
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 10, OCTOBER 2013 2435

Distributed Tracking of Correlated Equilibria in
Regime Switching Noncooperative Games

Omid Namvar Gharehshiran, Student Member, IEEE, Vikram Krishnamurthy, Fellow, IEEE, and
George Yin, Fellow, IEEE

Abstract—We consider a class of regime-switching noncooper-
ative repeated games where agents exchange information over a
graph. The parameters of the game (number of agents, payoffs, in-
formation exchange graph) evolve randomly over time according
to a Markov chain. We present a regret-based stochastic approx-
imation algorithm with constant step-size that prescribes how in-
dividual agents update their randomized strategies over time. We
show that, if theMarkov chain jump changes on the same timescale
as the adaptation rate of the stochastic approximation algorithm
and agents independently follow this algorithm, their collective be-
havior is agile in tracking the time-varying convex polytope of cor-
related equilibria. The analysis is carried out using weak conver-
gence methods and Lyapunov stability of switched Markovian dif-
ferential inclusions.

Index Terms—Coordination in decisionmaking, correlated equi-
librium, Lyapunov stability, Markov chain, noncooperative game,
regime-switching differential inclusion, stochastic approximation,
tracking.

I. INTRODUCTION

C ONSIDER a multi-agent noncooperative repeated game,
where individual agents choose their actions from a ran-

domized policy. Each agent refines its randomized policy over
time using a stochastic approximation algorithm to optimize its
regret function. It is well known (see [1]–[3]) that if the sto-
chastic approximation algorithm deployed by each agent has de-
creasing step-size, the collective behavior (joint empirical fre-
quency of actions taken by all agents) converges with prob-
ability one to a convex polytope that is the set of correlated
equilibria (CE) [4]. Such emergent collective behavior can be
viewed as coordination in decision making, since individual
agents act autonomously, yet eventually all agents pick their ac-
tions from a common convex polytope of joint strategies. The
CE has several advantages compared to Nash equilibria (NE) in
such learning environments: 1) structural simplicity: CE forms
a convex polytope, whereas the NE are isolated points at the ex-
trema of this polytope [5]; 2) coordination capability: The CE
directly takes into account the ability of agents to coordinate
their actions. This coordination leads to potentially higher pay-
offs than if agents take their actions independently as required
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Fig. 1. Tracking convex polytope of correlated -equilibria randomly
evolving according to a Markov process . Theorem 3.1 shows that such
tracking is attainable via the proposed regret-based stochastic approximation
algorithm.

by NE [4]; and 3) CE is realistic in learning since the environ-
ment naturally correlates agents’ actions. In contrast, NE as-
sumes agents act independently which is rarely true in learning.
Main Results: In this paper, we assume that the parameters

of the game (number of agents, payoffs) evolve randomly over
time. Therefore, the polytope comprising of the CE evolves over
time. Our objective is to devise a stochastic approximation al-
gorithms that prescribes how individual agents update their ran-
domized strategies over time such that their collective behavior
now tracks the time-evolving polytope of CE. Such tracking
problems lie at the heart of applications of stochastic approx-
imation algorithms [6]. This paper has two main results:
First, agents can exchange information with neighbors over

an undirected graph. Such neighborhood structure incorporates
a broad range of topologies. Each agent shares his picked action
profile only with neighbors, however, is oblivious to the exis-
tence of non-neighbors. Agents take actions repeatedly and re-
ceive: 1) local payoffs: due to local interaction (e.g., performing
collaborative tasks) within neighborhood, 2) global payoffs: due
to strategic global interactionwith non-neighbors. Parameters of
the game model (e.g., payoff function, connectivity graph, etc.)
may evolve with time randomly. Given the game model and the
information exchange structure, how can the agents pick deci-
sions so that the collective behavior tracks the time-evolving CE
set of the game? Section III-A presents a regret-based stochastic
approximation algorithm that exploits this information exchange
structureandprescribessuchindividualstrategies to theagents.
The second main result concerns performance analysis of the

proposed algorithm.We seek to answer:When individual agents
deploy the regret-based stochastic approximation algorithm, is
the collective behavior agile in tracking the time-varying CE
set of the randomly evolving game? It is well known that: 1)
If the underlying parameters change too drastically, there is no
chance one can track the time-varying properties via an adap-
tive stochastic approximation algorithm. (Such a phenomenon
is known as trackability; see [7] for related discussions.) 2) If
the parameters evolve on a slower timescale as compared to the
stochastic approximation algorithm, they remain constant in the
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fast timescale and their variation can be asymptotically ignored.
The analysis in this paper differs as we show that, if the random
evolution of the game is modelled by an unknownMarkov chain
that evolves on the same timescale as the stochastic approxima-
tion algorithm, tracking of the CE set can be achieved. That is,
if this Markov chain has transition matrix , where is
the constant step-size of the stochastic approximation algorithm,
then the collective behavior of all agents converges weakly to
set of correlated -equilibria ( -CE) [4]. In contrast to the stan-
dard treatment of stochastic approximation algorithms, the lim-
iting system will be shown to follow a Markovian switched dy-
namical system in such cases.
Note that the stochastic approximation algorithm deployed

by each agent does not assume a Markovian structure for the
time evolution of the game. The Markovian assumption is only
used in our weak convergence analysis to ascertain if the collec-
tive behavior is sufficiently agile to track the time-varying CE
set. Tracking time-varying equilibria, when the underlying dy-
namics are unknown, is essential in applications such as sensor
networks [8], [9] and cognitive radio [10], [11], where network
entities operate in a time-varying (non-stationary) environment.
The Markov switching assumption is also well-founded in such
applications. Suppose denotes the number of alive sensors at
time and that sensors runout of batteryaccording to ageometric
distribution.Then, evolvesaccordingtoaslowMarkovchain.
Our performance analysis is based on [12] and proceeds as fol-

