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How to Schedule Measurements of a Noisy Markov
Chain in Decision Making?

Vikram Krishnamurthy, Fellow, IEEE

Abstract—A decision maker records measurements of a finite-
state Markov chain corrupted by noise. The goal is to decide when
the Markov chain hits a specific target state. The decision maker
can choose from a finite set of sampling intervals to pick the next
time to look at the Markov chain. The aim is to optimize an objec-
tive comprising of false alarm, delay cost, and cumulativemeasure-
ment sampling cost. Takingmore frequentmeasurements yields ac-
curate estimates but incurs a higher measurement cost. Making an
erroneous decision too soon incurs a false alarm penalty. Waiting
too long to declare the target state incurs a delay penalty. What is
the optimal sequential strategy for the decision maker? This paper
shows that under reasonable conditions, the optimal strategy has
the following intuitive structure: when the Bayesian estimate (pos-
terior distribution) of the Markov chain is away from the target
state, look less frequently; while if the posterior is close to the target
state, look more frequently. Bounds are derived for the optimal
strategy. Also the achievable optimal cost of the sequential detector
as a function of transition dynamics and observation distribution is
analyzed. The sensitivity of the optimal achievable cost to param-
eter and strategy variations is bounded in terms of the Kullback
divergence. Also structural results are obtained for joint optimal
sampling and measurement control (active sensing).

Index Terms—Change detection, optimal sequential sam-
pling, quickest state estimation, decision making, active sensing,
Bayesian filtering, stochastic dominance, submodularity, sto-
chastic dynamic programming, partially observed Markov
decision process.

I. INTRODUCTION AND EXAMPLES

A. The Problem

C ONSIDER the following quickest detection optimal sam-
pling problem which is a special case of the problem con-

sidered in this paper. Let denote integer-valued
time instants at which decisions to observe a noisy finite state
Markov chain are made. Assume . As it accumulates
measurements over time, a decision-maker needs to announce
when the Markov chain hits a specific absorbing target state. At
each decision time , the decision maker chooses its decision
from the action set where we have the

following.
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1) Decision made at time corresponds to “an-
nounce the target state and stop.” When this decision is
made, the problem terminates at time with possibly a
false alarm penalty (if the Markov chain was not in the
target state).

2) Decision at time corresponds to:
“Look at noisy Markov chain next at time

.” Here, are fixed positive
integers. They denote the set of possible time intervals to
sample the Markov chain next.

Suppose the Markov chain hits the absorbing target state at
time . Given the history of past measurements and decisions,
how should the decision-maker choose its decisions

? Let denote the time at which the decision maker
chooses , i.e., announces that the Markov chain has
hit the target state. The decision-maker considers the following
costs:
i) False alarm penalty: If , i.e., the Markov chain
is not in the target state, but the decision-maker chooses

and so falsely announces that the chain has hit the
target state, it pays a unit nonnegative false alarm penalty.

ii) Delay penalty: Suppose , i.e., the Markov chain
hits the target state at time and the decision-maker an-
nounces at a later time . Then, it pays a non-
negative delay penalty at each time instant between
and . So the total delay penalty is .

iii) Sampling cost: At each decision time , if the decision
maker takes action , then it pays a
nonnegative measurement (sampling) cost to look at
the noisy Markov chain at time . (More
generally, can depend on theMarkov state and decision
.)

Suppose the Markov chain starts with initial distribution
at time 0. What is the optimal sampling strategy for the deci-
sion-maker to minimize the following combination of the false
alarm rate, delay penalty, and measurement cost? That is, deter-
mine where1

(1)

1By definition, the sampling cost for looking at the noisy Markov chain at
time is paid at time . Hence, the summation in the last term of (1) is
up to .
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Here, denotes the indicator function. Also, denotes a
stationary strategy of the decision maker. and are the
probability measure and expectation of the evolution of the
observations and Markov state which are strategy dependent
(These are defined in Section II). Taking frequent measurements
yields accurate estimates but incurs a higher measurement cost.
Making an erroneous decision too soon incurs a false alarm
penalty. Waiting too long to declare the target state incurs a
delay penalty.

B. Generalizations
In the special case when the Markov chain has two states

(equivalently, the change time is geometrically distributed),
action space , mea-
surement cost , then (1) becomes the classical Kol-
mogorov–Shiryayev quickest detection problem [28], [31]. This
paper generalizes this in three nontrivial ways.
1. Quickest state estimation: First, the Markov chain can
jump multiple random number of times into and out of the
target state (unlike quickest detection where the process
jumps once into an absorbing target state). Such “quickest
state” estimation problems seek to announce when the
Markov chain is in the target state as quickly as possible.
They arise in financial and active sensing applications (see
discussion below). The aim is to determine the optimal
sampling strategy that minimizes a combination of false
alarm rate, delay penalty, and measurement cost to an-
nounce if the Markov chain is currently in the target state.

2. Multiple continue actions: Second, unlike classical
quickest detection, there are now multiple “continue”
actions corresponding to different sam-
pling intervals . (In quickest detection,
there is only one continue action and one stop action.)
Each of these “continue” actions results in different dy-
namics of the posterior distribution and incurs different
costs. Also, the measurement costs can be state, action,
and observation dependent.

3. Multiple state Markov chain: Finally, the underlying
Markov chain can have more than two states. As described
in [25], a phase-distributed (PH-distributed) change time
can be modeled as a multistate Markov chain with an

absorbing state. PH-distributions form a dense subset for
the set of all distributions; see [18] for quickest detection.
PH-distributed change times are used widely to model
discrete event systems [25] and are a natural candidate for
modeling arrival/demand processes for services that have
an expiration date [11].

C. Context: Optimality of Monotone Strategies
This paper analyzes the structure of the optimal sampling

strategy. The problem is an instance of a partially observed
Markov decision process (POMDP) [9]. In general (worst
case), solving a POMDP is computationally intractable [26].
However, the optimal sampling problem results in a POMDP
that has a monotone optimal strategy and hence a finite di-
mensional characterization. To illustrate this structure via a
numerical example, assume the decision maker observes a

Fig. 1. Optimal sampling strategy for a quickest-change detection and
quickest estimation problem. (a) and (b) are for quickest detection where a
two-state Markov chain jumps once with geometric distribution to the target
state. (c) and (d) are for a quickest estimation problem where a two-state
Markov chain jumps in and out of the target state. The action space is

where actions correspond
to choosing sampling intervals ,
respectively. The noisy observations are from a binary erasure channel and
the parameters are specified in Example 1 of Section VII. (a) and (c) depict
monotone decreasing optimal strategies in posterior . Theorems 1 and
2 give sufficient conditions so that the optimal sampling strategy has
this monotone structure. The threshold values in (a), namely,
give a finite dimensional characterization of the optimal strategy. (b) and (d)
give examples where the conditions of Theorem 2 are violated and the optimal
strategy is no longer monotone in .

two state Markov chain via a binary erasure channel (pa-
rameters specified in Example 1, Section VII). Suppose the
action space is where ac-
tions correspond to choosing sampling intervals of

, respectively. (So at each
decision time, the decision maker can either stop or look at the
Markov chain in 1, 3, 5 or 10 time points.) Fig. 1(a) and (c)
shows the optimal sampling strategy (computed via stochastic
dynamic programming) for quickest detection (where one state
is absorbing) and quickest state estimation (with no absorbing
state). The horizontal axis denotes the posterior distribution

of the target state while the vertical axis denotes the
optimal action taken. For example, in Fig. 1(a), for ,
it is optimal to look every ten time points at the noisy Markov
chain, for in the interval look every five points at
the noisy Markov chain, etc. The key point in Fig. 1(a) and (c)
is that the optimal strategy is monotone decreasing in the
posterior .
Intuition suggests that under suitable assumptions, such a

monotone strategy is sensible: Since the decision maker is inter-
ested in detecting when the Markov chain hits the target state,
there is little point in incurring a measurement cost by looking at
the Markov chain when its posterior suggests that it is far away
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from the target state. (The target state has posterior .)
If posterior gets close to 1, then the decision maker should
pay a higher sampling cost and look more frequently. Finally,
if is sufficiently close to 1, the decision maker should an-
nounce the target state has been reached to avoid paying a delay
penalty.
This paper shows that under reasonable conditions, the op-

timal sampling strategy has this monotone structure. The use-
fulness of the main results (see Theorems 1 and 2) are enhanced
by noting that without introducing appropriate conditions, the
optimal strategy is not necessarily monotone. Fig. 1(b) and (d)
gives examples where the sufficient conditions of Theorem 2
are violated and the optimal strategy is no longer monotone. In
particular, Fig. 1(d) (quickest state estimation) shows that the
optimal policy can be nonmonotone if the transition matrix does
not satisfy the totally positive (TP2) assumption of Section III.
It shows that the transition probabilities play an important role
in the structure of the optimal strategy in quickest state estima-
tion. This highlights an important difference between quickest
state estimation and quickest detection. In quickest detection
with geometric distributed change time, the transition proba-
bility matrix (with absorbing state) satisfies the TP2 assumption
automatically, and so is irrelevant in the existence of amonotone
optimal strategy.

