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Bayesian Sequential Detection With
Phase-Distributed Change Time and Nonlinear
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Abstract—We show that the optimal decision policy for several
types of Bayesian sequential detection problems has a threshold
switching curve structure on the space of posterior distributions.
This is established by using lattice programming and stochastic
orders in a partially observed Markov decision process (POMDP)
framework. A stochastic gradient algorithm is presented to esti-
mate the optimal linear approximation to this threshold curve. We
illustrate these results by first considering quickest time detection
with phase-type distributed change time and a variance stopping
penalty. Then it is proved that the threshold switching curve also
arises in several other Bayesian decision problems such as quickest
transient detection, exponential delay (risk-sensitive) penalties,
stopping time problems in social learning, and multi-agent sched-
uling in a changing world. Using Blackwell dominance, it is shown
that for dynamic decision making problems, the optimal decision
policy is lower bounded by a myopic policy. Finally, it is shown
how the achievable cost of the optimal decision policy varies with
change time distribution by imposing a partial order on transition
matrices.

Index Terms—Blackwell dominance, exponential delay penalty,
lattice programming, monotone likelihood ratio ordering, multi-
agent decision making, POMDP, quickest time change detection,
social learning, stochastic dominance, transient detection, variance
penalty.

I. INTRODUCTION

Q UICKEST time change detection has applications in
biomedical signal processing, machine monitoring and
finance [5], [38]. There are two general formulations

for quickest time detection. In the first formulation, the change
point is an unknown deterministic time, and the goal is to
determine a stopping rule such that a certain worst case delay
penalty is minimized subject to a constraint on the false alarm
frequency (see, e.g., [31], [36], [53]).

The second formulation, which is the formulation we con-
sider in this paper, is the Bayesian approach. The change time
is a random variable specified by a prior distribution. Consider
a sequence of discrete time random measurements ,
such that conditioned on the event , , are
i.i.d. random variables with distribution and are
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i.i.d. random variables with distribution . The quickest time
detection problem involves detecting the change time with
minimal cost. That is, at each time , a decision

needs to be
made to optimize a tradeoff between false alarm frequency and
linear delay penalty.

In classical Bayesian quickest time detection [38], [44],
[52], the change time is modelled by a geometric dis-
tribution. A geometric distributed change time is realized
by a two state discrete-time Markov chain, which we de-
note as . Therefore, in classical quickest time detection,
the optimal decision policy at each time is a function
of a 2-D belief state (posterior probability mass function)

, with
. So it suffices to consider one element, say

, of this probability mass function. Classical quickest time
change detection (see for example [38]) says that there exists
a threshold point such that the optimal decision
policy is

if
if .

(1)

As a generalization of the Bayesian framework, [51], [52]
consider dependent observations from a finite state Markov
chain with transition probability matrix affected by the change
point.

A. Main Results and Organization of Paper

This paper considers Bayesian quickest time detection with
the following generalizations: phase-type distributed change
times, a variance stopping penalty, optimal linear threshold
policies, and examples in transient detection, nonlinear delay
penalty and stopping time problems in social learning. Our
goal is to exploit lattice programming techniques to prove the
existence of threshold optimal decision policies for a variety
of quickest time detection problems. Below is an overview of
these results.

(i) Phase-type Distributed Change Times: We consider
quickest time detection when the change time has
a phase-type (PH) distribution [33]. PH-distributions
are used widely in modelling discrete event systems.
The optimal detection of a PH-distributed change point
is useful since the family of PH-distributions forms a
dense subset of the set of all distributions, i.e., for any
given distribution function such that , one
can find a sequence of PH-distributions to
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approximate uniformly over . As described in
[33], a PH-distributed change time can be modelled by
a multistate Markov chain with an absorbing state. (For
a 2-state Markov chain, the PH-distribution specializes
to the geometric distribution). So for quickest time de-
tection with PH-distributed change time, the belief states
(Bayesian posterior) lie in a multidimensional simplex of
probability mass functions.

(ii) Variance Penalty: The second generalization we consider
is a stopping penalty comprising of the false alarm and
a variance penalty. The variance penalty is essential in
stopping problems where one is interested in ultimately
estimating the state . It penalizes stopping too soon if
the uncertainty of the state estimate is large.1 Since the
variance is quadratic in the belief state , it is not possible
to reformulate a variance penalty problem as a standard
stopping time problem.
Under whatconditions does there exist an optimal
threshold decision policy for quickest detection with
PH-distributed change time and variance penalty? How
can the belief states (in a multidimensional simplex) be
ordered and compared with a threshold? Section II for-
mulates the quickest time detection problem as a partially
observed Markov decision process (POMDP) and char-
acterizes the optimal decision policy as the solution of a
stochastic dynamic programming problem. Using lattice
programming [48] our main result (Theorems 1 and 2
in Section III) shows that the optimal decision policy is
governed by a threshold switching curve on the space of
Bayesian distributions (belief states). This result is useful
for several reasons: (a) It provides a multidimensional
generalization of (1) to PH-distributed change times.
(b) Efficient algorithms can be designed to estimate op-
timal policies that satisfy this threshold structure. (c) The
result holds under set-valued constraints on the change
time and observation distribution. So there is an inherent
robustness since even if the underlying model parameters
are not exactly specified, the threshold structure still
holds.
Going from a 2 state Markov chain (geometric dis-
tributed change time) to multiple states (PH-distributed
change time) introduces substantial complications. For
2 state Markov chains, the posterior distribution can be
parametrized by a scalar [as in (1)] and therefore can
be completely ordered. However, for more than 2 states,
comparing posterior distributions requires using sto-
chastic orders which are partial orders. In this paper we
use the monotone likelihood ratio (MLR) stochastic order
[22], [24], [32], [41] to prove our structural results. The
MLR order is ideally suited for Bayesian problems since
it is preserved under conditional expectations. However,
determining the optimal policy is nontrivial since the
policy can only be characterized on a partially ordered
set (more generally a lattice) within the unit simplex.

1In [3], a continuous time stochastic control problem is formulated with a
quadratic stopping cost, and the existence of the solution to the resulting quasi-
variational inequality is proved. However, [3] does not deal with structural re-
sults.

We modify the MLR stochastic order to operate on line
segments within the unit simplex of posterior distribu-
tions. Such line segments form chains (totally ordered
subsets of a partially ordered set) and permit us to prove
that the optimal decision policy has a threshold structure.
Theorem 3 shows that for linear delay and false alarm
penalties, the stopping region is convex.

(iii) Optimal Linear Threshold: Having established the exis-
tence of a threshold curve, Theorem 4 gives necessary and
sufficient conditions for the optimal linear hyperplane
approximation to this curve. Then a simulation-based
stochastic approximation algorithm (Algorithm 1) is
presented to compute this optimal linear hyperplane
approximation.
The remainder of the paper illustrates the above structural
results in several examples.

(iv) Example 2: Quickest Transient Detection: Section IV con-
siders quickest transient detection. We refer the reader to
[39] for a nice description of the quickest transient detec-
tion problem and various cost functions. In quickest tran-
sient detection, a Markov chain state jumps from a starting
state to a transient state at a geometric distributed time,
and then jumps out of the state to an absorbing state at
another geometric distributed time. We show in Theorem
5 that a similar structural result to quickest time detection
holds (i.e., existence of a threshold switching curve and
convexity of the stopping region).

(v) Example 3: Quickest Time Detection with Exponential
Delay Penalty: In Section V, we generalize the results
of Poor [36] to PH-distributed change times. Poor [36]
considers a novel variation of the quickest time detection
problem where the time delay in the detection is penal-
ized exponentially. By converting the resulting problem
into a standard stopping problem [12], it is shown in [36]
that the optimal decision policy is a threshold policy under
mild conditions.
The exponential delay penalty cost function in [36] is
a special case of risk sensitive stochastic control with
geometric change times. Assuming more general PH-dis-
tributed change times, Theorem 6 shows that the optimal
detection policy is characterized by a threshold switching
curve and the stopping region is convex in the risk-sensi-
tive belief state.
Risk sensitive stochastic control is widely used in math-
ematical finance, see [6], [14], [17] for comprehensive
treatments in discrete and continuous time. In simple
terms, quickest time detection seeks to optimize the
objective where is the accumulated sample
path cost until some stopping time . In risk sensitive
control, one seeks to optimize . Note
that can be written as higher
order terms. It therefore follows that for , the scaled
cost and hence, is robust and penalizes heavily
large sample path costs due to the presence of second
order moments. This is termed a risk-averse control and
is of significant importance in mathematical finance, see
[6]. Risk sensitive control provides a nice formalization
of the exponential penalty delay cost and allows us to
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generalize the results in Poor [36] to phase-distributed
change times by applying lattice programming.

(vi) Example 4 and 5: Stopping Time Problems in Multi-agent
Social Learning: Section IV presents two examples of
stopping time problems involving social learning amongst
multiple agents. We consider: How do local decisions in
social learning affect the global decision in a stopping
time problem? Social learning has been used in economics
[2], [8], [11], for example to model behavior in financial
markets; see also [27], [46]. In social learning, each agent
optimizes its local utility selfishly and then broadcasts its
action. Subsequent agents then use their private observa-
tion together with the actions of previous agents to learn
an underlying state.
Our first result (Example 4) deals with a multi-agent
Bayesian stopping time problem where agents perform
greedy social learning and reveal their local actions to
subsequent agents.How can the multi-agent system make
a global decision when to stop? Such problems arise
in automated decision systems (e.g., sensor networks)
where agents make local decisions and reveal these local
decisions to subsequent agents. Theorem 7 shows that
the optimal decision policy of the stopping time problem
has multiple thresholds. This is unusual: if it is optimal
to declare state 1 based on a Bayesian belief, it may
not be optimal to declare state 1 when the belief about
state 1 is stronger. We also give an explicit example of
an optimal double threshold policy. The result shows
that making global decisions based on local decisions
involves nonmonotone policies.
Our second result (Example 5) deals with “constrained
optimal” social learning. A key result in social learning
is that rational agents eventually herd, that is, they pick
the same action irrespective of their private observation
and social learning stops. To enhance social learning,
Chamley [11] (see also [45] for related work) formulated
constrained social learning as a stopping time problem
where agents either reveal their observations or they herd
(which is equivalent to stopping in a sequential decision
problem). When should a multi-agent system make the
global decision to stop (herd)? Intuitively, the decision
to stop should be made when the state estimate is suf-
ficiently accurate so that revealing private observations
is no longer required. Theorem 9 in Section VI shows
that the constrained optimal social learning proposed by
Chamley [11] has a threshold switching curve in the space
of public belief states. Thus, the global decision to stop
in [11] can be implemented efficiently in a multi-agent
system.

(vii) Example 6: Multi-agent Scheduling in a Changing World:
In Section VII we examine: How can the optimal deci-
sion policy be bounded in terms of a myopic policy?
How does the achievable cost of the optimal policy vary
with transition probabilities (and therefore change time
distribution)? We answer these two questions in a general
setting where optimal decisions need to be made when
the underlying state evolves according to a finite state
Markov chain without necessarily having an absorbing

state. The problem is no longer a stopping problem; it
is a more general partially-observed stochastic control
problem.

To formulate these results, Section VII considers a multi-
agent scheduling problem. Using Blackwell dominance, The-
orem 10 shows that the optimal policy is lower bounded by a
myopic policy. The myopic policy can be computed efficiently
and is a rigorous lower bound to the computationally intractable
optimal policy. Finally, Theorem 11 examines how the optimal
expected cost varies with transition matrix for a stopping time
problem (e.g., quickest detection problem) and more general
dynamic decision problem in a changing world. The theorem
shows that for the underlying Markovian state, the larger the
transition matrix (according to an order defined in Section VII),
the cheaper the optimal expected cost.