lows: First, by a combined use of updated treatment on stochastic
approximation [6] andMarkov switched systems [13], [14], The-
orem 4.1 in Section IV-A shows that the limit system for the dis-
crete time iterates ofAlgorithm1 is a randomly switching system
of interconnected differential inclusions modulated by a contin-
uous timeMarkov chain. This is in contrast to the usual approach
of stochastic approximation,where the limit is a deterministic or-
dinary differential equation (ODE). (Differential inclusions arise
naturally in game-theoretic learning, since the strategies of other
agents are unknown.) We use weak convergence methods [6] to
carry out the analysis. We then proceed with the stability anal-
ysis of the limit system. Using Lyapunov function methods for
randomly switched systems [15], [16], it will be proved that the
limit dynamical system is asymptotically stable almost surely.To
complete the analysis, Section IV-D shows that tracking the set
of global attractors of the derived individual limit systems by all
agents provides the necessary and sufficient condition for the col-
lectivebehaviorofagents to track theconvexpolytopeof -CE.
Literature: Regret-matching as a strategy of play in long-run

interactions has been introduced in [1], [2]. In [1], it is proved
that when all agents share stage actions and follow the pro-
posed regret-based adaptive procedure, the collective behavior
converges to the CE. In [2], the authors assumed that agents
do not observe others’ actions and proposed a reinforcement
learning procedure that converges to the polytope of -CE in
static games. While there are several papers that present pro-
cedures converging to CE in static environments [1], [2], [17],
fewer consider learning in dynamic settings. This paper is in-
spired by [1], [2] and focuses for the first time on learning algo-
rithms when agents observe the actions of some (but not all) of
other agents and the underlying game evolves with time. Em-
pirical numerical studies in Section V further illustrates that
performance gains can be achieved by exploiting the informa-
tion disclosed in the vicinity of agents, e.g., in static games, an
order of magnitude faster convergence to -CE polytope can be
achieved, as compared to the reinforcement learning procedure
in [2].

Organization: The rest of the paper is organized as follows:
The Markov switched game with neighborhood structure is for-
mulated in Section II. In Section III, the regret-based stochastic
approximation algorithm is presented, the notion of -CE is
defined, and the main theorem of the paper characterizing the
emergent behavior is given. Section IV presents the detailed
proof of the main theorem. Finally, a numerical example is
provided in Section V followed by the concluding remarks in
Section VI.

II. MARKOV SWITCHED GAME WITH
NEIGHBORHOOD STRUCTURE

In this section, we introduce a class of noncooperative games
with regime switching modulated by a finite-state Markov
chain. As mentioned above, the Markovian variation will
only be used to analyze the agility of the regret-matching
algorithm—it does not appear in the game-theoretic tracking
algorithm. Consider the finite repeated noncooperative game

(1)

where each component is described as follows:
1) Set of Agents: . Individual agents are

denoted by .
2) Action Set: denotes the set of actions

for each agent , where . Individual agent ’s
action is denoted by .
3) Connectivity Graph : Each agent exchanges informa-

tion only with the neighbors that are determined by the con-
nectivity graph . Here, is an undirected graph,
where is the set of agents. We make the neighborhood
monitoring assumption (as opposed to the standard perfect mon-
itoring [18]):

knows and knows
at the end of period (2)

The open and closed neighborhoods for each agent are then
defined by and

, respectively. Let further denote the set
of non-neighbors of agent .
4)Markov Chain and Transition Dynamics : The game

model may evolve with time due to i) agents joining/leaving the
game, ii) changes in agents’ payoffs, and iii) changes in neigh-
borhoods. Suppose all time-variant parameters are finite-state
and absorbed to a vector indexed by . The game evolves ac-
cording to a discrete time finite-state Markov chain with state
space and transition matrix

(3)

Here, is a small parameter, denotes the identity
matrix, and is the generator of a continuous
time Markov chain satisfying

for
and

for all
(4)

1Note that this is no loss of generality. Given an arbitrary non-truly absorbing
Markov chain with transition probability matrix , one can form

, where . To ensure that the two
Markov chains generated by and evolve on the same timescale,

.
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Choosing small enough ensures that
in the entries of (3), where denotes the Kronecker function
satisfying if and 0 otherwise.
Remark 2.1: Agents do not observe the Markov chain and

are oblivious to its dynamics (3).
5) Payoff Function: is bounded and

denotes agent ’s payoff. Here, represents the
set of -tuple of action profiles. A generic element of is
denoted by and, following the common no-
tation in game theory, can be rearranged as for any
agent , where . We further rearrange

as , where denotes
the action profile of agent ’s neighbors and

denotes the action profile of agent ’s non-neigh-
bors, respectively.
The payoff is comprised of two terms: 1) local payoff, due to

local interaction (e.g., performing tasks) within neighborhoods;
2) global payoff, due to strategic global interaction with agents
outside neighborhood. Formally,

(5)

We assume if .
We work with discrete time Each agent takes

an action at time and receives a payoff . Agents
know their local payoff function at each time ; Hence,
taking action and knowing , are capable of evaluating
their local stage payoff. Agents do not know the global payoff
function , however, can compute the realized global
payoffs by

(6)

Note that is a time-variant function
(partly due to the time-varying actions of non-neighbors
and partly due to the Markov chain ). Even if agents knew

, they could not directly compute global payoffs as they
do not acquire .
6) Strategy : Agent selects action according to a random-

ized strategy updated according to the stochastic approxi-
mation algorithm in Section III. A randomized strategy for
agent belongs to the simplex

and is a map

(7)

where denotes the space of all pos-
sible joint moves of agent , his neighbors and possible
payoffs to agent up to period . The -algebra generated by

will be denoted by .
Remark 2.2: 1) Because of the transition matrix given in

(3), changes slowly in time. Hence, although the game is
evolving with time, it is piecewise constant. Simply put,
takes a constant value for a random duration and jumps to

, at a random time. For in (3), the game in (1)

represents a static game which is an extension of that consid-
ered in [1], [2].
2) With a slight abuse of notation, will be used to de-

note the multilinear extension of the payoff function to the set of
mixed strategies, henceforth, simply referred to as “strategies.”
3) Separable Approximation of Payoffs: Consider the ab-

stract setting where agents know their overall payoff function
and observe the actions of some (but not all)

agents. One can apply “separable approximation” techniques
to approximate the payoff function as

(8)

Thus, the framework of this paper applies to a wider range of
games where agents receive incremental information other than
perceived payoffs.

