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Abstract—We consider how local and global decision policies in-
teract in stopping time problems such as quickest time change de-
tection. Individual agents make myopic local decisions via social
learning, that is, each agent records a private observation of a noisy
underlying state process, selfishly optimizes its local utility and
then broadcasts its local decision. Given these local decisions, how
can a global decisionmaker achieve quickest time change detection
when the underlying state changes according to a phase-type dis-
tribution? This paper presents four results. First, using Blackwell
dominance of measures, it is shown that the optimal cost incurred
in social-learning-based quickest detection is always larger than
that of classical quickest detection. Second, it is shown that in gen-
eral the optimal decision policy for social-learning-based quickest
detection is characterized by multiple thresholds within the space
of Bayesian distributions. Third, using lattice programming and
stochastic dominance, sufficient conditions are given for the op-
timal decision policy to consist of a single linear hyperplane, or,
more generally, a threshold curve. Estimation of the optimal linear
approximation to this threshold curve is formulated as a simu-
lation-based stochastic optimization problem. Finally, this paper
shows that in multiagent sensor management with quickest detec-
tion, where each agent views the world according to its prior, the
optimal policy has a similar structure to social learning.

Index Terms—Adaptive sensing, Blackwell dominance, mul-
tiagent sensor scheduling, partially observed Markov decision
process (POMDP), phase-type distribution, quickest time Bayesian
change detection, social learning, stochastic dominance.

I. INTRODUCTION

C LASSICAL Bayesian quickest time detection [43], [44]
involves detecting a geometrically distributed change

time by optimizing the tradeoff between false alarm frequency
and delay penalty. The literature is vast, with applications in
biomedical signal processing, machinery monitoring, and fi-
nance [39], [8], [34], [44]; see also [37] for team detection, and
[52] and [53]. Classical quickest detection can be formulated as
the following sequential protocol involving a countable number
of agents: Suppose each agent acts once in a predetermined
sequential order indexed by . Agent receives an
observation of the underlying state at time and computes the
posterior probability that the state has changed. It then reveals
this posterior probability to subsequent agents. This process
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repeats until a stopping time at which the global decision maker
announces a change. It is well known [43], [44] that the optimal
policy to declare a change has a threshold (monotone) structure:
if the posterior probability (belief state) exceeds a threshold,
then a change is announced; otherwise, agents continue making
observations.

A. Context

Motivated by understanding how local decisions affect global
decision making in multiagent systems, this paper considers a
generalization of the above classical quickest detection setup.
Given local decisions from agents that are performing social
learning, how can a global decision maker achieve quickest
time change detection? In other words, how can a stochastic
control problem (stopping time problem) be solved to make
global decisions based on local decisions of agents? We con-
sider phase-type distributed change times and interaction be-
tween local and global decision makers as outlined in the fol-
lowing two examples:

Example 1. Social-Learning-BasedQuickest-TimeDetection:
Suppose that a multiagent system performs social learning [12]1
to estimate an underlying state as follows: Just as in the clas-
sical quickest detection protocol above, agents act sequentially
in a predetermined order. However, instead of revealing its pos-
terior distribution of change, each agent reveals its local deci-
sion to subsequent agents. The agent chooses its local decision
by optimizing a local utility function (which depends on the
public belief of the state and its local observation). Subsequent
agents update their public belief based on these local decisions
(in a Bayesian setting), and the sequential procedure continues.
Given these local decisions, how can such a multiagent system
detect a change in the underlying state and make a global deci-
sion to stop?

Example 2: Quickest-Time Detection With Adaptive Sensing:
Consider a multisensor system where each adaptive sensor
is equipped with a local sensor manager (controller). The
multisensor system acts sequentially as follows: Based on the
existing belief of the underlying state, the local sensor manager
chooses (adapts) the sensor mode, e.g., low resolution or high
resolution. The sensor then views the world based on this mode.
Given the belief states and local sensor-manager decisions, how
can such a multiagent system achieve quickest time change
1Another way of viewing the social learning model is that there are finite

number of agents that act repeatedly in some predefined order. If each agent
picks its local decision using the current public belief, then the setup is identical
to the social learning setup. We also refer reader to [1] and [2] for several recent
results in social learning over several types of network adjacency matrices.
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Fig. 1. Optimal decision policy for social-learning-based quickest time change detection for geometric distributed change time, see Example 1 of Section VII for
details. (a) Optimal policy is characterized by a triple threshold. (b) Value function is nonconcave and discontinuous.

detection?2 Quickest detection with such sensor management is
of importance in automated tracking and surveillance systems
[3], [5], [14]. In such cases, if individual agents or cluster heads
are polled sequentially (e.g., round-robin fashion), then the
resulting dynamics are very similar to the social learning setup.
Classical quickest detection is a trivial case of the above ex-

amples where agents reveal their local observation (instead of
local decision) to subsequent agents. The above examples are
nontrivial generalizations due to the interaction of the local and
global decision makers.3 In both examples, the local decision
determines the belief state which determines the global deci-
sion (stop or continue) which determines the local decision at
the next time instant and so on. This interaction of local and
global decision making leads to discontinuous dynamics for the
posterior probabilities (belief state) and unusual behavior as out-
lined below. We will show that the optimal decision policy has
multiple thresholds and the stopping regions are nonconvex.
Fig. 1(a) gives a visual description of the optimal policy of

social-learning-based quickest detection. It illustrates a triple
threshold policy for geometric distributed change time. Com-
plete details of this numerical example are given in Section VII.
The horizontal axis is the posterior probability of no
change. The vertical axis denotes the optimal decision:
denotes stop and declare change, while denotes continue.
The multithreshold behavior of Fig. 1(a) is unusual: if it is op-
timal to declare a change for a particular posterior probability,
it may not be optimal to declare a change when the posterior
2The information flow patterns of Example 1 and 2 are similar. In Example

1, the sequence of events is
. In Example 2, the sequence of events is

.
3A signal-processing interpretation of social learning is as follows. Instead

of using the posterior distribution to achieve quickest time detection, the deci-
sion maker (or individual agents) computes the maximum a posteriori (MAP)
estimate of the underlying state at each time instant. Given these hard deci-
sion MAP state estimates (local decisions), how can the global decision maker
achieve quickest change detection?

probability of a change is larger! Thus, the global decision
(stop or continue) is a nonmonotone function of the posterior
probability obtained from local decisions. Fig. 1(b) shows
the associated value function obtained via stochastic dynamic
programming. Unlike standard sequential detection problems
where the value function is concave, the figure shows that the
value function is nonconcave and discontinuous. To summa-
rize, Fig. 1 shows that social-learning-based quickest detection
results in fundamentally different decision policies compared to
classical quickest time detection (which has a single threshold).
Thus, making global decisions (stop or continue) based on local
decisions (from social learning) is nontrivial.

B. Motivation and Related Works

Social Learning: In the last decade, social learning has
been studied widely in economics to model the behavior of
financial markets, crowds and social networks, see [1], [2],
[12], [46], [31], and numerous references therein. Hellman’s
and Cover’s seminal papers [15], [19] analyze learning with
limited memory. [12, Chs. 3 and 4] gives an excellent exposi-
tion of social learning. An important result in social learning
[6], [10] is that if the underlying state is a random variable and
the observation and local decision spaces are finite, then agents
eventually herd and end up making the same local decision
irrespective of their observation. Such information cascades
have been used in [12] to model sequences of financial trades,
crashes and booms, and auctions. There is strong motivation to
understand the interaction of local and global decision makers
in social learning. Global decision making with social learning
has recently been studied by several economists; for example,
in [11], [12], [45], and [26], the authors describe how infor-
mation externalities affect global and local decision making
in social learning. This paper can be viewed as addressing a
related problem: if individual agents make (simple) decisions
by optimizing a local utility, how can the global system achieve
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the (complex) task of detecting a change. In a non-Bayesian
setting such problems of designing sophisticated global be-
havior given simple local behavior have also been studied in
game-theoretic learning [18], [17], [27] involving correlated
equilibria and global games.
PH-Distributed Change Time: This paper deals with quickest

detection for PH-distributed change times. PH-distributions are
used widely in queuing theory [36] and include geometric dis-
tributions as a special case. The optimal detection of a PH-dis-
tributed change point is useful since the family of all PH-distri-
butions forms a dense subset for the set of all distributions, i.e.,
for any given distribution function such that , one
can find a sequence of PH-distributions to uni-
formly approximate over ; see [36]. Therefore there
is strong motivation to analyze quickest detection with PH-dis-
tributed change times and social learning. Quickest time change
detection for PH-distributed change times is analyzed in [26].
The current paper generalizes these results to include social
learning. A systematic investigation of the statistical properties
of PH-distributions can be found in [36].

C. Main Results and Organization

This paper deals with characterizing the structure of the
global quickest-time change detection policy in multiagent
systems where individual agents make local myopic decisions
when performing social learning. The main results and organi-
zation of the paper are as follows.
1) Multiagent Protocol: Section II presents the multiagent so-
cial learning protocol. The quickest time detection problem
is formulated. We also point out in (21) the difference
between the social learning model and the classical Kol-
mogorov–Shiryaev model for quickest change detection.

2) Dynamic Programming Formulation and Dominance of
Classical Detection: In Section III, the optimal stopping
policy is characterized in terms of stochastic dynamic pro-
gramming. It is shown that the value function is in gen-
eral nonconcave. Also Theorem 1 uses Blackwell ordering
of measures to show that the optimal cost incurred in so-
cial-learning-based quickest detection is always larger than
classical quickest detection. The result is intuitive since de-
cision making using social learning is based on less infor-
mation than classical quickest detection.

3) Main assumptions andMultithreshold Policies: Section IV
starts with the main assumptions required to analyze the
structure of the optimal quickest detection policy. These
assumptions allow us to decompose the belief space into
polytopes (see Theorem 2). On each of these polytopes,
the conditional probability of a local decision given the
underlying state and posterior distribution is a constant.
The main result of Section IV is to characterize quickest
time change detection policies when the probability of
change, denoted , is small. When the probability of
change equal to zero, Theorem 3 characterizes explic-
itly the multithreshold structure of the optimal decision
policy and nonconcave behavior of the value function for
sequential detection of a fixed state. Then, Corollary 1
shows that the optimal quickest-time detection policy for

change probability , yields a cost that is within of
the optimal cost for zero change probability. An important
ingredient in the proof of this result is characterization of
fixed points of the social learning filter update (see Lemma
2) which also characterizes regions where the agents form
information cascades in social learning.