II. PARTIALLY OBSERVED STOCHASTIC

CONTROL FORMULATION

In this section we present a partially observed stochastic con-
trol formulation that allows us to tackle the various stopping
time problems considered in subsequent sections.

A. Stopping-Time Stochastic Control Model

The model comprises of the following ingredients
Absorbing-State Markov Chain and Phase-Type Distribution

Change Time: We model the change point by a phase type
(PH) distribution.The family of all PH-distributions forms a
dense subset for the set of all distributions [33] and hence can
be used to approximate change points with an arbitrary distri-
bution. This is done by constructing a multistate Markov chain
as follows: Let denote discrete time. Assume the
state of nature evolves as a Markov chain on the finite state
space

(2)

Here state “1” (corresponding to ) is an absorbing state and de-
notes the state after the jump change. The states (cor-
responding to ) can be viewed as a single composite
state that resides in before the jump. Denote

(3)

We assume that the change occurs after at least one measure-
ment. So the initial distribution

(4)

The transition probability matrix with elements
is

(5)
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Let the “change time” denote the time at which enters the
absorbing state 1, i.e.,

(6)

The distribution of is determined by choosing the transition
probabilities in (5). To ensure that is finite, assume
states are transient. This is equivalent to satisfying

for (where denotes the
element of the th power of matrix ). The distribution

of (which is equivalent to the distribution of the absorption
time to state 1) is given by

(7)

where . The key idea is that by ap-
propriately choosing the pair and the associated state
space dimension , one can approximate any given discrete
distribution on by the distribution ; see [33,
pp.240–243]. The event means the change point has
occurred at time according to PH-distribution (7). Of course,
in the special case when is a 2-state Markov chain, the change
time is geometrically distributed.

Observation: At time , the noisy observation given
state has conditional probability distribution

(8)

Here denotes integration with respect to the Lebesgue mea-
sure (in which case and is the conditional proba-
bility density function) or counting measure (in which case
is a subset of the integers and is the conditional probability
mass function ).

Belief State: At time , the belief state is the posterior
probability mass function of given the observation history

and past decisions . That is

(9)

Equivalently, denote the filtration

(10)
Then . (The notational advantage of choosing
unit vectors (2) for the state space is that conditional probabili-
ties and conditional expectations coincide).

The belief state is updated via the Bayesian (Hidden Markov
Model) filter

(11)

Here denotes the -dimensional vector of ones. The belief
state in (1) is an -dimensional probability vector. It belongs
to the -dimensional unit-simplex denoted as

(12)
For example, is a 1-dimensional simplex (unit line seg-
ment), is a 2-D simplex (equilateral triangle); is a
tetrahedron, etc. The states of the Markov chain

are the vertices of .
Sequential Decision and Costs: At each time , a decision
is taken where

(13)

In (13), the policy belongs to the class of stationary decision
policies denoted .

(i) Cost of announcing change and stopping: If decision
is chosen, then the problem terminates. If

is chosen before the change point , then a false alarm
and variance penalty is paid. If is chosen at or
after the change point , then only a variance penalty is
paid. Below we formulate these costs.
Let specify the physical state levels
associated with states of the Markov chain .
The variance penalty is

(14)

This conditional variance penalizes choosing the stop ac-
tion if the uncertainty in the state estimate is large, see
also [3].
Next, the false alarm event

represents the event that a change
is announced before the change happens at time . To
evaluate the false alarm penalty, let
denote the cost of a false alarm in state , , where

. Of course, since a false alarm is only
incurred if the stop action is picked in states .
The expected false alarm penalty is

(15)

The false alarm vector is chosen with increasing ele-
ments so that states further from state 1 incur larger penal-
ties.
Then with denoting non-negative constants that
weight the relative importance of these costs, the ex-
pected stopping cost at time is

(16)

One can also view informally as a Lagrange multiplier
in a stopping time problem that seeks to minimize a cumu-
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lative cost (as in (20) below) subject to a variance stopping
constraint.

(ii) Delay cost of continuing: We allow two possible choices
for the delay costs:
(a) If decision is taken then

is the event that no change is declared at time
even though the state has changed at time . So
with denoting a non-negative constant,

depicts a delay cost. The expected delay
cost for decision is

(17)

The above cost is motivated by applications (e.g.,
sensor networks) where if the decision maker
chooses , then it needs to gather ob-
servation thereby incurring an additional
operational cost denoted as . Strictly speaking,

. Without loss of generality set
the constant to zero, as it does not affect our struc-
tural results. The penalty
gives incentive for the decision maker to predict the
state .

(b) Instead of the above, the more “classical” formula-
tion is that a delay cost is incurred when the event

occurs. Then the expected delay
cost is

(18)

Remark: Due to the variance penalty, the cost in (16)
is quadratic in the belief state . Therefore, the formulation
cannot be reduced to a standard stopping problem with linear
costs in the belief state.

B. Quickest Time Detection Objective

Let be the underlying measurable space where
is the product space, which is endowed

with the product topology and is the corresponding product
sigma-algebra. For any , and policy , there
exists a (unique) probability measure on , see [16]
for details. Let denote the expectation with respect to the
measure .2

Let denote a stopping time adapted to the sequence of -al-
gebras , defined in (10). That is, with determined
by decision policy (13),

(19)

2The formulation on is as follows, see [16].
Augment to include the fictitious stopping state which is cost
free, i.e., for all . When decision is
chosen, the belief state transitions to and remains there indefi-
nitely. Then (20) is equivalent to

, where the last
summation is zero.

For each initial distribution , and policy , the fol-
lowing cost is associated:

(20)

Here denotes an economic discount factor. Since
, are non-negative and bounded for all

, stopping is guaranteed in finite time, i.e., is finite with
probability 1 for any (including ).

Remark: For the special case , (i.e., geo-
metric distributed change time), , and delay cost (17), it
is easily shown that

(21)

(where is defined in (6) and is defined in (19)). For the delay
cost (18), the cost function assumes the classical Kolmogorov-
Shiryayev criterion for detection of disorder [43], namely

(22)

The goal is to determine the change time defined in (6)
with minimal cost, that is, compute the optimal policy
to minimize (20), i.e., . The existence
of an optimal stationary policy follows from [7, Prop.1.3,
Chapter 3].Considering the above cost (20), the optimal sta-
tionary policy and associated value func-
tion are the solution of the following “Bellman’s dynamic
programming equation”

(23)

Before proceeding, we rewrite the above in a form that is more
amenable3 for analysis. Define

(24)

3The reason for changing coordinates from , to ,
is to make our analysis compatible with existing results in quickest

time detection. To ensure this compatibility, we need to be decreasing
with respect to the MLR order (see Appendix) when . As shown in the
proof of Theorem 1 in the Appendix, is MLR decreasing. In compar-
ison is not MLR deceasing. Of course, the stopping set (see (6))
and optimal policy are invariant to the choice of coordinates. This idea of
changing coordinates is described in [13], albeit for the simpler fully observed
Markov decision process case.
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Then clearly satisfies Bellman’s dynamic programming
equation

(25)

Thus, the goal is to determine the optimal stopping set

(26)

In Section III-B, sufficient conditions are given to ensure that
is nonempty.

Value Iteration Algorithm and Methodology: We comment
briefly here on our analysis methodology which is detailed in
Section III. Let denote iteration number (the fact
that we used previously to denote time should not result in
confusion). The value iteration algorithm is a fixed point itera-
tion of Bellman’s equation and proceeds as follows:

(27)

Let denote the set of bounded real-valued functions on
. Then for any and , define the sup-norm

metric , . Then is a Ba-
nach space. The value iteration algorithm (27) will generate a se-
quence of value functions that will converge uni-
formly (sup-norm metric) as to , the op-
timal value function of Bellman’s equation. However, since the
belief state space is an uncountable set, the value iteration
algorithm (27) do not translate into practical solution method-
ologies as needs to be evaluated at each ,
an uncountable set. Indeed, due to the nonlinearity in the be-
lief states, the formulation is more complex than a partially ob-
served Markov decision process which is known to be PSPACE
hard [34]. Although value iteration is not useful from a com-
putational point of view, in Section III, we exploit the structure
of the value iteration recursion (25), (27) to prove that is
characterized by a threshold switching curve. We then exploit
this structure to devise polynomial complexity algorithms for

approximating the optimal policy and thus determining the
stopping set .

Remark: Computational algorithms based on value iteration
such as Sondik’s algorithm, Monahans’s algorithm, Cheng’s al-
gorithm, Witness algorithm (see [9], [10] for a tutorial descrip-
tion) and Lovejoy’s suboptimal algorithms [29] solve POMDPs
with linear costs (i.e., ) over finite horizons. These algo-
rithms require finite observation spaces and are computationally
intractable except for small and . They are not applicable
directly to stopping problems considered in this paper since we
consider nonlinear penalty costs, possibly continuous observa-
tion space (Examples 1, 2, and 3), and problems where the ob-
servation probabilities depend on the belief state (social learning
in Examples 4 and 5).

III. EXAMPLE 1: QUICKEST TIME DETECTION WITH

PH-DISTRIBUTED CHANGE TIME AND VARIANCE PENALTY

This section considers quickest time detection with PH-dis-
tributed change time and variance penalty. Section III-A below
gives the main results of this paper, namely the optimal decision
policy is characterized by a threshold curve. Sections III-B
and III-C discuss the implications and main assumptions.
Section III-D then parametrizes the optimal linear approxi-
mation to this threshold curve. Finally, Section III-E gives a
stochastic optimization algorithm (Algorithm 1) to compute
this optimal linear approximation.

The quickest time detection problem is a special case of the
stochastic control problem formulated in Section II. The states

are fictitious and are defined to generate the change
time with PH-distribution (7). So states are indis-
tinguishable in terms of the observation . That is, the observa-
tion probabilities in (8) and Markov chain state levels in
(14) satisfy

(28)

The above choice of is without loss of generality
since the variance penalty (14) is translation invariant with re-
spect to for any .

Notation: Notation and definitions regarding stochastic or-
ders, lattice programming, the poset and submodu-
larity are given in Appendix A. Below denotes the monotone
likelihood ratio order, denotes the likelihood ratio order on
lines , denotes the likelihood ratio order on lines

, and denotes first order stochastic dominance.

A. Main Result: Existence of Decision Curve Policy for
Quickest Time Detection

This section gives three main results: The optimal policy for
quickest detection with PH-distributed change time and vari-
ance penalty is characterized by a threshold curve (Theorems
1 and 2). Also for , it is shown that the stopping set is
convex (Theorem 3).

Quickest Detection With Delay Penalty (17): For the stop-
ping cost in (16), choose

. This weighs the states equally in the false alarm
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Fig. 1. Illustration of threshold switching decision curve . Here and hence is an equilateral triangle. Theorem 1 shows that the stopping region
is a connected and . Also is connected. The lines segments connecting the sub-simplex to are defined in (80). Theorem 1 says

that the threshold curve can intersect each line only once (and similarly intersect each line only once). In the special case , Theorem
3 says that is a convex set (not shown in this figure).

penalty. With assumption (28), the variance penalty (14) be-
comes . The delay cost is chosen as
(17). To summarize (24)–(26) hold with

(29)

Theorem 1 below is our main result on the structure of the
optimal decision policy . It is based on the following as-
sumptions (discussed in Section III-C).