D. Main Results, Organization, and Related Works

Main Results and Organization: This paper establishes the
following structural results.
i) For two-state Markov chains observed in noise, since the
elements of the 2-D posterior probability mass function
add to 1, it suffices to consider one element of this poste-
rior, denoted – note is a probability and lies in
the interval . Theorem 1 shows that for quickest de-
tection optimal sampling problems, the optimal sampling
strategy of the decision-maker has a monotone structure
in the posterior distribution. More generally, Theorem 2
shows that for quickest state estimation problems (where
the target state is not necessarily absorbing), the optimal
sampling strategy continues to have this monotone struc-
ture on a subset of the space of posterior distributions.
The monotone structure of Theorems 1 and 2 reduces a
dynamic programming problem on the space of posterior
distributions to a finite dimensional optimization, since
a monotone strategy with possible actions has at most

thresholds in the space of posterior distributions.
For example, in Fig. 1, one only needs to compute/esti-
mate the threshold values to determine the
optimal strategy. The threshold values can be estimated
via simulation based stochastic approximation.
The main idea is to give sufficient conditions so that the
optimal strategy is “mono-
tone” in posterior , where is obtained from stochastic
dynamic programming, and “monotone” is with respect
to a partial order (monotone likelihood ratio (MLR) sto-
chastic order) of posterior distributions . Lattice pro-
gramming and “monotone comparative statics” [2], [3],

[33] provide a general set of sufficient conditions for the
existence of monotone strategies.

ii) For general-state Markov chains observed in noise, the
posterior lies in a multidimensional unit simplex and so
the posteriors can only be partially ordered. For three
or more states, determining sufficient conditions for the
optimal sampling strategy to have a monotone struc-
ture is still an open problem [23], [29]. This motivates
the question: Can the optimal strategy be lower and
upper bounded by monotone policies? Theorem 4 shows
that the optimal sampling strategy can be lower- and
upper-bounded by judiciously chosen myopic strategies
on the unit simplex of posterior distributions. Such my-
opic strategies form easily computable bounds to the
optimal strategy. Sufficient conditions are also given for
the myopic strategy to have a monotone structure with
respect to the MLR stochastic order. MLR stochastic
dominance is ideally suited for Bayesian problems since
it is preserved under conditional expectations. Theorem
5 illustrates the result for quickest detection with PH-dis-
tributed change time.

iii) How does the optimal expected sampling cost vary with
transition matrix and noise distribution? Is it possible to
order these parameters such that the larger they are, the
larger the optimal sampling cost? For multi-state Markov
chains observed in noise, Theorem 6 examines how the
cost achieved by the optimal sampling strategy varies
with transition matrix (state dynamics) and observation
matrix (noise distribution). In particular, dominance mea-
sures are introduced for the transition matrix and obser-
vation distribution (Blackwell dominance) that result in
the optimal cost increasing with respect to this dominance
order. Theorem 6 shows that for optimal sampling prob-
lems, certain PH-distributions for the change time result
in larger total optimal cost compared to other distribu-
tions.

iv) Theorem 7 derives explicit sensitivity bounds on the total
cost for sampling with a mismatched model and mis-
matched strategy. By elementary use of the Pinsker in-
equality [10], Theorem 7 shows that the sensitivity is a
linear function of the Kullback–Leibler divergence be-
tween the two models. Also, the bounds are tight in the
sense that if the difference between the two models goes
to zero, so does the performance degradation.

v) To prove the results in this paper, several stochastic dom-
inance properties of the Bayesian filter are presented in
Theorem 9. How does the posterior distribution computed
by the Bayesian filter vary with observation, prior, transi-
tion matrix and observation matrix? Is it possible to order
these so that the posterior distribution increases with re-
spect to this ordering? The theorem gives sufficient con-
ditions for the Bayesian filtering recursion to preserve
the MLR stochastic order, and for the normalization mea-
sure to be submodular. It also shows that if starting with
two different transition matrices but identical priors, then
the optimal predictor with the larger transition matrix [in
terms of the order introduced in (36)] MLR dominates the
predictor with the smaller transition matrix.
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vi) Finally, we consider the problem of joint optimal sam-
pling with measurement control. The problem is moti-
vated by the question: Should the decision maker sample
less frequently but more accurately or more frequently
but less accurately to achieve quickest detection/estima-
tion? Theorem 10 gives sufficient conditions for the op-
timal sampling/measurement control strategy to be lower
bounded by a monotone policy. It says that given the
current posterior (belief), if the instantaneous expected
cost of sampling less frequently but more accurately is
smaller, then it is optimal to do this.

Related Works: Several examples in active/smart/cognitive
sensing [17] use measurement-sampling control. The recent
paper [4] considers a measurement control problem for geo-
metric-distributed change times (two-state Markov chain with
an absorbing state), where at each time the decision is made
whether to take a measurement or not.2 A constrained version
of the problem in [4] can be formulated in terms of our optimal
sampling problem. We discuss this in Section VI-C.
We also refer to the seminal work of Moustakides (see

[35] and references therein) in event triggered sampling.
Quickest detection has been studied widely (see [28] and [32]
and references therein). The recent preprint [12] deals with a
non-Bayesian formulation of quickest detection with sampling
(and quantization) constraints. Dayanik and Goulding [11] give
a unified formulation of several sequential detection problems
including those with a fixed (deterministic) number of jumps
as a stochastic dynamic programming problem. We have con-
sidered recently a POMDP approach to quickest detection with
social learning [19] and nonlinear penalties [18] and phase-dis-
tributed change times. However, in these papers, there is only
one continue and one stop action. The results in this paper are
considerably more general due to the propagation of different
dynamics for the multiple continue actions, general observation
noise distributions (Gaussians, exponentials, discrete memory-
less channels) and the possibility of a nonabsorbing target state.
This is a useful feature of the lattice programming approach
[1], [23], [29] used in this paper.
Finally, a brief comment on quickest state estimation where

(unlike quickest detection) the target state is not absorbing and
the Markov chain jumps in and out of this state. Such prob-
lems arise in cued sensing applications in body area networks
[8], [27] and also active/adaptive radar systems [6]. Suppose
the kinematic coordinates of a moving target are classified into
a finite number of states, e.g., “in range” or “out of range.” A
sensor obtains noisy measurements of this kinematic state. Due
to constraints in its agility, the sensor can only revisit a target at
specified time intervals , . If the state esti-
mate is “in range,” then the sensor cues a high resolution sensor
(radar) to examine the target more carefully. The high resolu-
tion sensor is a resource that needs to be allocated amongst sev-
eral targets [17], [21]. If the sensor falsely cues the high reso-
lution sensor when the target is out of range, it pays a penalty
(analogous to the false alarm) and the procedure terminates. The
longer the sensor waits to cue the high resolution sensor, the

2The author is grateful to Dr. V. Veeravalli of University of Illinois at Urbana
Champaign for sharing the results in and useful discussions

more the delay penalty accumulated (due to increased uncer-
tainty and threat levels). Given a measurement cost, how often
should the sensor look at a target in order to detect if the target
is in range? In radar resource management [20], this is called
the revisit time problem.

II. FORMULATION OF OPTIMAL SAMPLING PROBLEM

Let denote discrete time and denote a Markov
chain on the finite state space

(2)

where is the -dimensional unit vector with 1 in the th po-
sition. Here, state “1” (corresponding to ) is labeled as the
“target state.” Denote

(3)

Denote transition probability matrix and the
initial distribution , where

(4)

A. Measurement Sampling Protocol
Let denote previous discrete time instants

at which measurement samples were taken, where by conven-
tion . Let denote the current time-instant at which a
measurement is taken. Themeasurement sampling protocol pro-
ceeds according to the following steps:
: Step 1. Observation: A noisy measurement at time

, of the Markov chain is obtained with
conditional probability distribution

(5)

Here, denotes integration with respect to the Lebesgue
measure (in which case, and is the condi-
tional probability density function) or countingmeasure (in
which case, is a subset of the integers and is the con-
ditional probability mass function
).

: Step 2. Sequential Decision Making: Let
denote the history of

past decisions and available observations. At times , a
decision is taken where

(6)

and denotes: obtain next measurement after
time points, . The initial decision at time

is , where is the initial distribu-
tion specified in (4). In (6), the strategy belongs to the
class of stationary decision strategies denoted . It is well
known [7] that for stochastic shortest path problems that
terminate with probability one in finite time,3 strategies can
be restricted to nonrandomized stationary policies. Also,

are distinct positive integers that

3Such problems are equivalent to discounted infinite horizon problems [5].
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denote the set of possible sampling time intervals. Thus,
the decision specifies the next time to make a mea-
surement as follows:

(7)

: Step 3. Costs: If decision is chosen, a
decision cost is incurred by the decision-maker
at each time until the next mea-
surement is taken at time . Also at each time ,

, the decision maker pays a nonnegative
measurement (sampling) cost to
observe the noisy Markov chain at time .
In terms of the policy , this is equivalent to choosing
the measurement cost as (see, e.g., [9, p. 31])

(8)

where denotes the element of matrix .
: Step 4: If at time the decision is chosen,

then a terminal cost is incurred and the problem
terminates. Recall that no sampling cost is paid at stopping
time since the cost of looking at the Markov chain at
time is paid at time .
If decision , set to and go to
Step 1.