4) Phase-Type Distributed Change Times: The next main re-
sult is to is to characterize the optimal policy of the global
decision maker to achieve quickest time detection when
the change time has a phase-type (PH) distribution and in-
dividual agents are performing social learning. As men-
tioned previously, PH-distributions can approximate arbi-
trary distributions and so are widely used in discrete-event
systems.
A PH-distributed change time can be modeled as a multi-
state Markov chain with an absorbing state, see [26] and
also [36] for a systematic description. (For a two-state
Markov chain, the PH-distribution specializes to the geo-
metric distribution). So for quickest time detection with
PH-distributed change time, the belief states (Bayesian
posterior) lie in a multidimensional simplex of probability
mass functions.
Under what conditions will there exist a threshold stopping
policy for quickest detection with PH-distributed change
time and social learning? Under what conditions for the
geometric change time case does the optimal policy coin-
cide with the classical Kolmogorov–Shiryaev model?
To answer these questions, the main results of Section V
are as follows.
a) Theorem 4 gives sufficient conditions under which
the optimal decision policy for the global deci-
sion maker is myopic and characterized by a linear
threshold hyperplane in the multidimensional sim-
plex. For the geometric case, this results yields an
identical threshold to the Kolmogorov–Shiryaev
model.

b) Theorem 5 gives sufficient conditions so that the
optimal decision policy is characterized by a single
switching curve in the multidimensional simplex.
The result uses lattice programming [49] and struc-
tural results involving monotone likelihood ratio
(MLR) stochastic orders [40], [28], and a novel mod-
ification of it. The result is useful because it implies
that the global decision to stop can be implemented
efficiently at each agent. Each agent simply needs to
compare its belief state with respect to the threshold
curve (in terms of an MLR partial order on the space
of posterior distributions). Theorem 7 gives sufficient
conditions on the optimal linear approximation to this
curve that preserves the MLR increasing structure of
the optimal decision policy. This linear approxima-
tion can be estimated via simulation based stochastic
optimization.

5) Multiagent Quickest Time Detection With Active Sensing:
Section VI considers multiagent quickest time detection
outlined in Example 2 above. We show that the optimal
policy is similar to that in social-learning-based quickest
detection.
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II. SOCIAL LEARNING MODEL AND PROTOCOL FOR QUICKEST
TIME DETECTION

In this section, the multiagent social learning model is
presented in Section II-A. This constitutes the local deci-
sion-making framework for estimating an underlying state.
Then, Section II-B formulates the costs incurred by the
global decision maker in quickest time detection. Section II-C
presents the global quickest time detection objective. Finally,
Section II-D summarizes the entire social learning quickest
detection model.

A. Multiagent Social Learning Model
Consider a countably infinite number of agents4 performing

social learning to estimate an underlying state process . Each
agent acts once in a predetermined sequential order indexed by

. The index can also be viewed as the discrete
time instant when agent acts.
Let denote the local (private) obser-

vation of agent and denote the local
decision agent takes. Define the sigma algebras:

(1)

The social learning model [10], [12] comprises the following
ingredients.
1) Absorbing-State Markov Chain and Phase-Type Distribu-
tion Change Times: The state represents the underlying
process that changes at time . We model the change
point by a phase-type (PH) distribution. As mentioned
in Section I, PH-distributions form a dense subset for the
set of all distributions [36] and so can be used to approxi-
mate change times with arbitrary distribution. This is done
by constructing a multistate Markov chain as follows: As-
sume the underlying state evolves as a Markov chain on
the finite state space . Here state ’1’ is an
absorbing state and denotes the state after the jump change.
The states can be viewed as a single composite
state that resides in before the jump.
The initial distribution is ,

. We are only interested in the case where the
change occurs after a least one measurement, so assume

. So the transition probability matrix is of the
form

(2)

Let the “change time” denote the time at which enters
the absorbing state 1, i.e.,

(3)

The distribution of the change time is equivalent to the
distribution of the absorption time to state 1 and is given
by

(4)
4As mentioned earlier, the same setup holds if a finite number of agents are

polled repeatedly in some predefined order, providing each agent picks its local
decision based on the most recent public belief.

where . So by appropriately
choosing the pair and state space dimension ,
one can approximate any given discrete distribution on

by the distribution ; see [36, 240–243].
To ensure that is finite, we assume states are
transient. In the special case when is a two-state Markov
chain, the change time is geometrically distributed.

2) Local Observation: Agent’s local (private) observation
is obtained from the observation

likelihood distribution

(5)

The states are fictitious and are defined to
generate the PH-distributed change time . So states

are indistinguishable in terms of the obser-
vation . That is, for
all .

3) Private Belief:Using local observation , agent updates
its private belief defined as

(6)

Thus, the private belief is the posterior distribution of the
underlying state given the past local decisions and current
observation. It is computed by agent according to the
following hidden Markov model (HMM) filter:

(7)

Also denotes the public belief available at time
(defined in Step 5 below).

4) Agent’s Local Decision: Agent then makes local deci-
sion to minimize myopically its
expected cost. To formulate this, let denote the non-
negative cost incurred if the agent picks local decision
when the underlying state is . Denote the local deci-
sion -dimensional cost vector

(8)

Then, agent chooses local decision greedily to mini-
mize its expected cost:

(9)

In quickest change detection, since states are
indistinguishable in terms of observation , we assume that

for each .
5) Social learning Public Belief: Finally, agent broadcasts
its local decision . Subsequent agents use deci-
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sion to update their public belief of the underlying state
as follows: Define the public belief as the posterior

distribution of the state given all local decisions taken up
to time

(10)

Then, agents update their public belief according to
the following “social learning Bayesian filter”:

(11)

We use the notation to point out that the above
Bayesian update map depends explicitly on the belief
state . [For notational simplicity, we have chosen not
to use the superscript for ]. This is a key
difference compared to the HMM filter (7) where the
Bayesian update map does not depend explicitly on
belief state . In (11), denotes the diagonal matrix

where

(12)

denotes the conditional probability that agent chose local
decision given state . We call as the local decision
likelihood probabilities in analogy to observation likeli-
hood probabilities (5) in classical filtering.

Clearly observing the local decision taken by agent yields
information about its local observation . That is, serves as a
surrogate observation of the underlying state . The following
lemma summarizes how subsequent agents use to compute
the local decision likelihood probabilities in the social
learning filter. The proof is straightforward and omitted.

Lemma 1: The local decision likelihood probability matrix
in the social learning Bayesian filter (11) is computed as

(13)

Here, is a matrix; , are the private observation
probabilities defined in (5) and (7); , are the local cost vec-
tors defined in (8); and denotes the indicator function.

The main implication of Lemma 1 is that the social learning
Bayesian filter (11) is discontinuous in the belief state , due
to the presence of indicator functions in (13). The likelihood
probabilities in (12) are an explicit function of the belief
state —this is stark contrast to the standard quickest detection
problems where the observation distribution is not an explicit
function of the posterior distribution.
Summary: A key aspect of the information pattern in the

above social learning protocol is that agent does not have ac-
cess to the private belief state or private observations of
previous agents. Instead each agent only has access to the local
decisions taken by previous agents together with its own current

private observation . The fact that the likelihood probabilities
is an explicit function of the public belief state [see (13)]

is an important aspect of social learning that is not present in
classical sequential detection problems. It makes the Bayesian
update of the public belief discontinuous with and makes our
proofs substantially harder than standard concavity arguments
in classical quickest detection problems.
Belief State Space: Before proceeding with the quickest time

detection formulation, we briefly describe the space in which the
public belief defined in (10) lives. The public belief belongs
to the unit dimensional simplex denoted as

(14)

So for geometric-distributed change times, the belief state space
is the interval . For PH-distributed change times, the

belief space is a multidimensional simplex. For example,
is a 2-D unit simplex (equilateral triangle); is a tetra-

hedron, etc. The vertices of the unit simplex are the unit
-dimensional vectors , where

(15)

Of course the private belief (6) also lives in .

B. Quickest Time Detection: Costs Incurred by Global
Decision Maker
With the above social-learning-based local decision frame-

work, we now formulate the quickest time detection problem
faced by the global decision maker. At each time , given the
public belief , let denote the global decision taken:

(16)
Thus, the global decision is measurable, where is de-
fined in (1). In (16), the policy belongs to the class of sta-
tionary decision policies denoted . Below we formulate the
costs incurred when taking these global decisions .
1) Cost of announcing change and stopping: If global deci-
sion is chosen, then the social learning protocol
of Section II-A terminates. If is chosen before the
change point , then a false alarm penalty is incurred. The
false alarm event

represents the event that a change is an-
nounced before the change happens at time . To evaluate
the false alarm penalty, let denote the
cost of a false alarm in state , , where . Of
course, since a false alarm is only incurred if the
stop action is picked in states . The expected false
alarm penalty is

(17)

The false alarm vector is chosen with increasing elements
so that states further from state 1 incur larger penalties.
(Obviously since ).
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2) Delay cost of continuing: If global decision is taken
then the social learning protocol of Section II-A continues
to time . A delay cost is incurred when the event

occurs, i.e., no change is declared at
time , even though the state has changed at time . The
expected delay cost is

(18)

where denotes the delay cost and is defined in
(15).

Remarks:
1) Recall that the public belief state depends on the local de-
cisions . Also the choice of global decision determines
when the local decision process terminates. This links the
local and global decision makers.

2) The above costs (17), (18) should be viewed as an example
only. The results of this paper also apply to more general
stopping time problems with minor modifications if the
global decisions are measurable (instead of
measurable), where and are defined in (1). More
generally, can also include the local decision
cost incurred in social learning, see remark at the end of
Section V-B.