(A1-Ex1)
(A2) The observation distribution in (8) is TP2 in

(see Defn.4(iii) in Appendix A. Equivalently, from
(28), .
(A3) The transition matrix in (5) is TP2, i.e., all its
second order minors are non-negative.
(S-Ex1)

(A1-Ex1) and (S-Ex1) are constraints on the delay and stop-
ping cost functions (that the decision maker can design), while
(A2) and (A3) are assumptions on the underlying observation
(8) and PH-distribution (6).

Theorem 1 (Switching Curve Optimal Policy): Consider the
quickest time detection problem (20) with costs defined in (29)
and PH-distributed change time defined in (6). Then for

, under (A1-Ex1), (A2), (A3), (S-Ex1), there exists an op-
timal policy that is increasing on lines and

increasing on lines . As a consequence:
(i) The stopping set defined in (6) has the following struc-

ture: There exists a threshold switching curve that par-
titions belief state space into two individually con-
nected regions , , such that the optimal policy is

if
if .

(30)

(A set is connected if it cannot be expressed as the union
of two disjoint nonempty closed sets [42]). The threshold
curve intersects each line and at most
once.

(ii) There exists an , such that
and .

(iii) For geometric distributed change time , there exists a
unique threshold point such that (1) holds. (Note
(A3) holds trivially in this case).

Theorem 1 is proved in Appendix C and uses meta Theorem
13 in Appendix B as a key step. The intuition behind Theorem
1 is discussed in Sections III-B and III-C below. Fig. 1 gives
a pictorial illustration. Note that if , then (S-Ex1) holds
trivially if (A1-Ex1) holds).

Quickest Detection With Delay Penalty (18): Next consider
the “classical” delay cost in (18) and stopping cost

in (16) with in (28). Then (24)–(26) hold with

(31)

Below we show that Theorem 1 continues to hold, if the decision
maker designs the false alarm vector to satisfy the following
linear constraints:

(i) (AS-Ex1) (i) , .
(ii) ,

(iii) , .
Feasible choices of are easily obtained by a linear program-

ming solver.

Theorem 2: Consider the quickest detection problem with
delay and stopping costs in (31). Then under (AS-Ex1), (A2),
(A3), Theorem 1 holds.
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Convexity of Stopping Region When : Finally, we
present the following result for the case , i.e., no vari-
ance penalty.

Theorem 3: For arbitrary PH-distributed change time , and
no variance penalty , the stopping region is a convex
subset of .

The proof of Theorem 3 is in Appendix D; it was proved in
[28] in a POMDP setting. Theorem 3 says that as long as costs

, are linear in (i.e., no variance penalty), then
the stopping set is convex for any size (i.e., arbitrary PH-dis-
tribution); no assumptions are required on the transition matrix

or observation likelihood matrix . However, even though
is convex (and therefore connected), Theorem 3 does not

guarantee that is connected. As described in Section III-C,
Theorem 1 and Theorem 2 go much further than Theorem 3 in
characterizing and , even for the case .

B. Discussion of Theorems 1, 2

Theorems 1 and 2 imply that since the optimal decision policy
is characterized by a threshold curve, quickest time detection
for PH-distributed change times and variance penalty can be
implemented efficiently, Section III-D. Without this result, the
stopping set is not necessarily a connected region as will be
shown in Section VIII.

Geometric Distributed Change Time: When the change time
is geometrically distributed, since the state space ,

is a 1-D simplex. Then the stochastic orders , and
defined in Appendix A coincide, and become total orders.

Also (A3) holds automatically for this case. Below we discuss
the cases of and .

(i) : For geometric distributed change time, Theo-
rems 1 and 2 say that the classical threshold policy de-
picted in (1) continues to hold when a nonlinear vari-
ance penalty is considered. For example, consider The-
orem 2 with nonzero , delay in (31) and false alarm
vector . So the false alarm cost is
(which is identical to (29)). One can view this as the
Kolmogorov-Shiryayev criterion (22) with an additional
variance penalty. Theorem 2 holds under the conditions
(AS-Ex1) and (A2). Here (AS-Ex1) equivalent to the con-
straint that . [Choose , in
(AS-Ex1)(i)]. So for , (AS-Ex1) always holds.

(ii) : For quickest time detection with geometric
distributed change time and no variance penalty ,
the well known existence of a threshold point (e.g., for
the Kolmogorov-Shiryayev criterion (22)) follows triv-
ially from Theorem 3. Since is a 1-D simplex, con-
vexity of stopping set (Theorem 3) implies that there
is a threshold point that satisfies (1).

Avoiding Trivial Cases: To ensure the stopping set con-
tains state , assume . From (29) or (31)
this is equivalent to . The strict inequality also implies that

is nonempty, where denote the interior of
the simplex .

For the detection problem to be nontrivial, we want
for , otherwise it is always optimal to

stop at time 1. For the case of Theorem 1, from (29), a sufficient

condition is that . Since the transition
matrix is TP2, it follows4 that .
Therefore, it is sufficient for the decision maker to choose
constants and such that . For Theorem 2, from
(31), always holds for and ,

.
Nondegenerate Threshold Curve: Let and ,

respectively, denote the interior and boundary of the simplex
. Determining the threshold switching curve in Theorem

1 requires determining (portion of curve that lies in
the interior of the simplex) and (portion of curve that
lies on the boundary of the simplex). Since comprises of
sub-simplices, to determine one would need to search
for the threshold curve within these sub-simplices. While con-
ceptually straightforward, we can eliminate this search by en-
suring that the belief state always lives in the interior
of the simplex. The following lemma gives sufficient conditions
for the sequence of belief states over time to lie in .

Lemma 1: Suppose each column of transition matrix has
at least one nonzero element, and the observation likelihoods
satisfy for . Then for initial belief state
satisfying (4) with , , subsequent belief states

lie in for all time .
The proof follows straightforwardly from the belief state up-

date (11). Since the sequence of belief states , , lives in
, one only needs to compute the threshold curve inside

the simplex, i..e., . Recall from the previous remark
that is nonempty and consequently is
nonempty.

C. Assumptions and Proofs of Theorem 1 and Theorem 2

Below we discuss the main assumptions of Theorem 1 and
Theorem 2 in Section III-A, then outline the structure of the
proof, and finally give intuitive examples that illustrate the struc-
ture of stopping set .

Discussion of Assumptions: Recall (A1-Ex1) and (S-Ex1) are
design constraints the decision maker uses to choose the stop-
ping and delay costs. In contrast, (A2) and (A3) are assumptions
on the underlying stochastic model.

As described in the Appendix B, (A1-Ex1) is sufficient for
to be decreasing. We also require in (29) to

be decreasing, but this holds trivially in our setup.
(S-Ex1) is a submodularity condition, see Defn.5 in

Appendix. We refer to [1], [48] for extensive treatments of
lattice programming and submodularity. The key idea is that if

is submodular on the partially ordered set ,
then the optimal policy is monotone
increasing with respect to .

In our setting, submodularity of in (25) is equivalent
to showing that is decreasing with respect to

(in terms of the MLR order , see discussion of structure
of proof given below). Since by (A1-Ex1), and

4Proof: We prove the contrapositive, that is, implies is not
TP2. Recall from (A3-Ex1), TP2 means that for all

. So assuming , to show that is not TP2, we need to show
that there is at least one such that . But im-
plies , which in turn implies that at least for one ,

.
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are MLR decreasing in , it will be proved that is MLR
decreasing in providing (A2) and (A3) hold. Since the sum
of submodular functions is submodular, establishing submodu-
larity of in (25) is equivalent to establishing submodu-
larity of . Clearly if , then from (29),
is independent of . So if then the submodular condi-
tion (S-Ex1) holds trivially since is decreasing in via
(A1-Ex1). So for quickest time detection with PH-distributed
change time and no variance penalty, submodularity holds by
construction. Note that when the variance penalty is included,
(S-Ex1) always holds if .

AS-Ex1 in Theorem 2 ensures that and in
(24) for the modified delay cost in (31) are monotone decreasing
and that is submodular. It is analogous to (A-Ex1) and
(S-Ex1).

(A2) is required for preserving the MLR ordering with respect
to observation of the Bayesian filter update —this is
a key step in showing is MLR decreasing in . Theorem
13(ii) in the Appendix states that is MLR increasing in

, iff (A2) holds.
(A2) is satisfied by numerous continuous and discrete distri-

butions, see a classical detection theory book such as [37]. Ex-
amples include Gaussians, Exponential, Binomial, Poisson, etc.

(A3) is essential for the Bayesian update preserving
monotonicity with respect to . Theorem 13 (1) in the appendix
shows that is MLR increasing in iff is MLR in-
creasing in , and (A3) is a sufficient condition for the latter.
TP2 stochastic orders and kernels have been studied in great de-
tail in [18].

(A3) is satisfied by several classes of transition matrices; see
[19], [20]. Consider, for example, a tridiagonal transition prob-
ability matrix with for and . As
shown in [15, pp.99–100], a necessary and sufficient condition
for tridiagonal to be TP2 is that .

Structure of Proof of Theorem 1: The proof in the appendix
comprises of three steps. Steps 1 and 2 below are proved in meta
Theorem 13 in Appendix B under general conditions (A1), (A2),
(A3) and (S).
Step 1: Step 1 We first show that the value function

is MLR decreasing (see Appendix A for defini-
tion). As shown in the proof, the general conditions
(A1), (A2), (A3) are sufficient for to be
decreasing on . This involves showing that

, are MLR decreasing. (A1)(i) and
(A1)(ii) in the appendix are sufficient conditions for
this. The proof that (A1)(i) is sufficient for
to be MLR decreasing is similar in spirit to the
Schur-convexity proof (Theorem A.3 of [30]) with
the difference that in Schur convexity the vectors
have elements in ascending order while in our case
the elements of can be in any order.
Conditions (A2) and (A3) are required for MLR
monotone updates of the belief state, and
also first order stochastic dominance monotonicity
of , see Appendix for definition.

Step 2: Step 2 We then prove that is submodular
on and . (S) is
sufficient for to be submodular on lines

and . Since we only require
submodularity on lines and ,
and these are chains (i.e., totally ordered subsets
of a partially ordered set), the condition (S) is
less restrictive that requiring submodularity on the
entire simplex . Finally (A1),(A2),(A3),(S)
are sufficient for to be submodular on
lines and . So Theorem 13 in
Appendix B implies a monotone policy on each
chain . So there exists a threshold
belief state on each line where the optimal policy
switches from 1 to 2. (A similar argument holds for
lines ).

Step 3: Step 3 Step 3 is proved in Appendix C. The entire
simplex can be covered by the union of lines

. The union of the resulting threshold be-
lief states yields the threshold curve . This is
illustrated in Fig. 1.

Some Intuition: Recall for , the belief state
space is an equilateral triangle. So on , more insight
can be given to visualize what the above theorem says.5 In Fig. 2,
six examples are given of decision regions that violate the the-
orem. To make these examples nontrivial, we have included

in all cases.
The decision regions in Fig. 2(a) violate the condition that

is increasing on lines towards . Even though and
are individually connected regions, the depicted line
intersects the boundary of more than once (and so violates
Theorem 1).

The decision regions in Fig. 2(b) satisfy Theorem 3 since the
stopping set is convex. As mentioned in Section III-A, The-
orem 1 gives more structure to and . Indeed, the deci-
sion regions in Fig. 2(b) violate Theorem 1. They violate the
statement that the policy is increasing on lines towards since
the boundary of (i.e., threshold curve ) cannot intersect a
line from more than once. Therefore, Theorem 1 says a lot
more about the structure of the boundary than convexity does.
In particular, for the PH-distributed change time without vari-
ance penalty, Theorems 1 and 3 together say that the threshold
curve is convex and cannot intersect a line or a line

more than once.
Fig. 2(c) also satisfies Theorem 3 since is convex. But the

decision regions in Fig. 2(c) violate Statement (ii) of Theorem
1. In particular, if and lie in , then should also lie
in . Again this reveals that Theorem 1 says a lot more about
the structure of the stopping region even for the case of zero
variance penalty .

