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Abstract—This paper considers the problem of randomized
influence maximization over a Markovian graph process: given
a fixed set of nodes whose connectivity graph is evolving as a
Markov chain, estimate the probability distribution (over this
fixed set of nodes) that samples a node which will initiate
the largest information cascade (in expectation). Further, it
is assumed that the sampling process affects the evolution of
the graph i.e. the sampling distribution and the transition
probability matrix are functionally dependent. In this setup,
recursive stochastic optimization algorithms are presented to
estimate the optimal sampling distribution for two cases: 1)
transition probabilities of the graph are unknown but, the graph
can be observed perfectly 2) transition probabilities of the graph
are known but, the graph is observed in noise. These algorithms
consist of a neighborhood size estimation algorithm combined
with a variance reduction method, a Bayesian filter and a
stochastic gradient algorithm. Convergence of the algorithms are
established theoretically and, numerical results are provided to
illustrate how the algorithms work.

Index Terms—Influence maximization, stochastic optimization,
Markovian graphs, independent cascade model, variance reduc-
tion, Bayesian filter.

I. INTRODUCTION

Influence maximization refers to the problem of identifying
the most influential node (or the set of nodes) in a network,
which was first studied in the seminal paper [1]. However,
most work related to influence maximization so far has been
limited by one or more of the following assumptions:

1) Deterministic network (with no random evolution)
2) Fully observed graph (instead of noisy observations of

the graph)
3) Passive nodes (as opposed to active nodes that are re-

sponsive to the influence maximization process).
This paper attempts to relax the above three assumptions.

We develop stochastic optimization algorithms for influence
maximization over a randomly evolving, partially observed
network of active nodes (see Fig. 1 for a schematic overview
of our approach).

To understand the motivation behind this problem, consider
a social network graph where nodes represent individuals
and the directed edges represent connectivity between them.
Assume that this graph evolves in a Markovian manner1
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1Dynamics of social networks (such as seasonal variations in friendship
networks) can naturally be modeled as Markov processes. Another exam-
ple would be a vehicular network where, the inter-vehicle communica-
tion/connectivity graph has a Markovian evolution due to their movements.
Refer [2] for an example in the context of social networks.

with time. Further, each individual can pass/receive messages
(also called infections depending on the context) from their
neighbors by communicating over the directed edges of the
graph. Communication over these edges will incur time de-
lays that are independently and identically distributed (across
the edges) according to a known distribution. An influence
maximizer wants to periodically convey messages (e.g. viral
marketing) that expire in a certain time window to the nodes in
this evolving social network. Conveying each message to the
nodes in the social network is achieved by sampling a node
(called seed node) from the graph according to a probability
distribution and, giving the message to that seed node. Then,
the seed node initiates an information cascade by transmitting
the message to its neighbors with random delays. The nodes
that receive the message from their neighbors will continue
to follow the same steps, until the message expires. It is
assumed that the graph remains same throughout the diffusion
of one message i.e. graph evolves on a slower time scale
compared to the expiration time of a message. Further, we
allow the nodes of the social network to be active: nodes are
aware of the sampling distribution and, respond by modifying
the transition probabilities of the graph according to that
distribution (for example, due to the incentive that they receive
for being the most influential node2). This makes the transition
probability matrix functionally dependent on the sampling
distribution. In this setting, the goal of the influence maximizer
is to compute the sampling distribution which maximizes the
expected total number of nodes that are infected (size of the
information cascade) before a message expires (considering
the randomness of sampling the nodes, message diffusion
process as well as the graph evolution). This motivates us
to pursue the aim of this paper, which is to devise a method
for the influence maximizer to estimate the optimal sampling
distribution recursively, with each message that is distributed.

The main results of this paper are two recursive stochastic
gradient algorithms, for the influence maximizer to recursively
estimate (track) the optimal sampling distribution for the
following cases:

1) influence maximizer does not know the transition proba-
bility matrix but, has perfect (non-noisy) observations of
the sample path of the graph.

2) influence maximizer knows the transition probability
matrix but, has only partial (noisy) observations of the
sample path of the graph evolution.

2Another example for active nodes is a network of computers that are
adaptively modifying their connectivity network, depending on how vulnerable
each computer is to a virus attack.



2

Gradient	
  Estimation
𝛻/𝐶1(𝜃1)

Update
𝜃178 = 𝜃1 + 𝜖1𝛻/𝐶1(𝜃1)

Dynamic	
  Network
(𝑃CD ,	
  𝜋CD)

Sec.	
  II	
  -­‐ A

Reduced	
  Variance	
  
Influence	
  Estimation

𝑐̂(𝜃1, 𝐺P)

Sec.	
  III	
  -­‐ A

HMM	
  Filter	
  

Sec.	
  IV

Noisy	
  Observations
𝐺̅P

Sample	
  with	
  
𝑝CDVW

Measurement	
  and	
  Influence	
  Estimation	
  	
  (Time	
  Scale	
  – n)

Stochastic	
  Optimization	
  	
  (Time	
  Scale	
  -­‐ k)

Influence	
  at	
  time
𝑘 + 1

Feedback	
  to	
  the	
  
network	
  via	
  
active	
  nodesSec.	
  III	
  -­‐ B

Estimate	
  of	
  the	
  
Graph

Fig. 1: Schematic diagram of the proposed stochastic optimization algorithm for influence maximization over a partially
observed dynamic network of active nodes, showing how the algorithmic sub-components are integrated to form the closed
loop (with feedback from the sampling process) stochastic optimization algorithm and their organization in the paper.

The key components of the above two algorithms (illustrated
in Fig. 1) include the following.
• Reduced variance neighborhood size estimation al-

gorithm: Influence maximization problems involve esti-
mating the influence of nodes, which can be posed as
a problem of estimating the (expected) sizes of node
neighborhoods. For this, we use a stochastic simulation
based neighborhood size estimation algorithm (which
utilizes a modified Dijkstra’s algorithm, combined with
an exponential random variable assignment process), cou-
pled with a variance reduction approach. It is shown that
this reduced variance method improves the convergence
of the proposed algorithms when tracking the optimal
influence in a time evolving system.

• Stochastic optimization with delayed observations of
the graph process: The observations of the graph sample
path in the two algorithms (in main contributions) are
not assumed to be available in real time. Instead, it is
sufficient if the sample paths of finite lengths become
available as batches of data with some time delay3.These
finite length graph sample paths are used in a stochastic
optimization method that is based on the simultaneous
perturbation stochastic approximation (SPSA) method,
coupled with a finite sample path gradient estimation
method for Markov processes. The proposed algorithms
are applicable even for the more general case where,
the system model (state space of the Markovian graph
process, the functional dependency between the sampling
distribution and transition probabilities, etc) is varying
on a slower (compared to the stochastic optimization
algorithm) time scale.

3In most real world applications, one can only trace back the evolution of a
social network over a period of time (length of the finite sample path), instead
of monitoring it in real time. e.g. how the graph has evolved over the month
of January becomes available to the influence maximizer only at the end of
February due to delays in obtaining data.

• Bayesian filter for noisy graph sample paths: In the
algorithm for the second case (in main contributions),
the sample paths are assumed to be observed in noise.
In this case, a Bayesian filter is utilized to estimate the
underlying state of the graph using the noisy sample path
as the input. The estimates computed by the Bayesian
filter are then utilized in the stochastic optimization
process while preserving the (weak) convergence of the
stochastic approximation algorithm.