C. Quickest Time Detection Objective

Let be the underlying measurable space where
is the product space, which is endowed with the

product topology and is the corresponding product sigma-al-
gebra. For any , and policy , there exists a
(unique) probabilitymeasure on ; see [20] for details.
Let denote the expectation with respect to the measure .
Let denote a stopping time adapted to the sequence of -al-

gebras , , see (1). That is, with determined by deci-
sion policy (16)

(19)

For each initial distribution , and policy , the fol-
lowing cost is associated:

(20)
Here denotes an economic discount factor.
Since , are nonnegative and bounded for
all , stopping is guaranteed in finite time, i.e., is
finite with probability 1 for any (including ).
Kolmogorov–Shiryaev criterion: Suppose im-

plying that the change time is geometrically distributed.
Choose the false alarm vector where is
a positive constant, delay cost (18), and discount factor .
Then the quickest time objective (20) assumes the classical
Kolmogorov–Shiryaev criterion for detection of disorder [43]

(21)

However, unlike classical quickest detection, the posterior
(public belief) has discontinuous dynamics given by the
social learning Bayesian filter (11). (Recall from (11) and

(13) that the dynamics of public belief depend on the local
decision costs ).

The goal of the global decision maker is to determine the
change time with minimal cost, that is, compute the optimal
global decision policy to minimize (20), where

The existence of an optimal stationary policy follows from
[9, Prop. 1.3, Ch. 3].

D. Summary
In summary, the social-learning-based quickest detection

problem with PH-distributed change time is specified by the
model

(22)

where is the transition probability matrix (2), is the pri-
vate observation matrix (5), are the local decision costs (8),
defined in (24) is the transformed global decision cost vector

for quickest detection [in terms of false alarm (17) and delay
penalty (18)], and is the discount factor (20). Also
is the state space, is the private observation space, is the

local decision space and is the
global decision space.

III. STOCHASTIC DYNAMIC PROGRAMMING FORMULATION
AND DOMINANCE OF CLASSICAL QUICKEST DETECTION

Section III-A formulates the optimal decision policy for
social-learning-based quickest detection as the solution of
a stochastic dynamic programming problem. Section III-B
describes why social-learning-based quickest detection is a
nontrivial extension of the standard quickest detection problem.
Finally, Section III-C presents our first structural result—it uses
Blackwell dominance of measures to show that optimal cost
incurred in quickest time detection with social learning is
always larger than that with classical quickest detection.

A. Stochastic Dynamic Programming Formulation
Given the stopping time problem (20), it is well known [33]

that the optimal policy can be expressed as the solution
of a stochastic dynamic programming problem in terms of the
belief state . Our characterization of the structure of the op-
timal policy will be based on analyzing the structure of
this dynamic programming problem.
The optimal stationary policy and as-

sociated value function of the stopping time problem (20)
are the solution of “Bellman’s dynamic programming equation”

(23)
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Here, the global decision maker’s costs are defined in
(17) and (18), is the public belief Bayesian update (11), and
the measure is defined in (11).
For our subsequent analysis, it is convenient to rewrite

Bellman’s equation as follows. Define the transformed value
function and global decision costs , and
as follows:

(24)

Then, clearly satisfies Bellman’s dynamic programming
equation

(25)

The above transformation5 is convenient since the transformed
stopping cost and in (24) captures
all the costs involved in quickest detection. Of course, the op-
timal policy and hence stopping set remain unchanged
with this coordinate transformation. The goal for the global de-
cision maker is to determine the optimal stopping set denoted
. That is, is the set of public belief states for which it is
optimal to declare a change and stop:

(26)
Value Iteration Algorithm: Let , denote itera-

tion number (the fact that we used previously to denote time
should not result in confusion). The value iteration algorithm
is a fixed point iteration of Bellman’s (25) and proceeds as fol-
lows: and

(27)

Let denote the set of bounded real-valued functions on
. Since , , , are bounded, the

value iteration algorithm (27) will generate a sequence of lower
5This transformation is used in [21, p. 389] to deal with stopping time prob-

lems. As a result of this transformation, the initial condition of the value iteration
algorithm is modified [see (27)].

semicontinuous value functions that will con-
verge pointwise as to , the solution of
Bellman’s equation, see [9, Prop. 1.3, Chap 3, Vol. 2]
Since the belief state space in (14) is a unit simplex, the

value iteration algorithm (27) does not yield a practical solution
methodology for computing stopping set since needs to
be evaluated on the continuum . Although Bellman’s
equation and the value iteration algorithm is not useful from a
computational point of view, in subsequent sections, we exploit
its structure to characterize the stopping set in (26). We then
exploit this structure to devise stochastic gradient algorithms for
approximating the optimal policy and thus determining the
stopping set .

B. Why Social-Learning-Based Quickest Detection is
Nontrivial
Let us illustrate why social-learning-based quickest detection

results in a nontrivial behavior. We will show in Section IV that
the belief space can be decomposed into poly-
topes denoted such that on each of these poly-
topes , the belief state update . Con-
sider the value iteration algorithm (27) which is used as a basis
for mathematical induction to prove properties associated with
Bellman’s (25). It can be expressed as6

(28)

It should be clear from (28) that if is assumed to be con-
cave on , is not necessarily concave on .
In fact, even if is assumed to be concave in just one of
the polytopes, say polytope , then is not necessarily
concave on , since in (28) may map two distinct be-
lief states in polytope to two different polytopes. As will be
shown in numerical examples, in general will be discon-
tinuous and nonconcave.
Classical quickest detection problems are special instances of

partially observed Markov decision process (POMDP) stopping
time problems [26]. In POMDPs, the belief state update is
not an explicit function of belief state since the observation
probabilities are not an explicit function of . For such POMDP
stopping time problems, the value iteration algorithm reads7

and is to be compared with (28). Since the composition of a con-
cave function with a linear function preserves concavity, it is
easily seen that if is piecewise linear and concave, then
6Note that from (27), is positively homogeneous, that is, for any
, . So choosing which is the denominator
term of in (11) yields the expression in the second equality of (28).
7We use the notation to denote the value function of the classical stop-

ping problem. This will be defined formally in Section III-C where we will show
, i.e., quickest detection with social learning always incurs a

higher optimal cost than classical quickest detection.
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so is . So by mathematical induction on the value it-
eration algorithm, and since the sequence converges
pointwise (actually uniformly for POMDPs) to , the value
function is concave and the stopping set is a convex (and
therefore connected) set [32]. The key difference in the above
social learning quickest detection formulation is that the local
decision likelihoods (13) and, therefore, social learning filter

are explicit and discontinuous functions of . This results
in a possibly nonconcave value function making deter-
mining nontrivial.

C. Quickest Time Detection With Social Learning is More
Expensive

This section presents our first main result. We prove that
quickest detection with social learning is always more expen-
sive than classical quickest detection. In social learning, agents
have access to local decisions of previous agents instead of the
actual observations. Thus, one would expect intuitively that this
information loss results in less efficient quickest time change de-
tection compared to classical quickest detection. Here, we con-
firm this intuition. The main idea is to use Blackwell dominance
of observation measures.
1) Notation: First define the optimal policy and cost in clas-

sical quickest time detection. Similar to (25), the optimal policy
and cost incurred in classical quickest detection,

satisfies the following Bellman’s equation:

(29)

Recall is the HMM Bayesian filter defined in (7). Thus,
the only difference between the classical and social learning
quickest detection problems is the update of the belief state,
namely (7) in the classical setup versus (11) in the social
learning formulation.
2) Main Result: The following theorem says that if the initial

belief state is chosen from any of the polytopes ,
the optimal detection policy with social learning incurs a higher
cost than classical quickest detection.

Theorem 1: Consider the social learning quickest time detec-
tion problem in (22) and associated value func-
tion in (25). Consider also the classical quickest detection
problem with value function in (29). Then, for any initial
belief state , the optimal cost incurred by classical
quickest detection is smaller than that of quickest detection with
social learning. That is, .
Since the theorem holds for the case (equal

number of local decision choices and observation symbols), a
naive explanation that information is lost due to using fewer
symbols in compared to is not true.
The proof of Theorem 1 is given in Appendix B. Recall from

(13) that where and are stochastic matrices.
Thus, observation with conditional distribution specified by

is said to be more informative than (Blackwell dominates)
observation with conditional distribution (see [40]). The
main idea in the proof is that under the assumptions of Theorem
1, the value function is concave for . Then,
the result is established using Jensen’s inequality together with
Blackwell dominance on the Bellman’s equation. value iteration
algorithm proves the result.
The first instance of a similar proof using Blackwell dom-

inance for POMDPs was given in [50], see also [40], where it
was used to show optimality of certain myopic policies. Our use
of Blackwell dominance in Theorem 1 is somewhat different
since we are using it to compare the value functions of two dif-
ferent dynamic programming problems. A useful consequence
of Theorem 1 is that performance analysis of standard quickest
detection problems [48] readily applies to form a lower bound
for the cost incurred in social-learning-based quickest detection.

IV. ASSUMPTIONS AND QUICKEST DETECTION WITH SMALL
CHANGE PROBABILITIES

This section comprises two parts.
1) Section IV-A lists the main assumptions (A1), (A2), (S)
which result in a natural partition of belief space
into convex polytopes with decision likelihoods
[defined in (13)] being a constant (with respect to on
each polytope (see Theorem 2). These polytopes play an
important role in specifying the global quickest detection
policy in the rest of the paper.

2) Section IV-B considers quickest time change detection
with geometric distributed change time and gives ex-
plicit conditions for the optimal policy to have a double
threshold. In particular, Theorem 3 and Corollary 1 show
that the optimal quickest-time detection policy for change
probability yields a cost that is within of the optimal
cost for sequential detection of a constant state.

A. Polytope Structure and Main Assumptions
Since the public belief state is continuum (see

(14)), as a first step in characterizing the optimal policy ,
we need to understand the structure of the decision likelihood
probabilities defined in (13). Even though the belief state

is continuum, it turns out that there are only
possible local decision likelihood probability matrices . Let
, denote the elements of the power set of
(excluding, of course, the empty set). Define the following

convex polytopes , :

(30)

Recall the local cost vectors are defined in (8). Then, from
(13) it follows that and hence is a constant on each
polytope . Specifically, for rows , and for
rows , .
Although in general there are possible matrices,

we now show that by introducing assumptions (A1), (A2) and
(S) below, there are only distinct local decision likelihood
matrices . This forms an important preliminary step for char-
acterizing the optimal global decision policy.
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Recalling the notation in Section II-A, we list the following
assumptions.