Fig. 2(d) also satisfies Theorem 3 since is convex; but does
not satisfy Theorem 1 since is not a connected set. Indeed
when is not connected as shown in the proof of Theorem 1,
the policy is not monotone on the line since it
goes from 2 to 1 to 2.

5It can be shown that the threshold curve is a Borel measurable function. Also,
intersects each line segment from vertex and each line segment from vertex
at most once. This implies can be parametrized by a pair of monotonically

decreasing angles with respect to vertices and . By Lebesgue theorem [42],
a monotone function is differentiable almost everywhere. So for ,

is differentiable almost everywhere.
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Fig. 2. Examples of decision regions that violate Theorem 1 on belief space . (a) Example 1. (b) Example 2. (c) Example 3. (d) Example 4. (e) Example 5.
(f) Example 6.

Figs. 2(e) and 2(f) violate Theorem 1 since the optimal policy
is not monotone on line ; it goes from 1 to 2 to 1.

For the case , Figs. 2(e) and 2(f) violate Theorem 3 since
the stopping region is nonconvex.

Since the conditions of Theorem 1 are sufficient conditions,
what happens when they do not hold? In Section VIII, we
will give a numerical example where (S-Ex1) is violated and

is no longer a connected set Fig. 6(d)). It is straightfor-
ward to construct other examples where both and are
disconnected regions when the assumptions of Theorem 1 are
violated.

D. Characterization of Optimal Linear Decision Threshold

This subsection assumes that (A1-Ex1), (A2), (A3), (S-Ex1)
of Section III-A hold. So Theorem 1 applies and computing the
optimal policy reduces to estimating the threshold curve . In
general, any user-defined basis function approximation can be
used to parametrize this curve. However, any such approxima-
tion needs to capture the essential feature of Theorem 1: the pa-
rametrized optimal policy needs to be MLR increasing on lines.
[An identical discussion applies to Theorem 2 with assumptions
(AS-Ex1), (A2), (A3)].

Below, we derive the optimal linear approximation to the
threshold curve on simplex . Such a linear decision
threshold has two attractive properties: (i) Estimating it is com-
putationally efficient. (ii) We give conditions on the coefficients
of the linear threshold that are necessary and sufficient for the
resulting policy to be MLR increasing on lines. Due to the neces-
sity and sufficiency of the condition, optimizing over the space
of linear thresholds on yields the optimal linear approxi-
mation to threshold curve .

On , define the linear threshold policy as

if

otherwise
(32)

Here denotes the pa-
rameter vector of the linear threshold policy. (Since

, a linear hyperplane on is parametrized by
coefficients).

Theorem 4 below characterizes the optimal linear decision
threshold approximation to the threshold curve on .
Assume conditions (A-Ex1), (A2), (A3), (S-Ex1) hold for the
quickest detection problem (20) so that from Theorem 1, the
optimal policy is MLR increasing on lines
and . Assume the conditions of Lemma 1 hold, so
that one only needs to search for the optimal linear threshold
in the interior of . Finally, the requirement that
lies in the stopping set, means which implies

.

Theorem 4 (Optimal Linear Threshold Policy): For belief
states , the linear threshold policy defined in
(32) is:

(i) MLR increasing on lines iff and
for ;

(ii) MLR increasing on lines iff , for
.

The proof of Theorem 4 is in Appendix E. As a consequence
of Theorem 4, the optimal linear threshold approximation to
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Fig. 3. Examples of Valid Linear Threshold Policies on belief space for (Case 1 and Case 2). Case 3 is invalid.

threshold curve of Theorem 1 is the solution of the following
constrained optimization problem:

(33)

where the cost is obtained as in (20) by applying
threshold policy in (32).

Remark: The constraints in (33) are necessary and sufficient
for the linear threshold policy (32) to be MLR increasing on
lines an . That is, (33) defines the set of all
MLR increasing linear threshold policies—it does not leave
out any MLR increasing polices; nor does it include any non
MLR increasing policies. Therefore, optimizing over the space
of MLR increasing linear threshold policies yields the optimal
linear approximation to threshold curve .

Intuition: Consider , so that the belief
space is an equilateral triangle. Then with
denoting Cartesian coordinates in the equilateral triangle,
clearly , and the
linear threshold satisfies

(34)

So the conclusion of Theorem 4 that implies that
the linear MLR increasing threshold has slope of 60 or larger.
For , it follows from (34) that the slope of the linear
threshold becomes negative, i.e., more than 90 . For a nonde-
generate threshold, the intercept of the line should lie in

implying and . Fig. 3 illustrates
these results. Figs. 3(a) and 3(b) illustrate valid linear thresh-
olds. In Figs. 3(a) and 3(b), the conditions of Theorem 4 hold
(the slope is larger than 60 and intercept is in ).
Fig. 3(c) shows an invalid threshold (since the slope is smaller
than 60 and intercept lies outside ). In other words,
Fig. 3(c) shows an invalid threshold since it violates the require-
ment that is decreasing on lines towards on .
(A line segment starting from some point on facet

and connected to would start in the region
and then go to region . This violates the requirement that

is increasing on lines towards ).

E. Algorithm to Compute the Optimal Linear Decision Curve

In this section a stochastic approximation algorithm is pre-
sented to estimate the optimal threshold vector in (33). Be-
cause the cost in (33) cannot be computed in closed
form, we resort to simulation based stochastic optimization. Let

denote iterations of the algorithm. The aim is to
solve the following linearly constrained stochastic optimization
problem:

(35)

Here, for each initial condition , the sample path cost
is evaluated as

(36)

A convenient way of sampling uniformly from is to use
the Dirichlet distribution (i.e., , where
unit exponential distribution).

The above constrained stochastic optimization problem can
be solved by a variety of methods. One method is to convert
it into an equivalent unconstrained problem via the following
parametrization: Let and
parametrize as

.
(37)
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Then trivially satisfies constraints in (35). So (35) is equiv-
alent to the following unconstrained stochastic optimization
problem:

(38)

Algorithm 1 below, uses the Simultaneous Perturbation Sto-
chastic Approximation (SPSA) algorithm [47] to generate a se-
quence of estimates , that converges to a local
minimum of the optimal linear threshold with policy .

Algorithm 1 Policy Gradient Algorithm for computing optimal
linear threshold policy

Assume (A1-Ex1), (A2), (A3), (S-Ex1) hold so that the optimal
social policy is characterized by a threshold switching curve
in Theorem 1.

Step 1: Choose initial threshold coefficients and linear
threshold policy .

Step 2: For iterations

• Evaluate sample cost using (38). Compute gradient
estimate

.

Here denotes the gradient step size with
and .

• Update threshold coefficients via stochastic approximation
algorithm

(39)

The above SPSA algorithm [47] picks a single random direc-
tion along which direction the derivative is evaluated at each
batch . Unlike the Kiefer-Wolfowitz finite difference algorithm
to evaluate the gradient estimate in (39), SPSA requires
only 2 batch simulations, i.e., the number of evaluations is in-
dependent of dimension of parameter . Because the stochastic
gradient algorithm (39) converges to local optima, it is neces-
sary to try several initial conditions . The computational cost
at each iteration is linear in the dimension of and is indepen-
dent of the observation alphabet size.

For fixed , the samples in (36) are simulated inde-
pendently and have identical distribution. Thus, the proof that

generated by Algorithm 1 converges to a local op-
timum of (defined in (35)) with probability one, is
a straightforward application of techniques in [26] (which gives
general convergence methods for Markovian dependencies).

Remark: More sophisticated gradient estimation methods
can be used instead of the SPSA finite difference algorithm

given here. For example, [23], [35] present score function
and weak derivative approaches for estimating the gradient
of a Markov process with respect to a policy. In [4] the score
function method is used to perform gradient-based reinforce-
ment learning. These algorithms are applicable to solve the
constrained stochastic optimization problem (35) thereby
yielding the optimal linear threshold policy. If the change time
distribution (specified by ) and the observation likelihoods
(specified by ) are not completely specified, but (A2) and (A3)
hold, Theorem 1 applies and reinforcement learning algorithms
[4] can be used to solve (35). Moreover [25], [54] analyze
the tracking properties of stochastic approximation algorithms
when the transition and observation matrices and time varying.

IV. EXAMPLE 2: QUICKEST TRANSIENT DETECTION WITH

VARIANCE PENALTY

Our second example deals with Bayesian quickest transient
detection.6 We show below that under similar assumptions to
quickest time detection, the threshold switching curve of The-
orem 1 holds. Therefore, the linear threshold results and Algo-
rithm 1 hold.

The set up is identical to Section II with state space
. The transition probability matrix and initial distribu-

tion are

(40)

So the Markov chain starts in state 3. After some geometrically
distributed time it jumps to the transient state 2. Finally after
residing in state 2 for some geometrically distributed time, it
then jumps to the absorbing state 1.

In quickest transient detection, we are interested in detecting
transition to state 2 with minimum cost. The action space is

. The stop action declares
that transient state 2 was visited.

We choose the following costs (see [39] for other choices).
Similar to (18), let denote the delay cost
in state . Of course since implies
that the transient state has not yet been visited. So the expected
delay cost is

(41)

Typically the elements of the delay vector are chosen as
so that state 1 (final state) accrues a larger delay than

the transient state. This gives incentive to declare that transient
state 2 was visited when the current state is 2, rather than wait
until the process reaches state 1.

The false alarm cost for declaring (transient state 2 was
visited) when is zero since the final state 1 could only
have been reached after visiting transient state 2. So the false
alarm penalty is

6The author gratefully acknowledges Dr. Venugopal Veeravalli at U. Illinois
for describing quickest transient detection and giving access to the preprint [39].



7108 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

for action . For convenience, in the variance penalty
(1), we choose . So from (16), (18), the expected
stopping cost and continuing costs are

(42)

The optimal decision policy and stopping set are as
in (24)–(26).

Main Result: The following assumptions are similar to those
in quickest time detection. Note that due to its structure, in
(40) is always TP2 (i.e., (A3) in Section III-A holds).

(S-Ex2) The scaling factor for the variance penalty satisfies
.

For (zero variance penalty) (S-Ex2) holds trivially.

Theorem 5: Consider the quickest transient detection
problem with delay and stopping costs in (42). Then under
(A2), (40), (S-Ex2), the conclusions of Theorem 1 hold.
Also if the observation likelihoods are nonzero, then for

, and the threshold is nondegenerate, see
Section III-B-3 and Lemma 1. Thus, Algorithm 1 estimates
the optimal linear threshold. (The proof follows from meta
Theorem 13 in Appendix B and Theorem 1).

PH-Distributed Change Times: More generally, suppose the
process jumps after a PH-distributed time to transient state.
Then after another PH-distributed time period, it jumps to the
absorbing state. We show that Theorem 5 continues to hold.

To model the two PH-distributed change times, let 1 denote
the absorbing state, denote the set of
transient states and denote set
of starting states. Define the
transition matrix

(43)

Suppose the Markov chain starts in . Then after a PH-dis-
tributed time it jumps to and finally after another PH-dis-
tributed time, jumps to state 1. Just as in Section II, and
determine the PH-distribution in the start and transient states, re-
spectively. Let and denote the delay and false alarm vectors.

is a vector with decreasing elements with are .
is a vector with increasing elements with . The

delay and stopping costs are , .
Then the conclusions of Theorem 5 hold under (A2), (A3) if the
decision maker designs and to satisfy the following linear
constraints:

(44)

The decision maker can design suitable and satisfying (44)
using a linear programming solver.