III. TRACKING CORRELATED -EQUILIBRIA: ALGORITHM
AND MAIN RESULTS

This section presents the stochastic approximation algorithm
that each agent employs to update strategies. We provide a pre-
cise definition for the collective behavior of agents and define
the polytope of -CE. Theorem 3.1 then proves that if every
agent follows the proposed algorithm independently, the col-
lective behavior tracks the slow Markovian switched polytope
of -CE. The convergence analysis in Section IV focuses on
the case where . That is, the game evolves on the same
timescale as the adaptation rate of the stochastic approximation
learning algorithm. (We do not consider as the anal-
ysis is similar to the case . That is, when evolves on a
slower timescale, then on a fast timescale it can be regarded as
a constant and its variation can be asymptotically ignored.)

A. Regret-Based Stochastic Approximation Algorithm
Suppose the game , defined in (1), is played in discrete time

Define for scalar and
for vector . Further let denote

the indicator function. The following algorithm is performed
independently by each agent .

Algorithm 1: Regret-based Learning with Neighborhood
Information Exchange:

Step 0) Initialization: Set the exploration factor ,
the adaptation rate , and ,
where and denote the upper and lower bounds
on the payoff function for agent , respectively. Initialize

, where ,
, and .

For , repeat:
Step 1) Strategy Update and Action Selection: Select action

: (see (9) at the bottom of the page).
Step 2) Local Information Exchange: i) Broadcast picked
action to neighbors ; ii) Receive neighbors’ action
profile .
Step 3) Regret Update: For all :

(9)
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Step 3.1: Local-Regret Update (see (10) at the bottom of
the page).
Step 3.2: Global-Regret Update (see (11) at the bottom of
the page). In (11), denotes the global payoff
realized at time [computed according to (6)].

Step 4) Recursion: Set and go to Step 1.

Remark 3.1: While the dynamics of , and , in (3), will
be used in our tracking analysis in Section IV-A, it does not
explicitly enter implementation of the algorithm. Agents are in-
deed oblivious to the fact that their payoffs are dependent on ,
nor do they observe .
Algorithm 1 can be expressed in compact form as a Markov

modulated stochastic approximation algorithm of the form

(12)

Here, , where , represent and ,
respectively, and is an exogenous Markov chain with transi-
tion probability matrix (3). In addition, represents agent ’s
action , , and represent the joint action profile of his
neighbors and non-neighbors , respectively. Note that
in (12) is a Markov chain that is (conditionally) indepen-
dent of . (However, may be correlated.) More
precisely, given the history ,

(13)

Equation (12) simply describes a stochastic approximation al-
gorithm that updates and . These then affect the transi-
tion matrix of a Markov chain whose sample path is in turn
fed back into the stochastic approximation algorithm. This com-
pact formulation shows how Algorithm 1 compares with stan-
dard stochastic approximation algorithms [6] and will be used
in Appendix A to obtain the regime-switching limit differential
inclusion associated with Algorithm 1.

B. Collective Behavior and Correlated -Equilibrium
Consider game defined in (1). The collective behavior

is defined as the discounted empirical frequency of joint play of
all agents up to period . Formally,

(14)

where denotes the -dimensional unit vector with
the element corresponding to being equal to 1.
Remark 3.2: The collective behavior is a system “diag-

nostic” and is only used for the tracking analysis of Algorithm

1—it does not need to be updated by agents. In multi-agent sys-
tems, e.g., sensor networks, a network controller can monitor
and use it to adjust agents’ function.
Let us now define the set of correlated -equilibria for

the game .
Definition 3.1 (Correlated -Equilibrium [4]): Let denote

a joint distribution on the joint action space ,
where for all and . The
set of correlated -equilibria for each state , denoted
by , is the convex polytope

(15)

For in (15), is called the set of correlated equilibria.2
In (15), denotes the probability of agent playing
and the rest playing . Note that jump changes ac-
cording to as the game evolves over time. We will prove that
Algorithm 1 generates trajectories of that tracks slow Mar-
kovian switched .
Interpretation of Correlated Equilibrium as Global Coordi-

nation in Decision Making: Suppose, before the game is played,
each agent receives a private signal , given by the pro-
file drawn according to a commonly known
distribution . A correlated equilibrium arises if all agents
realize that is a best-response to the random estimated

play of others, provided that others, as well, follow their pri-
vate signals. That is, no agent can benefit by deviating from
a correlated equilibrium strategy. Therefore, reaching a corre-
lated equilibrium can be viewed as all agents being coordinated
in their choice of actions.

C. Discussion of Algorithm 1
1) Intuition on Strategy Update: Each element ,

, gives the weighted time-averaged local-regret
(losses in payoffs) had the agent selected action every time
he played action in the past:

(16)

Since agents know and observe , they perform
the thought experiment to compute for alterna-
tive actions , hence, compute the weighted average of
2Nash equilibrium corresponds to the special case where agents act indepen-

dently. That is, is a product measure: . Every
Nash equilibrium is thus a correlated equilibrium. The set of correlated equi-
libria is nonempty, closed and contains the convex hull of Nash equilibria.