Belief State Formulation: It is convenient to re-express Step
2 of the above protocol in terms of the belief state. Since is
nonrandomized, (6) is equivalent to , where is
the -algebra generated by . It is well known from
elementary stochastic control [23] that the belief state (poste-
rior) constitutes a sufficient statistic for . So it suffices to
choose where denotes the be-
lief state. Since the state space (2) comprises of unit indicator
vectors, conditional probabilities and conditional expectations
coincide. So

(9)

initialized by . It is easily proved that the belief state is up-
dated via the Bayesian (Hidden Markov Model) filter

(10)

Here, is the normalization measure of the Bayesian
update with . Also, denotes transpose of
matrix and denotes the -dimensional vector of ones.
Note that in (10) is an -dimensional probability vector. It
belongs to the ( )-dimensional unit-simplex denoted as

(11)

For example, is a 1-D simplex (unit line segment), is
a 2-D simplex (equilateral triangle); is a tetrahedron, etc.
Note that the unit vector states defined in (2) of
the Markov chain are the vertices of .
Step 2 in the above protocol expressed in terms of the belief

state reads: At decision time
1) Step 2(a). Update belief state according to Bayesian
filter (10)

2) Step 2(b). Make decision using stationary strategy
as (see (6))

(12)

B. Sequential Decision-Maker’s Objective and Stochastic
Dynamic Programming

Given the above protocol with measurement-sampling
strategy in (12), we now define the objective of the sequential
decision maker. Let be the underlying measurable
space, where is the product space, which is
endowed with the product topology and is the corresponding
product sigma-algebra. For any , and strategy

, there exists a (unique) probability measure on
; see [13] for details. Let denote the expectation

with respect to the measure .
Define the measurable stopping time as

(13)
That is, is the epoch and is the time at which the decision
maker declares the target state has been reached and the problem
terminates. For initial distribution , and strategy ,
the decision maker’s global objective function is

(14)

Recall that the decision cost and measurement sampling
cost are defined in Step 3 of the protocol. Using the
smoothing property of conditional expectations, (14) can be ex-
pressed in terms of the belief state as

(15)

where

(16)

The decision-maker aims to determine the optimal strategy
to minimize (16), i.e.,

(17)
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The existence of an optimal stationary strategy follows from
[5, Prop.1.3, Ch. 3].
Considering the global objective (16), the optimal stationary

strategy and associated optimal objective
are the solution of the following Bellman’s stochastic

dynamic programming equation

(18)

Recall and were defined in (10). The above
formulation is a POMDP, where the observation space can be
discrete or continuous (see (5)).
Define the set of belief states where it is optimal to apply

action as

(19)

is called the stopping set since it is the set of belief states to
“declare target state and stop.”
Since the belief state space is an uncountable set,

Bellman’s equation (18) does not translate directly into nu-
merical algorithms. We will exploit the structure of Bellman’s
equation to prove various structural results about the optimal
strategy using lattice programming.

C. Quickest Change Detection With Optimal Sampling
We now formulate the quickest detection problem with

optimal sampling—this serves as an example to illustrate the
above general model. Recall that decisions (whether to stop,
or continue and take next observation sample after time
points) are made at times . In contrast, the state of the
Markov chain (which models the change we want to detect)
can change at any time . We need to construct the delay and
false alarm penalties to take this into account.
1. Phase-Distributed (PH) Change time: In quickest detec-
tion, the target state (labeled as state 1 by convention) is
absorbing. States (corresponding to unit vectors

) are fictitious states that the Markov chain
resides in before jumping into the absorbing state. So the
transition matrix (4) is

(20)

The “change time” denotes the time at which enters
the absorbing state 1, i.e.,

(21)

Of course, if , then the change time in (21) is
geometrically distributed.
For a multistate Markov chain, to ensure that is finite, as-
sume states are transient. This is equivalent to
in (20) satisfying for

(where denotes the element of the th power of
matrix ). With the transition probabilities (20), the distri-
bution of the change time is given by the PH-distribution

(22)

where . By choosing
and state space dimension , one can approximate any
given change-time distribution on by PH-distribu-
tion (22); see [25, pp. 240–243]. Indeed, PH-distributions
form a dense subset for the set of all distributions.

2. Observations: Since states are fictitious states
that shape the PH-distributed change time (22), they are
indistinguishable in terms of the observation . That is,

(23)

3. Costs: Associated with the quickest detection problem are
the following costs.
i) False Alarm: Let denote the time at which de-
cision (stop and announce target state) is
chosen, so that the problem terminates. If the deci-
sion to stop is made before the Markov chain reaches
the target state 1, i.e., , then a unit false alarm
penalty is paid. So the false alarm penalty at epoch

is . The expected
false alarm penalty based on the accumulated history
at epoch is

(24)
Recall denotes the -dimensional vector of ones.

ii) Delay cost of continuing: Suppose decision
is taken at time . So the next sam-

pling time is . Then, for any time
, the event signifies that

a change has occurred but not been announced by the
decision maker. Since the decision maker can make
the next decision (to stop or continue) at , the
delay cost incurred in the time interval
is , where is a nonneg-
ative constant. For , the expected
delay cost in interval
is

(25)

iii) Measurement Sampling Cost: Suppose decision
is taken at time . As in

(16), let de-
note the nonnegative measurement cost vector for
choosing to take a measurement. Next, since in
quickest detection, states are fictitious
states that are indistinguishable in terms of cost,
choose .

Choosing a constant measurement cost at each time (i.e.,
independent of state and action ), still results
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in nontrivial global costs for the decision maker. This is
because choosing a smaller sampling interval will result in
more measurements until the final decision to stop, thereby
incurring a higher total measurement cost for the global
decision maker.

Remarks:
i) Quickest state estimation: The setup is identical to above,
except that unlike (20), the transition matrix no longer
has an absorbing target state. Therefore, theMarkov chain
can jump in and out of the target state. To avoid patho-
logical cases, we assume is irreducible. Also there is
no requirement for the observation probabilities to sat-
isfy (23).

ii) Summary: In the notation of (16), the costs for
quickest detection/estimation optimal sampling are

where and

(26)

for .
iii) Kolmogorov–Shiryayev criterion: For constant measure-

ment cost , the quickest detection optimal
sampling objective (16) with costs (26) can be expressed
as (1) where the PH-distributed change time and stop-
ping time are defined in (21), (13). For the special case

, measurement cost , ge-
ometrically distributed (so ), then (1) becomes
the Kolmogorov–Shiryayev criterion for detection of dis-
order [30].

III. STRUCTURAL RESULTS FOR OPTIMAL SAMPLING POLICY
FOR TWO-STATE CASE

This section analyzes the structure of the optimal sampling
strategy [solution of Bellman’s equation (18)] for two-
state Markov chains ( ). Recall that two-state Markov
chains model geometric distributed change times in quickest de-
tection problems.
We list the following assumptions that will be used subse-

quently.
(A0) The target state belongs to the stopping set de-
fined in (19). Either state 1 is absorbing and all other states
are transient, or is irreducible.
(A1) The costs in (16) are increasing with
for each .
( ) The costs in (16) are decreasing with
for each .
(A2) The transition matrix is totally positive of order 2
(TP2), that is, all second-order minors are nonnegative.4

(A3) The observation distribution is TP2, that is,
is increasing in for each state .

(A4) is submodular in , where and
, i.e., is decreasing5

in .

4The definitions of TP2 in (A2) and (A3) are equivalent. Both are equivalent
to each row of and being MLR dominated by subsequent rows; see [15].
5Throughout this paper, we use the term “decreasing” in the weak sense. That

is “decreasing” means nonincreasing. Similarly, the term “increasing” means
nondecreasing.

(A0) ensures that the stopping problem is well posed. It says
that if it was known with certainty that the target state has
been reached, then it is optimal to stop. For quickest time de-
tection, it holds trivially since for

. The second part of (A0) ensures that
is finite and state 1 is recurrent. (A0) is assumed throughout

the paper and not will be repeated subsequently. The remaining
assumptions are discussed below in Section III-C.

A. Optimality of Threshold Policy for Quickest Detection With
Sampling

Consider quickest detection with optimal sampling for geo-
metric distributed change time. From (20), the transition ma-

trix is and expected change time is

, where is defined in (21). For a two-state
Markov chain since , it suffices to represent
by its first element . That is, the belief space
is the interval .
Theorem 1: Consider the quickest detection optimal sam-

pling problem of Section II-C with geometric-distributed
change time and costs (26). Assume the measurement cost

satisfies (A1), (A4) and the observation distribution
satisfies (A3). Then, there exists an optimal strategy with
the following monotone structure: There exist up to thresh-
olds denoted with
such that, for ,

...
...

(27)
Here, the sampling intervals are ordered as
. So the optimal sampling strategy (27) makesmeasurements

less frequently when the posterior is away from the target
state and more frequently when closer to the target state. (Recall
the target state is .)
The proof of Theorem 1 is given in Section III-C. Theorem

1 is a special case of a more general result, Theorem 2, that we
will present below (where state 1 is not necessarily absorbing).
There are two main conclusions regarding Theorem 1. First,

for constant measurement cost, (A1) and (A4) hold trivially.
Then, Theorem 1 only requires (A3) which holds for several
classes of discrete and continuous observation distributions as
discussed in Section III-C. For the general measurement cost

[see (8)] that depends on the state at
epoch , in (8) automatically satisfies (A4) if
satisfies (A2) and is decreasing in .
Second, the optimal strategy is monotone in poste-

rior and, therefore, has a finite dimensional characteriza-
tion. To determine the optimal strategy, one only needs to de-
termine (estimate) the values of the thresholds .
These can be estimated via a simulation-based stochastic op-
timization algorithm. We will give bounds for these threshold
values in Section IV.
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B. Optimality of Threshold Strategy for Sequential Optimal
Sampling

In this section, we consider the general optimal sampling
problem where the two-state Markov chain can jump in and out
of the target state 1. (Recall quickest detection is a special case
where the target state is absorbing). We will give sufficient con-
ditions for the optimal strategy to be monotone on a subset de-
noted of the belief space . Define

(28)

For transition matrices that satisfy (A2), it will be shown
in Lemma 1, Section IV-A, that and so
is nonempty. For the quickest detection problem since

, clearly , and so
meaning that the optimal strategy is monotone on the entire
belief space . (This is why Theorem 1 holds on .)
The intuition for specifying is that for , the

filtering update (10) satisfies the following property under
(A2): the first element of always is smaller
than that of (equivalently, first-order
stochastically dominates ). This property is cru-
cial to prove that the optimal strategy has a monotone structure.
Section V-C presents this and several other important properties
of the Bayesian filtering update.
The following is the main result of this section (and includes

Theorem 1 as a special case).
Theorem 2: Consider the optimal sampling problem of

Section II with state dimension and action space in
(6). Then, the optimal strategy in (18) has the following
structure:
i) The optimal stopping set (19) is a convex subset of

. Therefore, the stopping set is the interval
where the threshold .

ii) Under (A1)–(A4), there exists an optimal sampling
strategy defined in (18) that is decreasing in
for , where is defined in (28).

iii) As a consequence of (i) and (ii), there exist up to thresh-
olds denoted in with

such that, for , the
optimal strategy has the monotone structure of (27).