Related Work: The influence maximization problem was
first posed in [1] as a combinatorial optimization problem for
two widely accepted models of information spreading in social
networks: independent cascade model and the linear threshold
model. [1] shows that solving this problem is NP-hard for
both of these models and, utilizes a greedy (submodular
function) maximization approach to devise algorithms with
a 1 − 1

e approximation guarantee. Since then, this problem
and its variants have been widely studied using different
techniques and models. [3], [4], [5], [6] studies the problem
in a competitive/adversarial settings with multiple influence
maximizers and provide equilibrium results and approximation
algorithms. [7], [8] considers the case where all the nodes of
the graph are not initially accessible to the influence maximizer
and, proposes a multistage stochastic optimization method that
harvests the power of a phenomenon called friendship paradox
[9], [10]. Further, [11], [12] provide heuristic algorithms
for the influence maximization problem on the independent
cascade model, which are more efficient compared to the
originally proposed algorithms in [1]. Our work is motivated
by the problems studied in [13], [14]. [13] points out that
estimating the expected cascade size under the independent
cascade model can be posed as a neighborhood size estimation
problem on a graph and, utilizes a size estimation framework
proposed in [15] (and used previously in [16]) to obtain an
unbiased estimate of this quantity. [14] highlights that the
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study of the influence maximization problem has mostly been
limited to the context of static graphs and, proposes a random
probing method for the case where the graph may evolve
randomly. Motivated by these observations, we focus on a
continuous time variant [13], [17] of the independent cascade
model and, allow the underlying social network graph to
evolve slowly as a Markov process. The solution approaches
proposed in this paper belongs to the class of recursive
stochastic approximation methods. These methods have been
utilized previously to solve many problems in the field of
multi-agent networks [18], [19], [20].

Organization: Sec. II presents the network model, related
definitions of influence on graphs, the definition of the main
problem and finally, a discussion of some practical details. Sec.
III presents the recursive stochastic optimization algorithm
(along with convergence theorems) to solve the main problem
for the case of fully observed graph with unknown transition
probabilities (case 1 of the main contributions). Sec. IV
extends to the case of partially observed graph with known
transition probabilities (case 2 of the main contributions).
Sec. V provides numerical results to illustrate the algorithms
presented.

II. DIFFUSION MODEL AND THE PROBLEM OF
RANDOMIZED INFLUENCE MAXIMIZATION

This section describes Markovian graph process, how in-
formation spreads in the graph (information diffusion model)
and, provides the definition of the main problem. Further,
motivation for the problem, supported by work in recent
literature, is provided to highlight some practical details.

A. Markovian Graph Process, Frequency of the Messages and
the Independent Cascade (IC) Diffusion Model

Markovian Graph Process: The social network graph at
discrete time instants n = 0, 1, . . . is modeled as a directed
graph Gn = (V,En), consisting of a fixed set of individuals
V , connected by the set of directed edges En. The graph
evolves as a Markov process {Gn = (V,En)}n≥0 with a finite
state space G, and a parameterized regular transition matrix
Pθ with a unique stationary distribution πθ (where, θ denotes
the parameter vector which lies in a compact subset of an M -
dimensional Euclidean space). Henceforth, n is used to denote
the discrete time scale on which the Markovian graph process
evolves.

Frequency of the Messages: An influence maximizer
distributes messages to the nodes in this evolving network.
We assume that the messages are distributed periodically4 at
time instants n = kN where, the positive integer N denotes
the period.

Observations of the Finite Sample Paths: When the
influence maximizer distributes the (k + 1)th message at time

4The assumption of periodic messages is not required for the problem
considered in this paper and the proposed algorithms. It suffices if the
messages are distributed with some minimum time gap between them (on
the time scale n).

n = (k + 1)N , only the finite sample path of the Markovian
graph process {Gn}kN≤n<kN+N̄ for some fixed N̄ ∈ N with
N̄ < N , is visible to the influence maximizer.

Information Diffusion model: As explained in the example
in Sec. I, nodes pass messages they receive to their neighbors
with random delays. This method of information spreading in
graphs is formalized by independent cascade (IC) model of
information diffusion. Various versions of this IC model have
been studied in literature. We use a slightly different version of
the IC model utilized in [13], [17] and, it is as follows briefly.
When the influence maximizer gives a message to a set of seed
nodes5 In ⊆ V at time n, a time variable t ∈ R≥0 is initialized
at t = 0. Here, t is the continuous time scale on which the
diffusion of the message takes place and, is different from the
discrete time scale n ∈ Z≥0 on which the graph evolves (and
the messages are distributed periodically). Further, the time
scale t is nested in the time scale n: t is set to t = 0 with each
new message distributed by the influence maximizer. The set
of seed nodes In (that receives the message from influence
maximizer at n and t = 0) transmits the message through
edges attached to them in graph Gn = (V,En). Any edge
(j, i) ∈ En which transmits the message induces a random
delay distributed according to probability density function
πtt(τji) (called transmission time distribution). Further, any
edge transmits the message only once. Only the neighbor
which infects a node first will be considered as the true parent
node (considering the infection propagation) of the infected
node. This process continues until the message expires at
t = T (henceforth referred to as the message expiration time)
and, the diffusion process stops at that time. It is assumed
that the discrete time scale n on which the graph evolves is
slower than T i.e. the graph will remain the same at least for
t ∈ [0, T ]. Then, the same message spreading process will take
place when the next message is distributed.

For any realization of this random message spreading pro-
cess (taking place in the interval t ∈ [0, T ]), the subgraph
induced by the subset of edges through which the infection
propagated (i.e. parent-child pairs defined by the message
propagation) will be a directed graph with a single parent
for each node. Hence, any realization of the random message
spreading process will induce a Directed Acyclic Graph (DAG)
as a subgraph. Further, due to the DAG induced by the
propagation of a message, the infection time ti of each node
i ∈ V satisfies the shortest path property: conditional on a
graph Gn = (V,En), and a set of pairwise transmission times
{τji}(ji)∈En , the infection time ti of i ∈ V is given by,

ti = gi({τji}(ji)∈En | I) (1)

where, gi({τji}(ji)∈En | I) denotes the length of the shortest
path from I ⊆ V to i ∈ V , with edge lengths {τji}(ji)∈En .

B. Influence of a Set of Nodes Conditional on a Graph

We use the following definition (from [13], [21]) of influ-
ence of a set of nodes I ⊆ V , on a graph G = (V,E), for the

5We consider the case where the influence maximizer selects a set of seed
nodes instead of one seed node (as in the motivating example in Sec. I) to
keep the definitions of this section more general.
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diffusion model introduced in Sec. II-A. Further, Eπtt{·} is
used to denote expectation over a set of pairwise transmission
times (associated with each edge) sampled independently from
πtt.

Definition 1. The Influence, σG(I, T ), of a set of nodes I,
given a graph G = (V,E) and a fixed time window T is,

σG(I, T ) = Eπtt
{∑
i∈V

1{ti≤T}
∣∣I, G} (2)

=
∑
i∈V

Pπtt
{
ti ≤ T

∣∣I, G}. (3)

In (2), the influence σG(I, T ) of the set of nodes I ⊂ V
is the expected number of nodes infected within time T ,
by the diffusion process (characterized by the distribution of
transmission delays πtt) on the graph G, that started with the
set of seed nodes I.