(A1) The observation distribution is TP2
(see Definition 6 in Appendix A), i.e., all second order
minors of matrix are nonnegative.
(A2) The transition probability matrix is TP2. (All
second order minors of are nonnegative).
(A3) The elements of vector in (24) are decreasing.
A sufficient condition is that for and
the false alarm vector and delay penalty satisfy

and .
(S) The local decision cost vector in (8) is sub-
modular. That is, the elements satisfy

and . (Recall from Section II-A
that in quickest de-
tection problems with PH-distributed change time).

Discussion of Assumptions:
Assumption (A1): The requirement that is TP2 with

respect to states and holds for numerous exam-
ples, see Karlin’s classic book [22] and also [23]. Examples
include quantized Gaussians, quantized exponential distribu-
tions, Binomial, Poisson, etc. For example consider quantized
Gaussians. Suppose where

, , and . Then,

(A1) holds.
Assumption (A2) always holds trivially for . For
, see [16] and [25] for numerous examples. Consider the tridi-
agonal transition probability matrix with for

and . As shown in [16, pp. 99–100], a neces-
sary and sufficient condition for tridiagonal to be TP2 is that

. Such a diagonally dominant tridi-
agonal matrix satisfies Assumption (A2).
Assumption (A3) is a sufficient condition for to be

decreasing in with respect to the MLR order. We will use
(A3) in Section V to obtain sufficient conditions for a threshold
policy. Assumption (A3) always holds for the geometric dis-
tributed change times . For PH-distributed change
times , Assumption (A3) can be viewed as design
constraints the decision maker needs to take into account so
that quickest detection with PH-distributed change times has a
threshold policy [26]. Feasible values for the elements of are
straightforwardly obtained using a LP solver such as
in MATLAB.
Assumption (S) is only required for the problem to be non-

trivial. If (S) does not hold and for , 2, then
local decision will always dominate decision and
the problem reduces to a standard quickest detection problem
where the observed local decision yields no information
about the state. Assumption (S) implies is de-

creasing in , i.e., the local cost is submodular
which implies the zero crossing condition that is important in
the proof of Theorem 2.
The following theorem is an abbreviated version of Theorem

2 presented in Appendix C. It will be used in the rest of the paper
as a natural partition of the belief state space . Recall that
transition probability , observation probability matrix and
local cost vector are defined in (2), (7), and (8) respectively.

Theorem 2: Under (A1), (A2), and (S), the belief state space
defined in (14) can be partitioned into at most

nonempty polytopes denoted where we have
(31), shown at the bottom of the page. On each such polytope,
the local decision likelihood matrix defined in (13) is a
constant with respect to belief state .

As a consequence of Theorem 2 and (13), there are only
possible decision likelihood matrices , one per polytope ,

. We will denote these decision likelihood
matrices as

(32)

Example: To give some insight into the structure of decision
likelihood matrix , suppose (state space), (ob-
servation space), (local decision space). Then assuming
(A1), (A2), (S), by Theorem 2 there are up to convex
polytopes. The matrices defined in (13) and (32) are

(33)

Then, from (32) the 4 possible decision likelihood matrices
are

(34)

The detailed version of Theorem 2 in Appendix C guarantees
that each of these matrices is TP2. Fig. 2 illustrates these poly-
topes and hyperplanes defined below.
Let us give some intuition behind Theorem 2. Define the fol-

lowing hyperplanes that are subsets of :

(35)

(31)



5572 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 8, AUGUST 2012

Fig. 2. Illustration of polytopes , , , and defined in (31) and hyperplanes , , defined in (35) for , . Theorem 2 ensures that the hy-
perplanes do not intersect within the simplex and on each polytope, the local decision likelihoods are a constant. In the figure, , —Assumption
(PH)(ii) in Section V ensures this.

The main intuition of the above theorem is that (A1), (A2), and
(S) imply that satisfies a single crossing con-
dition [4] with respect to , (see Definition 5 in Appendix A).
This means that the set of belief states satisfy the following
subset property:

(36)
This implies that the hyperplanes , , do not intersect
within the simplex . It is nice that straightforward condi-
tions such as (A1), (A2), and (S) ensure this. Otherwise dealing
with intersecting hyperplanes in a multidimensional simplex
can be a real headache. Theorem 2(iv) in Appendix C shows
that each hyperplane partitions such that vertices

lie on one side and lie on the
other side. In Section V, we will introduce Assumption (PH)(ii)
which ensures that always lie in polytope as
illustrated in Fig. 2.

B. Multithreshold Structure of Social-Learning-Based
Quickest Detection
Themain result (Theorem 3 and Corollary 1) below gives suf-

ficient conditions under which social-learning-based quickest
detection has a double threshold policy. Consider the model

in (22) with geometric change time

(37)

with false-alarm vector in (17) and delay cost
(18). Here, the change probability is a small nonnegative
scalar. So the change time is geometrically distributed with

.
The analysis in this section proceeds as follows.
Step 1: For , the problem becomes a simple sequential
detection problem for state 1—we explicitly characterize
the multithreshold behavior of the optimal decision policy
in Theorem 3 below.
Step 2: It is then shown that for small , the optimal value
function is within of the value function for the case

of zero change probability (Corollary 1). So, the optimal
policy computed for zero change probability yields perfor-
mance that is close to that of the optimal quickest detection
policy for small .

1) Step 1: Sequential Detection of State 1: In line with above
plan, consider the sequential detection problem for state 1 with
social learning formulated in Section II with

(38)

The state is a random variable chosen at with distribu-
tion and remains constant for . The goal is to detect
and announce state 1 if based on noisy observations.
The global decision
is a function of the public belief . The optimal policy
that optimizes (20) satisfies Bellman’s (25).
The 2-D belief state is parameterized

by the scalar , i.e., is the interval .
Each hyperplane (35) now is a point on the interval ;
let the 2-D vector denote the belief state cor-
responding to . The polytopes , , in Theorem 2 are
now intervals which are subsets of . If (A1) and (S) hold,
then , , .
To handle the discontinuity in the social learning filter (11),

we start with the following lemma that characterizes useful
structural properties of the social learning filter. First define the
belief state

(39)

Lemma 2: Consider the social learning filter (11) and assume
(A1), (S) hold. Then:
i) .
ii) If is symmetric, then and are fixed points of the
composite Bayesian map

(40)

The implication of the above lemma is that can be
partitioned into 4 intervals, namely , , and
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Fig. 3. Structure of social learning filter under the assumptions of Lemma 2
and symmetric . Right (left) arrows represent evolution of the public belief
when . As can be seen, , are fixed points of the composite
maps in (40).

. Fig. 3 illustrates these regions and the dynamics speci-
fied in Lemma 2. The main result below characterizes the struc-
ture of the optimal global decision policy on these four
intervals. The theorem also characterizes information cascades
[12] (more colloquially “herding”) which is a salient feature of
social learning.

Theorem 3: Consider the sequential detection problem with
parameters (38). Suppose agents make local decisions via so-
cial learning. Assume (A1), (S) hold. (Note (A2) holds trivially
since ). The optimal global decision policy has the
following properties:
i) For , the global decision policy has a
threshold structure

if
otherwise

(41)

Also for , the value function (25) is
where is defined in

(24).
ii) The intervals and are “information cascades” [12].
That is, if , then and social
learning ceases.

iii) If is symmetric, then for , the global decision
policy has the following structure:
a) For , is concave and there is
at most one interval where .

b) For , is concave and there is
at most one interval where .

The implication of Part (iii) of the above theorem is that the
stopping set comprises at most three intervals. One of these
intervals is , with the threshold defined in (41).
The second claim of the theorem follows, since if public belief

, then the optimal local decision is irrespective of
the observation . Similarly, if , then the optimal local
decision is irrespective of the observation . Therefore,
when the public belief is in , the local decision of an
agent reveals no information about its local observation to sub-
sequent agents.
2) Step 2: Quickest Time Detection Bound for Small : Given

the characterization in Theorem 3 of the optimal policy for
, we now consider the quickest change detection problem for
small specified in (37). It is convenient to introduce the fol-
lowing dependent notation.
Let denote the cost incurred by the optimal policy

with transition matrix . We use the notation

to denote the explicit dependence of the 3 intervals , ,

, defined in (31). For , we denote these intervals as
. The following result bounds the difference between

and . Note that is characterized in Theorem 3 and
(identity matrix).

Recall from (23) that is the actual optimal expected cost
associated with optimal decision policy . As mentioned
below (25), the transformed value function is more con-
venient to deal with to prove the existence of optimal threshold
policies and the optimal policy remains invariant to the trans-
formation from to .

Corollary 1: Consider the social-learning-based quickest de-
tection model in (22) with probability of change
specified in (37). Then, for initial belief , , 2,
3, the optimal policy (characterized in Theorem (3)) incurs a
total global cost that constitutes an upper bound to
the optimal global cost incurred in the quickest detec-
tion problem. More specifically, for , , 2, 3,

(42)

Discussion: The implication of (42) is that the simple policy
of Theorem 3 is near optimal for quickest time detection

with social learning when is small. Note that (42) compares
the optimal costs in regions , , 2, 3, so we
are omitting intervals where the models have different local de-
cision likelihood probabilities . The regions we are omitting
are in size. In each region , the only differ-
ence between the quickest detection model and the simplified
model is the transition matrix ( versus ). This allows us to
give a tight bound in the sense that for , the optimal costs

and coincide. Of course, (42) requires the dis-
count factor . We refer the reader to [48] for an alternative
and more general approach.
The proof of Corollary 1 follows from Theorem 2 of [42].

In terms of our notation, Theorem 2 of [42] shows that for a
POMDP with piecewise linear value function at each iteration
of the value-iteration algorithm, for

(43)
where the induced matrix norm is with respect to the
elements. Since fromTheorem 3, the value function is piecewise
linear, (43) applies. From the structure of in (37) and since

, clearly

Also . Substituting these in (43)
yields the bound (42).
3) Numerical Example: Consider the social learning

quickest detection model with

(44)
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Fig. 4. Optimal decision policy for quickest time change detection with social learning for geometric distributed change time with small probability of change. In
each subfigure, the graph with solid lines is for and the graph with broken lines is for . The policies and optimal costs are very close for
and . Equation (42) gives a bound for the difference in the optimal costs. In both cases, the optimal policies are a double threshold and the value functions
are nonconcave and discontinuous. (a) Optimal global decision policies and . (b) Value functions for global decision policy.