Corollary 1: Consider the quickest state estimation problem
with setup identical to the quickest detection problem of The-
orem 1 except that the transition matrix does not necessarily
have an absorbing state. Assume satisfies (A2). Then, the con-
clusions of Theorem 1 hold on where is defined
in (28).
The proof of Theorem 2 is in Appendix B. The proof of Corol-

lary 1 is in Section III-C.
Fig. 2 illustrates and compares what Theorem 1 and Theorem

2 say for . As shown in Fig. 2(b), for quickest detection,
and so the optimal strategy is decreasing in

belief (see Theorem 1). For more general optimal
sampling problems, Fig. 2(a) illustrates that is monotone

Fig. 2. Illustration of Theorems 1 and 2. (a) illustrates Theorem 2 which states
that the optimal strategy is monotone decreasing in for

. It illustrates the case when and are disjoint sets, i.e., .
In this case, for in the interval , the theorem cannot say that

is monotone. (b) illustrates Theorem 1 for the quickest detection problem
with optimal sampling. In this case, , i.e., . So the optimal
strategy is monotone for all .

decreasing in (see Theorem 2), where
is defined in (28).
A short word on the proof of Theorem 2 is presented in

Appendix B. It involves analyzing the structure of Bellman’s
equation (18). It will be shown that in (18) is a sub-
modular function (defined in Appendix B) on the partially
ordered set which constitutes a lattice. Here
denotes the MLR stochastic order defined in Section V-C.
For , is the unit interval , and in this case,

is a chain (totally ordered set) and is equivalent
to first-order stochastic dominance (denoted as ). For
considered in Section IV, a similar idea is used to bound the
optimal strategy on .

C. Discussion of Assumptions A1–A4

As mentioned previously, Theorem 1 for quickest detection
and Corollary 1 for quickest estimation are special cases of The-
orem 2. To illustrate the assumptions of Theorem 2, we now
prove Theorem 1 and Corollary 1 by showing that assumptions
that (A1)–(A4) hold. Recall from (20) that for quickest detec-
tion with geometric change time, the transition matrix is

(29)
1) Assumption (A1): This requires that the elements of the

all cost vectors are increasing in for all . How-
ever, quickest detection/estimation is complicated by the fact
that (A1) does not hold since from (26), is increasing
in while , are decreasing in if the measure-
ment cost is a constant. The trick is to transform these costs
so that they are either all increasing without altering the optimal
strategy. Below, we transform the costs so that they are all in-
creasing [satisfy (A1)], satisfy (A4) and yet keep the optimal
strategy unchanged.
Theorem 3: For any , define the transformed costs

as follows:

(30)

i) Bellman’s equation (18) applied to optimize the global
objective (16) with transformed costs yields the
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same optimal strategy as the global objective with
original costs . Also the value function is

.
ii) Consider the quickest detection/estimation problem with
costs defined in (26) and . Assume the sampling
cost satisfies (A1) and (A4). Then, choosing

, where ,
implies in (30) satisfies (A1) and (A4).

Theorem 3 is proved in Appendix C. As a consequence of
Statement (ii), it follows that Theorem 2 holds and the optimal
strategy for the transformed costs is monotone in the poste-
rior distribution. Since the strategy is unchanged by the
transformation, Theorem 2 holds for the original costs ,
thereby proving Theorem 1.
2) Assumption (A2): From the structure of transition matrix
in (29), clearly (A2) holds automatically for the quickest de-

tection problem. For numerous examples of TP2 transition ma-
trices, see [15]. Also, does not need to have an absorbing state
for Theorem 2 to hold.
The reader familiar with monotone policies for Markov

decision processes might question why we do not require
a submodular assumption on the transition probabilities for
Theorem 2 to hold. The reason is that in the sampling control
formulation, satisfying (A2) implies that for each ,

is submodular in . That is, (A2) implies
that is decreasing in for

. This is proved in Theorem 9(3).
3) Assumption (A3): Numerous continuous and discrete

noise distributions satisfy the TP2 property; see [15]. Examples
include Gaussians, Exponential, Binomial, Poisson, etc. Exam-
ples of discrete observation distribution satisfying (A3) include
binary erasure channels—see Section VII. A binary symmetric
channel with error probability less than 0.5 also satisfies (A3).
4) Assumption (A4): In general, Theorem 2 requires the

costs to be submodular. However, for the special case
of quickest detection with optimal sampling, Theorem 3 only
needs the measurement cost to be submodular, i.e.,

is decreasing in . This holds trivially
if the measurement cost is independent of the state or action.

IV. MONOTONE BOUNDS TO OPTIMAL STRATEGY FOR
MULTISTATE MARKOV CHAIN

We now consider optimal sampling for multistate Markov
chains ( ) observed in noise. Since is an ( )-di-
mensional simplex, for substantial complications arise
as the belief state vectors are only partially orderable. For

, determining sufficient conditions for the optimal
strategy to have a monotone structure is an open problem [23],
[29]. This motivates the question: Can the optimal strategy be
lower and upper bounded by monotone strategies? This section
shows that the optimal strategy can be indeed be bounded by
monotone strategies (with respect to the MLR order) that are
myopic. Such judiciously chosen myopic strategies provide
rigorous and easily computable bounds in strategy space to an
intractable POMDP problem. They apply to quickest detection
optimal sampling problems with PH-distributed change times
and multistate quickest estimation. The costs associated with

Fig. 3. (a) Illustration of myopic strategy (in dashed line) and optimal
strategy (solid line). Theorem 4 asserts that for
defined in (33). (b) illustrates for . The region to the left of the curve
is . Note also that is increasing in with respect to the MLR order.
This implies that on any line segment terminating in (dotted line shown),

increases. (a) . (b) .

such myopic strategies form an upper bound to the optimal
achievable cost. Finally, these monotone myopic strategies are
used in Section VI-C to truncate the action space .
Fig. 3 illustrates the main result of this section, namely a

monotone strategy that lower bounds the optimal strategy
on a subset of defined in (33) below. For ex-

ample, if , then Theorem 4 below states that
implies , implies

, etc. The myopic strategy is increasing in with re-
spect to the MLR order. So for in Fig. 3(a), it comprises
step functions decreasing in . For , the MLR order is
a partial order. Any line segment terminating in constitutes
a chain (totally ordered subset) and is increasing on such
a line [dotted line in Fig. 3(b)] toward .
To compare belief states in for , we use theMLR

stochastic order.
Definition 1 (MLR Order; see [24]): Let be

any two belief state vectors. Then, is greater than with
respect to the MLR ordering—denoted as , if

(31)

Similarly if in (31) is replaced by .
For , the MLR order is a partial order, indeed

forms a poset (partially ordered set). The MLR
stochastic order is useful since it is closed under conditional
expectations. That is, implies
for any two random variables and sigma-algebra [15],
[24], [34]; see also [23] and [29] for extensive use in partially
observed stochastic control.
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A. Monotone Bounds to Optimal Sampling Policy

The main result below shows that the optimal sampling
strategy is lower bounded by a monotone strategy that
is myopic. Define myopic strategy and myopic stopping
set by

(32)

So, is the set of belief states for which the myopic strategy
declares stop.
Theorem 4: Consider the sequential sampling problem of

Section II with optimal strategy specified by (18). Then
1) The stopping set defined in (19) is a convex subset of the
belief state space .

2) where is the myopic stopping set defined in (32).
3) Under (A1), (A2), and (A3), the myopic strategy de-
fined in (32) forms a lower bound to the optimal strategy

, i.e., for all . Here

(33)

Under ( ) (A2), and (A3), forms an upper bound
to optimal strategy , i.e., for all

.
4) If (A4) holds, then themyopic strategy is is increasing
with for with respect to the MLR stochastic
order.

The proof is in Appendix D.
Theorem 4 gives a lot of analytical mileage in terms of char-

acterizing the optimal strategy. Statement (1) characterizes the
convexity of the stopping set and Statement (2) gives an easily
computable subset of . Statements 3 and 4 assert that the
myopic strategy comprising of increasing step functions6

lower bounds the optimal strategy . The myopic strategy
defined in (32) is computed trivially on the simplex .
Remark: in (33) is the set of belief states for which a

one step ahead optimal predictor MLR dominates a two step
ahead optimal predictor. Since the MLR order is transitive, if
(A2) holds, it will be shown in Theorem 9 that for ,

. That is, the belief state update for
choosing a smaller sampling interval MLR dominates that of
choosing a larger sampling interval . Note that the above
definition specializes to the definition of given previously
in (28) for .
The following lemma summarizes some important properties

of .
Lemma 1: The set of belief states defined in (33) has the

following properties:
i) always contains the belief state and so is
nonempty.

6For , MLR increasing with respect to is equivalent to decreasing
with respect to . That is why, Fig. 3(a) shows decreasing with respect
to .

ii) A sufficient condition for is
.

For , the condition reads: and
.

iii) For , is an interval of the form . (This
is consistent with definition (28).)

The proof is in Appendix B.