Note that the set of infection times {ti}i∈V , in (2) are
dependent random variables. Therefore, obtaining closed form
expressions for marginal cumulative distributions in (3) in-
volves computing |V | − 1 dimensional integral which is not
possible (in closed form) for many general forms of the
transmission delay distribution. Further, numerical evaluation
of these marginal distributions is also not feasible since it will
involve discretizing the domain [0,∞) (refer [13] for a more
detailed description about the computational infeasibility of
the calculation of the expected value in (4)).

Seed selection by sampling: We assume that the seed nodes
are accessible to the influence maximizer only through a
parameterized probability distribution pθ and, the influence
maximizer can only tune the parameters of this probability
distribution. A detailed discussion of this assumption is pro-
vided in Sec. II-D.

C. Randomized Influence Maximization over a Markovian
Graph Process: Problem Definition

We define the influence of a parameterized probability dis-
tribution pθ, θ ∈ RM over the set of nodes V (i.e. pθ ∈ ∆(V )
where ∆(V ) is the set of all probability distributions over the
set V ) of a Markovian graph process as below (henceforth, we
will use σG(i, T ) to denote σG({i}, T ) with a slight notational
misuse).

Definition 2. The Influence, C(θ), of probability distri-
bution pθ ∈ ∆(V ), on a Markovian graph process
{Gn = (V,En)}n≥0 with a finite state space G, a regular
transition matrix Pθ and, a unique stationary distribution
πθ ∈ ∆(G) is,

C(θ) = EG∼πθ{c(θ,G)} (4)

where,
c(θ,G) = Ei∼pθ{σG(i, T )}. (5)

Eq. (5) averages influence σG(i, T ) using the sampling
distribution pθ, to obtain c(θ,G), which is the influence of the
sampling distribution pθ conditional on the graph G. Then,
(4) averages c(θ,G) using the unique stationary distribution

πθ of the graph process in order to obtain C(θ), which is the
influence of the sampling distribution pθ over the Markovian
graph process. We will refer to c(θ,Gn) as the conditional
(on graph Gn) influence function (at time n) and, C(θ) as the
influence function, of the sampling distribution pθ.

Remark 1. The sampling distribution pθ is treated as a
function of θ, which also parameterizes the transition matrix
Pθ of the graph process. This functional dependency models
the feedback (via the active nodes) from the sampling of nodes
(by the influence maximizer) to the evolution of the graph, as
indicated by the feedback loop in Fig. 1 (and also discussed
in an example setting in Sec. I).

In this context, the main problem studied in this paper can
be defined as follows.

Problem Definition. Randomized influence maximization over
a Markovian graph process {Gn = (V,En)}n≥0 with a finite
state space G, a regular transition matrix Pθk′ and, a unique
stationary distribution πθk′ aims to recursively estimate the
time evolving optima,

θ∗k′ ∈ arg max
θ∈RM

Ck′(θ) (6)

where, Ck′(θ) is the influence function (Definition 2) that is
evolving on the slower time scale k′ ∈ Z≥0 (compared to the
message period N over the time scale n) .

Remark 2. The reason for allowing the influence function
Ck′(θ) (and therefore, the solution θ∗k′ ) in (6) to evolve over
the slow time scale k′ is because the functional dependency of
the sampling distribution and the transition probability matrix
(which gives how the graph evolution depends on sampling
process) may change over time. Further, the state space G of
the graph process may also evolve over time. Such changes
(with time) in the system model are encapsulated by modeling
the influence function as a time evolving quantity. However,
to keep the notation manageable, we assume that the influence
function Ck′(θ) does not evolve over time in the subsequent
sections i.e. it is assumed that

Ck′(θ) = C(θ),∀ k′ ∈ Z≥0. (7)

This assumption is used to keep the notation manageable
and, can be removed without affecting the main algorithms
presented in this paper. Further, we assume that the C(θ) has
a Lipschitz continuous derivative.

D. Discussion about Key Aspects of the System Model

1) Seed Selection by Sampling: In our model, we assumed
that the seeds are accessible to the influence maximizer
only through a probability distribution pθ and, the influence
maximizer can only tune the parameters of this probability
distribution. This assumption is largely motivated by the
various (tunable) network sampling schemes that are deployed
in the context of large networks. For example, consider the
following example.
Example: Two widely used social network sampling methods
for a graph G = (V,E) are:
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• Method 1: Sampling random links and then choosing a
random end node of that link i.e. sampling neighbors (ran-
dom ends of random links) from the network uniformly.
In this method, each node v ∈ V with degree d(v) is
sampled with probability d(v)∑

v∈V d(v) .
• Method 2: Sampling nodes from V uniformly.

Each of the above two sampling mechanisms may not be the
best for maximizing the influence over the Markovian graph
process (with respect to the stationary distribution). Hence,
the influence maximizer might be interested in achieving a
middle ground via a tuning parameter. One approach of doing
this is to sample v ∈ V with probability pθ(v) = d(v)θ∑

v∈V d(v)θ

where θ ∈ [0, 1]. Then, when the tunable parameter θ = 0,
this is equal to the sampling method 2 and when θ = 1 this
is equal to sampling method 1. Further, θ ∈ (0, 1) achieves a
trade off between the two methods. Assume that the influence
maximizer has a sampling method that obtains samples from
pθ for any given θ ∈ [0, 1]. Then, the aim of the influence
maximizer is to optimize θ so that the expected influence C(θ)
defined in (4) is maximized. In Sec. V-B, we use this example
to illustrate how the influence maximizer can optimize C(θ)
recursively using the proposed algorithms in this paper.

Similarly, this parametric sampling distribution might rep-
resent any practical setting where the influence maximizer can
access seeds only via a sampling distribution6.

2) Networks as Markovian Graphs: We assumed that the
graph evolution is Markovian. In a similar context to ours,
[23] states that “Markovian evolving graphs are a natural and
very general class of models for evolving graphs” and, studies
the information spreading protocols on them during the sta-
tionary phase. Further, [24] considers information broadcasting
methods on Markovian graph processes since they are “general
enough for allowing us to model basically any kind of network
evolution”. Hence, motivated by their generality and natural
interpretations, we adopt Markovian graph processes.

3) Functional Dependency of the Sampling Process and
Graph Evolution: [25] considers a weakly adversarial ran-
dom broadcasting network: a randomly evolving broadcast
network whose state at the next time instant is sampled from
a distribution that minimizes the probability of successful
communications. Analogous to this, the functional dependency
in our model may represent how the network evolves adversely
to the influence maximization process (or some other under-
lying network dynamic which is responsive to the influence
maximization). The influence maximizer need not be aware
of such dependencies to apply the algorithms that will be
presented in the next sections.

4) Extension to Multiple Seeds: In the problem definition
and formulation of Sec. II-C, we assumed that only one seed
node is selected by sampling with the distribution pθ. However,

6The sampling methods 1 and 2 are also related to a graph theoretic phe-
nomenon named friendship paradox [9]. [22] explores how this phenomenon
offers a trade-off between the bias and the variance of a randomized polling
method (to forecast elections) in social networks. Hence, the tunable sampling
scheme pθ(v) =

d(v)θ∑
v∈V d(v)

θ where θ ∈ [0, 1] could offer a useful means
of achieving the optimal bias-variance trade off (via a recursive stochastic
optimization algorithm) in such application settings as well.

the problem formulation and the algorithms presented in this
paper can easily be extended to the case where influence
maximizer selects a seed set consisting of multiple nodes.
For example, assume that the influence maximizer utilizes the
distribution pθ to sample b number of seeds independently.
Then, the objective would be to optimize

C(θ) = EG∼πθ{c(θ,G)} (8)

where,

c(θ,G) = E
{I:|I|=b, iiid∼ pθ,∀i∈I}

{σG(I, T )}. (9)

Another possibility is to use a set of sampling distributions
pθ1 , . . . , pθb with θ1, . . . , θb ∈ [0, 1] to sample the set of seeds
independently. Hence, the formulation and the algorithms
in this paper can be extended to optimize any parametric
probability distribution defined over the space of seed sets.