(10)

(11)
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local-regrets as in (16). Agents, however, do not receive the ac-
tion profile of non-neighbors , hence, are unable to evaluate
global payoffs for alternate actions. We thus formulate an unbi-
ased estimator of theweighted time-averaged global-regrets
based only on [2]. Each element , , is
formulated as

(17)

Positive overall-regrets imply the opportu-
nity to gain by switching from action to in future. Therefore,
switching probabilities are based on .
is the exploration factor which is essential as agents continu-
ously learn their global payoff functions. Taking the minimum
with and in (9) also guarantees that
. The rate of convergence is closely related to —higher
leads to slower convergence.
2) Static Games: Algorithm 1 can be modified, by replacing

constant step-size with decreasing step-size in (10)
and (11), to achieve almost sure convergence to fixed polytope
of -CE in static games ( in (3)). We show in Section V
that such algorithm can lead to an order of magnitude faster
convergence to as compared to [2].
3) The Case of Observing : The main assumption in this

paper is that is not observed by agents, yet agents jointly
track the time-varying polytope of -CE; see Theorem 3.1. As-
suming agents observe leads to the less challenging case
where agents form and run Algorithm 1 (with
decreasing step-size ) separately for each .
In such setting, it can be shown that agents’ collective behavior
almost surely converges to for each . However,
this is not the focus of this paper.

D. Main Result: From Individual to Collective Behavior

We now characterize the collective behavior emerging by
each agent individually following Algorithm 1. To proceed, we
pose the following condition:

The process is slow in the sense that (18)

That is, the parameters of the game evolve according to an un-
known Markov chain evolving at the same timescale as Algo-
rithm 1. The following theorem is the main result of the paper
and asserts that, if (18) holds, the collective behavior is agile and
can track the time-varying polytope of -CE. In what follows,
denotes weak convergence (a generalization of convergence

in distribution to a function space; see [6] for an exposition).
Theorem 3.1: Consider the game , defined in (1), and sup-

pose (18) holds. Define the continuous time interpolated se-
quence of iterates:

for

where is defined in (14). Suppose further is independent
of and let be any sequence of real numbers satisfying

as . For each , there exists such
that if every agent employs Algorithm 1 with in

Step 1, as , converges weakly to the regime
switching polytope of in the sense that

(19)

where is a continuous timeMarkov chain with generator ;
see (3).

Proof: For detailed proof see Section IV.
Interpretation of Theorem 3.1: The proof uses martingale av-

eraging techniques to show that the limiting behavior converges
weakly to a switchedMarkovian differential inclusion. Then the
stability of the differential inclusion is established. From the
game-theoretic point of view, Theorem 3.1 says that non-fully-
rational local behavior of individual agents (due to utilizing a
better-reply rather than a best-reply strategy) leads to sophisti-
cated globally rational behavior, where all agents pick actions
from the set of -CE. Note that Theorem 3.1 deals with tracking
the set , rather than a point in .
Remark 3.3: If , we require that converges

to weakly. However, for simplicity, we choose to be inde-
pendent of .
Remark 3.4 (Generalized Adaptive Strategies): The adaptive

strategy (9) can be generalized as in [3, Sec. 10.3]. Define a
continuously differentiable and nonnegative potential function

, where denotes , such
that if and only if . In ad-
dition, and
if , where such that

and denotes
the Frobenius inner product. Then, if any strategy of the form

(20)

where

is employed by all agents in lieu of (9), Theorem 3.1 still holds.

IV. PROOF OF THEOREM 3.1: TRACKING REGIME-SWITCHING
CORRELATED -EQUILIBRIUM

This section presents the proof of the main result and is orga-
nized into four subsections: First, Section IV-A shows that the
limit system associated with the discrete time iterates
is a switched Markovian system of interconnected differential
inclusions. Next, Section IV-B investigates the stability of the
limit dynamical system and characterizes its global attractors.
Section IV-C then shows asymptotic stability of the interpolated
process associated with . Finally, Section IV-D shows
that the collective behavior emergent from such limit individual
dynamics is attracted to the set of correlated -equilibria.

A. Weak Convergence to Markovian Switching Differential
Inclusions
We use weak convergence methods to carry out the analysis.

Before proceeding further, let us recall some definitions and no-
tation. Let and be -valued random vectors. We say
converges weakly to if for any bounded and con-
tinuous function , as . The
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sequence is tight if for each there is a compact set
such that for all . The definitions

of weak convergence and tightness extend to random elements
in more general metric spaces. On a complete separable metric
space, tightness is equivalent to relative compactness, which is
known as Prohorov’s Theorem [19]. By virtue of this theorem,
we can extract convergent subsequences when tightness is veri-
fied. In what follows, we use a martingale problem formulation
to establish the desired weak convergence. This usually requires
to first prove tightness. The limit process is then characterized
using certain operator related to the limit process. We refer the
reader to [6, Ch. 7] for further details on weak convergence and
related matters.
As is widely used in the analysis of stochastic approxima-

tion algorithms, we start by defining the continuous time inter-
polations of the discrete time pair process . We con-
sider the piecewise constant continuous time interpolation of

defined as for
. Similarly, the continuous time interpolation for

the Markov chain is defined as for
.

Before proceeding further, a few definitions are in order. De-
fine

(21)

where is an invariant measure of , given in (9), when
, i.e.,

(22)

Equation (22) together with : i) , and ii)
forms a linear programming feasibility problem (null objec-

tive function). Existence of can be established using strong
duality; see [20, Sec. 5.8.2] for details. Let further denote a
probability measure over the joint action space . The ex-
pected local payoff to agent can then be defined as

(23)

Alternatively, one can define the marginal distribution of
by , and write

(24)

We denote by the simplex of probability measures over
. Therefore, .

