃L|11,

since ∥ (WoWo ′)1/2 ∥2 =
∑n

i=1 υ
2
i , for any real matrix Wo, where υi denote the

singular values of Wo. By minimizing ||I −L̃− 1
n1111′||2 as in (4.16), we then will again

bound only
∑n

i=1 υ
2
i and thus also σ̄2. That is, given an absolute weight constraint

when 0 ! H , the optimal averaging weights for fast adaptation are not necessarily
the optimal weights for minimum variance of the sensor scaled error.
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Case 2: 0 ≺ H. In this case an average-consensus requires that {Wv,Wo}
satisfy (4.2) for some nonsingular diagonal matrix β. Under this constraint, similar
to above we wish to maximize λ2(H) while also minimizing ||Wo|| for fixed edge sets
{Ev, Eo}. We do not explore this optimization problem further.

5. Numerical examples. We provide numerical examples to illustrate that
Lemma 4.1 together with the theorems in sections 2 and 3 results in the weak con-
vergence of each sensor’s estimate to the average-consensus distribution π̄(θ(t)). As
our communication networks we consider an example of either condition stated in
Lemma 4.1, specifically the following:

• (Model 1) Wo = −L, and Wv is balanced. {Gv,Go} are such that Ev = Eo.
• (Model 2) {Wo,Wv} satisfy (4.2). {Gv,Go} are such that Ev ̸= Eo.

In both cases we set the network size at n = 24 sensors and consider S = 40 observed
states. Thus each sensor i ∈ V will observe X i in one of 40 states upon each iteration.
In our simulation θ takes on 6 different states. For each of these regimes, the stationary
distribution πi(θ) of each Markov chain X i was randomly generated from the uniform
distribution and normalized, thus validating the constant a priori assumption required
for (4.14)–(4.15).

The total number of communication links, that is, the total number of elements
in Eo and Ev, is fixed at 2n(n − 1) = 1104. We also fix the sum of absolute averaging
weights at approximately the constant 2755,

|Ev| + |Eo| = 2n(n − 1), 11′(|L| + |Wo|)11 ≈ 2755.

Neither of these constraints is necessary; they are set identical for either model to bet-
ter compare the two different average-consensus graph conditions stated in Lemma 4.1.
We note that under Condition (1) the minimum number of edges required for an
average-consensus can be proved to be 2n, whereas under Condition (2) this number
is strictly greater than 2n for all n ≥ 4.

Setting γ = 10 and µ = 10−9 for both models, the sample path of the sensor
iterates s(t) under (1.1) is plotted as the unadjusted sensor estimates; see Figure 5.1.

The estimates s(t)(1) and s(t)(2) are plotted as the adjusted sensor estimates under
Models 1 and 2, respectively. We find that, in accordance with the adaptation rate
r = min(γ,λ2) proposed in section 4, Model 1 converges quicker to π̄(θ) as compared
to Model 2; see also Table 5.1. Also indicated by Table 5.1 is that our simulations
imply the ratio (4.15) holds in approximation (we note that the two values under
Usamp refer to sensor estimation of π(θ) and Π(θ), respectively).

As a trade-off to the improved adaptation rate, there is an increase in the scaled
error under Model 1 when averaged across sensors. This is shown in Figure 5.2, where
we have plotted for both models the sample scaled tracking error when estimating
π(θ), as well as estimation of Π(θ) by the empirical measure described in section 3.
We see that Model 1 results in an increased average scaled error as compared to
Model 2. The exact relation between the scaled error and adaptation rate r is not
explored here in detail.

The analytic and sample variances of the scaled tracking error, as measured rela-
tive to the sensor trajectories (6.11), are plotted in Figure 5.3. Our purpose here is to
illustrate how the coefficients of the Brownian motion dw vary between models. For
state ℓ in X i and sensor i ∈ V under (1.1), the variance of the Brownian motion in
(3.2) was computed analytically as a function of the averaging weights,

(5.1) σ2
iℓ =

Sn∑

j=1

(Wo ·Σ)2((i−1)S+1+ℓ)j , (Wo · Σ) .= (WoΣWo ′)1/2.
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Fig. 5.1. Sensor estimation of the average-consensus π̄(θ(t)) under both Models 1 and 2. For
illustrative purposes we have, without loss of generality and for this figure only, set X(0) = 0 and
magnified the sensor observations of Xi by a factor proportional to the number of previous states θ
has occupied in the simulation.