III. STOCHASTIC OPTIMIZATION METHOD: PERFECTLY
OBSERVED GRAPH PROCESS WITH UNKNOWN DYNAMICS

In this section, we propose a stochastic optimization method
for the influence maximizer to recursively estimate the solution
of the optimization problem in (6) under the Assumption 1
stated below.

Assumption 1. The influence maximizer can fully observe the
sample paths of the Markovian graph process, but does not
know the transition probabilities with which it evolves.

The schematic overview of the approach for solving (6)
is shown in Fig. 1 (where, the HMM filter is not needed
in this section due to the Assumption 1). In the next two
subsections, the conditional influence estimation algorithm and
the stochastic optimization algorithm will be presented.

A. Estimating the Conditional Influence Function using Co-
hen’s Algorithm

The exact computation of the node influence σG(i, T ) in
closed form or estimating it with a naive sampling approach
is computationally infeasible (as explained in Sec. II-B). As a
solution, [13] shows that the shortest path property of the IC
model (explained in Sec. II-A) can be used to convert (2) into
an expression involving a set of independent random variables
as follows:

σG(I, T ) = Eπtt
{∑
i∈V

1{gi({τji}(ji)∈E |I)≤T}

∣∣∣I, G} (10)

where, gi({τji}(ji)∈E |I) is the shortest path as defined previ-
ously in (1). Further, note from (10) that influence of the set I,
σG(I, T ) is the expected T -distance neighborhood (expected
number of nodes within T distance from the seed nodes) i.e.

σG(I, T ) = Eπtt
{[
|NG(I, T )|

]∣∣I, G} (11)

where,

NG(I, T ) = {i ∈ V : gi({τji}(ji)∈E |I) ≤ T}. (12)

Hence, we only need a neighborhood size estimation algorithm
and samples from πtt to estimate the influence σG(I, T ) of
the set I ⊂ V .
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1) Cohen’s Algorithm: Based on (11), [13] utilizes a
neighborhood size estimation algorithm proposed in [15] in
order to obtain an unbiased estimate of influence σG(I, T ).
This algorithm is henceforth referred to as Cohen’s algo-
rithm. The main idea behind the Cohen’s algorithm is the
fact that the minimum of a finite set of unit mean expo-
nential random variables is an exponential random variable
with an exponent term equal to the total number random
variables in the set. Hence, for a given graph G = (V,E)
and a transmission delay set Lu = {τji}u(ji)∈E (where u
denotes the index of the set of transmission delays), this
algorithm assigns m number of exponential random variable
sets lu,j = {ru,jv ∼ exp(1) : v ∈ V }, where, j = 1, . . . ,m.
Then, a modified Dijkstra’s algorithm (refer [15], [13] for a
detailed description of the steps of this algorithm) finds the
smallest exponential random variable r̄Iu,j within T−distance
from the set I, for each lu,j with respect to the transmission
time set Lu. Then, [15] shows that E

{
m−1∑m
j=1 r̄

I
u,j

∣∣Lu} is an
unbiased estimate of NG(I, T ) conditional on Lu. Further,
this Cohen’s algorithm for estimating σG(I, T ) has a lower
computational complexity which is near linear in the size of
network size, compared to the computational complexity of a
naive simulation approach (repeated calling of shortest path
algorithm and averaging) to estimate σG(I, T ) [13].

2) Reduced Variance Estimation of Influence using Cohen’s
algorithm: We propose Algorithm 1 in order to estimate
the conditional influence function c(θ,G). First four steps of
Algorithm 1 are based on a reduced variance version of the
Cohen’s algorithm employed in [13] called CONTINEST. The
unbiasedness and the reduced (compared to the algorithm used
in [13]) variance of the estimates obtained using Algorithm 1
are established in Theorem 1.

Theorem 1. Consider a graph G = (V,E).
I. Given v ∈ V , X(v,G) in (15) is an unbiased estimate of

node influence σG(v, T ), with a variance

V ar(X(v,G))

≤ 1

s

(
σG(v, T )2

m− 2
+

(m− 1)V ar(|NG(v, T )|)
m− 2

)
(17)

II. The output ĉ(θ,G) of Algorithm 1 is an unbiased estimate
of the conditional influence function c(θ,G) defined in
(5). Variance of ĉ(θ,G) is bounded above by the variance
in the case where Lu and Ls/2+u (in Step 2 of Algorithm
1) are independently generated.

Proof. See Appendix A.

Theorem 1 shows that the estimate X(v,G) computed in
Algorithm 1 has a smaller variance compared to the estimate
computed by the Cohen’s algorithm based influence estimation
method (named CONTINEST) used in [13] which has a
variance of 1

s

(σG(v,T )2

m−2 + (m−1)V ar(|NG(v,T )|)
m−2

)
. The reason

for this reduced variance is the correlation created by using
the same set of uniform random numbers (indexed by u) to
generate a pair of transmission time sets (Lu and Ls/2+u).
Due to this use of same random number number for multiple

Algorithm 1: Conditional influence estimation algorithm
Input: Sampling distribution pθ, Cumulaive Distribution

Ftt(·) of the transmission time distribution πtt,
Directed graph G = (V,E)

Output: Estimate of conditional influence function:
ĉ(θ,G)

For all v ∈ V , execute the following steps simultaneously.
1) Generate s/2 sets of uniform random variables:

{{Uuji}(ji)∈E : u = 1, 2, . . . , s/2}

2) For each u = 1, · · · , s/2, generate a correlated pair of
random transmission time sets as follows:

Lu = {F−1
tt (Uuji)}(ji)∈E (13)

Ls/2+u = {F−1
tt (1− Uuji)}(ji)∈E (14)

3) For each set Lu where u = 1, · · · , s, assign m sets of
independent exponential random variables:
lu,j = {ru,jv ∼ exp(1) : v ∈ V }, j = 1, . . . ,m.

4) Compute the minimum exponential random variable
r̄vu,j that is within T -distance from v using the modified
Dijkstra’s algorithm, for each lu,j . Calculate,

X(v,G) =
1

s

s∑
u=1

m− 1∑m
j=1 r̄

v
u,j

(15)

5) Compute,

ĉ(θ,G) =
∑
v∈V

pθ(v)X(v,G). (16)

realizations, this method is referred to as the method of
common random numbers [26]. This reduced variance in the
estimates X(v,G) results in a reduced variance in the estimate
ĉ(θ,G) of the conditional influence c(θ,G).

Remark 3. In Algorithm 1, the influence of each individual
node is computed and then, the estimate ĉ(θ,G) is computed
in Step 5 by weighting them according to known pθ. However,
in the case of a set of seeds I ⊂ V (discussed in Sec. II-D4),
it might not be practically feasible to calculate the influence of
each seed set and weight them using the sampling distribution
due to the exponentially large number of seed sets. In that
case, a particular number of seed sets can be sampled using
pθ first and, the average influence of the sampled seed sets
can be used as the estimate ĉ(θ,G). Computing the influence
X(I, G) of a seed set I can be achieved without significant
additional computation (compared to computing the influence
X(v,G) of a node v) using least label list approach used in
the CONTINEST algorithm [13] and, this would still produce
an unbiased estimate.