Associated with Algorithm 1, define the switched Markovian
system of interconnected differential inclusions:

(25)

where denotes a continuous time Markov chain with gener-
ator . Theorem 4.1 below determines the specific forms for the
matrix-valued set andmatrix
and shows that the limit system associated with the stochastic

approximation iterates can be represented by (25). In
what follows, we use to denote and use

to denote the space of functions that are defined in
taking values in , and that are right continuous

and have left limits with Skorohod topology (see [6, p. 228]).
Theorem 4.1: Use in (3). Then, as , the inter-

polated process is tight in
and converges weakly to that

is a solution of the Markovian switched differential inclusion
(25). Moreover, and in (25) are given by

(26)

(27)

In (27), is the interpolated process of the global payoffs
accrued from the game.

Proof: The proof uses stochastic averaging theory based on
[6]; see Appendix A for the detailed proof in a general setting.
Discussion of Theorem 4.1: The interconnection of the dy-

namics in (25) is hidden in , defined in (21), which is a func-
tion of ; see (26) and (27). Note that, although agents
observe , they are oblivious to the strategies from which

has been drawn. Different form different tra-
jectories of ; thus, converges weakly to the trajec-
tories of a regime-switching differential inclusion rather than
a deterministic ODE (that is typically used to model asymp-
totics of stochastic approximation algorithms). The same argu-
ment holds for except that the limit dynamics follows
a regime-switching ODE. This is due to agents being oblivious
to the facts: i) non-neighbors exist, and ii) global payoffs are
affected by non-neighbors’ actions. However, they realize the
time-dependency of as taking the same action at var-
ious times results in different payoffs.
Remark 4.1: 1) Differential Inclusions are generalizations of

ODEs and are of the form

(28)

where and is a Marchaud map [21]. That
is: i) the graph and domain of are nonempty and closed, ii)
the values are convex, and iii) the growth of is linear,
i.e., there exists such that for every

(29)

Here, denotes any norm on . Since in (25) belongs
to a compact convex set, the linear growth condition (29) is
trivially satisfied.
2) When evolves on a slower timescale, e.g., ,

it remains constant in the fast timescale (i.e., the regret-based
learning algorithm). Therefore, the system of differential inclu-
sions (25) will be deterministic.
The Case of Observing : Suppose agent knows the

function and, in contrast to the neighborhood mon-
itoring assumption in Section II, the non-neighbors’ joint action
profile is revealed to agent . In lieu of (11), agent can
then use a stochastic approximation algorithm similar to (10) to
update global-regrets. Suppose agent employs a strategy



NAMVAR GHAREHSHIRAN et al.: DISTRIBUTED TRACKING OF CORRELATED EQUILIBRIA IN REGIME SWITCHING NONCOOPERATIVE GAMES 2441

of the form (9) with the exception that is replaced with
recursively updated according to

(30)

Then, the proof of Theorem 4.1 (see Appendix A) shows the
limit system associated with the iterates is

(31)

where and are given by

(32)

In (32), and
, where is an invariant measure of (given by

(9) after replacing with ) when .
Note that and knowing
only affects the ability to compute it. Therefore,

and (31) repre-
sents the same continuous time process as (25). That is, both

and are stochastic approximations of the
same differential inclusion (31). This property allows us to
invoke Theorem 4.2 below, which proves that the -strategy
induces the same asymptotic behavior for the pair processes

and .
Theorem 4.2: Under a -strategy [see (9)], the limit sets

of the pair processes , defined in (10), (11), and
, defined in (10), (30), coincide.

Proof: For a detailed proof, see Appendix C.
The above theorem simply asserts that realizing stage global

payoffs provides sufficient information to construct

an unbiased estimator of ; hence, the two processes
and exhibit the same asymptotic

behavior. This result will be used in Section IV-D to prove
convergence of global behavior to the -CE polytope.

B. Stability Analysis of Markovian Switching Differential
Inclusions

Section IV-A dealt with the first stage of the proof of The-
orem 3.1, namely, showing that the limit behavior of the dis-
crete time iterates associated with Algorithm 1 is a
switched Markovian system of interconnected differential in-
clusions (25). This subsection deals with the second stage of
the proof of Theorem 3.1, namely, the stability analysis of the
switched Markovian system of differential inclusions (25) and
characterizing the set of global attractors. We start by defining
stability of switched dynamical systems; see [16] and [14, Ch.
9]. In what follows, denotes the usual distance function.

Definition 4.1: Consider the switched system

(33)

where is the switching signal, and
is locally Lipschitz for all . A closed and bounded set

is
1) stable in probability if for any and , there is a

such that

whenever ;
2) asymptotically stable in probability if it is stable in proba-
bility and

as ;
3) asymptotically stable almost surely if

With a slight abuse of notation, denote by and
the local- and global-regret matrices rearranged as vectors,
where denotes . Let

(34)

In the following theorem, we break down our analysis of the
stability of the switching differential inclusions into two steps;
First, we examine the stability of (25) for any fixed switching
signal to show stability of each subsystem. The set of
global attractors is shown to comprise for all . The
slow switching condition then allows us to apply the method of
multiple Lyapunov functions [22, Ch. 3] to analyze stability of
the switched system.
Theorem 4.3: Consider the system of differential inclusions

described by (21)–(25). Let ,
and . For each , there exists such

that, if in (21), the following results hold:
1) If is fixed, the non-switching system is globally
asymptotically stable for each , i.e.,

(35)

2) The Markovian switching system is globally asymptoti-
cally stable almost surely. In particular:
a)

;
b)

Proof: For detailed proof, see Appendix B.
The above theorem states that the set of global attrac-

tors of the switching system (25) is the same as that for all
non-switching systems, in (25), and constitutes
. This sets the stage for Section IV-D where (in regret

space) is proved to represent the -CE polytope (in strategy
space).
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C. Asymptotic Stability of the Interpolated Process