B. Quickest Detection/Estimation With Optimal Sampling

We now illustrate Theorem 4 by constructing bounds for
the optimal sampling strategy in quickest detection/estimation
(e.g., with PH-distributed change time (20)). As described in
Section III-C, quickest detection/estimation is complicated
by the fact that is increasing, while ,
is decreasing in meaning that neither (A1) nor ( ) hold.
Similar to Theorem 3, the main idea is to transform the cost so
that either ( ) or (A1) holds. Recall from Theorem 3 that for
any vector , the following transformed cost

(34)
results in identical optimal strategy to that of the original
cost with associated value function
. Define the myopic strategy associated with as

(35)

The aim is to choose the vector so that the transformed costs
are decreasing in [satisfy ( )] and submodular

(A4). Since ( ) and (A4) impose linear constraints on , it is
straightforward to check if a feasible exists and compute it
using an LP solver.
Theorem 5: Consider the quickest detection/estimation op-

timal sampling problem for defined in Section II-C with
costs in (26). Then
1) Statements 1 and 2 of Theorem 4 apply.
2) Assume (A2), (A3) and there exists such that
transformed costs in (34) satisfy ( ) and (A4).
Then the myopic policy (32) satisfies ,

. Moreover, is increasing in with
respect to the MLR order.

3) Assume , (A2), (A3) hold, and the measurement
cost satisfies (A4). Then, for any satisfying

, the myopic policy
(32) satisfies for all . Also

is decreasing in . (Recall for quickest
detection (A2) always holds and .)

The proof is in Appendix E.
Remark (i): Statements (2) and (3) assert that the optimal

strategy can be upper bounded by the monotone myopic
strategy for multistate quickest detection (PH-distributions)
and quickest estimation problems. As mentioned earlier, for

, if a feasible exists so that ( ), (A4) hold,
it is easily computed via an LP solver. Actually we have the
following explicit construction for which guarantees ( )
and (A4) hold.
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Lemma 2: Assume (A2), (A3) and that the measurement cost
is state independent. Suppose the elements of

are chosen as integer concave and decreasing in with

Then, , satisfy ( ) and (A4), and there-
fore, Theorem 5 applies.
The proof is in Appendix E.
Remark (ii): Combining Statement (3) with Theorem 1 im-

plies that is monotone in , and the optimal threshold
values are upper bounded by those of the my-
opic strategy . These upper bounds on the optimal thresh-
olds can be used to initialize a stochastic optimization algorithm
to estimate the thresholds of the optimal monotone strategy.
Remark (iii): Regarding choosing for the transformed

cost to satisfy (A1) rather than ( ), it turns
out that the resulting transformed cost always satisfies

, implying that for
all . Then, forms a trivial lower bound to

on and is not useful.

V. PERFORMANCE AND SENSITIVITY OF OPTIMAL STRATEGY

In previous sections, we have presented structural results
on monotone optimal strategies. In comparison, this section
focuses on achievable costs attained by the optimal strategy.
This section presents two results. First, we give bounds on
the achievable performance of the optimal strategies by the
decision maker. This is done by introducing a partial ordering
of the transition and observation probabilities—the larger these
parameters with respect to this order, the larger the optimal cost
incurred. Second, we give explicit bounds on the sensitivity of
the total sampling cost with respect to misspecified model and
misspecified strategy—these bounds can be expressed in terms
of the Kullback–Leibler divergence. Such robustness is useful
since even if a model violates the assumptions of the previous
section, as long as the model is sufficiently close to a model
that satisfies the conditions, then the optimal strategy is close
to a monotone strategy.

A. How Does Total Cost of the Optimal Sampling Strategy
Depend on State Dynamics?

Consider the optimal sampling problem formulated in
Section II. How does the optimal expected cost defined in
(17) vary with transition matrix and observation distribution
? Can the transition matrices and observation distributions
be ordered so that the larger they are, the larger the optimal
sampling cost?
Consider two distinct optimal sampling problems with

transition matrices and , respectively. Alterna-
tively, consider two distinct optimal sampling problems with
observation distributions and . Let
and denote the associated costs. Recall, the costs
(16) depend explicitly on the transition matrix. Let
and denote, respectively, the optimal strategies for

the two different models. Let and
denote the optimal value functions (18)

corresponding to applying the respective optimal strategies.
Define the following ordering of two arbitrary transition ma-

trices and :

(36)

Introduce the following reverse Blackwell ordering [29] of ob-
servation distributions: reverse Blackwell dominates de-
noted as

(37)

where is a stochastic kernel, i.e., .
(Recall from (5) that denotes integration or summation.)
This means that yields more accurate measurements of the
underlying state than .
The question we pose is: How does the optimal cost

vary with transition matrix and observation
distribution ? For example, in the quickest detection optimal
sampling problem, do certain phase-type distributions for the
change time result in larger total optimal cost compared to
other phase-type distributions?
Theorem 6:
1) Consider two distinct optimal sampling problems with
transition matrices and , respectively, where
with respect to ordering (36).
i) If and (A1), (A2), (A3)
hold, then the expected total costs incurred by the
optimal sampling strategies satisfy

.
ii) If and ( ), (A2), (A3)
hold, .

2) Consider two distinct optimal sampling problems with ob-
servation distributions and , respectively, where
with respect to ordering (37). If ,

then .
The proof is in Appendix F. Computing the optimal strate-

gies and costs of a POMDP is intractable. Yet, the above the-
orem facilitates comparison of these optimal costs for different
transition and observation matrices.
Remark (i): As a trivial consequence of Statement 2 of the

theorem, the optimal cost incurred with perfect measurements
is always smaller than that with noisy measurements. Since the
optimal sampling problem with perfect measurements is a full
observed MDP (or equivalently, infinite signal to noise ratio),
the corresponding optimal cost forms a easily computable lower
bound to the achievable cost.
Remark (ii): Here are examples of transition matrices

that satisfy (A3) and .
Example 1: Geometric distributed change time:

, , where .

Example 2: PH-distributed change time:

, .
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Example 3: Markov chain without absorbing state:

, .

B. Sensitivity to Misspecified Model and Strategy

How sensitive is the total sampling cost to the choice of sam-
pling strategy? The aim of this section is to establish the explicit
bounds on the sensitivity of the total cost with respect to mis-
specified model and misspecified strategy.
1) Notation and Assumption: Define

(38)

The set depicted in (38) represents a subset of the observation
space for which the optimal decision is to stop. We assume
that

(A5) .
Assumption (A5) is discussed after the statement of the theorem
below. It holds trivially if the observation distribution [de-
fined in (5)] is absolutely continuous with respect to Lebesgue
measure on , i.e., if the density has support on such as
Gaussian noise. (A5) is relevant for cases when the observation
space is finite or a subset of .
2) Main Result: Consider two distinct models

and of the optimal sampling problem. Recall
and denote the total costs (16) in-

curred by these models when using strategy . Similarly,
and denote the total costs (16) in-

curred by these models when using strategy .
Theorem 7: Consider two optimal sampling problems with

models and , respectively. Assume and
satisfy (A2), (A3), (A4), (A5). Then, for misspecified model

andmisspecified strategy, the following sensitivity bounds hold:
Misspecified Model:

(39)

Misspecified Strategy:

(40)

(41)

If , and denotes the
Kullback–Leibler Divergence,

(42)

If the observation distributions are Gaussians with variance ,
, respectively, then

The proof of Theorem 7 is in Appendix G. The bounds (39),
(40) are tight since implies that the performance
degradation is zero. Also (42) follows from Pinsker’s inequality
[10] that bounds the total variation norm by the Kull-
back–Leibler Divergence.
For optimal sampling problems where the transition matrix

or observation distribution does not satisfy assumptions (A2),
(A3), or (A4) but is close to satisfying these conditions, the
above result ensures that a monotone strategy yields near op-
timal behavior with explicit bound on the performance given
by (39) and (40).
It is instructive to compare the above theorem with Theorem

6 of Section V-A. Theorem 6 compared optimal costs for dif-
ferent models—it showed that

, where and denote the optimal sam-
pling strategies for models and , respectively (where the or-
dering is specified in Section V-A). In comparison, (39) ap-
plies the optimal strategy for model to the decision
problem with a different model . Also (40) is a lower bound for
the cost of applying the optimal strategy for a different model
to the true model —this bound is in terms of the cost of the

optimal strategy for true model . What Theorem 7 says is that
if the “distance” between the two models is small, then the
sub-optimality is small, as described by (39) and (40).
3) Discussion of Assumption (A5): The proof of Theorem 7

is nontrivial since there is no discount factor7 in the cost (16).
However, because the sampling problem terminates with prob-
ability one in finite time, it has an implicit discount factor—this
is typical in stochastic shortest path problems that terminate in
finite time [5]. It is here that Assumption (A5) is used. (A5) im-
plies that . The term can be interpreted as
a lower bound to the probability of stopping at any given time.
Since this is nonzero, the term in (41) serves as this implicit
discount factor.
(A5) says that for models and , if the underlying Markov

chain is in state , then there is a nonzero probability that a
noisy observation pulls the belief state to the stopping region.
As shown in the proof, the choice of state is because it is
furthest away from the stopping state (with respect to the
MLR order).

C. Stochastic Dominance Properties of the Bayesian Filter

This section presents structural properties of the Bayesian
filter (10), which determines the evolution of the belief state .