B. Stochastic Optimization Algorithm

We propose Algorithm 2 for solving the optimization prob-
lem (6), utilizing the conditional influence estimates obtained
via Algorithm 1. Algorithm 2 is based on the Simultaneous
Perturbation Stochastic Approximation (SPSA) algorithm (see



2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2018.2832011, IEEE
Transactions on Signal and Information Processing over Networks

7

Algorithm 2: SPSA based algorithm to estimate θ∗

Input: Initial parameterization θ0, Transmission time
distribution πtt, Observations of the graph process
{Gn}n≥0

Output: Estimate of the (locally) optimal solution θ∗ of
C(θ)

For k = 0, 1, . . . , execute the following steps.
1) Simulate the M dimensional vector dk with random

elements

dk(i) =

{
+1 with probability 0.5

−1 with probability 0.5.

2) Set θ = θk + ∆dk where, ∆ > 0.
3) Sample a node from the network using pθ and, distribute

the 2kth message with the sampled node as seed.
4) Obtain ĉ(θ,Gn) for

n = 2kN, 2kN + 1, . . . , 2kN + N̄ − 1 using Algorithm
1 and, calculate

Ĉk(θk + ∆dk) =
1

N̄

2kN+N̄−1∑
n=2kN

ĉ(θ,Gn). (18)

5) Set θ = θk −∆dk. Sample a node from the network
using pθ and, distribute the 2k + 1th message with the
sampled node as seed.

6) Obtain ĉ(θ,Gn) for
n = (2k+ 1)N, (2k+ 1)N + 1, . . . , (2k+ 1)N + N̄ − 1
using Algorithm 1 and, calculate

Ĉk(θk −∆dk) =
1

N̄

(2k+1)N+N̄−1∑
n=(2k+1)N

ĉ(θ,Gn).

7) Obtain the gradient estimate,

∇̂Ck(θk) =
Ĉk(θk + ∆dk)− Ĉk(θk −∆dk)

2∆
dk. (19)

8) Update sampling distribution parameter θk via
stochastic gradient algorithm

θk+1 = θk + ε∇̂Ck(θk) (20)

where, ε > 0.

[27], [28] for details). In general, SPSA algorithm utilizes
a finite difference estimate ∇̂Ck(θk), of the gradient of the
function C(θ) at the point θk in the (kth iteration of the)
recursion,

θk+1 = θk + εk∇̂Ck(θk). (21)

In the kth iteration of the Algorithm 2, the influence max-
imizer passes a message to the network using a seed node
sampled from the distribution pθ where, θ = θk + ∆dk (step
3). Sampling with pθ causes the transition matrix to be become
Pθ (recall Remark 1). Then, in step 4, (18) averages the
conditional influence estimates ĉ(θ,Gn) over N̄ consecutive
time instants (where, N̄ is the length of the available sample
path as defined in Sec. II-A) to obtain Ĉk(θk + ∆dk), which

is an asymptotically convergent estimate (by the law of large
numbers for Markov Chains [29], [30]) of C(θk + ∆dk).
Similarly, steps 5 and 6 obtain Ĉk(θk −∆dk), which is an
estimate of C(θk − ∆dk). Using these influence function
estimates, (19) computes the finite difference gradient estimate
∇̂Ck(θk) in step 7. Finally, step 8 updates the M -dimensional
parameter vector using the gradient estimate computed in (19).
Some remarks about this algorithm are as follows.

Remark 4. Algorithm 2 operates in two nested time scales
which are as follows (from the fastest to the slowest):

1) t - continuous time scale on which the information diffu-
sion takes place in a given realization of the graph.

2) n - discrete time scale on which the graph evolves.
Further, updating the parameter vector takes place periodically
over the scale n, with a period of 2N (where, N is the time
duration between two messages as defined in Sec. II-A).

Remark 5. Note that all elements of the parameter vector
are simultaneously perturbed in the SPSA based approach.
Therefore, the parameter vector is updated once every two
messages. This is in contrast to other finite difference methods
such as Kiefer-Wolfowitz method, which requires 2M number
of messages (where, M is the dimension of the parameter
vector as defined in Sec. II-A) for each update.

Next, we establish the convergence of Algorithm 2 using
standard results which gives sufficient conditions for the
convergence of recursive stochastic gradient algorithms (for
details, see [28], [31], [32]).

Theorem 2. The sequence {θk}k≥0 in (20) converges weakly
to a locally optimal parameter θ∗.

Proof. See Appendix B.

IV. STOCHASTIC OPTIMIZATION METHOD: PARTIALLY
OBSERVED GRAPH PROCESS WITH KNOWN DYNAMICS

In this section, we assume that the influence maximizer
can observe only a small part of the social network graph
at each time instant. The aim of this section is to combine the
stochastic optimization framework proposed in Sec. III to this
partially observed setting.

A. Partially Observed Graph Process

In some applications, the influence maximizer can observe
only a small part of the full network Gn, at any time instant
n. Let GV̄ denote the subgraph of G = (V,E), induced by the
set of nodes V̄ ⊆ V . Then, we consider the case where, the
observable part is the subgraph of Gn which is induced by a
fixed subset of nodes V̄ ⊆ V i.e. the observable part at time n
is GV̄n (GV̄ denotes the subgraph of G, induced by the set of
nodes V̄ )7. Then, the observation space Ḡ of the Markovian

7For example consider the friendship network Gn = (V,En) of all the
high school students in a city at time n. The smaller observable part could be
the friendship network formed by the set of students in a particular high school
V ′ ⊂ V , which is a subgraph of the friendship network Gn. The influence
maximizer then needs to perform influence maximization by observing this
subgraph.
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graph process can be defined as,

Ḡ =
⋃
G∈G

GV̄ , (22)

which consists of the subgraphs induced by V̄ in each graph
G ∈ G (the case V̄ = V corresponds to the perfectly observed
case). For each G ∈ G and Ḡ ∈ Ḡ, the observation likelihoods,
denoted by BGḠ are defined as,

BGḠ = P(GV̄n = Ḡ
∣∣Gn = G). (23)

In our system model, these observation likelihoods can take
only binary values:

BGḠ =

{
1 if GV̄ = Ḡ

0 otherwise
. (24)

i.e. BGḠ = 1 if the subgraph formed by the set of nodes V̄ in
graph G ∈ G is Ḡ ∈ Y and, 0 otherwise. In this setting, our
main assumption is the following.

Assumption 2. The measurement likelihood matrix B and the
parameterized transition probability matrix Pθ, are known to
the influence maximizer but, the (finite) sample paths of the
Markovian graph process are observed in noise.

Then, the aim of the influence maximizer is to recursively
solve the problem of influence maximization given in (6), uti-
lizing the information assumed to be known in Assumption 2.
However, solving (6) is non-trivial even under the Assumption
2, as emphasized in the following remark.

Remark 6. Even when Pθ is known, it is intractable to
compute πθ in closed form for many cases [33]. Hence,
assumption 2 does not imply that a closed form expression
of the objective function in (4) can be obtained and hence,
solving (6) still remains a non-trivial problem.

B. Randomized Influence Maximization using HMM Filter
Estimates

Assumption 2 made in IV-A makes it possible to im-
plement an HMM filter (see [33] for a detailed treatment
of HMM filters and related results). The HMM filter is a
finite dimensional Bayesian filter which recursively (with each
observation) computes πθn which is the probability distribution
of the state of the graph, conditional on the sequence of
observations {GV̄0 , . . . , GV̄n }. Algorithm 3 gives the HMM
filter algorithm and, Theorem 3 establishes the asymptotic
convergence of the influence function estimate obtained from
from it.