Remark: In the formulation of [39], it is assumed that states 1
and 3 are indistinguishable in terms of observations, i.e.,

for all . In this case, obviously (A2) does not hold.

At this stage, we are unable to prove the structural result of
Theorem 5 when (A2) does not hold. (Relabelling state 1 as 2
and state 2 as 1 does not work. Then satisfies (A2) but the
transition matrix is longer TP2). Nevertheless, we have the
following result which follows from Theorem 3.

Corollary: For , (no variance penalty), then the stop-
ping region in quickest transient detection is a convex subset
of .

V. EXAMPLE 3: QUICKEST DETECTION WITH EXPONENTIAL

PENALTY FOR DELAY

In this example, we generalize the results of Poor [36], which
deals with exponential delay penalty and geometric change
times. We consider exponential delay penalty with PH-dis-
tributed change time. Our formulation involves risk sensitive
partially observed stochastic control, see Section I for motiva-
tion. We first show that the exponential penalty cost function
in [36] is a special case of risk-sensitive stochastic control
cost function when the state space dimension . We then
use the risk-sensitive stochastic control formulation to derive
structural results for PH-distributed change time. In particular,
the main result below (Theorem 6) shows that the threshold
switching curve still characterizes the optimal stopping region

. The assumptions and main results are conceptually similar
to Theorem 1.

Since our aim is to interpret and extend the results of [36]
using risk sensitive control, we consider the same costs as
in [36], so (no variance penalty). Below, we will use

to denote false alarm costs and to
denote delay costs, where .

Risk sensitive control [6] considers the exponential cost
function

(45)
where is the risk sensitive parameter.

Let us first show that the exponential penalty cost in [36] is a
special case of (45) for consider the case (geometric
distributed change time). For the state , choose

(false alarm
cost) , (delay cost).
Then it is easily seen that

. Therefore, [recall is defined
in (6) and is defined in (19)]; see (46) at the bottom of the
next page, which is identical to Poor’s exponential delay cost
function [36, Eq.40]. Thus, the Bayesian quickest time detection
with exponential delay penalty in [36] is a special case of a risk
sensitive stochastic control problem.

We consider the delay cost as in (17); so for state
, . To get an in-

tuitive feel for this modified delay cost function, for the case
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Therefore, by using (21), for , the exponential delay cost
function is

(47)

This is similar to (46) except for the additional term
in the exponential.

With the above motivation, in the rest of this section we con-
sider risk sensitive quickest time detection for PH-distributed
change time, i.e., . Let denote the risk sensitive be-
lief state, see [14], [17] for extensive descriptions of the risk
sensitive belief state and verification theorems for dynamic pro-
gramming in risk sensitive control. It can be shown [14] that the
value function satisfies

(48)

where with ,
, defined in (11)

(49)

As in Section II-B, define . Then
satisfies Bellman’s (25) with

(50)

Assume the following condition holds
(A1-Ex3) The elements of are de-

creasing wrt .
Evaluating , then (A1-Ex3)

is equivalent to

For example, if , then for , the following are
verified by elementary calculus:

(i) (A1-Ex3) always holds for when (geo-
metric distributed change time).

(ii) For PH-distributed change time, if (A3) holds, then (A1-
Ex3) always holds providing .

Theorem 6: The stopping region is a convex subset of
. Under (A1-Ex3), (A2), (A3), Theorem 1 holds. Thus,

Algorithm 1 estimates the optimal linear threshold.

The proof is in Appendix F.

Remarks:
(i) Delay Formulation in [36]: Consider the formulation in

Poor [36] which is equivalent to (46). Then for the geo-
metric distributed case , the convexity of holds
using a similar proof to above. Since is a 1-D sim-
plex and , convexity implies there exists (a pos-
sible degenerate) threshold point that characterizes

such that the optimal policy is of the form (1). As a
sanity check, the analogous condition to (A1-Ex3) reads

. This always holds for .
Therefore, assuming (A2) holds, the above theorem holds
for Poor’s [36] exponential delay penalty case under (A2).
(Recall (A3) holds trivially when ). Finally, for

, using a similar proof (see Theorem 2), one can
again show that the conclusions of Theorem 6 hold.

(ii) Other Examples: With the above risk sensitive formula-
tion, the dynamic programming equation (48) for the ex-
ponential delay case is very similar to the other examples
in this paper. Therefore, it is straightforward to generalize
the above exponential penalty result to quickest transient
detection (of Section IV, and social learning stopping time
problems considered below.

VI. EXAMPLE 4 & 5: STOPPING TIME PROBLEMS IN

MULTI-AGENT SOCIAL LEARNING

Here we consider stopping time problems in multi-agent so-
cial learning. We present two results:

(i) Section VI-B (Example 4) considers a multi-agent system
seeking to solve a Bayesian stopping time problem.

(ii) Section VI-C (Example 5) deals with constrained op-
timal social learning which is formulated in Chamley [11]
as a sequential stopping time problem. We show that the
optimal policy has a threshold switching curve similar to
Theorem 1.

A. Motivation: Social Learning Amongst Myopic Agents

Since social learning only serves as a motivation for subse-
quent subsections, our description is brief; see [11]. Consider a
countable infinite number of agents performing social learning
to estimate an underlying random state . Each agent acts once
in a predetermined sequential order indexed by .
One can also view as the discrete time instant when agent
acts. A key difference between social learning compared to the
formulation in previous sections is that agent does not have ac-
cess to the belief state or private observations of previous agents.
Instead each agent only has access to the actions taken by
previous agents together with its own current private observa-
tion .

(46)



7110 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

Throughout this section, we assume that the observation
space is finite. Let denote the
private observation of agent and
denote the action agent takes. Define the sigma algebras

(51)

The social learning model [8], [11] comprises of the fol-
lowing ingredients:

(A) The state of nature as in Section II-A except that the
transition matrix is . That is, the state of nature is a
random variable with distribution (see (4)) instead of
a random process.

(B) At time , agent records a private observation
from the observation distribution ,

.
(C) Private belief: Using the public belief available at

time (defined in Step (v) below), agent then updates
its Bayesian private belief as in (11) with . Here

(52)

(D) Myopic Action: Agent then takes action
to minimize myopically its expected cost

. Here
denotes an -dimensional cost vector, and de-
notes the cost incurred when the underlying state is and
the agent picks action . Thus, agent chooses action

(53)

(E) Social learning and Public belief: Finally agent broad-
casts this action to subsequent agents. Define the public
belief as the posterior distribution of the state given
all actions taken up to time

(54)

Based on the action every agent (apart from ) perform
social learning to update their public belief according to
the following “social learning Bayesian filter”:

(55)

In (55), with ele-
ments

(56)

where denotes the indicator function and is de-
fined in (11).

The following well known result [8], [11] states that eventu-
ally after some finite time , all agents pick the same action and
the private belief freezes. This is termed an information cascade.
The proof follows via an elementary application of the martin-
gale convergence theorem.

Theorem 7 [8]: The above social learning model leads to an
information cascade (i.e., all agents herd) in finite time with
probability 1. That is there exists a finite time after which
social learning ceases, i..e, public belief , ,
and all agents pick the same action, i.e., , .

B. Example 4: Sequential Detection With Social Learning

Suppose a multi-agent system makes local decisions and per-
forms social learning as above.

Given such a protocol, how can the multi-agent system make
a global decision when to stop? As mentioned in Section I, such
problems are motivated in decision systems where a global de-
cision needs to be made based on local decisions of agents.

We consider a Bayesian sequential detection problem for state
. The main result below (Theorem 8) is that the global

decision of when to stop is a multithreshold function of the be-
lief state. This unusual behavior is because in social learning,
the action likelihood probabilities in (56) depend on the be-
lief state .

Consider and and the social
learning model of Section VI-A, where the costs satisfy

(57)

Otherwise one action will always dominate the other action and
the problem is un-interesting.

Redefine the sigma algebras in (51) to include the action
history

(58)

Let denote a stopping time adapted to the sequence of sigma-
algebras , (see (58)). In words, each agent has only
the public belief obtained via social learning to make the global
decision of whether to continue or stop. The goal is to solve
the following sequential detection problem to detect state :
Pick the stopping time to minimize (59) at the bottom of the
page. As in previous sections, the first term is the delay cost and

(59)
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penalizes the decision of choosing (continue) when the
state is by the non-negative constant . The second term is the
stopping cost incurred by choosing (stop and declare
state 1) at time . It is the error probability of declaring
state when the actual state is . In terms of the public belief,

(60)

The global decision
is a function of the public

belief updated according to the social learning protocol
(52), (55). The optimal policy and value function
satisfy Bellman’s (25) with

(61)

Here and are obtained from the social learning
Bayesian filter (55).

Since , the public belief state
is parametrized by the scalar , i.e.,

is the interval . In order to state the main result,
define the following four intervals which form a partition of the
interval :

Note that corresponds to belief state , and corresponds
to belief state . (See discussion at the end of this section for
more intuition about the intervals ).

It is readily verified that if the observation matrix is TP2,
then . The following is the main result.

Theorem 8: Consider the stopping time problem (60)
where agents perform social learning using the social learning
Bayesian filter (55). Assume (57), , and is TP2
symmetric. Then the optimal stopping policy has the
following structure: The stopping set is the union of at most

three intervals. That is where , ,
are possibly empty intervals. Here:

(i) The stopping interval and is characterized
by a threshold point. That is, if has a threshold point

, then for all and

if
otherwise

(62)

Similarly, if has a threshold point , then
for all .

(ii) The stopping intervals and
(iii) The intervals and are regions of information cas-

cades. That is, if , then social learning ceases
and (see Theorem 7 for definition of informa-
tion cascade).

The proof of Theorem 8 is in Appendix G. The proof depends
on properties of the social learning filter and these are summa-
rized in Lemma 7 in Appendix G.

Examples:
(i) To illustrate the multiple threshold structure of the above

theorem, consider the stopping time problem (60) with the
following parameters:

(63)

Figs. 4(a) and 4(b) show the optimal policy and value
function. These were computed by constructing a grid of
500 values for . The double threshold be-
havior of the stopping time problem when agents perform
social learning is due to the discontinuous dynamics of
the Bayesian social learning filter (55).

(ii) Consider the following generalization of the sequential
detection problem (60). In addition to the delay and error
probability costs, we consider the total social learning cost
incurred by all the agents. So now instead of (59) we have
(64) at the bottom of the page.

Here are defined in (58). The first and last terms above
constitute the total social learning cost (53) from time 1 to . In
terms of the public belief

(64)



7112 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

Fig. 4. Double Threshold Policy in stopping time problem involving social learning. The parameters are specified in (63) and (65). (a) and (c) show the optimal
policy and (b) and (d) show the value function computed using (61).

Then it can be shown that Theorem 7 holds providing is
decreasing in . We chose the following parameters: Last term
in (64) set to zero

(65)

Figs. 4(c) and 4(d) show the optimal policy and value function.
The optimal stopping policy is again a double threshold, and the
value function is monotone on individual intervals.

Discussion: The multiple threshold behavior (nonconvex
stopping set ) of Theorem 8 is unusual. One would have
thought that if it was optimal to “continue” for a particular
belief , then it should be optimal to continue for all beliefs

larger than . The multiple threshold optimal policy
shows that this is not true. Fig. 4(a) shows that as the public
belief of state 2 decreases, the optimal decision switches
from “continue” to “stop” to “continue” and finally “stop”.

Thus, the global decision (stop or continue) is a nonmonotone
function of public beliefs obtained from local decisions.