Table 5.1
Numerical results of the ratio comparisons. The average ratio between Models 1 and 2 is 0.2094.

Model r = min(γ, λ2) 11′Usamp σ̄2
model 11′|Wo|211 ||Wo||2 11′|H|211

1 7.12 3.563, 0.944 6.875 10−7 442 106 6343 2.999 105

2 1.44 0.805, 0.207 1.556 10−7 841.5 105 1463 1.3775 105

Ratio model1
model2

0.1994 0.2259, 0.2193 0.2278 0.1843 0.2049 0.2177
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Fig. 5.2. The absolute scaled error Usamp, plotted consecutively over the entire simulation
time [T0, T1] for each state in S. The results indicate a Brownian bridge across the state estimates
(S = 40) of the average cumulative distribution Π̄(θ(t)).
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Fig. 5.3. The analytic and sample variance σiℓ of the scaled tracking error under both Models
1 and 2, as given by (5.1). A point exists for each sensor i ∈ V and observed state ℓ ∈ {1, . . . , S}.
The results have been ordered according to the sample variances to better show the similarity between
the analytic and simulated variances.
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Fig. 5.4. Unordered sensor diffusion coefficients, absolute error, and functions of weights. The
similarities between each quantity are apparent by the localization of larger values under Model 2, as
compared to the uniform values obtained from Model 1. The approximate ratio (4.15) is also seen
here to generally hold per sensor, although only with Wo replaced by H as seen in Table 5.1.

We have plotted in Figure 5.3 the sample values of σiℓ in ascending order; the corre-
sponding analytic values have been plotted in the same order to illustrate the simi-
larity between the analytic and simulated results, thus verifying (3.2) as the correct
expression for the scaled sensor tracking error. We note that σ̄2 =

∑S
ℓ=1

∑n
i=1 σ2

iℓ.
Finally, in Figure 5.4, we have plotted various features of our simulations per

sensor. It is apparent that the ratios between these models regarding analytic variance
σ2

sensor i =
∑S

ℓ=1 σ
2
iℓ, Frobenius norm ||Wo||2, either summed squared weight values

11′|Wo|211 or 11′|H |211, and the absolute sampled error Usamp hold in approximation.
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In these numerical examples we employed the adaptation rate r and uncertainty
measures (4.12) and σ̄2 to explain our results. We leave open the question of which
model is superior in terms of maximizing r while minimizing σ̄2 and as well the weights
and edges, or complexity thereof, required for {Go,Gv} to ensure average-consensus.
This question is of importance since the features of {Go,Gv} can be naturally associ-
ated with the communication costs assumed of the sensor network [31].

6. Proofs of results.
Proof of Theorem 2.1. We divide the proof into several steps. Some of the steps

are formulated as lemmas to improve clarity of the presentation.
Step 1. In this step, we show that a moment bound holds for the iterates under

consideration. The assertion is stated as a lemma.
Lemma 6.1. For each 0 < T < ∞, under the conditions of Theorem 2.1,

(6.1) sup
0≤k≤T/µ

E|sk|2 < ∞.

Proof of Lemma 6.1. Define V (s) = s′s/2. The gradient and Hessian of V (s) are
given by ∇V (s) = s and ∇2V (s) = I, respectively. Under condition (B) we assume
H has no eigenvalues with negative real parts; hence there is a λ(0) > 0 such that
s′Hs ≥ λ(0)V (s). In addition, since Xk is a conditional Markov chain with a finite
state-space, it is bounded uniformly w.p.1, which implies that

s′kWoXk ≤ 1
2
(|sk|2 + |Wo|2|Xk|2)

≤ K(V (sk) + 1)

for some K > 0. Here and hereafter, K is used to represent a generic constant, whose
values may change for different appearances. Using (1.1) and the above estimates, we
obtain

V (sk+1) = V (sk) + µs′k(−Hsk + W0Xk) + O(µ2)(V (sk) + 1)

≤ V (sk) − λ(0)µV (sk) + µs′kWoXk + O(µ2)(V (sk) + 1)
≤ (1 − λ(0)µ)V (sk) + O(µ)(V (sk) + 1).

(6.2)

Taking expectation and iterating on the resulting sequence, we obtain

EV (sk+1) ≤ (1 − λ(0)µ)k+1EV (s(0)) + O(µ)
k∑

j=0

(1 − λ(0)µ)k−jEV (sj)

+ O(µ)
k∑

j=0

(1 − λ(0)µ)k−j .