Theorem 3. The finite sample estimate ĈθN of the influence
function obtained in (27) is an asymptotically unbiased esti-
mate of the influence function C(θ) i.e.

lim
N→∞

E{ĈθN} = C(θ). (28)

Further, {θk}k≥0 in (20) converges weakly to a locally optimal
parameter θ∗, when estimates computed in steps 4 and 6 of
Algorithm 2 are replaced by the estimates obtained using the
using Algorithm 3.

Algorithm 3: Hidden Markov Model (HMM) Filter Algo-
rithm for Tracking the Graph Process
Input: Pθ, B and intial prior π0

Output: Finite sample estimate ĈθN of the influence
function C(θ)

1) For every time instant n = 1, 2, . . . , N − 1, given
observation GV̄n+1, update the |G|-dimensional posterior:

πθn+1 = T (πn, G
V̄
n+1) =

BGV̄n+1
P ′θπ

θ
n

σ(πθn, G
V̄
n+1)

(25)

where,
σ(πθn, G

V̄
n+1) = 1′BGV̄n+1

P ′θπ
θ
n (26)

and, 1 denotes the column vector with elements equal
to one.

2) Compute the estimate of the influence function C(θ),

ĈθN =

∑N−1
n=0 ĉ

′
θπ
θ
n

N
. (27)

where, ĉθ denotes the column vector with elements
ĉ(θ,Gi), Gi ∈ G.

Proof. See Appendix C.

Finally, the Algorithm 2 can be modified by replacing the
estimates computed in steps 4 and 6 with the influence function
estimates obtained using the HMM filter in Algorithm 3.

V. NUMERICAL RESULTS

In this section, we apply the stochastic optimization al-
gorithm presented in Sec. III to two example settings and,
illustrate its convergence with a feasible number of iterations.

A. Experimental Setup - 1

We use the Stochastic Block Model (SBM) as a generative
models to create the graphs used in this section. These models
have been widely studied in statistics [34], [35], [36], [37],
[38] and network science [39], [40] as generative models that
closely resemble the real world networks.
State space of the graph process: We consider the graph
process obtained by Markovian switching between the two
graphs in Fig. 2: a graph where two dense equal sized clusters
exist (Graph G1) and, a graph where most of the nodes (45
out of 50) are in a single dense cluster (Graph G2). These
graphs are sampled from SBM models with the following
parameter values: G1 with cluster sizes 25, 25 with, within
cluster edge probability pSBMw = 0.3, between cluster edge
probability pSBMb = 0.01 and, G2 with cluster sizes 45, 5
with, within cluster edge probability pSBMw = 0.3, between
cluster edge probability pSBMb = 0.01. This graph process is
motivated by the clustered and non-clustered states of a social
network.
Sampling distribution and the graph evolution: We consider
the case where the influence maximizer samples from a
subset of nodes that consists of the two nodes indexed by
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(a) Graph G1 = (V,E1) with two equal sized clusters (b) Graph G2 = (V,E2) with a single large cluster

Fig. 2: State space G, of the Markovian graph process {Gn}n≥0 for experimental setup - 1

v1 and v2 using the parameterized probability distribution
pθ = [cos2(θ) sin2(θ)]

′
. These two nodes are located in dif-

ferent clusters in the graphs G1, G2. Also, the transition proba-
bilities may depend on this sampling distribution (representing
for example, the adversarial networks/nodes as explained in
Sec. II-D). However, exact functional characterizations of such
dependencies are not known in many practical applications.
Also, the form of these dependencies may change over time
as well (recall Remark 1). This experimental setup considers
a graph process with a stationary distribution πθ = pθ in order
to have a closed form influence function as a ground truth (in
order to compare the accuracy of the estimates). In an actual
implementation of the algorithm, this functional dependency
need not be known to the influence maximizer.

Influence Functions: The transmission time distribution was
selected to be an exponential distribution with mean 1 for
edges within a cluster and, an exponential distribution with
mean 10 for between cluster edges (in the SBM). Further, the
message expiration time was selected to be T = 1.5. Then,
the influences of nodes v1, v2 on graphs G1 and G2 were
estimated to be as follows by evaluating the integral in Defi-
nition 1 with a naive simulation method (repeated use of the
shortest path algorithm): σG1(v1, T ) = 25.2, σG1(v2, T ) =
23.2, σG2(v1, T ) = 45.1, σG2(v2, T ) = 5.8. These values,
along with the expressions for pθ and πθ were used to obtain
the following expression for the influence function (defined in
Definition 2) to be compared with the outputs of the algorithm
estimates:

C(θ) = πθ(G
1)(σG1(v1, T )pθ(v1) + σG1(v2, T )pθ(v2))

+ πθ(G
2)(σG2(v1, T )pθ(v1) + σG2(v2, T )pθ(v2))

= 17.9 sin2(θ)− 37.3 sin4(θ) + 25.2. (29)

In this context, the goal of our algorithm is to locate the value
of θ which maximizes this function, without using knowledge
of C(θ) or πθ.
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Fig. 3: Parameter value θk and the absolute value of the
error (difference of current and maximum influence) versus
algorithm iteration, showing the convergence of the algorithm
in a feasible number of iterations.

Convergence of the Recursive Algorithm for Influence Maxi-
mization: Algorithm 2 was utilized in an experimental setting
with the parameters specified in the Sec. V-A. For this, the
length of the observable sample path of the graph process
was assumed to be N̄ = 30. Further, in the Algorithm 1,
the number of transmission time sets (s) and the number of
exponential random variable sets (m) were both set to be 10.

With these numerical values for the parameters, Fig. 3
shows the variation of the absolute error (absolute value of
the difference between the current and maximum influence)
and the parameter value, against the iteration of the algorithm.
From this, it can be seen that the algorithm finds optimal
parameter in less than 50 iterations. Further, any change in the
system model will result in a suboptimal (expected) influence
only for 50 iterations since the algorithm is capable of tracking
the time evolving optima. Hence, this shows that the stochastic
optimization algorithm is capable of estimating the optimal
parameter value with a smaller (less than 50) number of
iterations.

Effect of variance reduction in convergence and tracking
the optima of a time-varying influence function: Here we aim
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Fig. 4: Absolute value of the error versus algorithm iteration
with and without the common random number based variance
reduction. This depicts the importance of reduced variance in
tracking the optima of a time evolving influence function.

to see how the proposed stochastic approximation algorithm
can track the optima when the system model changes on a
slower time scale and, the effect of reduced variance Algorithm
1 on the accuracy of tracking. For this, the experimental
setup described in V-A was utilized again and, a sudden
change in the influence function (by changing the the state
space of the graph process and the functional dependency)
was introduced at the iteration number 200. In this setting,
Fig. 4 depicts the variation of the absolute error in influence
with the algorithm iteration for two cases: with the reduced
variance Algorithm 1 (red curve) and without the variance
reduction approach (black curve). It can be seen from Fig.
4 that the variance reduction method improves the speed of
convergence to the optima initially (iterations 1 to 50) and, also
in tracking the optima after a sudden change in the influence
function (iterations 200 to 300). Further, after convergence
(between iterations 50 to 200 and 300 to 500), it can be seen
that reduced variance approach is less noisy compared to the
method without variance reduction. Hence, this shows that the
proposed approach is capable of tracking the optimal sampling
distribution in a slowly evolving system such as, varying graph
state space, evolving functional dependencies, etc.