The main reason for this unusual behavior is the dependence
of the action likelihood on the belief state . This causes the
social learning Bayesian filter to have a discontinuous update.
The value function is no longer concave on and the op-
timal policy is not necessarily monotone. As shown in the proof
of Theorem 7, the value function is concave on each of
the intervals , .

To explain the final claim of the theorem, let us define the
intervals and more explicitly

argmin

argmin (66)

For public belief , the optimal local action is irre-
spective of the observation ; similarly for , the optimal
local action is irrespective of the observation . There-
fore, on intervals and , there is no social learning since the
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local action reveals nothing about the observation to subse-
quent agents. Social learning only takes place when the public
belief is in and .

Finally, we comment on the intervals . They
form a partition of such that if , then

and (with obvious modifications for
and ), see Lemma 7 in the appendix for details. In fact,

and are fixed points of the composition Bayesian maps:
and . Given that the

updates of the social Bayesian filter can be localized to specific
intervals, we can then inductively prove that the value function
is concave on each such interval. This is the main idea behind
Theorem 8.

C. Example 5: Constrained Social Optimum and Sequential
Detection

In this subsection, we consider the constrained social op-
timum formulation in Chamley [11, Chapter 4.5]. We show
in Theorem 9 that the resulting stopping time problem has
a threshold switching curve. Thus, Chamley’s optimal so-
cial learning can be implemented efficiently in a multi-agent
system. This is in contrast to the multithreshold behavior of the
stopping time problem in Sec.Section VI-B when agents were
selfish in choosing their local actions.

The constrained social optimum formulation in [11] is mo-
tivated by the following question:7 How can agents aid social
learning by acting benevolently and choosing their action to
sacrifice their local cost but optimize a social welfare cost? In
Section VI-B, agents ignore the information benefit their action
provides to others resulting in information cascades where so-
cial learning stops. By constraining the choice by which agents
pick their local action to two specific decision rules, the op-
timal choice between the two rules becomes a sequential de-
cision problem.

Assume . As in the social learning model above, let
denote the cost vector for picking local action and [see

(52)] denote the private belief of agent .
Let denote a stopping time adapted to the sequence of

sigma-algebras defined in (58). As in Section VI-B,
the goal is to solve the following sequential detection problem
to detect state : Pick the stopping time to minimize (67) at
the bottom of the page. Similar to (64), the second and third
terms are the delay cost and error probability in stopping and

7The author gratefully acknowledges discussions with Dr C. Chamley who
authored the book [11]. The constrained social optimum formulation presented
in this section is based on [11]. Our formulation considers a multistate version
together with sequential detection of state .

announcing state . The first and last terms model the total so-
cial welfare cost involving all agents based on their local action.
Let us explain these two terms. The key difference compared to
(64) is that agents now pick their local action according to the
decision rule (instead of myopically) as follows.
As in [11], we constrain decision rule to two
possible modes:

if

if
(68)

Here the stationary policy specifies which one of
the two modes the benevolent agent chooses. In mode ,
the agent sacrifices is immediate cost and picks action

to reveal full information to subsequent agents, thereby
enhancing social learning.

In mode the agent “stops and announces state 1”.
Equivalently, using the terminology of [11], the agent “herds” in
mode . It ignores its private observation , and chooses
its action selfishly to minimizes its cost given the public belief

. So agent chooses .
Then clearly from (56), is functionally independent
of since is independent of . Therefore, from
(55), if agent herds, then , i.e., the
public belief remains frozen. The total cost incurred in herding
is then equivalent to final term in (67)

Define the constrained social optimal policy such that
. The sequential stopping problem

(67) seeks to determine the optimal policy to achieve the
optimal tradeoff between stopping and announcing state 1 and
the cost incurred by agents that are acting benevolently. In
analogy to Theorem 1, we show that is characterized by
a threshold curve.

Similar to (24) define the costs in terms of the belief state as

(69)

(67)
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Below we list the assumptions and main structural result which
is similar to Theorem 1. These assumptions involve the social
learning cost and are not required if these costs are zero.

(i) (A1-Ex5)
(ii) (S-Ex5) (i)

.
(iii)

.
Similar to the discussion in Section III-C, (A1-Ex5) is suffi-

cient for and to be decreasing in .
This implies that the costs are decreasing in , i.e., state
1 is the most costly state.

(S-Ex5) is sufficient for to be submodular. It implies
that is decreasing in . This gives economic
incentive for agents to herd when approaching the state , since
the differential cost between continuing and stopping is largest
for . Intuitively, the decision to stop (herd) should be made
when the state estimate is sufficiently accurate so that revealing
private observations is no longer required.

Theorem 9: Consider the sequential detection problem for
state with social welfare cost in (67) and constrained decision
rule (68). Then:

(i) Under (A1-Ex5), (A2), (S-Ex5), constrained social op-
timal policy satisfies the structural properties of
Theorem 1. (Thus, a threshold switching curve exists).

(ii) The stopping set is the union of convex sets (where
denotes cardinality of ). Note also that is a con-

nected set by Statement (i). (Recall in our formu-
lation).

The proof of Theorem 9 is in Appendix H. The main implica-
tion of Theorem 9 is that the constrained optimal social learning
scheme formulated in Chamley [11] has a monotone structure.
This is in contrast to the multithreshold behavior of the stop-
ping time problem in Section VI-B when agents were selfish in
picking their local actions. In [11, Chapter 4.5], the above for-
mulation is used for pricing information externalities in social
learning. From an implementation point of view, the existence
of a threshold switching curve implies that the protocol only
needs individual agents to store the optimal linear MLR policy
(computed, for example, using Algorithm 1). Finally, is the
union of convex sets and is nonconvex in general. This is
different to standard stopping problems where the stopping set
is convex.

VII. EXAMPLE 6: MULTI-AGENT SCHEDULING IN A

CHANGING WORLD

So far we have considered models where the underlying state
is a constant Section VI, or a Markov chain that jumps once
into an absorbing state (change detection of Section III or jumps
twice (transient detection of Section IV. In this section, we con-
sider a more general model where the target state evolves on
the same time scale as the observation process. The target state

jumps with time according to a finite state Markov chain over
the state space with transition probability matrix . Also, un-
like previous sections, decision does not “stop” the evo-

lution of the belief state. So instead of a stopping time problem,
we have a more general partially-observed stochastic control
problem.

As mentioned in Section I, this section is motivated by two
questions: (i) How can the optimal policy be bounded? (ii) How
does the optimal achievable cost vary with transition proba-
bility? The main results of this section are two-fold. First, using
Blackwell dominance, we show that the optimal policy is lower
bounded by a myopic policy (Theorem 10). Next, Theorem 11
shows that for the underlying Markovian state, the larger the
transition matrix (in an order defined in (75)), the cheaper the
expected optimal cost. This is useful in comparing the optimal
achievable cost of quickest time detection with different PH-dis-
tributions.

A. Myopic Policy Bound to Optimal Decision Policy

Consider a countable number of agents where each agent
acts once in a predetermined sequential order indexed by

as follows: Based on the current belief state , agent
chooses mode

Depending on its mode , agent views the world according
to this mode—that is, it obtains observation from a distribution
that depends on . Assume that for mode , the ob-
servation is obtained from the
matrix of conditional probabilities

(70)

The notation allows for mode dependent observation
spaces. In sensor scheduling [21], the tradeoff is as follows:
Mode yields more accurate observations of the state than
mode , but the cost of choosing mode is higher
than mode . Thus, there is an tradeoff between the cost
of acquiring information and the value of the information. The
assumption that mode yields more accurate observations
than mode is modelled by

(71)

Here is a stochastic matrix. can be viewed as
a confusion matrix that maps probabilistically to . (In
a communications context, one can view as a noisy discrete
memoryless channel with input and output ).

When agent chooses mode , it incurs the ex-
pected cost

(72)

where , is defined in (10), and
are defined in (14). In (72), the tradeoff between information

obtained from a mode and the cost of operating in the mode is
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modelled as follows: Choose to penalize choosing the
less accurate mode 1 in terms of the variance, while

since mode 1 incurs a cheaper operating cost.
The goal is to compute the optimal policy to

minimize the overall cost incurred by all the agents

(73)

The above problem is not a stopping time problem, since if
mode is chosen, the problem does not terminate. The
mode chosen by each agent will affect the modes chosen by
subsequent agents, and hence affects the total cost. For such a
partially observed stochastic control problem, determining the
optimal policy is computationally intractable. However,
using Blackwell dominance, we show below that a myopic
policy forms a lower bound for the optimal policy.

The value function and optimal policy satisfy the
dynamic programming equation

(74)

We now present the structural result. Let denote
the set of belief states for which . Define the
myopic policy

otherwise .

Theorem 10: The myopic policy satisfies the following
property: For all , , i.e., it is optimal to
pick action 2. Therefore, forms is a lower bound for the
optimal policy , i.e., for all .

Theorem 10 is proved in Appendix A. The usefulness of The-
orem 10 stems from the fact that is trivial to compute. It
forms a rigorous lower bound to the computationally intractable
optimal policy . What the theorem says is that lower
bounds the optimal policy, and coincides with the optimal policy
in region . Since is sub-optimal, it incurs a higher cost. This
cost can be evaluated via simulation and forms an upper bound
to the optimal achievable cost.

Theorem 10 is nontrivial. Just because at some time , the ex-
pected instantaneous costs satisfy , does
not necessarily imply that the myopic policy coincides
with the optimal policy , since the optimal policy applies
to the infinite trajectory of the dynamical system.

The proof uses Blackwell dominance of measures. The first
instance of a similar proof using Blackwell dominance for
POMDPs was given in [49], see also [41]. Our proof is similar
and uses concavity of the value function and Blackwell

dominance of observation probabilities. In particular, obser-
vation is more informative than (Blackwell dominates)
observation , if (71) holds, see [41]. The proof of Theorem
10 in the appendix comprises of first proving concavity of

. The proof is a non trivial extension, since is
nonlinear in .

B. Effect of State Transition Matrix

The next structural result establishes how the optimal ex-
pected cost varies with different transition matrices. The model
we consider applies to both stopping time problems (such as
quickest time detection) and multi-agent scheduling considered
above.

Suppose , are two distinct transition probability ma-
trices corresponding to two distinct models of Markov state evo-
lution. Let and denote the corresponding
optimal value function in (74). The question we pose is: How
does vary with transition matrix ? For example, in the
quickest detection problem, do certain phase-type distributions
result in larger total optimal cost compared to other phase-type
distributions? A similar question can be posed for the stochastic
control problem considered above.

We consider costs that are linear in the belief state. To show
the explicit dependence on the transition matrix, define the costs
(recall )

The result below also applies to the case where
(i.e., the cost at each stage is not an explicit function of transition
matrix).

Define the following ordering of transition matrices and
:

(75)

Theorem 11: Assume , is decreasing in
, and (A2), (A3) hold. Then:

(i) . That is, the larger the transi-
tion matrix (with respect to the partial ordering (75)), the
lower the optimal expected cost incurred when making
optimal decisions.

(ii) Consider the quickest time detection problem with
and costs in (29). The optimal expected cost (see
(23)) with change time distribution is less than that
with .

Theorem 11 is proved in Appendix J. We now present three
examples.

Example (i): Consider and the dynamic decision
making formulation of Sec.Section VII-A. Then using (75) it
can be verified that the transition matrices

Note that and above are TP2 [as required by (A3)].
So Theorem 11 applies.
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Fig. 5. Monotone behaviour of optimal expected cost (value function
) versus probability for quickest detection with geometric change

time, see (76) for notation. The values of are 0.99 (lowest plot), 0.95, 0.9,
0.8, and 0.01 (highest plot).