7Instead of (16), if the cost was
, where the

user defined discount factor , then establishing a bound such as
(39) is straightforward. An artificial discount factor is unnatural
in our problem and unnecessary as shown in Theorem 7 since the
problem terminates in finite time with probability one and hence has an
implicit discount factor denoted as .
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Indeed, the proofs of Theorems 2–7 presented in previous sec-
tions depend on Theorem 9 given below. The results in Theorem
9 are also of independent interest in Bayesian filtering and pre-
diction. To compare posterior distributions of Bayesian filters,
we first start with some background definitions on stochastic
orders.
1) Stochastic Orders: We already introduced the MLR sto-

chastic order in Definition 1 of Section IV.
Definition 2 (First-Order Stochastic Dominance, [24]): Let

. Then, first-order stochastically dominates
(denoted as ) if for

.
The following result is well known [24]. It says that MLR

dominance implies first-order stochastic dominance and gives a
necessary and sufficient condition for stochastic dominance.
Theorem 8 (see [24]):
i) Let . Then, implies .
ii) Let denote the set of all -dimensional vectors with
nondecreasing components, i.e., .
Then, iff for all , .

For state-space dimension , MLR is a complete order
and coincides with first-order stochastic dominance. For state-
space dimension ,MLR is a partial order, i.e.,
is a partially ordered set (poset) since it is not always possible
to order any two belief states .
2) Main Result: With the above definitions, we are now

ready to state the main result regarding the stochastic domi-
nance properties of the Bayesian filter.
Theorem 9: The following structural properties hold for the

Bayesian filtering update and normalization measure
defined in (10):

1) Under (A2), implies .
2) Under (A2), (A3), implies

.
3)

a) Under (A2), and
for all .

So for , is submodular. That is,
.

b) Under (A2), (A3), for , is submod-
ular with respect to (recall for that and
coincide):

4) For , implies
iff (A3) holds.

5) Consider the ordering of transitionmatrices defined
in (36).
a) If , then , i.e., the one-step
Bayesian predictor with transition matrix MLR
dominates that with transition matrix .

b) If and (A2) holds, then
for any positive integer . That is, the -step Bayesian
predictor preserves this MLR dominance.

6) If (A2) holds, then for defined in (28) or (33),
and

.
7) Let and denote, respectively,
the Bayesian filter update and normalization measure using
transition matrix . Then, they satisfy the following sto-
chastic dominance property with respect to the ordering of
defined in (36):
a) implies .
b) Under (A3), implies

.
The proof of Theorem 9 is in Appendix H.
In words, Part 1 of the theorem implies that the Bayesian fil-

tering recursion preserves the MLR ordering providing that the
transition matrix is TP2 (A2). Part 2 says that the normalization
measure preserves first-order stochastic dominance providing
(A2) and (A3) hold. Part 3 shows that the normalization mea-
sure is submodular. Part 4 shows that under (A3), the larger the
observation value, the larger the posterior distribution (wrtMLR
order). Part 5 shows that if starting with two different transition
matrices but identical priors, then the optimal predictor with the
larger transition matrix [in terms of the order introduced in (36)]
MLR dominates the predictor with the smaller transition matrix.
Part 6 says address the two-state case. It says that for all belief
states in , as long as the transition matrix is TP2 (satisfies
A2), then the belief state update for smaller sampling intervals
dominates that of larger sampling intervals. Finally, Part 7 says
that starting with two different transition matrices but identical
priors, the filtering recursion and the normalization
measure with the larger transition matrix [in terms
of the order introduced in (36)] dominate the predictor with the
smaller transition matrix.

VI. OPTIMAL SAMPLING WITH MEASUREMENT CONTROL

So far we have considered optimal sampling where the con-
trol action affects the transition probabilities. In this section,
we discuss optimal sampling with measurement control where
the action affects both the transition probabilities and observa-
tion distribution. Section VI-A shows that a similar structural
result to Theorem 4 holds for the optimal policy. That is, for

, the optimal strategy can be lower bounded by a mono-
tone strategy. Section VI-B discusses general measurement con-
trol problems and shows that the techniques developed in this
paper for proving the optimal strategy is monotone cannot be
applied to such problems. Finally, Section VI-C discusses the
special case of measurement control with noninformative ob-
servations considered in [4].

A. Structural Results for Optimal Sampling With Measurement
Control
Consider the optimal sampling problem of a noisy Markov

chain in Section II, but now the observation probabilities in (5)
are action dependent. That is, for each ,

(43)

Denote . Choosing action
is equivalent to looking at the noisy Markov chain with obser-
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vation distribution at time . Assume that
the observation distributions are reverse Blackwell ordered [de-
fined in (37)] as

(44)

Thus, action yields less accurate measurements but samples
more frequently than action . Should the decision maker
sample less frequently but more accurately or more frequently
but less accurately?
Define the observation dependent measurement cost

as the cost of taking action , obtaining
observation when the state is . As in
(8), this measurement cost can be expressed in terms of the
measurement cost of state and action as

(45)

Consider the myopic strategy and myopic stopping set
defined in (32).
Theorem 10: Consider the optimal sampling problem with

measurement control. Then, the conclusions of Theorem 4 hold.
Statement 3 requires (A1), (A2), (A3) and that the observation
distributions satisfy the Blackwell dominance conditions (44).
The proof is in Appendix I. It combines Blackwell dominance

of observation measures together withMLRmonotone structure
of the value function.
To illustrate Statement 3 of Theorem 10, suppose

. Then, the theorem asserts the following:
Given current belief , if the current expected cost satisfies

, then it is optimal to choose action 2, that is,
it is optimal to look less frequently but more accurately. Thus,
for such belief states, the myopic strategy coincides with
the optimal strategy . This is a nontrivial statement since,
in general, just because the expected instantaneous costs satisfy

, does not necessarily imply that the myopic
strategy coincides with the optimal strategy.
Let us comment on (A1) in the context of the above cost.

Suppose the measurement costs are increasing in
implying that measurements before hitting the target state 1 are
more expensive than after hitting the target state. A similar as-
sumption is nicely motivated in [4] in terms of minimizing the
average number of observations used before hitting the target
state. It is easily shown that under (A2) and (A3) if
is increasing in , then in (45) is increasing in . There-
fore, if increases sufficiently fast with , then (A1)
holds.

B. Discussion: Monotone Policies for Measurement Control

Section VI-A shows that in measurement control, the optimal
strategy can be lower bounded by a monotone strategy. Can the
optimal strategy be shown to be monotone using similar tech-
niques to Theorem 2? The answer is no. The reason is that it is
not possible to find two nontrivial stochastic matrices (observa-
tion distribution kernels) and such that the belief updates
satisfy (i) and normalization mea-
sure satisfies (ii) . In [23] and [29], it is

claimed that if TP2 dominates , then (i) and (ii) hold. How-
ever, we have found that the only examples of stochastic kernels
that satisfy the TP2 dominance are the trivial example .

C. Measurement Control and Interpretation of [4]
As mentioned above, the methods developed here do

not apply to proving monotone optimal policies for general
measurement control problems. However, for special cases,
measurement control is equivalent to a sampling control and
our monotone results apply. We now discuss this.
The recent paper [4] considers quickest detection with

measurement control for a two-state Markov chain ob-
served in noise. At each time , a decision is made
whether to take a measurement or not. The timing is iden-
tical to sensor scheduling problems [17]: Given belief

, the action at
time is chosen as

where denotes take a measurement at and denotes do
not take a measurement at .
Below, we show that a constrained version of the problem

considered in [4] is identical to the optimal sampling problem
with quickest detection formulated in Section II-C.
Lemma 3: Consider the abovemeasurement control problem.

Introduce the constraint8 that stopping is allowed at time
only if a measurement is taken at time . Then
1) Measurement control with action space is equiva-
lent to the sampling control with finite action space

and sampling intervals ,
where .

2) Consider quickest detection with geometric distributed
change time ( ). If (A3) holds, then mea-
surement control is equivalent to sampling control
with finite action space , where

and is the delay penalty.
Proof:

1. Introducing the above constraint to the action space
yields the equivalent action space

, where compound action denotes
successive “don’t take measurements” followed by “take
a measurement.” Next, choosing is
identical to the choice of action
with sampling interval . Since the elements
of , in (26) are strictly in-
creasing in and is bounded, it follows that

is finite.
Actions are never chosen since stopping ( )
is cheaper. For each action in , the belief state update
given by (10) is identical to the corresponding action
in since the observations obtained with action are

8Banerjee and Veeravalli [4] do not impose the constraint that stopping is al-
lowed only after a measurement is taken. Then the problem is different. In [4],
the optimality of threshold policies for such measurement control problems is
shown. In [4], a two-three threshold strategy is shown to be optimal for quickest
detection and also threshold type policies are shown to be asymptotically op-
timal. Paper [4] also contains a nice performance analysis of sub-optimal and
nearly optimal strategies. It is an interesting future work to extend the structural
results and analysis in [4] to quickest state estimation problems.
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noninformative. So if the costs for the actions are chosen
as in (16), the problem is equivalent to optimal sampling.

2. Start with the optimal sampling problem with action space
. Theorem 5 shows that for geometric

change times, if (A3) holds, then the optimal sampling
strategy for all . Here,

is the myopic strategy defined in (35),
and furthermore, is increasing in . So

for all . So the maximum
action ever chosen by is upper bounded by

. To establish a bound on
this maximum action, it suffices to show that

for and .
For the costs (35), and absorbing state 1, choosing

satisfies the conditions of Statement 3 of
Theorem 5. Straightforward algebraic manipulations yield

. Thus, is a positive integer by
construction.

VII. NUMERICAL EXAMPLES

Example 1. Optimal Sampling With Binary Erasure
Channel Measurements: Consider ,

, , ,
.