B. Experimental Setup - 2

In this subsection, we illustrate the performance of the
proposed stochastic optimization algorithm on a graph process
generated from a real world network. The aim is to depict how
the proposed stochastic optimization algorithm performs in the
case of a perfectly observed graph process with characteristics
similar to a real world network.

We start with the co-authorship data publicly available
at “ftp://ftp.cs.rochester.edu/pub/u/joel/papers.lst”. The co-
authorship graph was constructed using this data (for papers
produced during 1995-1996 period) and the largest connected
component G = (V,E) containing 4660 nodes (Fig. 5)
is utilized for our experiments. The probability distribution
pθ(v) = d(v)θ∑

v∈V d(v)θ
, v ∈ V with θ ∈ [0, 1] is assumed to be

the sampling method available to the influence maximizer
(the motivation behind this distribution was discussed in
Sec. II-D1).

Fig. 5: The largest connected component G = (V,E) of the
co-authorship graph of computer science publication during
the period of 1995 - 1996. The state space of the Markovian
graph process for experimental setup - 2 is obtained by
changing the neighbor-degree correlation of G = (V,E) to
three different values: -0.2, 0.0, 0.2, using Newman’s edge
rewiring procedure.

State space of the graph process: The graph G = (V,E)
was modified to obtain three different graphs G−, G0 and G+

that constitute the state space G of the graph process. These
three graphs are obtained by changing the neighbor degree
correlation8 of the original graph G to three different values:
rkk(G+) = 0.2, rkk(G0) = 0.0 and rkk(G−) = −0.2, using
the Newman’s edge rewiring procedure [41]. Then, in G−,
the nodes with low degrees are centered around high degree
nodes while in G+, high (respectively, low) degree nodes are
connected to other high (respectively, low) degree nodes. In
G0, the degrees of the nodes connected by a random link are
uncorrelated. Further, since the degree sequence of the original
graph is preserved by the edge rewiring procedure, the degree
of any node in the above three graphs will remain the same
(as in the original graph G). Therefore, the probability pθ(v)
with which any particular node v ∈ V is sampled remains
same for all three graphs.
Evolution of the graphs: The distribution πθ (which is
functionally dependent on the sampling distribution pθ) of the
graph process was chosen such that the probability assigned
to G+ decreases with θ and the probability assigned to
G− increases with θ. More precisely, πθ was chosen to be
proportional to [θ2 0.1 10−θ]′.
Motivation for the Experimental Setting: The sampling

8Neighbor-degree correlation coefficient rkk(G) of a graph G = (V,E)
is the Pearson correlation coefficient of the degrees d(Y ), d(U) of the nodes
at the end of a randomly chosen link (Y, U) from the set of edges G [41].
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distribution pθ(v) = d(v)θ∑
v∈V ′ d(v)θ

, v ∈ V is a trade off between
two widely used sampling distributions: sampling a random
node from a random link (θ = 1) and uniform sampling of
nodes (θ = 0). Further, when θ is closer to 1, the sampling will
be biased towards high degree nodes in V and when θ is closer
to 0, it will be closer to a uniform distribution over the set of
nodes V ′. Then, πθ can be interpreted as a graph process which
tries to prevent the diffusion of information (adversarial graph
process): as θ increases from 0 to 1 (biasing the sampling
towards high degree nodes), the probability πθ(G−) of G−
increases (and the probability πθ(G+) of G+ decreases) to
separate the high degree nodes from each other (and thus
preventing a rapid diffusion of information).
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Fig. 6: Parameter value θk and the absolute value of the
error (difference of current and maximum influence) versus
algorithm iteration for the experimental setting - 2, showing
the convergence of the algorithm in a feasible number of
iterations.

Experimental Results: Experiments on the setup described
above were performed. The true influence function C(θ) was
estimated using a naive simulation method in order to compare
the performance of the method. The results of the experiments
are shown in Fig. 6. It can be seen that the algorithm is
capable of locating the optimal sampling distribution in less
than 100 iterations of the algorithm. It can be seen that the
convergence of the algorithm in this case is slower and has a
larger variance compared to the experimental setting - 1 (less
than 50 iterations) where the graph contained only 50 nodes.
However, considering the fact that the size of the graph in
the experimental setting - 2 is two orders of magnitude larger
compared to experimental setting - 1, it is a reasonable trade-
off in the performance of the algorithm.

VI. CONCLUSION

This paper considered the problem of randomized influence
maximization over a Markovian Graph Process: given a fixed
set of nodes whose connectivity graph is evolving as a Markov
chain, estimate the probability distribution (over this fixed set
of nodes) that samples a node which will initiate the largest
information cascade (in expectation). The evolution of the
graph was allowed to functionally depend on the sampling
probability distribution in order to keep the problem more
general. This was formulated as a problem of tracking the
optimal solution of a (time-varying) optimization problem

where, a closed form expression of the objective function (in-
fluence function) is not available. In this setting, two stochastic
gradient algorithms were presented to estimate the optimal
sampling distribution for two cases: 1) transition probabilities
of the graph are unknown but, the graph can be observed
perfectly 2) transition probabilities of the graph are known
but, the graph is observed in noise. These algorithms are
based on the Simultaneous Perturbation Stochastic Approx-
imation Algorithm that requires only the noisy estimates of
the influence function. These noisy estimates of the influence
function were obtained by combining a neighborhood size
estimation algorithm with a variance reduction method and
then, averaging over a finite sample path of the graph process.
The convergence of the proposed methods were established
theoretically and, illustrated with numerical examples. The nu-
merical results show that, with the reduced variance approach,
the algorithms are capable of tracking the optimal influence
even in a time varying system model (with changing graph
state spaces, etc.).

APPENDIX A
PROOF OF THEOREM 1

Let the size of the T−distance neighborhood NG(v, T )
of a node v ∈ V of graph G = (V,E) conditional on a
transmission time set Lu = {τji}u(ji)∈E be denoted by hv(Lu).
Further, Let ĥv(Lu) denote m−1∑m

j=1 r̄
v
u,j

.

E{X(v,G)} = E
{

1

s

s∑
u=1

m− 1∑m
j=1 r̄

v
u,j

}
(30)

=
1

s

s∑
u=1

E{ĥv(Lu)} (31)

=
1

s

s∑
u=1

E{E{ĥv(Lu)|Lu}} (32)

=
1

s

s∑
u=1

E
{
hv(Lu)

}
(33)

(from conditional unbiasedness proved in [15])
= σG(v, T ) (by (11)) (34)

To analyze the variance of X(v,G), first note that
hv({τji}u(ji)∈E) is a monotonically decreasing function of all
its elements {τji}u(ji)∈E . Further, the following result about
monotone functions of random variables from [26] will be
used to establish the result.

Lemma 4. If g(x1, ..., xn) is a monotone function of each of
its arguments, then, for a set U1, ..., Un of independent random
numbers.

Cov(g(U1, ..., Un), g(1− U1, ..., 1− Un)) ≤ 0. (35)

Now, consider the variance of ĥv(Lu)+h(Ls/2+u)

2 where Lu
and Ls/2+u are the pair of correlated transmission time sets
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as defined in (13) and (14).