Example (ii): The transition matrix corre-

sponding to a two state iid process is decreasing with respect to
the order (29) as increases from 0 to 1. So the theorem says
that the smaller is, the cheaper the optimal expected cost. So
even though the underlying process has maximum uncertainty
(entropy) when , Theorem 11 says that the largest total
cost incurred is when .

Example (iii): Consider the quickest detection costs (29) with
. Consider first the geometric distributed change time case

with transition matrix and parameters in (29)

(76)

It can be verified that is increasing (in terms of (75)) in .
So Theorem 11 says that the larger is, the smaller the average
optimal cost (value function ) for quickest time de-
tection. In Fig. 5 we plot the value function for sev-
eral values of , to illustrate this behavior.

Next, consider quickest detection with PH-distributed
change times (7) modelled by the following transition matrices:
in quickest detection:

Since and are TP2 by (A3), Theorem 11 implies that
the optimal expected cost incurred in quickest change detection
with PH-distributed change time is less than that of .

Discussion:
(i) TP2 Dominance Versus Dominance in (75) It is shown in

[28], [41] that if transition matrices are ordered in the TP2
sense, namely (see Defn.4(i) in Appendix),

then Theorem 11 holds under the same assumptions as
above. It is easy to prove that for 2 2 case, only ma-
trices with identical rows, i.e., transition matrices mod-
elling independent and identically distributed (iid) finite
state processes, satisfy . Our conjecture is

that the only examples of transition matrices that satisfy
are transition matrices corresponding to

iid processes. So TP2 dominance is less useful than the
ordering (75).

(ii) Kolmogorov-Shiryayev criterionIf the Kolmogorov-
Shiryayev criterion (22) is considered then a similar
proof to Theorem 11 shows that is increasing
with . The reason is that in this case in (24)
(with replaced by , see Theorem 2) has
the term . This is increasing in (wrt
ordering (75)).

VIII. NUMERICAL EXAMPLES

For state-space , i.e., states, the be-
lief state space is an equilateral triangle, and the various
results of this paper can be illustrated visually. There is much
flexibility for choice of parameters that satisfy the general as-
sumptions (A1), (A2), (A3), (S) in the appendix.

Example 1: We illustrate the structural result Theorem 1 for
quickest time change detection with PH-distributed change time
and variance penalty. The following parameters were chosen in
(29):

Assume Gaussian observation noise with variance 0.01; so
and the observation likelihoods are ,

. The operational cost (see discussion
below (17)).

The optimal policy was computed by forming a grid of 230
values in the 2-D unit simplex, and then solving the value it-
eration algorithm (27) over this grid and a horizon length of
200. The optimal policy is shown in Fig. 6(a) for four different
choices of and . The first three examples, namely spec-
ified in Figs. 6(a), 6(b) and 6(c), satisfy assumptions (A1-Ex1),
(A2), (A3) and (S-Ex1). Therefore, the optimal policy
satisfies Theorem 1 and is characterized by a threshold curve

. The figures clearly show the existence of a threshold curve
that partitions into two individually connected regions.
Recall that for the case , Theorem 1 says that the optimal
stopping set is a convex set.

Is the stopping set always a connected set even when the
assumptions of Theorem 1 do not hold? Recall the assumptions
in Theorem 1 are sufficient conditions. The parameters

, in Fig. 6(d) does not satisfy condition (S-Ex1) in
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Fig. 6. Quickest Time Detection illustrating Theorem 1. The region represents the stopping set where decision is optimal. The empty region
in the simplex represents where is optimal. Cases (a), (b) and (c) satisfy the assumptions of Theorem 1. The optimal linear threshold for
these 3 cases was estimated using Algorithm 1. Case (d) does not satisfy Assumptions (S-Ex1) and is not a connected set.

Appendix B. As shown in Fig. 6(d), the optimal stopping set
is no longer connected. This highlights the importance of

developing useful sufficient conditions that result in monotone
policies , such as the assumptions presented in this
paper.

Example 2: Here we consider the classical delay cost (18).
We illustrate how the optimal stopping region varies with
transition probabilities of the PH-distribution for change time.
Since all these constraints in are linear, determining feasible
choices is straightforward using the Matlab command .

We chose , and the following
parameters in (31):

(77)

Then (A3) holds, i.e., is TP2 for . Also it can
be verified that all the other assumptions of Theorem 2 hold.

Figs. 7(a), 7(b) illustrate the optimal stopping region for
and , respectively. Fig. 7(c) plots the PH-distri-

bution probability mass function in (7) versus time for the
transition probabilities in Example 1 and Example 2 for
and . It can be seen that even with a 3-state Markov
chain the behavior is quite different to a geometric distribution.

IX. CONCLUSIONS

This paper has presented structural results for Bayesian
quickest time detection with PH-distributed change time and
variance penalty. The main result is Theorem 1 which proves
the existence of a threshold switching curve for optimal deci-
sion making under general assumptions (A1), (A2), (A3), (S)
given in the appendix. Theorem 4 gave necessary and suffi-
cient conditions for a linear threshold policy to approximate
the threshold curve. Then several examples were considered,
namely quickest transient detection, quickest time detection
with exponential penalty, stopping time problems in social
learning, constrained optimal social learning, and multi-agent
scheduling in a changing world. In the case of exponential
penalty we used a risk sensitive stochastic control formu-
lation. In all these examples, under similar assumptions to
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Fig. 7. Effect of PH-distribution probabilities (77) on optimal stopping region . The region marked with denotes .

Theorem 1, the threshold switching curve holds. The proofs
of the results use lattice programming and stochastic orders
on the unit simplex. The structural results of this paper are
class type results, that is, for parameters belonging to a set, the
results hold. Hence, there is an inherent robustness in these
results since even if the underlying parameters are not exactly
specified but still belong to the appropriate sets, the results still
hold. It would be useful to do a performance analysis of the
various optimal detectors proposed in this paper—see [40] and
references therein.

APPENDIX

A) Stochastic Orders and Submodularity: Theorem 1
below requires proving that the quickest time detection policy

is monotonically increasing in belief state . That
is, (in a sense to be made clear below), implies

. In order to compare belief states and ,
we will use the monotone likelihood ratio (MLR) stochastic
ordering and a specialized version of the MLR order restricted
to lines in the simplex . This stochastic order is useful
since it is preserved under conditional expectations [18], [32],
[41], [50]. Below we introduce several important definitions
that will be used subsequently.

Definition 1 (MLR Ordering, [32]): Let
be any two belief state vectors. Then is greater than with
respect to the MLR ordering—denoted as , if

(78)

Similarly if in (78) is replaced by a .

Definition 2 (First Order Stochastic Dominance, [32]): Let
. Then first order stochastically dominates

–denoted as –if for
.

Result 1 ([32]):
(i) Let . Then implies .

(ii) Let denote the set of all -dimensional vectors with
nondecreasing components, i.e., . Then

iff for all , .
For state-space dimension , MLR is a complete

order and coincides with first order stochastic dominance. For
state-space dimension , MLR is a partial order, i.e.,

is a partially ordered set (poset) since it is not
always possible to order any two belief states .
However, on line segments in the simplex defined below, MLR
is a total ordering.
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For , define the sub simplex as

(79)

Denote belief states that lie in by . For each , con-
struct the line segment that connects to . Thus,

comprises of belief states of the form

(80)

Definition 3 (MLR Ordering on Lines): is
greater than with respect to the MLR ordering on the
line –denoted as , if for
some , i.e., , are on the same line connected to
vertex of simplex , and .

Note that and are chains,8 i.e., all
elements are comparable, i.e., either

or (and similarly for ) In Lemma 2, we
summarize useful properties of that will be used in
our proofs.

Lemma 2: The following properties hold on ,
.

(i) On , is the least and is the greatest el-
ement. On , is the least and is the
greatest element.

(ii) Convex combinations of MLR comparable belief states
form a chain. For any ,

.(iii) All points on a line
are MLR comparable. Consider any two points

(80). Then , implies .
Let and denote the indices

of two -variate probability mass functions Denote the lattice
operators

(81)

Definition 4 (TP2 Ordering and Reflexive TP2 Distribu-
tions): Let and denote any two -variate probability mass
functions. Then:

(i) if . If and are

univariate, then this definition is equivalent to the MLR
ordering defined above.

(ii) A multivariate distribution is said to be multivariate
TP2 (MTP2) if holds, i.e.,

.
(iii) If are scalar indices, Statement (ii) is

equivalent to saying that an matrix is TP2 if
all second order minors are non-negative. Equivalently,

, where denotes the th row of matrix
.

To prove the existence of a threshold switching curve, we will
show that in (25) is a submodular function on chains

and .

8A chain is totally ordered subset of a partially ordered set.

Definition 5 (Submodular Function [48]): Suppose
or . Then is submodular (antitone
differences) if , for

, .
The following result says that for a submodular function

, is increasing in its argu-
ment . This implies is MLR increasing on the line
segments and , which in turn will be used to
prove the existence of as threshold decision curve.

Theorem 12 ([48]): Suppose or . If
is submodular, then there exists

a , that is increasing on
, i.e., .

B) Meta-Theorem: Lattice Programming on Simplex: We
start with the following general assumptions and meta-theorem.
The meta-theorem is a major step in all our structural results.

(A) (A1) and are first order stochastic de-
creasing in .

(B) (A2) is TP2.
(C) (A3) is TP2.
(D) is decreasing and

decreasing.

Theorem 13: Consider the generic dynamic programming
(25) and the above assumptions. Then the following properties
hold.

1) implies if (A3) holds.
Under (A2) and (A3), .

2) For , implies iff (A2)
holds.

3) Assumptions (A1-Ex1) in Section III-A, (AS-Ex1)(i) and
(ii) in Section III-A, (A1-Ex2) in Section IV, (A1-Ex3)
in Section V, and (A1-Ex5) in Section VI are sufficient
conditions for (A1).

4) Under (A1), (A2), (A3), is MLR decreasing wrt
and .

5) Assumptions (S-Ex1) in Section III-A, (AS-Ex1)(i) and
(iii) in Sec.Section III-A, (S-Ex2) in Section IV, (S-Ex3)
in Section V and (S-Ex5) in Section VI-C are sufficient
conditions for (S).

6) Under (A1), (A2), (A3), (S), is submodular on
and . Thus, by Theorem 12, the

optimal policy is MLR increasing on lines
and .

Part 1 and Part 2 use elementary properties of positive matrices
and are proved in [41, Lemma 4.1 and 4.2].

Proof of Part 3 for : To give sufficient conditions
for to decrease wrt , we start with the fol-
lowing convenient parametrization of the family of belief states
that first-order stochastic dominate another belief state, see [32]
for proof.

Lemma 3: (i) For any , all belief states
are of the form

(82)



7120 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

where the variables satisfy
, . Moreover, the -parametrized belief

state is stochastically decreasing in the elements
. That is, for any , implies that

.

Remark: The above constraints on ensure that
is a valid belief state.

In light of the above lemma, it suffices to prove that
is increasing in , . We

introduce the following lemma. The proof follows straightfor-
wardly using and is omitted.

Lemma 4: Suppose
, where . Then if , a suf-

ficient condition for to be increasing wrt
is

(83)

If is either monotone increasing or decreasing in , then
a sufficient condition for (83) is

(84)

• Theorem 1: Set , in (84). This yields
and which always hold. So is

decreasing in for any non-negative .
• Theorem 2: Set in (84). This yields

and . Clearly (AS-Ex1)(i) and (ii) are sufficient
conditions for this. In particular, TP2 and (AS-Ex1)(ii)
implies .

• Theorem 5: Note that the variance constraint
. Accordingly, set

, in (84). This yields
and which always hold for .

• In Theorem 6, , see (50), so there is nothing to
prove.