(a) Quickest Detection: Suppose

The noisy observations of the Markov chain specified by
observation probabilities models a binary nonsymmetric
erasure channel [10]. Note that a binary erasure channel is
TP2 by construction (all second-order minors are nonneg-
ative) and so (A3) holds.
The optimal strategy was computed by forming a grid of
1000 values in the 2-D unit simplex, and then solving the
value iteration algorithm (46) over this grid on a horizon
such that . Fig. 1(a)

shows that when the conditions of Theorem 2 are satisfied,
the strategy is monotone decreasing in posterior . To
show that the sufficient conditions of Theorem 2 are useful,
Fig. 1(b) gives an example of when these conditions do
not hold, the optimal strategy is no longer monotone. Here,

, and therefore violates
(A1) of Theorem 1.
(b) Quickest Estimation: Next consider the quickest state
estimation problem with identical parameters to above ex-

cept that . The problem satisfies the as-

sumptions of Theorem 2 and the optimal strategy is
monotone decreasing in , where
is computed via (28). The optimal strategy is illustrated in

Fig. 1(c). Next consider . This violates

(A2). The optimal strategy is nonmonotone, as illustrated
in Fig. 1(d). Fig. 1(c) and (d) highlights a significant dif-

Fig. 4. Optimal sampling strategy for action
for a quickest-change detec-

tion problem with geometric change time. The parameters are specified in
Examples 2 and 3 in Section VII. The optimal strategy is monotone
decreasing in and is upper bounded by myopic strategy according to
Theorem 5. (a) Gaussian Observation Probabilities. (b) Poisson Observation
Probabilities.

ference between quickest detection and quickest state es-
timation. In the former, the transition matrix satisfies (A2)
by definition and so is irrelevant in terms of the existence
of a monotone strategy. In the latter, choice of a suitable
transition matrix is important as shown in the figures.

Example 2. Optimal Sampling Quickest Detection With
Gaussian Noise Measurements: Here, we consider identical
parameters to Example 1 except that the observation distribution
is Gaussian with , and measure-
ment costs are for all .
Since the measurement cost is a constant, (A1) and (A4) of
Theorem 1 hold trivially. As mentioned in Section III-C, (A3)
holds for Gaussian distribution. Therefore, Theorem 1 applies
and the optimal strategy is monotone decreasing in .
Fig. 4 illustrates the optimal strategy. Next, using Theorem
5, the myopic strategies form an upper bound to the
optimal strategy for actions . We chose

which clearly satisfies the conditions of Theorem
5(3) for constructing an upper bound with myopic cost
in (35). As a bound for the optimal stopping region, we used
the myopic stopping set defined in (32). These are plotted in
Fig. 4(a).
Example 3. Optimal Sampling Quickest Detection With

Markov Modulated Poisson Measurements: The parameters
here are identical to Example 2 except that the observations
are generated by a discrete time Markov Modulated Poisson
process. That is, at each time , noisy observations of the
Markov chain are obtained from the Poisson distribution

, , with rates , .
Since (A3) holds for Poisson distribution, Theorem 1 applies.
Fig. 4(b) illustrates the optimal strategy and upper bound
myopic strategy computed as in Example 2.
Example 4. Optimal Sampling With Phase-Distributed

Change Time: Here, we consider optimal sampling quickest de-
tection with PH-distributed change time. Consider a three-state
( ) Markov chain observed in noise with parameters

, , ,
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Fig. 5. Optimal sampling strategy for action
for a quickest-change detection

problem with PH-distributed time specified by 3-state Markov chain in
Example 4 of Section VII. The belief space is a 2-D unit simplex
(equilateral triangle). The optimal strategy is upper bounded by myopic
strategy according to Theorem 5. (a) Optimal Policy . (b) Myopic
Upper Bound .

So is a 2-D unit simplex depicted in Fig. 5. The optimal
strategy was computed by forming a grid of 8000 values in the
2-D unit simplex, and then solving the value iteration algorithm
(46) over this grid on a horizon such that

. Fig. 5(a) shows the optimal strategy.
It can be verified that the transition matrix satisfies (36) and

(A2) so that by Lemma 1. The observation dis-
tribution satisfies (A3). Also the conditions of Theorem 5(2)
are satisfied for in (35). Therefore, Theorem
5 holds and the optimal strategy is upper bounded by the my-
opic strategy defined in (35). Fig. 5(b) shows the myopic
strategy . As a bound for the optimal stopping region, we
used the myopic stopping set defined in (32). In Fig. 5(b),
these are represented by “0.”

VIII. DISCUSSION

The paper presented structural results for the optimal sam-
pling strategy of a Markov chain given noisy measurements.
Examples dealing with quickest detection and quickest estima-
tion with optimal sampling were presented. The main results
were: Theorems 1 and 2 gave sufficient conditions for the exis-
tence of a monotone optimal sampling strategy (with respect to
the posterior distribution) when the underlying Markov chain
had two states ( ). It justified the intuition that in both
quickest detection and quickest state estimation problems, one
should make measurements less frequently when the posterior
estimate of the state is away from the target state; see Fig. 1.
For multistate Markov chains ( ), Theorems 4 and 5
gave sufficient conditions for the myopic sampling strategy to
form a lower bound or upper bound to the optimal sampling
strategy. Theorem 6 gave a partial ordering for the transition
matrix and noise distributions so that the expected cost of the op-
timal sampling strategy increased as these parameters increased.
Theorem 7 gave explicit bounds on the sensitivity of the total
sampling cost with respect to sampling strategy in terms of the
Kullback–Leibler divergence between the noise distributions.
Theorem 9 gave several useful structural properties of the op-
timal Bayesian filtering update including sufficient conditions
that preserve monotonicity of the filter with observation, prior
distribution, transition matrix, and noise distribution. Finally,
Theorem 10 shows that for joint sampling and measurement
control, the optimal strategy can be lower bounded by a my-
opic strategy.

The assumptions (A1)–(A5) used in this paper are set valued;
so even if the precise parameters (transition probabilities, obser-
vation distribution, costs) are not known, as long as they belong
to the appropriate sets, the structural results hold.

APPENDIX

A) Value Iteration Algorithm: The proof of the structural
results in this paper will use the value iteration algorithm [13].
Let denote iteration number. The value iteration
algorithm proceeds as follows: ,

(46)

Let denote the set of bounded real-valued functions
on . Then, for any and , define the sup-
norm metric , . The value itera-
tion algorithm (46) will generate a sequence of value functions

that will converge uniformly (sup-norm metric)
as to , the optimal value function of
Bellman’s equation. However, since the belief state space
is an uncountable set, the value iteration algorithm (46) does not
translate into practical solution methodologies as needs
to be evaluated at each , an uncountable set. Never-
theless, the value iteration algorithm provides a natural method
for proving our results on the structure of the optimal strategy
via mathematical induction.

B) Proof of Theorem 2: Recall the definition of the
MLR order in Section IV and first-order dominance
in Section V-C. To prove the existence of a monotone op-
timal strategy, we show that in (18) is a submodular
function on the partially ordered set (poset) .
Note that is a lattice since given any two belief
states , and

lie in . For ,
is the unit interval and in this case is a chain
(totally ordered set) and coincides with .

Definition 3 (Submodular Function [33]):
is submodular (antitone differences) if

, for , .
The following result says that for a submodular function

, is increasing in its argu-
ment . This will be used to prove the existence of a monotone
optimal strategy in Theorem 2.

Theorem 11 (see [33]): If is submod-
ular, then there exists a , that is
MLR increasing on , i.e., .
Finally, we state the following result.
Theorem 12: The sequence of value function ,

, generated by the value iteration algorithm (46), and
optimal value function defined in (18) satisfy:
i) and are concave in .
ii) Under (A1), (A2), (A3), and are increasing
in with respect to the MLR stochastic order on .
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Statement (i) is well known for POMDPs; see [9] for a tutorial
description. Statement (ii) is proved in [23, Proposition 1] using
mathematical induction on the value iteration algorithm.
Finally, we present the proof of Lemma 1.
Proof of Lemma 1: (i) and (ii): Start with the following

lemma:
Lemma 4: If is TP2 [i.e., satisfies (A2)], then
. Therefore, . For , this

implies, and .
Proof: From elementary matrix operations, it follows that

The first matrix is TP2 by construction, and is TP2 by (A2).
The product of TP2 matrices is TP2 [16, Th. 3.1, p. 107]. There-
fore, the right hand side is TP2. This is equivalent to the first row
being MLR dominated by the second row, i.e.,
(see footnote associated with (A2) and (A3) or [16, p. 122]).
Finally, implies by The-

orem 9(1) under (A2). This implies
by the transitive property of the MLR dominance. Therefore,

since by assumption.
For , recall and coincide.

i) For , from (28), is a convex polytope. A 1-D
polytope is an interval. Also we established above that

. Therefore, in terms of is an interval
of the form .
Proof: With the above preparation, we present the proof of

Theorem 2.
The first claim follows from the general result that the

stopping set for a POMDP is always a convex subset of
—see Theorem 4. Of course, a 1-D convex set is an

interval and since [Assumption A1(ii)], it follows that
the interval .
In light of the first claim, the optimal strategy is of the form

So to prove the second claim, we focus on belief states in the
interval and consider actions . To
prove that is increasing in , from Theorem
11, we need to prove that is submodular, i.e.,

The proof is similar to [1]. Recall and coincide for
. From (18), the left hand side of the above expression is

(47)

Since the cost is submodular by (A4), the first line of (47) is neg-
ative. Since is MLR increasing from Theorem 12 [under
(A1), (A2), (A3)] and is MLR increasing in [under
(A3)] from Theorem 9(4), it follows that is MLR
increasing in . Therefore, since is submodular from
Theorem 9(3) under (A2), (A3), the second line of (47) is neg-
ative.
It only remains to prove that the third, fourth and fifth lines

of (47) are negative. From statements (1) and (6) of Theorem 9,
it follows under (A2) that for ,

Assume that (for the reverse ordering
an identical result holds). For , is a 1-D simplex
that can be represented by . So below, we represent
, , etc. by their second elements. Then, using con-
cavity of , we can express the last two summations in (47)
as follows:

Using these expressions, the summation of the last three lines
of (47) are upper bounded by

(48)

Since is MLR increasing (see Theorem 12) and
(using the fact that and State-

ment 1 of Theorem 9), clearly
. The term in square brackets in (48) can be expressed as (see
[1])

(49)
From Theorem 9, Part 3(a), under (A2)

for is negative, and so (49) is negative.
Hence, (47) is negative, thereby concluding the proof.

