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Adaptive Search Algorithms for Discrete
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Abstract—This paper considers simulation-based opti-
mization of the performance of a regime-switching sto-
chastic system over a finite set of feasible configurations.
Inspired by the stochastic fictitious play learning rules in
game theory, we propose an adaptive random search algo-
rithm that uses a smooth best-response sampling strategy
and tracks the set of global optima, yet distributes the
search so that most of the effort is spent on simulating the
system performance at the global optima. The algorithm re-
sponds properly to the random unpredictable jumps of the
global optimum even when the observations data are tem-
porally correlated as long as a weak law of large numbers
holds. Numerical examples show that the proposed scheme
yields faster convergence and superior efficiency for finite
sample lengths compared with several existing random
search and pure exploration methods in the literature.

Index Terms—Discrete stochastic optimization, Markov
chain, randomized search, simulation-based optimization,
stochastic approximation, time-varying optima.

I. INTRODUCTION

D ISCRETE stochastic optimization problems arise in op-
erations research [1], [2], manufacturing engineering [3],

and communication networks [4], [5]. These problems are
intrinsically more difficult to solve than their deterministic
counterparts due to the unavailability of an explicit relation
between the objective function and the underlying decision
variables. It is therefore necessary to use stochastic simulation
to estimate the objective function in such problems.

A. Problem
The simplest setting of a discrete stochastic optimization

problem is as follows:

min
α∈S

eαX where X :=E{Xn}, Xn =col (Xn(1), . . . , Xn(S)).

(1)
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Here, the search space S = {1, 2, . . . , S} is finite, α is the
decision variable, and eα denotes the unit row vector in
S-dimensional Euclidean space with the αth element being
equal to one. Further, Xn(α) is a bounded real-valued station-
ary stochastic process that represents the sequence of observa-
tions of the objective function value at candidate solution α.
Note that the distribution of Xn(α) may depend on the decision
variable α; however, for each α, Xn(α) is a stationary process.

In discrete-event systems of practical interest, the goal is of-
ten to optimize the expected performance over a set of feasible
configurations. However, due to the unexplained randomness
and complexity involved, there typically exists no explicit rela-
tion between the performance measure ofinterest and the chosen
configuration. In such cases, one can only observe “samples”
of the system performance through a simulation process [6].
Each stochastic process Xn(α) in (1) can be interpreted as the
sequence of such samples at a particular configuration α of the
stochastic system under study. In practice, Xn(α) has finite
variance but unknown distribution; therefore, the expectation
in (1) cannot be evaluated analytically. The problem of finding
the global optimum can then be seen as getting stochastic
simulation and optimization effectively combined.

It is normally assumed that for each α ∈ S, the sample mean
of X̂N(α) is a strongly consistent estimator. That is, X(α) =
limN→∞ X̂N (α) a.s., where

X̂N (α) :=
1

N

N∑

n=1

Xn(α). (2)

The above assumption is satisfied by most simulation outputs
[7]. It becomes the Kolmogorov’s strong law of large numbers if
{Xn(α)} is independent and identically distributed (i.i.d.), and
the ergodicity if {Xn(α)} is stationary ergodic. A brute force
method of solving (1) involves an exhaustive enumeration: For
each α ∈ S, compute X̂N (α) in (2) via simulation for large N .
Then, pick α∗ = arg minα∈S X̂N(α). This is highly inefficient
since one has to perform a large number of simulations at each
feasible alternative; however, those performed on nonpromis-
ing feasible solutions do not contribute to finding the global
optimum and are wasted. The main idea is thus to develop a
search scheme that is both attracted to the global optima set
and efficient, in the sense that it spends less time simulating the
nonpromising alternatives [8, Ch. 5].