Fig. 4 shows the optimal policies (see Theorem 3) and
(optimal quickest detection policy) together with optimal costs

and for change probability . As can
be seen the quickest detection optimal policy and costs are very
close to the costs and policies specified by Theorem 3. For

the policies and are almost identical and cannot
be distinguished in Fig. 4. The policies and optimal costs were
obtained by running the value iteration algorithm for horizon
500 with discretized to a grid of 100 points.

V. QUICKEST TIME DETECTION FOR GEOMETRIC AND
PH-DISTRIBUTED CHANGE TIME

The previous section illustrated the multithreshold behavior
of social-learning-based quickest time change detection. What
sufficient conditions on the social learning model lead to single
threshold behavior? This section gives such conditions for
PH-distributed change times modeled by a -state
Markov chain. For geometric change times (i.e., ) these
conditions yield a threshold that is identical to the classical
Kolmogorov–Shiryaev criterion (21).
This section comprises the following results.
1) Section V-A gives sufficient conditions for the optimal
global decision policy to be myopic and characterized
by a linear hyperplane threshold.

2) Section V-B gives less restrictive conditions under which
the optimal policy is increasing with respect to the MLR
order and is characterized by a single threshold curve. Re-
call that for PH-distributed change time, the belief space

is a multidimensional simplex. To order posterior
distributions on this simplex, the MLR stochastic order
(which is a partial order) will be used since it is preserved
under conditional expectations. The results involve anal-
ysis of the structure of the social learning Bayesian filter
together with lattice programming. All definitions of these
orders and consequences are given in the Appendix.

3) Section V-C describes how sufficient conditions can be
given for multiple-threshold policies.

4) Finally, Section V-D characterizes the optimal linear ap-
proximation to the MLR increasing policy. It then formu-
lates estimation of the optimal linear approximation to the
threshold curve as a stochastic optimization problem.

Assumption (PH): Recall fictitious states (corre-
sponding to belief states ) are used to model the
PH-distribution in (4). It, therefore, makes sense to constrain
the model parameters so that the global decision policy
at the belief states are identical (and similarly for
the local decisions taken in social learning). Throughout this
section, when considering PH-distributed change times, we
make the following assumption:
(PH) (i) for . (ii) lie in

polytope .
Assumption (PH)(i) says that the optimal policy treats

each of the fictitious states identically—they all lie
outside the stopping set . In similar vein, (PH)(ii) requires
that individual agents making local decisions treat the fictitious
states identically, i.e., they lie to the left of each
hyperplane , .
Obviously, (PH) holds trivially for (geometric

case)—otherwise the quickest change problem would be de-
generate.

A. Case 1: Myopic Quickest Detection With Linear Hyperplane
Threshold

The main result of this section is Theorem 4 which shows
that under suitable conditions, the optimal policy has a
myopic structure characterized by . Recall that in
(24) denotes the transformed costs of the global decision maker
with elements , . Denote the vertices of
the intersection of the linear hyperplane with
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the facets of simplex as , . Then, it is
straightforwardly seen that these vertices are

(45)

Now introduce the following assumption:
(C1) for all , .

The relevance of (C1) is apparent from the following lemma
(proof in Appendix E). Define the set of belief states (polytope)

(46)

Lemma 3: (C1) together with (A1), (A2), (A3), and (PH) is
sufficient for the set defined in (46) to be closed under the
social learning filter (11). That is for
all .
Recall that (A1), (A2), and (A3) were introduced in

Section IV-A and (PH) at the beginning of Section V. The
main result is as follows. The proof is in Appendix E.

Theorem 4: Consider the social-learning-based quickest
time detection model in (22). Assume (A1),
(A2), (A3), (S), (C1), (PH). Then the global decision maker’s
optimal policy is myopic and is of the form

if
otherwise

(47)
For the special case (geometric change time)

if
if

(48)

The above result is similar to the entry fee optimal stopping
problem having a myopic policy discussed in [21, pp. 389] and
[41, Th. 2.2, p. 54]. It is important to note, however, that even
though the optimal policy in (47) is characterized by a
linear threshold, the value function can still be discontin-
uous and nonconcave (unlike classical stopping time problems).
This will be illustrated in the numerical example below.
Let us illustrate what Theorem 4 says. Consider Fig. 5. The

shaded region in Fig. 5 denotes the set . It is
clear from Bellman’s (25) that the stopping set is a subset of
this shaded region . What Theorem 4 says is that the stopping
set is equal to the shaded region, i.e., , if (C1) and (PH)
hold. In terms of Fig. 5, (C1) is sufficient for to map
the belief states and (which are the vertices of the line

) to polytope . (PH)(i) implies that states , lie to
the left of the line (which corresponds to the region

). Similarly, (PH)(ii) means that , lie to the left of
each line segment , , 2, i.e., , .
Numerical Example: To illustrate Theorem 4, consider the

geometric change time model in (44) except that .
Even though the sufficient condition (C1) does not hold, the
optimal policy is characterized by a single threshold given by
(48). This is shown in Fig. 6. As can be seen in Fig. 6, the value
function is nonconcave and discontinuous.

Fig. 5. Illustration of Theorem 4. The shaded region which depicts the polytope
is equivalent to the stopping set under the assumptions of

the theorem.

B. Case 2: Existence of a Single Threshold Switching Curve
In this section, we consider another special case of the so-

cial-learning-based quickest detection model (22). Theorem 5
below shows that the stopping set is characterized by a single
threshold curve on the belief space. The threshold coincides
with the classical quickest time detection problem with nonin-
formative observations. For PH-distributed change times, un-
like the previous section, the threshold curve is not necessarily
linear. We give a stochastic gradient algorithm to estimate this
threshold curve in Section V-D.
1) Structural Result: We make the following assumptions.

Recall the global decision maker’s cost vector is defined in
(24). Let , denote the vertices of the in-
tersection of hyperplane (defined in (35)) with . These
vertices are computed as (45) with replaced by .

(C2) for .
(C3) The linear hyperplane lies in polytope

.
The following is the main result. The proof is in Appendix F.

Theorem 5: Consider the social-learning-based quickest de-
tection model in (22). Assume (A1), (A2), (S),
and (PH) hold. The optimal policy has the following
structure
i) Under (C3), for .
ii) Under (C2) and (C3), the stopping set is as convex
subset of polytope . Therefore, the boundary of
is differentiable almost everywhere.

iii) For geometric-distributed change time , under
(C3), the optimal policy is identical to that of the
Kolmogorov–Shiryaev criterion (21) with uniformly
distributed observation probabilities.

iv) Under (A3), (C2), and (C3). on the polytope ,
has the following structure:

(49)
(The MLR order is defined in (61) in Appendix A).
Hence, the boundary of the stopping set within
intersects any line segment , or at most
once (see geometric interpretation below).
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Fig. 6. Numerical example illustrating Theorem 4 which characterizes the optimal decision policy for social-learning-based quickest detection. The example is
described in Section V-A. Even though the value function is nonconcave and discontinuous, the optimal policy has a single threshold specified by (48). (a) Optimal
global decision policy . (b) Value functions for global decision policy.

Even though the policy in Theorem 5 coincides with
that of classical quickest detection, the optimal cost incurred is
always larger as shown in Theorem 1.
2) Discussion of Theorem 5 and Assumptions: Assumption

(C3) localizes the decision threshold to polytope . As a
consequence of (C3), on all polytopes except .
Therefore, on these polytopes, . Thus, statement (i)
is obvious.
Assumption (C2) together with (A1), (A2), (S), and (PH) en-

sures that the polytope is closed under the belief state
mapping . That is, implies

for all . Note that Assumption (C2) holds trivially for
as shown in the footnote.8 (C2) is similar in spirit to

(C1) of the Section V-A—the key difference is that (C1) deals
with the global cost vector whereas (C2) deals with local costs
, .
Assumptions (C2) and (C3) allow us to show that the value

function is concave on . Then, statement (ii), namely
convexity of the stopping set , follows from arguments in [32].
Statement (iii) is straightforward to show. The local deci-

sion likelihood probabilities on are uniform since the
local decision yields no information about the state. Thus under
(C3) the threshold is identical to the classical quickest detection
threshold for the Kolmogorov–Shiryaev criterion (21) with uni-
formly distributed observation probabilities.
The proof of Statement (iv) is more involved and is given in

Appendix F. The proof uses structural properties of the Bayesian
social filter studied in Theorem 10 of Appendix F, along with
submodularity, MLR stochastic order and a version defined on
line segments and in Appendix A.
3) Interpretation of Statement (iv): Since statement (iv) is

nontrivial, let us explain what it says from a geometric point of
view. For PH-distributed change times with , statement
8For , the second element of is which is always smaller

than , So applying to any belief state keeps it within the interval .

(iv) says a lot more than convexity of the stopping region .
On the unit simplex define as the line segment
constructed from to any point on the op-
posite facet of the simplex . Similarly denote as
any line segment from to any point on the opposite facet

. Statement (iv) implies that the boundary of the
stopping set within intersects any such line or

at most once. Fig. 7 shows examples of convex sets
that violate this condition. Also, statement (iv) leads to the fol-
lowing nice geometrical interpretation. If a belief state
lies on a line , then all belief states on this line closer to
also lie in . Similarly, if a belief state lies out-

side the stopping set , then all belief states on the line
further away from also lie outside the stopping set.
Numerical examples are given in Section VII.