C) Proof of Theorem 3:
Statement 1: Consider Bellman’s equation (18) and define

. It is easily checked that satisfies
Bellman’s equation with costs replaced by de-
fined in (30). Also since is functionally independent of the
minimization variable , the argument of the minimum of (18),
which is the optimal strategy , is unchanged. In terms of
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the value iteration algorithm (46), it requires initialization with
.

Statement 2: Recall for , MLR and first-order
stochastic dominance coincide. Since the aim is to trans-
form the delay cost to yield an MLR increasing submodular
transformed cost, for notational convenience, assume the mea-
surement cost . Choose , where
the scalar will be specified below. From its definition in (30),
straightforward computations yield that the transformed cost is

So clearly for , , and so is
increasing.
We now give conditions for , for

to be MLR increasing in . By (A2),
is MLR increasing in . So for

to be MLR increasing in , it suffices to choose so
that the elements of are increasing.
The elements of are decreasing if

. This is sufficient for
to be MLR increasing in for .
Next for the transformed cost to be submodular for

, we require to be
MLR decreasing in . Straightforward computations yield for

,

So for to be submodular, it suffices to choose so
that the elements of are decreasing, i.e.,

. Therefore, choosing
is sufficient for the transformed cost

to be both MLR increasing for and
submodular for on .

D) Proof of Theorem 4:
Statement 1: The proof of convexity of the stopping set

follows from arguments in [22]. We repeat this for completeness
here. Pick any two belief states . To demonstrate
convexity of , we need to show for any ,

. Since is concave (by Theorem 12 above), it
follows from (18) that

(50)

Thus, all the inequalities above are equalities, and
.

Statement 2: Since the costs are nonnegative, so is
in (18). So from (18),

. Therefore, .

Statement 3: Since , then assuming (A2) and
using Statement 6 of Theorem 9, it follows that

, . By Theorem 12, is MLR
increasing in . Therefore,

for . So for ,

Since under (A3) is MLR increasing in (Statement
4 of Theorem 9) and is MLR increasing in , clearly

is increasing in . Also from Statement 6 of The-
orem 9, under (A2), , . So
for ,

Therefore,
for , which is equivalent

to .
Then, [23, Lemma 2.2] implies that the minimizers
of are larger than that of

. That is, for .
Statement 4: By (A4), is submodular on the poset

. So using Theorem 11 it follows that is MLR
increasing.

E) Proof of Theorem 5: Statements 1 and 2 follow directly
from Theorem 4.

Statement 3: For , , where
.

Clearly, the elements of are decreasing.
So for ( ) to hold, it suffices for to be
decreasing. Since

, and satisfies (A2), it suffices to show that
is decreasing. This is equivalent to
. For to satisfy ( ), .

Proof of Lemma 2: As in Statement 3 above, for to
satisfy ( ) requires to be decreasing with . For
to satisfy ( ), it suffices to give conditions for to

be decreasing elementwise. The difference between elements
and is given by

The idea below is to lower bound each by and show that
for all . This implies that if , then

so are and therefore , implying that is
decreasing. Assume . Then, since satisfies (A2) and
is decreasing, it follows that .
So clearly

Then, since satisfies (A2) and is decreasing, clearly,
. Next construct to be

integer concave so that . Then clearly,
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. The condition for is precisely
that given in the lemma.

F) Proof of Theorem 6:
Part 1: We first prove that dominance of transition ma-

trices [with respect to (36)] results in dominance of
optimal costs, i.e., . The proof is by induc-
tion. For , by the initialization
of the value iteration algorithm (46).
Next, to prove the inductive step, assume that

for . By Theorem 12(ii), under (A1),
(A2), (A3), and are MLR increasing in

. From Statement 7(a) of Theorem 9, it follows that
. This implies

Since by the in-
duction assumption, clearly

. Therefore

Under (A2) and (A3), Statement 4 of Theorem 9 states
that is MLR increasing in . Therefore,

is increasing in . Also from Statement
2 of Theorem 9, for .
Therefore,

(51)

Next, we claim that under (A1) and (A2), implies
that . This follows since de-
fined in (16) has increasing components by (A1) and

(Statement 5(b), Theorem 9). Therefore,
implying that . This together

with (51) implies

Minimizing both sides with respect to action yields
and concludes the induction

argument.
Part 2: Next we show that dominance of observation

distributions (with respect to the order (37)) results in
dominance of the optimal costs, namely .
Let and denote the Bayesian filter up-
date (10) with observation and , respectively, and let

and denote the corresponding normaliza-
tion measures.

Then, for and ,

Therefore, is a probability measure wrt . Since
from Theorem 12, is concave for , using
Jensen’s inequality, it follows that

This implies

(52)

With the above inequality, the proof of the theorem follows
by mathematical induction using the value iteration algorithm
(46). Assume for . Then

where the second inequality follows from (52). Thus,
. This completes the induction

step. Since value iteration algorithm (46) converges uniformly,
, thus proving the theorem.

G) Proof of Theorem 7: Recall the aim is to prove (39) and
(40). Most of our efforts below are to prove (39). We will prove
that (39) holds for any strategy . That is, for any strategy :

(53)

We start this appendix with the proof of (40) since it follows
straightforwardly from (53). To prove (40), note that trivially

Also by definition since is
the optimal strategy for model . Therefore,

Then, from (53), clearly (40) follows.
Proof of (39): We now present the proof of (53) and thus

(39). Define the set of belief states
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. Clearly, . Let us characterize the set of observations
such that the Bayesian filter update lies in for
any action . Accordingly, define

(54)

for , . Here,
denotes the complement of set .
Lemma 5: Under (A2),(A3), and (A4), the following hold

for and defined in (54):
i) .
ii) .
iii) .
Proof: The first assertion says that the set of observations

for continuing is the set . By (A4), has
decreasing elements. Since is MLR increasing in
, clearly is decreasing in . Therefore,
there exists a such that implies

. This proves the first statement. By (A4), has
decreasing elements. By (A2), (A3), is MLR in-
creasing in . Therefore,

which implies . Statement (i)
states that is MLR increasing in ; statement (ii)
states that . Combining these yields .

From (16), the total cost incurred by applying strategy
to model satisfies at time

since for , and so
.

Therefore, the absolute difference in total costs for models
satisfies

(55)

We will upper bound the various terms on the RHS of (55).
Statement (i) of Lemma 5 yields

where . Next Statement (iii) of Lemma
5 yields . Therefore,

where the last line follows since , and so Statement
2 of Theorem 9 implies . Also
evaluating defined in (10)
yields

(56)

Finally, . Using
these bounds in (55) yields

(57)

where and is

given by (56). Since , then (A5)
implies . Then,

starting with , unraveling (57)
yields (53). In particular, choosing yields (39).

Proof of (42): When and have identical transition ma-
trices, then (56) becomes

From Pinsker’s inequality [10], the total variation norm is
bounded by Kullback–Leibler distance defined in (42) as

H) Proof of Theorem 9: We quote the following result
from [14], which adapted to our notation reads

Theorem 13 (see [14, Lemma 8.2, p. 382]): Suppose is
increasing for and nonnegative. Then, for arbitrary vec-
tors ,

The above theorem is similar to Statement (ii) of Theorem
8 with some important differences. Unlike Theorem 8, and
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need not be probability measures. On the other hand, Theorem
8 does not require to be nonnegative.

Proof of Theorem 9: Statements 1, 2, and 4 of the theorem
are proved in [23].

Statement 3(a): Proved in Lemma 4 in Appendix B for .

The proof for is similar sincematrix

is TP2.
Statement 3(b): For , Theorem 9(3a) implies that

is decreasing in . Then, for ,

Also (A3) implies that is increasing in .
Then, applying Theorem 13 yields

Statement 5(a): The proof is as follows: By definition,
is equivalent to

Thus, (36) is a sufficient condition for .
Statement 5(b): Since implies , it fol-

lows from (A2) that . Also Statement 5(a) im-
plies . Since theMLR order is transitive, these
inequalities imply . Continuing similarly, it
follows that for any positive integer , .

Statement 6: Recall from (28) and (33) that for ,
. Then, applying Statement 5(b) yields that for

, . The dominance of
follows from the proof of Statement 7(b) below.

Statement 7(a): This follows trivially since Bayes’ rule
preserves MLR dominance. That is, implies

. Since by Statement 4(a), implies ,
applying the Bayes rule preservation of MLR dominance proves
the result.

Statement 7(b): Since implies , it
follows that . Next, (A3) implies that
is increasing in . Therefore,

.
I) Proof of Theorem 10: The proofs of Statements 1, 2, and

4 are identical to the proof of Theorem 4 in Appendix D.
Statement 3: For notational convenience, define the belief

state update

where . Using an identical
proof to Theorem 6 that yields (52), since , it fol-
lows that

(58)

Next, using (A2) and Statement 6 of Theorem 9, it follows that
for ,

Also from Theorem 12(ii), under (A1), (A2), and (A3), is
MLR increasing in . So

(59)

From (58) and (59), it follows that for

which is equivalent to
, . Then, [23, Lemma 2.2] implies that

the minimizers of are larger than that of
. That is, for .
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