An application of Gronwall’s inequality yields that

EV (sk+1) ≤ O(1) exp(µk) ≤ O(1) exp(µ(T/µ)) ≤ O(1).

Taking sup0≤k≤T/µ on both sides above yields the desired result.
First, note that by means of Chebyshev’s inequality and Lemma 6.1, for any δ > 0

sufficiently small, there is a Kδ = (1/
√
δ) sufficiently large such that

P (|sk| ≥ Kδ) ≤ E|sk|2

K2
δ

≤
sup0≤k≤T/µ E|sk|2

K2
δ

≤ K

K2
δ

≤ Kδ.

Thus {sk} is tight. Since θk takes values in a finite set, it is also tight. Thus, we
obtain the following corollary.
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Corollary 6.2. The pair of sequences {sk, θk} is tight.
Step 2. We show that the process (sµ(·), θµ(·)) is tight in D([0, T ] : RS × M).

Since the tightness of θµ(·) has been demonstrated in [53], we concentrated on the
tightness of sµ(·). For any δ > 0, t > 0, and 0 < u ≤ δ, we have

sµ(t + u) − sµ(t) = µ

(t+u)/µ∑

k=t/µ

(−Hsk + WoXk).

Thus by repeating the proof of Lemma 6.1, we can show that

Eµ
t |sµ(t + u) − sµ(t)|2 ≤ Kµ2

(t+u)/µ−1∑

k=t/µ

(Eµ
t |sk|2 + 1)

≤ Kµ2

(
t + u

µ
− t

µ

)2

≤ Ku2 ≤ Kδ

for u sufficiently small, where Eµ
t denotes the conditional expectation with respect to

the σ-algebra Ft = {sµ(u), θµ(u) : u ≤ t}. Thus

lim
δ→0

lim sup
µ→0

EEµ
t |sµ(t + u) − sµ(t)|2 = 0.

The claim then follows from the well-known tightness criteria [26, p. 47] (see also [27,
sect. 7.3]).

Step 3. Characterization of the limit. Owing to Step 2, (sµ(·), θµ(·)) is tight.
By Prohorov’s theorem, we can extract a weakly convergent subsequence. Without
loss of generality, we still index the selected sequence by µ and denote the limit by
s(·), θ(·). By Skorohod representation, we may assume (with slight abuse of notation)
(sµ(·), θµ(·)) converges to (s(·), θ(·)) w.p.1 and the convergence is uniform in any
bounded t interval. For each t, u > 0, we partition [t, t + u] into small segments with
the use of kµ → ∞ as µ → 0 but δµ := µkµ → 0 as µ → 0. Then we have

sµ(t + u) − sµ(t) =
t+u∑

l:lδµ=t

δµ
1
kµ

lkµ+kµ−1∑

k=lkµ

(−Hsk + WoXk),

where
∑t+u

l:lδµ=t denotes the sum over l in the range t ≤ lδµ < t + u. For the following
analysis, it is crucial to recognize the two-time-scale structure of the algorithm. In
the segment lkµ ≤ k ≤ lkµ + kµ − 1, compared with sk and θk, Xk varies much faster.
Thus, in this segment, sk and θk can be viewed as fixed. As a result, although Xk

depends on θ, the slowly varying θk enables us to treat Xk as a “noise” with θk fixed at
a specific value θ. In the end, Xk will be averaged out and replaced by its stationary
measure. More precisely, let lδµ → ũ as µ → 0. Then for all lkµ ≤ k ≤ lkµ + kµ − 1,
µk → ũ. To emphasize the θ dependence in Xk, we write it as Xk(θk). It then follows
that

1
kµ

lkµ+kµ−1∑

k=lkµ

WoXk =
1
kµ

lkµ+kµ−1∑

k=lkµ

WoXk(θk)

=
1
kµ

lkµ+kµ−1∑

k=lkµ

WoXk(θlkµ ) + o(1)

→ Woπ(θ(ũ)) in probability as µ → 0,
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where o(1) → 0 in probability as µ → 0. The last line follows from the ergodicity of
the θ dependent Markov chain Xk(θ). As a result

(6.3)
(t+u)∑

l:lδµ=t

δµ
1
kµ

lkµ+kµ−1∑

k=lkµ

WoXk →
∫ t+u

t
Woπ(θ(ũ))dũ.