C. Extensions of Theorem 5 and Multithreshold Policies
1) Local and Global Costs in Global Decision Making: The-

orem 5 can be extended to consider a more general global de-
cision maker’s cost function (instead of only false alarm and
delay) which takes into account the cost of local decisions in
social learning. For example, suppose that the global decision
maker’s cost for picking decision (continue) is the delay
cost plus an “operating cost.” That is

(50)

Here, is a user defined constant and with , ,
defined in (7), (1)

(51)
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Fig. 7. Stopping set in (a) violates Statement (iv) of Theorem 5 since the boundary of stopping set within intersects the line twice. (b) Example
of a stopping set that satisfies Statement (iv) of Theorem 5. In both figures, the region to the right of line is the polytope .

is the expected operating cost since it is incurred at each
agent when it makes its local decision via social learning. Note

is the expected local cost from choosing decision ,
receiving signal , picking recommendation and broadcasting
the information to the network: the probability of the event is

and the cost is . The last equality in (51)
follows since is a nonnegative scalar independent of .
Actually, the above choice of is very similar to that used
in constrained social learning in [12, Ch. 4].
Then using the same transformation as in (24), the optimal

policy is given by the Bellman’s (25) with
. Assumption (C3), namely,

is then equivalent to the linear hyperplane
lying in polytope . This is because on polytope the
optimal local decision , see (34), and so .
Suppose assumption (A3) is augmented with the condition that

is decreasing with . Then, Theorem 5 continues to
hold.
2) Multiple Thresholds: Using a similar proof to Theorem 5,

sufficient conditions can be given for the optimal global policy
in social learning-based quickest detection to have mul-

tiple thresholds. We describe this as follows.
Suppose the hyperplane lies in polytope for

some . Assume (C2) holds. Also assume
the following generalization of (C2) holds.
(C2’) The social learning filter maps belief states in polytope
to polytope for , . That is,

implies .
Then, similar to the proof of Theorem 5, the following result

can be established (proof omitted).

Theorem 6: Under (A1), (A2), (A3), (S), (PH), (C2), (C2’),
the value function is MLR decreasing and therefore op-

timal policy is MLR increasing on each polytope ,
.

As a result, is characterized by up to
threshold curves, one on each of these polytopes. The reason
is that even though is decreasing in each polytope, there
is no guarantee that is decreasing between polytopes. Theorem
5 is a special case of the above result when , and
therefore, is characterized by a single threshold curve.
As an example, consider , , and sup-

pose lies in , i.e., . Since (geo-
metric change time), conditions (A2), (A3), (PH), and (C2) hold
trivially. (C2’) holds if the social learning filter maps
the belief states in to . A sufficient condition for this is

, i.e., the transition matrix satisfies (52) shown
at the bottom of the page. If (A1) and (52) hold, then according
to the Theorem 6, the optimal policy is monotone de-
creasing on each interval and . So is characterized
by up to 2 thresholds, one in each of these intervals.

D. Optimal Linear Decision Threshold and Algorithms

Theorem 5 showed that under conditions (A1), (A2), (A3),
(S), (PH), (C2), and (C3), the optimal decision policy
was MLR increasing in belief state . In this section,
we characterize linear threshold hyperplanes that preserve this
MLR structure. Such linear thresholds can then be computed via
a stochastic approximation algorithm. For geometric distributed
change time , since the thresholds are points, estimation is an
obvious special case.
Throughout this section, we assume that the conditions of

Theorem 5 hold.
1) Characterization of MLR Increasing Linear Threshold:

For , define the -dimensional parameter vector

(52)
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Fig. 8. (a) Valid MLR increasing linear threshold policy. The linear threshold policy in (b) violates the requirement that the policy is MLR increasing since
it has a slope less than 60 . In both figures, the region to the right of line is the polytope . In the figures, denotes the hyperplane which lies
in by assumption (C3).

. Since , a linear
hyperplane on is parameterized by coefficients.
Define the linear threshold policy parameterized by the
vector as

if
otherwise.

(53)

Assume conditions (A1), (A2), (A3), (S), (PH), (C2), and
(C3) hold for the quickest detection problem (20) so that from
Theorem 5, the optimal policy is MLR increasing on
lines and . These are defined in Appendix A.
The requirement that state 1 lies in the stopping set, means

which implies .

Theorem 7: For belief states , the linear threshold
policy defined in (53) is
i) MLR increasing on lines iff and

for .
ii) MLR increasing on lines iff , for

.

The proof of Theorem 7 is in Appendix G. The constraints
in the above theorem are necessary and sufficient for the linear
threshold policy (53) to be MLR increasing on lines
and . Under these constraints, (53) defines the set of
all MLR increasing linear threshold policies on and

—it does not leave out anyMLR increasing polices; nor
does it include any non MLR increasing policies. In this sense,
optimizing over the space of MLR increasing linear threshold
policies yields the optimal linear approximation to threshold
curve.
The conditions imposed on the linear threshold parameters

in Theorem 7 have a nice interpretation when . Recall in
this case is an equilateral triangle. Let de-
note Cartesian coordinates in the equilateral triangle. So

, . Then, the linear threshold
satisfies

So the conditions of Theorem 7 require that , i.e., the
threshold has slope of 60 or larger. When , slope
becomes negative, i.e., more than 90 .
Fig. 8 shows examples of a valid and invalid linear threshold.

Fig. 8(a) illustrates a valid MLR increasing linear threshold
policy. Fig. 8(b) is invalid since the threshold is less than 60
meaning that the resulting policy is notMLR increasing on lines.
Also shown is the hyperplane which by assumption
(C3) lies in polytope .
2) Computation of Optimal Linear Threshold: As a conse-

quence of Theorem 7, the optimal linear threshold approxima-
tion to threshold curve of Theorem 5 is the solution of the
following constrained optimization problem:

(54)

where the cost is obtained as in (20) by applying
threshold policy in (53).
Because the cost in (54) cannot be computed in

closed form, we resort to simulation based stochastic optimiza-
tion. Let denote iterations of the algorithm. The
aim is to solve the following linearly constrained stochastic
optimization problem:

(55)
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Here, for each initial condition , the sample path cost
is evaluated as

(56)

A convenient way of sampling uniformly from is to use
the Dirichlet distribution (i.e., , where
unit exponential distribution).
The above stochastic optimization problem is solved by

stochastic approximation algorithms such as the Simultaneous
Perturbation Stochastic Approximation (SPSA) algorithm [47]
which converges to a local minimum; see [26] for a novel pa-
rameterization that deals with the hypersphere constraints. The
stochastic gradient algorithm converges to local optima, so it is
necessary to try several initial conditions. The computational
cost at each iteration is linear in the dimension of and is inde-
pendent of the observation alphabet size . Convergence (w.p.1)
can be established using techniques in [29] and [30]. More so-
phisticated methods than SPSA can also be used. For example,
Bartlett and Baxter[7] use the score function method to perform
gradient-based reinforcement learning. These algorithms are ap-
plicable to solve the constrained stochastic optimization problem
(55). Also, if the change time distribution (specified by ) and
the observation likelihoods (specified by ) are not completely
specified, as long as the assumptions Theorem 5 hold, then the
reinforcement learning algorithms [7] can be used to solve (55).

VI. MULTIAGENT QUICKEST TIME DETECTION WITH
ADAPTIVE SENSING

As mentioned in Section I, the social learning protocol is very
similar to multiagent quickest time detection with a sensor man-
ager (controller).Motivated by sensor network applications, this
section describes the formulation and the main results. The in-
formation patterns are similar to social learning and so the re-
sults developed in previous sections apply. The observations
now can also belong to a continuum.
Consider a countable number of agents indexed by

. Each agent acts once in a predetermined se-
quential order indexed by as follows: Based on
the current belief state , agent acts as follows.
1) Agent first chooses decision

. If the agent de-
cides to stop, then as in earlier sections, a false alarm
penalty is paid, and the problem terminates.

2) If agent chooses , then it chooses its operating
mode according to a built-in micromanager.
Agent then views the world according to this mode—that
is, it obtains observation from a distribution that de-
pends on mode . It then communicates its belief state
to the next agent.

Remark: An equivalent formulation is as follows: A single
smart sensor adapts its operating mode at each time based
on the posterior distribution of the underlying state at the pre-
vious time instant. How can quickest detection be achieved with
this sensor?
How can such a network of agents, where each agent

makes autonomous micromanagement decisions on its mode,
achieve quickest time detection? The quickest time detector
can be viewed as a macromanager that operates on the belief
states and micromanager decisions. Clearly, the micro- and
macromanagers interact—the local decisions taken by the
micromanager—determines which determines and hence
determines decision of the quickest time macromanager.

A. Micromanager for Agent Mode Selection
1) Costs and Mode Selection: As in (8), let denote the

local cost of deploying sensor mode . To avoid
trivial solutions, as in Section IV-A, we make the submodular
assumption (S).
Similar to the social learning formulation, the micromanager

picks local decision myopically as follows: Based on the be-
lief state of the previous agent, each agent picks its mode

of which sensor to deploy by minimizing its
expected predicted cost

(57)
where denotes the filtration . Define the convex
polytopes and that partition as

(58)
Then, from (57) it follows that for , and for

, .
2) Mode-Dependent Observations: The agent then makes an

observation depending on its choice of mode . Based on
its mode in (57), agent then obtains an observation from
conditional probability distribution

(59)
Here, denotes integration with respect to the Lebesgue mea-
sure (in which case and is the conditional proba-
bility density function) or counting measure (in which case is
a subset of the integers and is the conditional probability
mass function ). The key point is
that unlike classical quickest detection, each agent now views
the world based on its selected mode .
Let denote the belief state update if mode
is chosen and measurement obtained. It is given by

the HMM filter (7) with mode dependent probabilities
. That is,

(60)

B. Macromanager for Quickest Time Detection
In the following, we present the assumptions and main re-

sult. Based on the above micromanager protocol, the aim is to
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Fig. 9. Illustration of the setup in Section VI. The mode-dependent observation
probabilities , are chosen depending on the belief state in
polytope or defined in (58). The aim is to perform quickest detection
given this mode-dependent observation probability constraint.

perform quickest time change detection. So the quickest detec-
tion problem can be viewed as optimizing the cost function (24)
subject to the constraint that the belief state evolves according
to (60). The setup is identical to that in Sections II-B and III-A.
For , agents choose and at , agent
picks . The optimal

policy of the macromanager satisfies Bellman’s (25).
The following theorems mimic the results for the social-

learning-based quickest detection problem, and their proofs are
identical.
1) Blackwell Dominance: Suppose the mode dependent ob-

servation matrices are of the form where and
, , 2 are stochastic kernels. Then, an identical proof to

Theorem 1 shows that classical quickest detection with observa-
tion matrix always yields a lower cost than mode dependent
quickest detection with observation matrices , where the
mode is chosen according to any arbitrary strategy.
2) Threshold Policies: Consider the following assumptions

that are similar to (C1) in Section V-A and (C2) in Section V-B.
Recall vertices are defined in (45) and denote vertices of
hyperplane .