• In Theorem 9, to show that is decreasing in
, it suffices to show that for each , that is

decreasing in . So in (84) choose , . This
yields (A1-Ex5).
Proof of Part 3 for : Since is linear in ,

to show that decreases wrt , from Result 1(ii)
(Appendix A, it suffices that

(85)

Theorem 1: This yields (A1-Ex1).
Theorem 2: (85) is equivalent to and

(AS-Ex1)(ii). Note (AS-Ex1)(i) is sufficient for
.

Theorem 5: (85) is equivalent to
which always

holds for .
Proof of Part 4: The proof is by mathematical induction

on the value iteration recursion (27). Clearly
in (27) is a MLR decreasing function of . Consider (27)

at any stage . Assume that is MLR decreasing in .

From Part 1 and 2, it follows that under (A2), (A3), the term
is MLR decreasing in . From Part

3, under (A1), is MLR decreasing. Since the sum of
decreasing functions is decreasing, the result follows.

Proof of Part 5 : Here We Show That General Assump-
tion (s) At the Beginning of Appendix B Takes On the Forms
(s-ex1) To (s-ex5) For the Various Examples. We Start With the
Following Characterization of Belief States On Lines
and and Submodularity On These Lines.

Lemma 5:
(i) is equivalent to and

for where is defined in (79). So
submodularity on is equivalent to showing

(86)

(ii) is equivalent to and
for where is defined in (79). So

submodularity on is equivalent to showing

(87)

The proof of Lemma 5 follows from Lemma 2 and is omitted.
Suppose is of the form .

Then from (86), (87), sufficient conditions for submodularity
on and are for and , respectively

(88)

In particular if and monotone increasing or decreasing
in , then (88) is equivalent to

(89)

where and , respectively.
• Theorem 1: Set ,

in (89). The first inequality is equivalent to: (i)
for and (ii)

. Note that (i) holds if .
The second inequality in (89) is equivalent to

. Since is TP2, from footnote 4 in
Section III-B it follows that (S-Ex1) is sufficient for these
inequalities to hold.

• Theorem 2: Set , ,
in (89). The first inequality yields (i)

and (ii)
, . The second inequality in

(89) yields . These inequalities
imply (AS-Ex1)(i) and (iii).

• Theorem 5: Recall that the variance constraint
. Set

, ,
in (89). The first inequality is equivalent to
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, . The second inequality is
equivalent to and .
A sufficient condition for these is (S-Ex2).

• In Theorem 6, since , decreasing on
lines and implies submodularity. This
is implied by (A1-Ex3).

• In Theorem 9, , in (89)
yields (S-Ex5).
Proof of Part 6: From Definition 5, to show that

is submodular, requires showing that is
on lines for and . Part 4 shows by induc-
tion that for each , is decreasing on if (A1),
(A2), (A3) hold. This implies that is decreasing on
lines and . So to prove in (5) is sub-
modular, we only need to show that is
decreasing on , . But this is implied by (S)
as shown in Part 5 above. Since submodularity is closed under
pointwise limits [48, Lemma 2.6.1 and Corollary 2.6.1], it fol-
lows that is submodular on , Having es-
tablished is submodular on , , Theorem
12 in Appendix A implies that the optimal policy is
and increasing on lines.

C) Proof of Theorem 1: With the above key theorem, we
can now prove Theorem 1. The statement of Theorem 1 that

is and increasing is proved above.
Statement (i): (a) Characterization of Switching Curve . For

each (80), construct the line segment con-
necting to as in (80). By Lemma 2 in Appendix A, on
the line segment connecting , all belief states
are MLR orderable. Since is monotone increasing for

, moving along this line segment towards , pick
the largest for which . (Since , such an

always exists). The belief state corresponding to this is the
threshold belief state. Denote it by
where .

The above construction implies that on , there is a
unique threshold point . Note that the entire simplex can be
covered by considering all pairs of lines , for ,
i.e., . Combining all points for
all pairs of lines , , yields a unique threshold
curve in denoted .

Statement (i): (b) Connectedness of regions and .
Connectedness of : Since , call the subset of

that contains . Suppose was a subset of that was
disconnected from . Recall that every point in lies
on a line segment for some . Then such a line seg-
ment starting from would leave the region , pass
through a region where action 2 was optimal, and then intersect
the region where action 1 is optimal. But this violates the
requirement that is increasing on . Hence,
and have to be connected. (Note in the special case ,
then since is convex (by Theorem 3), and so is obviously
connected).

Connectedness of : Assume , otherwise
and there is nothing to prove. Call the region that contains

as . Suppose is disconnected from . Since
every point in can be joined by the line segment
to . Then such a line segment starting from would

leave the region , pass through a region where action 1 was
optimal, and then intersect the region (where action 2 is op-
timal). But this violates the requirement that is increasing
on . Hence, and have to be connected.

Statement (ii): Suppose . Then considering lines
and ordering , it follows that . Simi-

larly if , then considering lines and ordering
, it follows that .

Statement (iii) follows trivially since for , is a
1-D simplex.

D) Proof of Theorem 3: We first prove in the following
lemma that is concave in .

Lemma 6: in (25) is concave in .
Proof of Lemma 6: Our proof constructs an outer approxi-

mation (defined below) to and comprises of two
steps: Step 1: is concave; Step 2:
uniformly as . This establishes that is concave,
and therefore, is concave.

Consider arbitrary but distinct belief states
. Let denote the gradient vector of in (27)

at , . That is, . Now
construct a piecewise linear function out of these gradient vec-
tors as . It is easily seen from (24) that

is concave. Therefore, is piecewise linear
and concave in since a piecewise linear function composed of
tangents to a concave function is concave.

Construct the following auxiliary value function via
value iteration similar to (27)

(90)

Step 1: Proof of concavity of : We prove this by in-
duction on the value iteration algorithm (90) for
and fixed . Start with arbitrary concave . As mentioned
below (27), the VI algorithm converges for any choice of initial-
ization.

Since both (see (24)) and are piece-
wise linear in , it is easily seen from (90) that at each
iteration , is positively homogeneous, i.e.,

for any . As a result (90)
yields, . Now

use mathematical induction. Assume is concave.
Since is concave, and the composition of concave
functions is concave, is concave. Since
is piecewise linear and concave, and the sum of concave
functions is concave, it follows that is concave.
Finally since minimization preserves concavity, it follows that

is concave. This
completes the inductive proof.
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Step 2: Concavity of : Next, we show that
uniformly in implying that

is concave. Since is concave, it follows that
and also is a monotone

sequence of decreasing functions in . (Intuitively, the piece-
wise linear function composed of tangents always upper bound
a concave function and they become tighter as more piecewise
linear segments are considered). From (25) and (90) this implies
that for all and also .
Finally, since (i) converges to pointwise, (ii)

is compact, (iii) is continuous and
is monotone decreasing sequence in , it follows from [42,
Theorem 7.13] that uniformly on .
Therefore, is concave for . Finally as
discussed below (27), converges uniformly to ; so

is concave. Thus, Lemma 6 is proved.

The rest of the proof of Theorem 3 follows from arguments
in [28]. We repeat this for completeness here. Our goal is to
show that is convex. Pick any two belief states .
To demonstrate convexity of , we need to show for any

, . Since is concave and

(91)

Thus, all the inequalities above are equalities, and
.

E) Proof of Theorem 4: Given any
with , we need to prove: iff

, for . But from
the structure of (32), obviously is equivalent

to , or equivalently,

.
Now from Lemma 2(iii), implies that

, and . Sub-
stituting these into the above expression, we need to prove

iff , , . This is obviously
true.

A similar proof shows that on lines the linear
threshold policy satisfies iff for

.
F) Proof of Theorem 6: The only difference compared to

the meta-theorem is the update of the belief state (49) which
now includes the term . The elements of are

non-negative and functionally independent of the observation
. Therefore, the three main requirements that is MLR

increasing in , is MLR increasing in , and is
increasing in continue to hold. Then the rest of the proof

is identical to Theorem 1.
G) Proof of Theorem 8: The proof is more complex than

that of Theorem 3 since now in is not necessarily concave
over , since and are functions of (56) which
itself is an explicit (and in general nonconcave) function of .

Define the matrix ,
where . It can be verified from (56)
that there are only 3 possible values for , namely

(92)

Thus, based on the dynamic programming equation (61), the
value iteration algorithm reads

(93)

Assuming is MLR decreasing on straightfor-
wardly implies is MLR decreasing on since

is MLR decreasing. This proves claim (i).
We now prove inductively that is piecewise linear con-

cave on each interval , . The proof of concavity
on and follows straightforwardly since is piece-
wise linear and concave. The proof for intervals and is
more delicate.

We need the following property of the social learning
Bayesian filter. We use the following slight abuse in notation.
Define the 2-D vector .

Lemma 7: Consider the social learning Bayesian filter (55).
Then , . Furthermore if is sym-
metric TP2, then , and

. So:
(i) implies and .

(ii) implies and .

The proof of Lemma 7 is as follows. Recall from (92) that on
intervals and , . Then it is straightforwardly ver-
ified from (55) that . Next, using (55)
it follows that is a sufficient condition for

and . Also, applying Theorem 13
(2), TP2 implies . So symmetric TP2 is suffi-
cient for the claims of the lemma to hold. Statements (i) and (ii)
then follow straightforwardly. In particular, from Theorem 13
(1), implies

, which implies Statement (i) of the Lemma.
Statement (ii) follows similarly.
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Returning to the proof of Theorem 8. Assume now that
is piecewise linear and concave on each interval ,

. That is, for 2-D vectors in the set

Consider . From (92), since , , Lemma
7 (i) together with the value iteration algorithm (93) yields

Since each of the terms in the above equation are piecewise linear
and concave, it follows that is piecewise linear and
concave on . A similar proof holds for and this involves
using Lemma 7(ii). As a result the stopping set on each interval

is a convex region, i.e., an interval. This proves claim (ii).
H) Proof of Theorem 9: Part (i) follows directly from the

proof of Theorems 13 and 1. For Part (ii), define the convex
polytopes . Then on each
convex polytope , since (recall ), we
can apply the argument of (91) which yields that is a
convex region. Thus, is the union of convex regions and
is in general nonconvex. However, it is still a connected set by
part (i) of the theorem.

I) Proof of Theorem 10: A similar proof to Theorem 3
then establishes is concave on . We then use the
Blackwell dominance condition (71). In particular

Therefore, is a probability measure wrt
. Since is concave, using Jensen’s inequality it follows

that

Therefore, for

So for , the optimal policy
. So for

and otherwise, implying that is a lower
bound for .

J) Proof of Theorem 11: Identical to the proof of meta
Theorem 13 in Appendix B, under the assumptions
decreasing in , (A2), (A3), it follows that and

are MLR decreasing for . We next
introduce the following lemma.

Lemma 8: [18, Theorem 2.4] implies
where is defined in (75).

The proof of the lemma is as follows: By definition
is equivalent to

Thus, clearly (75) is a sufficient condition for
.

Returning to the proof of the theorem, if (A2), (A3) hold, it
follows from Lemma 8 and meta Theorem 13 (Statements (1)
and (2)) that for actions

(94)

The rest of the proof is by induction on the value iteration algo-
rithm (74). Assume for .
Then from (94)

Therefore

Next since , it follows that

Taking the minimum with respect to yields
.

To prove the second claim of the theorem; first recall from
(23) that is the actual optimal expected cost. Recall that
the transformation from to was made to prove
that the optimal policy is monotone. It is readily verified that the
quickest detection problem (29) satisfies all the assumptions of
the theorem. So . The actual optimal
cost is (see (29)).
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Since is functionally independent of , it
then follows that .
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