In Theorem 4.1, we considered small and large, but
remained bounded. This gives a limit differential inclusion for
the sequence of interest as . Here, we study asymptotic
stability and establish that the limit points of the switched dif-
ferential inclusion and the stochastic approximation algorithm
coincide as . We thus consider the case where
and , however, now. However, instead of
considering a two-stage limit by first letting and then
letting , we study and
require as . The following corollary concerns
asymptotic stability of the interpolated process.
Corollary 4.1: Denote by any sequence of real num-

bers satisfying as . Assume that
is tight or bounded in probability. Then, for

each , there exists such that if in (9)

(36)

where is defined in (34).
Sketch of the Proof: We only give an outline of the proof,

which essentially follows from Theorems 4.1 and 4.3. Define
and .

Then, it can be shown that is tight. For
any , take a weakly convergent subsequence of

. Denote the limit
by . Note that
and . The value of may be
unknown, but the set of all possible values of
(over all and convergent subsequences) belong to a tight
set. Using this and the stability condition and Theorems
4.1, for any there is a such that for all

, . This implies that
. This is the desired result that

we wish to establish.

D. Characterizing the Limit Set as the Correlated -Equilibria
Set

In the final stage of the proof, we characterize the limit set of
the differential inclusions as the set of correlated -equilibria.
The key point in the proof is to show that tracking the set of
global attractors of (25) individually by all agents provides the
necessary and sufficient condition for the collective behavior to
track the -CE polytope.
Associated with (30), define the continuous time interpolated

sequence of iterates for . Recall
further for ; see (14). Then, for a
fixed- process, i.e., for , we have

(37)

In (37), denotes the interpolated empirical
frequency sequence associated with agent picking ac-
tion and the rest . On any convergent subsequence

, with slight abuse of notation, let

TABLE I
SENSORS’ LOCAL PAYOFFS IN NORMAL FORM

TABLE II
SENSORS’ GLOBAL PAYOFFS IN NORMAL FORM

and for .
This yields

(38)

Finally, comparing (38) with Definition 3.1, we conclude that,
for each , converges to the -CE set if and
only if, for all ,

(39)

Combining (39) with (34) and Theorem 4.2 results in

for
(40)

Finally, combining (40) with Corollary 4.1 proves Theorem 3.1.

V. NUMERICAL STUDY

This section illustrates the performance of Algorithm 1 with
a numerical example. Consider game , defined in (1), and sup-
pose , . The connectivity
graph is characterized by and . The
Markov chain is defined by the state space and

, where . Agents’ local and

global payoffs are given in Tables I and II, respectively. In our
simulations, and in Algorithm 1, and
in Algorithm 2 below.
As benchmarks to compare the performance of Algorithm 1,

we introduce two algorithms: 1) regret-based reinforcement
learning [2]; and 2) Unobserved conditional smooth fictitious
play. To the best of our knowledge, these are the only algorithms
proved to converge to the polytope of -CE in scenarios where
not all agents exchange action information. The following two
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algorithms exploit perceived payoffs to extract information of
other agents’ behavior.
1) Regret-Based Reinforcement Learning [2]: Agents only

observe the stream of payoffs, hence, is compliant to our set-
ting. In [2], it is proved that, for decreasing step-size ,
any limit point of is a correlated -equilibrium
of the stage game. For constant step-size , similar tech-
niques as in [6] can be used to establish weak convergence of
the discounted empirical frequency [see (14)] to the set of
correlated -equilibria.
2) Unobserved Conditional Smooth Fictitious Play: Standard

fictitious play requires each agent to record and update the empir-
ical frequency of actions taken by other agents through time and
best-respond to it; see [17] for an extensive treatment.Here, since
agents do not observe the actions of non-neighbors, we present a
variantwhichreliesonlyontherealizationsof theagents’payoffs.
The algorithm is summarized below:

Algorithm 2: Unobserved Conditional Smooth Fictitious Play

0) Initialization: Set . Initialize .
For , repeat:
1) Strategy Update and Action Selection: Agent picks
action :

(41)

2) Average Utility Update: For all :

(42)
where denotes the realized payoff by agent at time .
4) Recursion: Set and go to Step 1.

In [23], it is proved that the conditional smooth fictitious play
is -conditionally consistent. The authors in [17] also prove that
-conditional consistency is equivalent to reaching -CE when

for all .
The regret indicates how close the system is to the polytope

of CE. Fig. 2(a) demonstrates how the distance to the CE poly-
tope decreases with in static game (i.e., in (3))
when , . The distance diminishes for both Algo-
rithms as the learning proceeds. However, comparing the slopes
of the lines in Fig. 2(a) ( for Algorithm 1 and

for Algorithm 2), shows that exploiting informa-
tion disclosed within neighborhoods provides an order of mag-
nitude faster convergence to the polytope of -CE.
For demonstration purposes, the Markov chain is assumed

to change state from to at in Fig. 2(b).
Each point of the graphs is an average over 100 independent
runs of the algorithms. Fig. 2(b) illustrates the sample paths of
the average payoffs of agents. As shown, all algorithms respond
to the jump of the Markov chain. However, Algorithm 1 outper-
forms the others as it approaches faster to the expected values
in correlated equilibrium.
Fig. 3 illustrates the proportion of time that each tracking al-

gorithm spends out of the polytope of -CE (a measure of the ex-
pected time taken to adapt to the Markov chain jumps). Fig. 3(a)
shows the proportion of the time spent out of -CE when

Fig. 2. (a) Distance to CE versus iteration number when (static game),
and , . (b) Average overall payoff in Markovian switching game

. The blue, red, and black lines illustrate the sample paths of average
payoffs for agents 1, 2, and 3, respectively. The dashed lines represent the ex-
pected payoffs in CE.