Likewise, we can work with the term involving sk by using the continuity in s of the
following expression, which leads to

(6.4)
(t+u)∑

l:lδµ=t

δµ
1
kµ

lkµ+kµ−1∑

k=lkµ

Hsk →
∫ t+u

t
Hs(ũ)dũ.

Now combining (6.3) and (6.4), following the argument as in the proof of Theorem 4.5
in [51], it can be shown that (s(·), θ(·)) is a solution of the martingale problem asso-
ciated with the operator given by

(6.5) Lf(s, θi) = ∇f ′(s, θi)[−Hs + Woπ(θi)] + Qf(s, ·)(θi),

where

Qf(s, ·)(θi) =
m∑

j=1

qijf(s, θj).

The desired results thus follow.
Proof of Theorem 2.2. (i) Define

s̃µ(·) = sµ(· + tµ), θ̃µ(·) = θµ(· + tµ),

where tµ is given in the statement of the theorem. Then (s̃µ(·), θ̃µ(·)) is tight, which
can be proved as in Theorem 2.1. For 0 < T < ∞, extract a convergent subsequence
{s̃µ(·), s̃µ(· − T )} with limit denoted by (s(·), sT (·)). Note that s(0) = sT (T ).

Note that {sk} is tight, which can be proved as in Corollary 6.2. The tightness
of {sk} then implies that {sT (0)} is tight. By using the following representation of
the solution of the switched ODE and noting that T is arbitrary, it then follows that

sT (T ) = exp(−HT )sT (0) +
m∑

i=1

∫ T

0
exp(−H(T − u))W0π(θi)I{θ(u)=i}du

= exp(−HT )sT (0) +
m∑

i=1

∫ T

0
exp(−H(T − u))duW0π(θi)νi

+
m∑

i=1

∫ T

0
exp(−H(T − u))W0π(θi)[I{θ(u)=i} − νi]du.

(6.6)

(ii) We claim that as T → ∞, the last term above goes to 0 in probability. To
show this, it suffices to work with a fixed i. Define

ξ(T ) = E

∣∣∣∣∣

∫ T

0
exp(−H(T − u))W0π(θi)[I{θ(u)=i} − νi]du

∣∣∣∣∣

2

.
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Then it is readily seen that

|ξ(T )| ≤ K

∣∣∣∣∣E
∫ T

0
(W0π(θi))′ exp(−H ′(T − t))dt

×
∫ t

0
exp(−H(T − t))W0π(θi)[I{θ(u)=i} − νi][I{θ(t)=i} − νi]du

∣∣∣∣∣ .
(6.7)

By using the Markov property, it can be shown that
∣∣E[I{θ(u)=i} − νi][I{θ(t)=i} − νi]

∣∣

= |[P (θ(u) = i) − νi][P (θ(t) = i|θ(u) = i) − νi]|
≤ K exp(−κ0u) exp(−κ0(t − u)) ≤ K exp(−κ0t),

where κ0 > 0 is a constant representing the spectrum gap in the Markov chain owing to
the irreducibility of Q (see [52, p. 300]). In the above and hereafter in the proof, we use
K as a generic positive constant whose value may change for different apparentness.
Since −H is Hurwitz,

∫ t

0
|exp(−H(T − u))|du ≤

∫ t

0
exp(−λH(T − u))du ≤ K exp(−λH(T − t)),

where λH > 0. Then we have
∣∣∣∣E

∫ t

0
exp(−H(T − u))W0π(θi)[I{θ(u)=i} − νi][I{θ(t)=i} − νi]du

∣∣∣∣

≤ K exp(−λH(T − t)) exp(−κ0t).

Then

|ξ(T )| ≤

∣∣∣∣∣K
∫ T

0
|W0π(θi)||exp(−H ′(T − t))| exp(−λH(T − t)) exp(−κ0t)dt

∣∣∣∣∣ .

If λH ≤ κ0, exp((λH − κ0)t) ≤ 1, so

|ξ(T )| ≤

∣∣∣∣∣K
∫ T

0
exp(−λH(T − t)) exp(−λHT )dt

∣∣∣∣∣ ≤ K exp(−λHT ) → 0 as T → ∞.