(C1) If lies in one of the polytopes , then
, for all .

(C2) , , .
We have the following result regarding the structure of

for quickest time detection.

Theorem 8: Theorems 4 and 5 hold for the optimal quickest
time decision policy of the macromanager. Also The-
orem 7 holds for MLR policies and computation of the optimal
linear threshold can be formulated as the stochastic optimiza-
tion problem (56).
(C1) and (C2) are relatively easy to check even if

is continuum as shown below. For all , let denote the
maximum support of the distribution , i.e.,

.

Lemma 4: (C1), (C2) hold if their inequalities hold for
.

Thus only a finite number of inequalities need to be verified.
In particular for a Gaussian distribution, since , the

filter becomes the Bayesian predictor . So it
suffices to check that for (C1) to hold.

Proof: Consider (C1). is equivalent to
verifying since is nonnega-
tive for all . So we need to check that
for all . But since and are TP2 according to As-

sumptions (A1) and (A2), from Theorem 10(4) in Appendix F,
the belief state update is MLR increasing in . More-
over by (A3) has decreasing elements. Therefore, from Result
1 in Appendix A, is decreasing in . So it suffices
to check that .

VII. NUMERICAL RESULTS

In addition to the numerical examples presented earlier, this
section presents two numerical examples. The first example
illustrates the multiple threshold policies inherent in social
learning (this example was mentioned in Section I). The second
example illustrates the optimal threshold curve for a PH-type
distributed change time that was proved in Theorem 5.

Example 1. Geometric Distributed Change Time: This ex-
amples illustrates the existence of a triple threshold policy for
quickest time change detection when the change time is geo-
metrically distributed. We chose the social learning model with
parameters (so is a one dimensional
simplex), ,

For the global quickest time detection parameters, we chose
, delay , false alarm vector (i.e., ).

It is easily checked that (A1), (A2), and (S) hold.
The optimal policy is shown in Fig. 1(a) and comprises

a triple threshold policy. It was computed by constructing a uni-
form grid of 500 points for and then implementing
the value iteration algorithm (27) for a horizon of . The
“ ” in Fig. 1(a) and (b) represents the values of , and

, respectively.

Example 2. Phase Distributed Change Time: This examples
illustrates Theorem 5 which proved the existence of a single
threshold curve for social-learning-based quickest time change
detection with PH-distributed change time. We model the
PH-distribution via a three-state Markov chain. So the belief
space is a 2-D simplex (equilateral triangle) and can be
visualized easily.
We chose the social learning model with parameters

, . The observation prob-
abilities and local decision costs were chosen as
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Fig. 10. Plots of change time probability mass function in (4) for (geometric distribution) and , (phase-type distributions).

The global costs for quickest detection in (17) and (18) were
chosen as , and discount factor .
The PH-distributed change times were modeled by the three-

state Markov chain with transition probability . To illustrate
the quickest time detection, we chose four candidate transition
probability matrices, namely

Note models the geometric distribution since states 2 and
3 are indistinguishable—in fact it is exactly lumpable [24] into

the two-state Markov chain with transition matrix .

Fig. 10 plots the probability mass function [see (4)] of the
PH-distributed change time for these four transition matrices
for . Fig. 10 shows these PH-distributions are
quite different in behavior to a geometric distribution—they are
nonmonotone and have heavier tails.
It is easily checked that (A1), (A2), (A3), (S), (PH), (C2),

and (C3) of Theorem 5 hold. Fig. 11 shows the optimal deci-
sion policies for these four cases with the stopping set shaded.
The optimal policy was computed as follows. A 50 50 grid
of values was formed within the 2-D unit simplex

.Then, the value iteration algorithm (27) was solved for
horizon (in all cases
implying that the value iteration algorithm converged). In all
four cases, the optimal decision policy is characterized by a
single threshold curve in polytope . This is consistent with
Theorem 5.
In each plot of Fig. 11 also shows the hyperplanes

[defined in (24)] and [defined in (35)]. The polytope is to
the right of hyperplane . The remaining line segments from

left to right are . Note that hyperplane lies
in , thereby satisfying Assumption (PH) and (C3).
Actually cases and satisfy assumptions (C1), and

(PH) and so Theorem 4 holds. Therefore, for these two cases,
the optimal threshold curve is the linear hyperplane as
can be seen in Fig. 11.

VIII. CONCLUSION
Motivated by understanding how local and global decision

making interact, this paper has presented structural results for
quickest time detection when agents perform social learning.
Also, a related model incorporating multiagent sensor sched-
uling and quickest time detection was considered. Unlike
classical quickest detection, the optimal policy can have
multiple thresholds. Four main results were presented. First,
Theorem 1 showed using Blackwell dominance of measures
that social-learning-based quickest detection always results
in more expensive cost compared to classical quickest de-
tection. Second, for symmetric observation probabilities and
geometric change times, the explicit multithreshold behavior of
social-learning-based quickest detection was characterized in
Theorem 3 by approximating with a simpler detection problem.
Third, quickest time change detection for more general PH-type
distributed change times was considered. Theorem 4 gave suf-
ficient conditions for the optimal policy to be characterized
by a single linear hyperplane in the multidimensional simplex
of posterior distributions. Finally, using lattice programming
and likelihood ratio dominance Theorem 5 gave sufficient
conditions for the optimal policy to be characterized by a single
switching curve. The optimal linear approximation to this curve
(that preserves the MLR monotone nature of the policy) was
characterized in Theorem 7.
The results of this paper are straightforwardly extended to

more general stopping problems where the underlying Markov
state does not have an absorbing state, as long as the transition
matrix satisfies assumption (A2). In current work, we are using
similar social learning models for “order-book” trades in agent
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Fig. 11. Optimal decision policy for quickest time change time with geometric probability mass function for geometric distribution (transition probability ),
and phase-type distributions (transition probabilities , and ). The shaded region depicts the stopping set in (26). The parameters are specified in
Example 2 of Section VII.

based models for algorithmic market making (see also [38]). Fi-
nally, [26] also presents quickest detection with constrained so-
cial learning, where agents can either herd or reveal full infor-
mation about their observation.

APPENDIX
A) Preliminaries: Stochastic Dominance, Submodularity:

Background references for stochastic dominance and lattice
programming are [23], [25], [35], and [49]. The proofs of
Theorem 2 and Theorem 5 require concepts in stochastic dom-
inance. In particular, statement (iv) of Theorem 5 states that
the optimal social policy is monotonically increasing in
belief state . In order to compare belief states and , we
will use the MLR stochastic ordering and a specialized version
of the MLR order restricted to lines in the simplex . The
MLR order is useful for social learning since it is preserved
after conditioning [23], [35], [40].

Definition 1 (MLROrdering, [35, pp. 12–15]: Let ,
be any two belief state vectors. Then is greater than

with respect to the MLR ordering—denoted as , if

(61)

Definition 2 (First-Order Stochastic Dominance): Let
, . Then, first-order stochastically dominates

—denoted as —if for
.

Result 1 [35]:
i) implies . (For , and are
equivalent)

ii) Let denote the set of all dimensional vectors with
nondecreasing components, i.e., . Then

iff for all , .
iii) Suppose , and are increasing

in . Then implies . (This fol-
lows since from (ii) and

since ).
For state-space dimension , MLR is a complete order

and coincides with first-order stochastic dominance. For state-
space dimension ,MLR is a partial order, i.e.,
is a partially ordered set (poset) since it is not always possible
to order any two belief states .
Finally, we define a modification of the MLR order on certain

line segments in the simplex which yields a total ordering.
Define the set of belief states .

For each belief state , denote the line segment
that connects to . Thus

(62)
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Definition 3 (MLR Ordering and on Lines):
is greater than with respect to the MLR ordering on the line

—denoted as if , for some
and . Similarly, , if ,
) for some , and .

Note that is a chain, i.e., all elements
are comparable, i.e., either or .

Similarly is a chain. In Lemma 5, we summarize
useful properties of that will be used in our proofs.

Lemma 5: Consider , .
i) On , is the least and is the greatest el-
ement. On , is the least and is the
greatest.

ii) Convex combinations of MLR comparable belief states
form a chain. For any ,

.
iii) All points on a line are MLR comparable. Con-

sider any two points , (62) where
. Then , implies

. A similar result holds for .

Definition 4 (Submodular Function [49]):
is submodular (antitone differences) if

, for , .
The following result says that for a submodular function

, is increasing in its ar-
gument . This implies is MLR increasing on the line
segments , which in turn will be used to prove the
existence of as threshold decision curve.

Theorem 9 [49]: If is sub-
modular, then there exists a ,
that is increasing on , i.e.,

.

Definition 5 (single Crossing Condition [4], [49]):
satisfies a single crossing condition in if

implies for and .
Then is increasing in .

Definition 6 (TP2 Ordering and Reflexive TP2 Distribu-
tions): Let and denote any two multivariate probability
mass functions. Then
i) if . If and are
univariate, then this definition is equivalent to the MLR
ordering defined above.

ii) A multivariate distribution is said to be multivariate
TP2 if holds, i.e., .

iii) If , are scalar indices, Statement (ii) is
equivalent to saying that a matrix is TP2 if all
second order minors are nonnegative. if , then the
-th row of MLR dominates the -th row.

B) Proof of Theorem 1: Let denote the value func-
tion at iteration of the value iteration algorithm (27) associated
with the classical quickest detection Bellman (29). Recall
is the value function associated with the social-learning-based
quickest detection problem (25).
We start with the following lemma which is proved at the end

of Appendix B

Lemma 6:
.

The proof of Theorem 1 then follows by mathematical induc-
tion using the value iteration algorithm (27). Assume

for . Then

where the second inequality follows from Lemma 6. Thus
. This completes the induction step.

Since value iteration converges pointwise, thus
proving the theorem.