Var

(
ĥv(Lu) + ĥ(Ls/2+u)

2

)
=

1

4

(
Var

(
ĥv(Lu)

)
+ Var

(
ĥv(Ls/2+u)

)
+ 2 Cov

(
ĥv(Lu), ĥv(Ls/2+u)

))
(36)

=
1

2

(
Var

(
ĥv(Lu)

)
+ Cov

(
ĥv(Lu), ĥv(Ls/2+u)

))
(37)

(since ĥv(Lu) and ĥv(Ls/2+u) are identically distributed)

Now consider Cov
(
ĥv(Lu), ĥv(Ls/2+u)

)
. By using the law

of total covariance,

Cov
(
ĥv(Lu), ĥv(Ls/2+u)

)
=

E
{

Cov
(
ĥv(Lu), ĥv(Ls/2+u)

∣∣{Uuji}(ji)∈E)}+

Cov
(
E{ĥv(Lu)|{Uuji}(ji)∈E},E{ĥv(Ls/2+u)|{Uuji}(ji)∈E}

)
(38)

= Cov
(
E{ĥv(Lu)|{Uuji}(ji)∈E},E{ĥv(Ls/2+u)|{Uuji}(ji)∈E}

)
(39)

(since ĥv(Lu) and ĥv(Ls/2+u) are (40)
uncorrelated given {Uuji}(ji)∈E)

= Cov
(
hv(Lu), hv(Ls/2+u)

)
(41)

(from the conditional unbiasedness proved in [15])

= Cov
(
hv({F−1

tt (Uuji)}(ji)∈E), hv({F−1
tt (1− Uuji)}(ji)∈E)

)
(42)

F−1
tt (·) is a monotone function (inverse of a CDF)

and, hv({τji}u(ji)∈E) is also monotone in all its
arguments {τji}u(ji)∈E . Hence, the composite function
hv({F−1

tt (Uuji)}(ji)∈E) is monotone is all its arguments
{Uuji}(ji)∈E (because, the composition of monotone functions
is monotone). Then, from Lemma 4, it follows that

Cov
(
ĥv(Lu), ĥv(Ls/2+u)

)
≤ 0. (43)

Then, from (37), it follows that,

Var

(
ĥv(Lu) + ĥ(Ls/2+u)

2

)
≤ 1

2
Var

(
ĥv(Lu). (44)

Then, by applying the total variance formula to the left
hand side of (44) and, using the fact Var{ĥv(Lu)|Lu} =
h2(Lu)
m−2 (from [15]), we get,

Var

(
ĥv(Lu) + ĥ(Ls/2+u)

2

)
≤

1

2

(
σG(v, T )2

m− 2
+

(m− 1) Var(|NG(v, T )|)
m− 2

)
(45)

and, the proof follows by noting that X(v,G) is the average
of ĥv(Lu)+h(Ls/2+u)

2 for u = 1, · · · , s/2.
Proof of Part II of Theorem 1 follows from similar argu-

ments as above and hence omitted.

APPENDIX B
PROOF OF THEOREM 2

The following result from [31] will be used to establish
the weak convergence of the sequence {θk}k≥0 obtained in
Algorithm 2.

Consider the stochastic approximation algorithm,

θk+1 = θk + εH(θk, xk), k = 0, 1, . . . (46)

where ε > 0, {xk} is a random process and, θ ∈ Rp is the
estimate generated at time k = 0, 1, . . . . Further, let

θε(t) = θk for t ∈ [kε, kε+ ε], k = 0, 1, . . . , (47)

which is a piecewise constant interpolation of {θk}. In this
setting, the following result holds.

Theorem 5. Consider the stochastic approximation algorithm
(46). Assume

SA1: H(θ, x) us uniformly bounded for all θ ∈ Rp and x ∈ Rq .
SA2: For any l ≥ 0, there exists h(θ) such that

1

N

N+l−1∑
k=l

El{H(θ, xk)} → h(θ) as N →∞. (48)

where, El{·} denotes expectation with respect to the
sigma algebra generated by {xk : k < l}.

SA3: The ordinary differential equation (ODE)

dθ(t)

dt
= h(θ(t)), θ(0) = θ0 (49)

has a unique solution for every initial condition.

Then, the interpolated estimates θε(t) defined in (47) satis-
fies

lim
ε→0

P
(

sup
0≤t≤T

|θε(t)− θ(t)| ≥ η
)

= 0 for all T > 0, η > 0

(50)
where, θ(t) is the solution of the ODE (49).

The condition SA1 in Theorem 5 can be replaced by
uniform integrability and the result still holds [33].

Next, we show how Algorithm 2 fulfills the assumptions
SA1, SA2, SA3 in Theorem 5. Detailed steps of similar proofs
related to stochastic approximation algorithms can be found in
[42] and Chapter 17 of [33].
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Consider supk E||∇̂Ck(θk)|| where, ∇̂Ck(θk) is as defined
in Algorithm 2.

sup
k

E||∇̂Ck(θk)|| = sup
k

E
∣∣∣∣∣∣∣∣( 1

N̄

2kN+N̄−1∑
n=2kN

ĉ(θ,Gn) (51)

− 1

N̄

(2k+1)N+N̄−1∑
n=(2k+1)N

ĉ(θ,Gn)

)
dk
2∆

∣∣∣∣∣∣∣∣
= sup

k

√
M

2∆N̄
E
∣∣∣∣ 2kN+N̄−1∑

n=2kN

ĉ(θ,Gn) (52)

−
(2k+1)N+N̄−1∑
n=(2k+1)N

ĉ(θ,Gn)

∣∣∣∣ (53)

≤ sup
k

√
M

2∆N̄
E
{ (2k+1)N+N̄−1∑

n=2kN

∣∣ĉ(θ,Gn)
∣∣}

(54)
(By triangle inequality)

= sup
k

√
M

2∆N̄

(2k+1)N+N̄−1∑
n=2kN

E{ĉ(θ,Gn)}

(55)
(Since ĉ(θ,Gn) ≥ 0)

= sup
k

√
M

2∆N̄

(2k+1)N+N̄−1∑
n=2kN

E{c(θ,Gn)}

(56)
(Conditioning on Gn and,

using Part II of Theorem 1)

≤ sup
k

√
M

2∆N̄

(2k+1)N+N̄−1∑
n=2kN

{
max

v∈V,G∈G
σG(v, T )

}
(57)

=

√
M

∆
max

v∈V,G∈G
σG(v, T ) (58)

(maximum exists since V,G are finite sets)

Hence the uniform integrability condition (alternative for SA1)
is fulfilled.

Next, by the law of large numbers, as ∆ (perturbation size
in (19)) tends to zero, ∇̂Ck(θk) in Algorithm 2 fulfills the
SA2 condition.

SA3 is fulfilled by the (global) Lipschitz continuity of
the gradient ∇θC(θ) which is a sufficient condition for the
existence of a unique solution for a non-linear ODE (for any
initial condition) [43].

APPENDIX C
PROOF OF THEOREM 3

Consider the expected value of the finite sample estimate
of the influence function (output of Algorithm 3)

E{ĈθN} = E{
∑N
n=1 ĉ

Tπθn
N

} (59)

=
cT

N

N∑
n=1

E{πθn} (60)

(by Theorem 1)

=
cT

N

N∑
n=1

(Pθ
n)Tπ0 (61)

Then, the result follows by noting that (61) is a Cesàro
summation of a convergent sequence.

The weak convergence of the sequence {θk}k≥0 (with
HMM filter estimates) follows again from Theorem 5. Since
the proof is mostly similar to the Proof of Theorem 2, we skip
the proof.
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