If λH > κ0,

|ξ(T )| ≤ K

∫ T

0
exp(−λH(T − t)) exp(−(λH − κ0)T ) exp(−κ0T )dt

≤ K exp(−κ0T ) → 0 as T → ∞.

Thus the claim in (ii) is verified.
(iii) The tightness of {sT (0)} together with −H being Hurwitz implies the first

term on the right-hand side of (6.6) tends 0 as T → ∞. The second term in (6.6)
converges to s∗ as T → ∞ by the hypothesis of this theorem. The desired result thus
follows from the above and (ii).

Proof of Theorem 2.4. The proof here is similar to Theorem 2.1 with the mod-
ification of the inclusion. We omit the proof and refer the reader to [27] for related
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results on averaging leading to differential inclusions. Note that the main difference
of the above results compared with Theorem 2.1 is the following: In Theorem 2.1,
condition (A) implies the existence of the unique invariant measure for each θ. Here
this condition is relaxed. For Markov chains with multiple ergodic classes, we refer
the reader to [25, Chap. 1] for further details.

Proof of Theorem 3.1. First, using (1.1),

sk+1 − ΛEπ(θk+1) = [sk − ΛEπ(θk)] − µH [sk − ΛEπ(θk)]
+ ΛE[π(θk) − π(θk+1)] + µWo(Xk − Eπ(θk)).

In the last line above, we have used the fact that HΛ = W0; this holds by necessity
under the conditions of Lemma 4.1 (see (6.12) below). The definition of (3.1) thus
leads to

(6.8) vk+1 = vk − µHvk +
ΛE(π(θk) − π(θk+1))√

µ
+

√
µWo(Xk − Eπ(θk)).

Comparing (6.8) with equation (5.3) in [51], we see that (6.8) is simply a modified
version of (5.3) in [51]. We can thus proceed as in the aforementioned paper. Since
{vk} is not a priori bounded, it is pertinent to first take an N truncation [27, p. 284] for
an arbitrary large N , work with the truncated process, establish the weak convergence
of the truncated process, and finally let N → ∞ to conclude the proof of the result.
However, we assume that the iterates are bounded here to simplify the presentation.

Considering the interpolated sequence {vµ(·)}, essentially the same argument as
in [51] shows that for t, u > 0,

(t+u)/µ−1∑

k=t/µ

ΛE(π(θk) − π(θk+1))√
µ

→ 0 in probability,

so

(6.9) vµ(t + u) = vµ(0) − µ

(t+u)/µ−1∑

k=t/µ

Hvk +
√

µ

(t+u)/µ−1∑

k=t/µ

Wo(Xk − Eπ(θk)) + o(1),

where o(1) → 0 in probability uniformly in t as µ → 0. As in [51], it can be shown
that

√
µ

t/µ−1∑

k=0

(Xk − Eπ(θk)) converges weakly to Σ1/2(θ(t))w(t),

where w(·) is a standard Brownian motion, and Σ(θ) is the covariance given by (3.3).
As a result,

√
µ

t/µ−1∑

k=0

Wo(Xk − Eπ(θk)) converges weakly to WoΣ1/2(θ(t))w(t)

by the well-known Slutsky theorem. The corresponding covariance thus becomes
WoΣ(θ(t))Wo ′.
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To proceed, we show that the sequence (vµ(·), θµ(·)) converges weakly to (v(·), θ(·))
such that the limit is a solution of the martingale problem with the operator given by
(6.10)

Lvf(v, θi) = −∇f ′(v, θi)Hv +
1
2

tr[∇2f(v, i)WoΣ(θi)Wo ′] + Qf(v, ·)(θi), θi ∈ M.

The rest of the proof is similar to that of [51]. The details are omitted.
Proof of Theorem 3.2. The well-known Glivenko–Cantelli theorem (see [6, p. 103])

for the mixing process implies that

1
kµ

lkµ+kµ−1∑

k=lkµ

I{Xk(θj1 )≤x} → F (θj1 , x) w.p.1 as µ → 0 and hence kµ → ∞.

The Markovian structure implies that

(A(θj1 ))k−lkµ → 11π(θj1 ) as µ → 0.

The limit is a matrix with identical rows containing the stationary distribution π(θj1 ).
Since I{θlkµ=θj1} can be written as I{θµ(lδµ)=θj1}, as µ → 0 and kδµ → ũ, we can show
that

1
kµ

lkµ+kµ−1∑

k=lkµ

ElkµI{Xj
k(θ)≤x} →

m∑

j1=1

πj(θj1)F (θj1 , x)I{θ(ũ)=θj1}

= πj(θ(ũ))F (θ(ũ), x).