Proof of Lemma 6:
Step 1: First, let us show that is concave over
for any by induction. Recall from (27) that

which is linear in . Assume
is concave at iteration . Note that is positively ho-
mogeneous, i.e., for any , . So the
value iteration algorithm (27) associated with Bellman’s
(29) is

Since the composition of concave function with a linear
function preserves concavity, therefore is
concave and so is concave.
Step 2: We then use the Blackwell dominance condition
(13). The social learning filter (11) can be expressed in
terms of the HMM filter (7) as

Therefore, is a probability measure w.r.t
. Since from Step 1, is concave for ,
using Jensen’s inequality it follows that

C) Proof of Theorem 2: Here, we present a detailed version
of Theorem 2 that was presented in Section IV-A.

Theorem 2 (Detailed Version): Under (A1), (A2), (S),
i) The local decision (see
(9)) is increasing in .

ii) is MLR increasing in , i.e.,
.
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iii) The linear hyperplanes ,
do not intersect within the interior of the be-

lief space . Thus, out of the polytopes in (30),
there are a maximum of nonempty polytopes in ,
namely (31).

iv) Let .
Then each of the hyperplanes ,

partitions such that the ver-
tices lie in the convex polytope

and the vertices lie
in the convex polytope .

v) decreases with .
vi) defined in (13) has the following structure:

(63)

Proof:
i) From [33, Lemma 1.2(1)] if and are TP2 (i.e., (A1),
(A2) hold) then . Next MLR
dominance implies first-order stochastic dominance.
Then since from (S), is increasing in
, it follows that .
Since the denominators are nonnegative, this implies
that .
That is, the single crossing condition (36) holds, see
Definition 5. So .

ii) To prove w.r.t , we use a similar ap-
proach to Part (i). From [33, Lemma 1.2(2)], assuming
(A3), implies . As in

the proof above, using (S) this implies

. Since the denominators are nonnegative,
this implies that

(64)
That is a single crossing condition (see Definition 5) holds
w.r.t and the partial order . So .

iii) follows immediately from (36).
iv) Since ,

clearly . Next
since , the single crossing
condition (64) yields

.
v) Start with the single crossing condition (36) repeated
below for clarity

vi) follows by enumerating all matrices that satisfy (i)
and (ii); see (33) for an example.

D) Proof of Theorem 3: Similar to the example given
below Theorem 2, it can be verified from (13) that there are
only 3 possible values for , namely

(65)

Thus, Bellman’s (25) reads

(66)

Claim (i): For ,
. This can be solved explicitly as

Since is MLR decreasing in , the optimal policy
for is a threshold policy with threshold at

. This proves the first claim of the theorem.
Claim (ii): Since for , the
private belief state update (7) freezes in these regions, i.e.,

implies that, . Therefore
all agents take the same local decision according to (9)
implying an information cascade.
Claim (iii): The proof of this is more involved.

We need the following property of the social learning
Bayesian filter which is a detailed version of Lemma 2 in
Section IV-B. Since we are going to partition into four
intervals, namely , , and

, it is convenient to introduce the following notation:
Denote these intervals as , , , , respectively. Note

, , .

Lemma 2 (Detailed Version): Consider the social learning
Bayesian filter (11). Then, , .
Furthermore, if is symmetric TP2, then ,

and . So

i) implies and .
ii) implies and .

The proof of Lemma 2 is as follows. Recall from (65) that
on interval , . Then, it is straightforwardly veri-
fied from (11) that . Next, using
(11) it follows that is a sufficient condi-
tion for and . Also, since by (A1)
is TP2, applying Theorem 10 (2), implies .

So symmetric TP2 is sufficient for the claims of the lemma
to hold. Statements (i) and (ii) then follow straightforwardly.
In particular, from Theorem 10(1), implies

, which implies
Statement (i) of the lemma. Statement (ii) follows similarly.
Returning to the proof of Theorem 3, we use mathematical

induction on the value iteration algorithm (27). Clearly
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is linear. Assume now that is piecewise linear
and concave on each of the four intervals . That is, for
two dimensional vectors in the set

Consider . From (65), since , , 2, Lemma
2 (i) together with the value iteration algorithm (66) yields

Note the crucial point in the above equation: as a result of
Lemma 2 (i)—the social learning filter maps to only
(for ) and (for ). Since each of the terms in the
above equation are piecewise linear and concave, it follows
that is piecewise linear and concave on . A similar
proof holds for and this involves using Lemma 2 (ii). As
a result the stopping set on each interval , is a
convex region, i.e., an interval. This proves claim (ii).

E) Proof of Lemma 3 and Theorem 4:
Proof of Lemma 3: Let us introduce the following notation.

Define

(67)

The proof comprises three parts.
Statement (i): Under (PH), for every , there exists a

such that .
Proof: Consider any belief state . Construct a line

segment from through the belief state and let this line
segment intersect the hyperplane . Denote as this point
of intersection. Clearly, where

. It is straightforwardly established that
if which is clearly true since and for

.
Statement (ii): Under (A1), (A2), and (A3), if , then

.
Proof: Under (A1), (A2), and (A3), it follows from The-

orem 10(2) in Appendix F that is MLR increasing, that
is, implies . Under (A3), the el-
ements of are decreasing. So from Result 1 in Appendix A,
it follows that . So
implies .
Statements (i) and (ii) imply that if the social learning filter

(11) maps belief states in to , then all belief states in
are also mapped to . Since the hyperplane

has infinite points, how can we formu-
late a sufficient condition for belief states to be
mapped to the polytope ? (C1) serves as a sufficient con-
dition as proved in Statement (iii) as follows.
Statement (iii): A sufficient condition for to

hold for all is that for all
vertices of (45).

Proof: Clearly, every belief state is a convex com-
bination of the vertices, i.e., , for some
and . Now is equivalent to

since the normalization term in is non-
negative. This implies , and this is equiv-
alent to .

Proof of Theorem 4: Define .
Step 1: We first prove that for . This is
equivalent to saying that for , the optimal
policy .
The proof of Step 1 is by induction on the value iteration
algorithm (27). Suppose . Then it trivially sat-
isfies for . Next suppose for

. Then for , Assumption (C1) implies that
belongs to implying that . So

from (27), it follows that
since for . Since converges point-
wise to , Step 1 follows. For initial condition

[see (27)], obtained as the limit of the
value iteration algorithm is identical to that with initial con-
dition .
Step 2: From Bellman’s equation it follows trivially that
for , .
From Steps 1 and 2, we have iff .
F) Proof of Theorem 5: This section is in two parts. We

start with several preliminary results that are similar to the re-
sults in [33]. Then, the proof of Theorem 5 is presented.

7) Structural Properties of Social Learning Filter:
Theorem 10: The following structural properties hold

for the public belief update evaluated by the social learning
Bayesian filter defined in (11):

1) Under (S), is TP2 for , see Definition 6.
2) Under (A1), (A2), (S) if , , then
implies
3) Under (A1), (A2), (S), if , , then

.
4) Under (A1), (A2), if , then implies

.

Proof:
1) We need to show that for fixed

(68)

Recall from (13) that is a matrix with a single 1 in
each row at and all other elements zero. So the
only nontrivial case to prove is when both terms on the
LHS are 1, i.e., and .
Assuming (A2), (S), Theorem 2(i) says that .
This means that and

. In either case (68) holds
with equality since the RHS is identical to the LHS.

2) Since is TP2 (A2), we have for , see
[23]. So it suffices to show that for
. Moreover, since belong to the same polytope ,

(say) [see (30)]. From [23], a sufficient
condition for is that is TP2. Of course
we need this to hold on each of the polytopes, i.e.,
for .
So under what conditions is TP2 in each of the
polytopes? Note (A2) says is TP2. Since
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[see (13)] and the product of TP2 matrices is TP2 [23, p.
471], it only remains to prove that is TP2. This follows
from (S) as proved in (i) above.

3) Since is TP2 (A2), it suffices to prove that
implies , i.e.,

. From Statement 1, and are TP2
and from (A2) is TP2. So and
are TP2. Therefore, from Definition 6(iii), the rows of

and are MLR increasing. Since MLR dominance
implies first-order stochastic dominance, this means that
both and are increasing with .
Since , Result 1 (i), (ii), and (iii), imply that a suf-
ficient condition for
is that or equivalently,

. A sufficient
condition for this is .
But this condition holds from the structure of in (63)
and the fact that is MLR increasing w.r.t
(Statement (ii) of Theorem 2 in Appendix C).

4) Since is TP2 (A2), it suffices to prove that
for . Since is TP2 (A1),

this result follows straightforwardly from [51, Theorem 4].

8) Proof of Theorem 5: Here, we prove Theorem 5. The
update of belief state in is simple, since (uni-
formly distributed) for each (see (34) for example). In com-
parison, the sensor management case of Theorem 8 on with
update given by (60) requires an arbitrary TP2 matrix . To
allow for this generality, in the proof below, we assume is
an arbitrary TP2 matrix on .

Part 1: Under (A1), (A2), (A3), (S), (C3), (C2), and (PH),
is MLR decreasing on polytope :

The proof of Part 1 is by mathematical induction on the value
iteration algorithm (27). Start with in (27).
Clearly, this is MLR decreasing on and therefore on poly-
tope since is chosen with increasing elements, see (17).
Now for the inductive step: Assume at iteration , isMLR
decreasing on polytope . Then, since is MLR in-
creasing in [see Theorem 10(4)] and by (C2),
it follows that .
Consider any . Since [see

Theorem 10(3)]

(69)

Next since (Theorem
10(2)), so MLR decreasing in implies

. So from (69), implies

(70)

From (A3), is MLR decreasing. So implies
. Therefore, implies

. Thus, , i.e.,
. This completes the induction step. Fi-

nally, since as pointwise [see discussion below
(27)], is MLR decreasing on polytope .

Part 2: Under the above conditions, is MLR in-
creasing on polytope . It suffices to show that is
submodular (see Definition 4) on w.r.t the MLR ordering
since then Theorem 9 applies implying that is MLR de-
creasing in . To show that in (25) is submod-
ular, we need to show that is MLR decreasing in . But
this follows from (A3) and Part 1. Thus, from Theorem 9, (49)
holds.

I) Proof of Theorem 7: Given any
with , we need to prove: iff

, for . But from
the structure of (53), obviously is equivalent

to , or equivalently,

.
Now from Lemma 5 (iii), implies that

, and .
Substituting these into the above expression, we need to prove

iff , , . This is obviously
true.
A similar proof shows that on lines the linear

threshold policy satisfies iff for
.
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