.As canbe seen, both algorithms spendmore time in
as time goes by. However, Algorithm 1 exhibits superior perfor-
mance forboth small and large .Fig.3(b) also illustrates the time
spentoutof -CEfordifferentvaluesof when .Asex-
pected, the performance of both algorithms degrade as the speed
of theMarkovian jumps increases.This is typical in stochastic ap-
proximation algorithms since dynamics of the Markov chain is
not accounted for in the algorithm.

VI. DISCUSSION
We considered a class of regime-switching noncooperative

games modulated by a discrete time Markov chain where
agents exchange action information over a graph. We presented
a regret-based stochastic approximation algorithm with con-
stant step-size that prescribes how individual agents update
their randomized strategies over time. It was shown that, if all
agents deploy this algorithm, their collective behavior properly
tracks the time-varying convex polytope of -CE for such
games. Our analysis comprised two steps; First, we proved
that the discrete time iterates of the stochastic approximation
algorithm weakly converge to the set of global attractors of a
regime-switching system of differential inclusions modulated
by a continuous time Markov chain. We then proved that there
exists equivalence between convergence to the global attractors
of such limit dynamics in the regret space and convergence of
agents’ collective behavior to the polytope of -CE. We demon-
strated, via extensive simulations, that the proposed tracking
algorithm benefits from the excess information shared within
neighborhoods to ensure superior performance as compared to
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Fig. 3. Proportion of time spent out of -CE: (a) versus for , (b)
versus .

similar existing algorithms. Such a tracking algorithm can be
employed in engineering applications such as smart sensor [8]
and cognitive radio networks [10] to achieve coordination in a
distributed fashion.

APPENDIX A
PROOF OF THEOREM 4.1

Here, we consider a general setting where the limit system of
the pair of processes constitutes a system of intercon-
nected differential inclusions. Theorem 4.1 can then be consid-
ered as a special case where the limit dynamics associated with
forms an ODE; hence, the results of this section will directly

apply.
We first consider the pair defined by

(43)

without the Markovian switching process . We will then ex-
tend the results to the switching case. For simplicity, assume that
the initial data and are independent of . (With -depen-
dent initial data, we will need to assume that con-
verges weakly to .) Suppose that is a
Markov chain such that the transition matrix is given by

(44)

Write . That is, the transition
matrix is dependent. Such a case is referred to as state-de-
pendent noise in [6, p. 185]. To proceed, we make the following
assumptions:
C1) The transition matrix satisfies:

(a) it is continuous in both variables,

(b) for each , is irreducible and aperi-
odic.

C2) and are sequences of bounded real-valued
random variables that are independent of such that
for each and , there is a set

in probability

in probability
(45)

where denotes the usual distance function and
denotes conditioning on the -algebra generated by

.
C3) The sets

(46)

are closed, convex, and upper semi-continuous (see [6,
pp. 108-109]).

Remark A.1: We comment on the conditions briefly.
C1) (a) indicates that the transition function is contin-
uous in ; C1) (b) yields that the Markov chain is
ergodic in the sense that there is a unique stationary dis-
tribution such that

a matrix with identical rows consisting
of the stationary distribution as . The convergence in
fact takes place exponentially fast. C2) assumes that
and are real-valued bounded random variables. They are
independent of but may be dependent of each other. Here,
the setup is more general. In the problem that we are interested,
in fact, they are finite-valued processes taking values (without
loss of generality) in as well.
Remark A.2: We interpret the conditions in the setup of Al-

gorithm 1. In C2), and are the convex hulls corresponding
to the mean of local- and global-regrets associated with various
sample paths of neighbors and non-neighbors action profiles,
respectively, conditioned on agent picking . More pre-
cisely, is a set-valued matrix with all zero elements
except the th row such that the th elements, , is given
by . In C3),
and are the convex hulls corresponding to the mean
(no conditioning on ) of local- and global-regrets asso-
ciated with various sample paths of neighbors and non-neigh-
bors action profiles, respectively. More precisely, is the
convex combination of the sets such that the th element is
given by .
and can be defined similarly.
To proceed, define and on

.
Theorem A.1: Assume that C1)–C3) hold. Then,

is tight in , and any weakly
convergent sequence has limit such that

(47)

where and are defined in (46).
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Proof: We first prove the tightness. Consider (43) for
the sequence of -valued vectors . Noting
the boundedness of and , and
using Hölder’s inequality and Gronwall’s inequality, for any

, we obtain

(48)

where in the above and hereafter is understood to be
the integer parts of for each . Next, considering

, the -valued process, for any ,
, and , it is fairly easy to verify that

(49)As a result,

(50)

Thus, is tight in ; see [24, Th.
3, p. 47] or [6, Ch. 7].
By Prohorov theorem [6], one can extract a convergent

subsequence. For notational simplicity, we still denote the
subsequence by with limit .
Thus, converges weakly to . By
Skorohod representation theorem [6], with a slight abuse of
notation, one can assume in
the sense of w.p.1 and the convergence is uniform on any finite
interval. Using the martingale averaging methods, we need to
characterize the limit process. Normally, one uses a smooth
function with compact support to carry out the analysis.
Here, for simplicity, we suppress the dependence of and
proceed directly; see [25] for a similar argument. Choose a
sequence of integers such that as , but

. Let us focus on the recursion of ; the
recursion of can be handled similarly. Note

(51)

where denotes the sum over in the range
.