Thus we obtain that the limit η(·) satisfies

η(t) − η(u) =
∫ t

u
πj(θ(ũ))F (θ(ũ), x)dũ.

Thus the desired result follows.
Proof of Lemma 4.1 continued (exact solutions to (2.1)). We first derive

(6.11) s(t) = e−Ht(s(0) − Λπ(θ(t))) + Λπ(θ(t))

as an exact solution to (2.1) conditional on the state θ(t) of θ ∈ M. The equilibrium
matrix Λ is defined by the following function of {Gv,Go}:

(6.12) Λ =
{

(L + Do)−1Wo if 0 ≺ (L + Do),
(I − ωrω′

ℓ) if 0 ! (L + Do) and Wo = L + Do.

If 0 ≺ H , then the above results follow immediately by standard techniques of
solving systems of first order linear ODEs. On the other hand, if 0 ! H , then (6.12)
is derived based on the conservation property,

(6.13)
d

dt
ω′
ℓs(t) = ω′

ℓ
ds(t)
dt

= −ω′
ℓHs(t) + ω′

ℓWoπ(θ(t)) = 0,

which follows under the assumption Wo = H , since ω′
ℓH = 0 by definition. From

(6.13) it is clear that Λ must satisfy ω′
ℓΛ = 0, whereas by solving ds(t)

dt = 0 given
(6.11) we have HΛ = Wo. These two constraints then uniquely determine the second
steady-state in (6.12).
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For any SC graph Gv, if and only if L is balanced will ωrω′
ℓ = 1

n1111′ [31]. On the
other hand, if 0 ! H , then ωr = c11 for any nonzero c ∈ R; thus since ω′

ℓωr = 1 it
is clear that if ωrω′

ℓ ̸= 1
n1111′, then the average-consensus cannot be obtained by any

linear combination of s(t), ŝ(t), or s(t). Furthermore, when 0 ! H and Wo ̸= H ,
then (1.1), although stable in the limit as µ vanishes, is asymptotically unbounded as
the number of ⌊1/µ⌋ iterations increases. To see this assume t ≤ 0 and 0 < µ ≪ 1 are
such that (t/µ) ∈ N. The (t/µ) iteration of (1.1) yields the sensor estimates

(6.14) st/µ = (I − µL − µDo)t/µs(0) +
t/µ−1∑

l=0

(I − µL − µDo)lµWoXt/µ−1−l.

For arbitrary weight matrices {Wv,Wo} the limit of (6.14) when µ approaches zero
yields the same expression for the coefficient of s(0) as the exact solution (6.11),

lim
µ→0

(I − µL − µDo)t/µ = e−(L+Do)t.

Similarly in the limit as µ vanishes, by (6.3) above we replace Xt/µ−1−l with
the stationary measure π(θ(t)), the summed coefficients of which yield the following
limiting values:
(6.15)

lim
µ→0

t/µ−1∑

l=0

(I − µL − µDo)lµWo =
{

H−1(I − e−Ht)Wo , H ≺ 0,
α(I − e−Ht) , 0 ! H, Wo = αH, α ∈ R.

Without loss of generality set α = 1. As t increases, the above limits become those
expressed in (6.12). If, however, 0 ! H and Wo ̸= H , the above iteration results in
an unbounded steady-state in the limit as t increases, as can be seen by re-expressing
(6.15) in terms of the eigendecompositions H = UJU−1 and Wo = ARA−1,

(6.16)
t/µ−1∑

l=0

(I − µL − µDo)lµWo = U

t/µ−1∑

l=0

(I − µJ)lµU−1ARA−1.

In the limit as µ vanishes this expression becomes UJ∗U−1ARA−1, where the zero
eigenvalue of J is replaced by t in the matrix J∗ and all others replaced by 1−e−λit

λi
;

for convenience we let the first element of J denote this zero eigenvalue, J11 = 0. As
t increases it is clear that J∗ approaches J−1 except in its first element, which grows
linearly with t. For (6.16) to remain bounded then as t increases, the multiplications
UJ∗U−1ARA−1 must eliminate the presence of t in J∗

11. It is straightforward to see
that this occurs if and only if Wo = H , in which case A = U , R = J , and the zero
eigenvalue in R eliminates the presence of t in J∗ regardless of the value of µ. In this
case, the denominator of J∗ is also eliminated by right multiplication of ARA−1 and
we have the second steady-state of (6.12).