We shall use the techniques in [6, Ch. 8] to prove the desired
result. Let be any bounded and continuous function,
, be an arbitrary positive integer, and for all . It
is readily seen that by the weak convergence and the Skorohod
representation (without changing notation), as ,

(52)

By using the technique of stochastic approximation (see, e.g.,
[6, Ch. 8]), we also have

(53)

Moreover, by the independence of and , we have

(54)

In (54), denotes the -step transition
probability. Except the indicator function on the left-hand side
of (55), the rest of the terms in the summand are independent of
; therefore,

(55)

Using C1), regardless of the choice of , as and
, for each fixed ,

exponentially fast. Thus,

in probability as (56)

Using C2),

(57)
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where is the distance function. Combining the estimates
obtained thus far, we obtain

(58)

as desired. The limit of can be derived similarly. The
details are omitted.
Next, we consider the regime-switching case. The algorithm

of interest [see (18)] becomes

(59)

where is a discrete-time Markov chain. Define and
as before and for . Assume

that the one-step transition probability matrix for is given by
, where is the generator of a continuous-time Markov

chain. Now, becomes part of the state.
Theorem A.2: Assume that C1)–C3) hold with the modifica-

tion that in C2), for each , as

in probability

in probability
(60)

Assume further is independent of , , and . Then
is tight in and

any weakly convergent sequence has limit
such that

(61)

where

for each (62)

and is a continuous-time Markov chain with generator
and state space .
We shall only outline the steps involved in the proof and point

out the main new feature. The proof involves three steps:
Step 1: [Tightness of in
.] This is similar to the proof of Theorem A.1. We merely

note that by [26, Prop. 4.4], is tight and such
that is a continuous-time Markov chain with generator .
Step 2.1: [Characterization of the limit process part (i).]

For each , for any with
( function with compact support). Choose ,

, and as in the proof of Theorem A.1. Then,

(63)

First, we consider the last term in (63). Use , , , and
as in the proof of Theorem A.1. Then, (see (64), shown at the

bottom of the page), where

(65)

Step 2.2: [Characterization of the limit process part (ii).] As
for the next to the last term in (63), we can show that [see (66),
shown at the bottom of the next page], where and denote
the derivatives with respect to and , respectively, and de-
notes the transpose of . To work out the limit

(67)

(64)
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We will concentrate on the term involving the Markov chain .
Note that for large with and
, by [26, Prop. 4.4], for some

(68)

For , letting yields that
as . For such , . By the

boundedness of , it then follows that, as

(69)

Thus, the limit in the first line of (67) can be replaced by (see
the second equation at the bottom of page). Note that

. By the weak convergence of to , the Sko-
rohod representation, and using , we can proceed to

show that

in probability (70)

We can also obtain (53). Combining the estimates obtained thus
far yields

(71)

The limit of can be derived similarly.
Step 3: Combining Steps 1 and 2, the desired result follows.

APPENDIX B
PROOF OF THEOREM 4.3

Consider the regime-switching limit system (25). We start
by showing that such continuous time process is asymptotically
stable for each subsystem . Define the Lyapunov func-
tion:

(72)

(66)
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where denotes the nonpositive orthant in space. Then,

(73)

Here, denotes the Frobenius inner product:
, where and are matrices of the same size.

Now, substituting (25)–(27) into (73) yields: (see (74), shown
at the bottom of the page).
Subsequently, applying

in (74) results in (75), shown at the bottom of the page. Now,
the following lemma proves that the first term in the right-hand
side of (75) equals zero.
Lemma B.1: Let denote the vector of stationary distribu-

tion of

(76)

corresponding to in (9). Then,

(77)

Proof: Given that is the stationary distribution of (76),
for all

(78)

Simplifying (78) yields

(79)
We now proceed to the prove (77):

Subsequently, applying into the first
term in the right-hand side yields

(80)

(74)

(75)
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Finally, knowing , , and sub-
stituting (79) into (80) completes the proof.
By Lemma B.1, the first term in (75) is zero. Since the range

of is bounded for each , we have
(see (81), shown at the bottom of the page) for some constant

. Then, since

(82)

one can rewrite (81) as

(83)

For all , for all
implies can be chosen small enough such that

(84)

Therefore, each subsystem, corresponding to each
in (25), is globally asymptotically stable and

(85)

Next, we proceed to study the stability in the regime-
switching case. It is straight forward to use the method of mul-
tiple Lyapunov functions to extend [16, Corollary 12] to prove
global asymptotic stability w.p.1 for the switching system (33).
Theorem B.1 ([16], Corollary 12): Consider the system (33)

in Definition 4.1, where is the state of a continuous time
Markov chain with generator . Define
and . Suppose there exist continuously
differentiable functions , , strictly
increasing functions with
and as , a real number such

that the following hold:
1) , ,

;
2) , , ;
3) , , ;
4) .
Then, (33) is globally asymptotically stable almost surely.
In light of (84), Hypothesis 2) in Theorem B.1 is trivially

satisfied. Further, since the Lyapunov functions are the same for

all subsystems , existence of in Hypothesis 3)
is automatically guaranteed. Given that in hypothesis
2) (see (84)), it remains to ensure that the generator of Markov
chain satisfies hypothesis 4), i.e., . This is trivially
satisfied since, by (3), , for all and the
proof is complete.

APPENDIX C
PROOF OF THEOREM 4.2

Recall from Section IV-D that and
form discrete time stochastic approximation iterates of the
same differential inclusion (31). Assuming that agent adopts
a strategy of the form (9), we look at the
coupled systems and . Note that
we assume both systems apply the same strategy , which is
a function of (not ). (This is in contrast to (31), where a
strategy was used.)
Let . Then, for all

(86)

Using the results from Section IV-A, the second term in the
right-hand side of (86) becomes

(87)

Applying (87) into (86) results in

(88)

Therefore,

(89)

for almost every , from which it follows:

(90)

for all . Note that is bounded since both and
are bounded. Finally, since and ,
one can conclude from (90) that . Hence, the limit
sets coincide.

(81)
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