Since we have considered all possible solutions to (2.1) with bounded steady-
states, there exist no other methods by which to achieve average-consensus through
(1.1) and its implied subalgorithms. Our rationale has been to place conditions on
{Gv,Go} such that the sensor steady-states under (1.1) can be adjusted by their local
tracking estimates ŝ(t) to obtain the average-consensus estimate π̄(θ(t)). This requires
that the equilibrium matrix Λ have each of its rows i = 1, . . . , n comprised of a nonzero
scalar βi, with diagonal elements defined as (1 − (n − 1)βi); see (4.3). The diagonals



CONSENSUS FORMATION 1925

are defined as such due to the property Λ11 = 11, which holds only when 0 ≺ H , as
can be seen by (6.12) and the fact that

(6.17) (L + Do)−1Wo11 = 11 ⇒ Do11 = (L + Do)11,

which holds since L11 = 0 by definition. Assuming 0 ≺ H , the necessity of Λ11 = 11 is
evident simply from the contradiction entailed by (6.17) when Λ11 ̸= 11.

The equality among nondiagonal elements within each row i implies that the sen-
sor estimate si(t) approaches a linear average with uniform weights (βi) assigned to
the currently observed stationary distributions of all other sensors and a dispropor-
tionate weight (1−(n−1)βi) given to its own locally observed stationary distribution.
If the weights βi are known, then the correction with ŝi

k and rescaling, as stated in
(4.6), yield π̄(θ(t)).

Remark 6.3. The consensus-tracking algorithm (1.1) requires either 0 ! (L+Do)
or 0 ≺ (L+Do) in order for the sensor estimates sk to remain bounded in the limit as
µ vanishes and t increases. This is in parallel with the constraints 0 ! L and 0 ≺ L
that are required for the static Laplacian consensus algorithm (1.3) to remain bounded
under the same asymptotic limits. Thus, unlike the works of [10, 21, 31, 5], which
consider the static algorithm (1.3), we may permit L to have negative eigenvalues.
Denoting the minimum of these λ, by then taking Do = |λ|I + V for any diagonal
matrix V ≥ 0, we have (L + Do) = U(J + |λ|I)U−1 + V = UJ∗U−1 + V = L̃ + D̃o,
where now 0 ! L̃ = UJ∗U−1 and D̃o = V . Under these conditions, we may let
W̃o = Wo − |λ|I and the results of (6.11), (6.12) hold with respect to {L,Wo} or
equivalently {L̃, W̃o}. In other words, consensus may be achieved even when L has
negative eigenvalues, provided Wo has sufficiently large positive elements.

7. Conclusions. We have proven that under the Laplacian consensus dynamics
and a local linear SA algorithm the sensor state-values within a network communi-
cation graph may under suitable averaging weights converge weakly to an average-
consensus regarding the state of a two-time-scale Markovian system. In our frame-
work this consensus is based on the slowly time-varying stationary distribution of a
Markov chain observed by each sensor. The result has been extended to the case of
multiple ergodic classes in the observed Markov chains, or equivalently to network
exchange graphs {Gv,Go} that belong to a set rather than a fixed parameterization
G = {V , E ,W}. The limiting switched ODE is in this case replaced by a switched
differential inclusion, thus motivating the idea of set-valued consensus. In addition
to this, the sensor scaled tracking error was proved to satisfy a switching diffusion
equation and, in the case of CDF estimation by an empirical measure, a switching
Brownian bridge.

Necessary and sufficient conditions were derived in regard to the network commu-
nication graph edge set and weights required to ensure average-consensus formation.
As a result, computation of the correct consensus estimate requires (1.1) in conjunc-
tion with its two component subalgorithms. Thus, obtaining the average-consensus
does not require any greater complexity in sensor computing ability or network com-
munication than (1.1) itself assumes. Last, we considered the adaptation rate and
magnitude of diffusion present in the sampled sensor trajectories, and proposed an
optimization problem as well as an approximate ratio that both relate to various fea-
tures of the sensor averaging weights. Future work may consider the edge set and
averaging weights required for fast convergence to the average-consensus estimate
without requiring strong connectivity assumptions or increased sum of the absolute
averaging weights.
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