This paper considers two extensions of the above problem:
First, we allow for Xn(α), n = 1, 2, . . ., to be temporally
correlated for each α as long as it satisfies a weak law of large
numbers. Second, we focus on a nonstationary variant where
the global optimum undergoes random unpredictable jumps due
to random evolution of the profile of the stochastic events or
the objective function (or both). Such problems arise in a broad
range of practical applications where the goal is to track the
optimal operating configuration of a stochastic system subject
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to time inhomogeneity. More precisely, we consider discrete
stochastic optimization problems of the form

min
α∈S

E {eαXn(θn)} = min
α∈S

Θ∑

i=1

E {eαXn(i)I(θn = i)}

where Xn(θn) = col (Xn(1, θn), . . . , Xn(S, θn)) . (3)

Here, {θn} is an integer-valued process representing the ran-
dom changes in the state of the stochastic system, and is un-
observable with unknown dynamics. Note that each stochastic
process Xn(α, θn) in (3) is no longer stationary even though
Xn(α, i) is stationary for each i. Denote the state space of θn by
M = {1, . . . ,Θ}. Intuitively, in lieu of one sequence, we have
Θ sequences {Xn(α, i) : i ∈ M} for each feasible solution α.
One may imagine that there is a random environment that is
dictated by the process θn. If at time n, θn takes a value, say, i,
then Xn(α, i) will be the sequence of data output by simulation.
Equation (3) faithfully reflects this fact.

B. Main Results
Inspired by fictitious play learning rules in game theory [9],

we propose a class of sampling-based adaptive search algo-
rithms, which proceeds as follows: At each iteration, a sample is
taken from the search space according to a randomized strategy
(a probability distribution on the search space) that minimizes
some perturbed variant of the expected objective function based
on current beliefs. This randomized strategy is referred to as
smooth best-response sampling strategy. The perturbation term
in fact simulates the search or exploration functionality essen-
tial in learning the expected stochastic behavior. The system
performance is then simulated at the sampled solution, and fed
into a stochastic approximation algorithm to update beliefs and,
hence, the sampling strategy.

The convergence analysis shows that, if θn evolves on the
same timescale as the adaptive search algorithm, the proposed
algorithm can properly track the global optimum as it undergoes
random unpredicted jumps by showing that a regret measure
can be made and kept arbitrarily small. The regret is defined as
the opportunity loss, and compares the performance of a course
of feasible solutions sampled by the adaptive search algorithm
to the performance of the global optimum. Further, if θn evolves
on a slower timescale, the most frequently sampled feasible
solution tracks the global optima set as it undergoes random
unpredictable jumps over time. This in turn implies that the
proposed scheme exhausts most of its simulation budget on
the global optimum. This is desirable since, in many practical
applications, the system has to be operated in the sampled
configuration to measure performance. The proposed algorithm
assumes no functional properties such as submodularity, sym-
metry, or exchangeability on the objective function. It can
as well be deployed in static discrete stochastic optimization
problems, i.e., when θn is fixed.

The main features of this work are:
1) Correlated simulation data: It allows for temporal corre-

lation in the collected data via simulation, that is more
realistic, whereas most existing schemes assume that the
simulation data are i.i.d.

2) Adaptive search: The proposed algorithm tracks the ran-
dom unpredictable jumps of the global optimum. This is
in contrast to most existing algorithms that are designed
to locate static optimum.

3) Matched timescale: It is well known in the literature
of stochastic approximation schemes that, if θn changes

too drastically, there is no chance one can track the
time-varying optima. (Such a phenomenon is known as
trackability; see [10] for related discussions.) On the other
hand, if θn evolves on a slower timescale as compared to
the updates of the adaptive search algorithm, it can be
approximated by a constant and its variation is ignored.
In this work, we consider the nontrivial case where θn

evolves on the same timescale as the adaptive search
algorithm, and prove that the proposed scheme properly
responds to the jumps that the global optimum undergoes.

The tracking analysis proceeds as follows: First, by a com-
bined use of weak convergence methods [11] and treatment on
Markov switched systems [12], [13], we show that the limit
system for the discrete-time iterates of the proposed algorithm
is a switched ordinary differential equations (ODE). (This is in
contrast to the standard treatment of stochastic approximation
algorithms, where the limiting dynamics converge to a deter-
ministic ODE.) By using multiple Lyapunov function methods
for randomly switched systems [14], [15], the stability analysis
then shows that the limit dynamical system is asymptotically
stable almost surely. This in turn establishes that the limit
points of the switched ODE and the discrete-time iterates of
the algorithm coincide. Finally, we conclude the tracking and
efficiency results by characterizing the global attractor set of
the derived limit system.

C. Literature
This work is closely connected to the literature on random

search methods; see [16] for a discussion. Some random search
methods spend significant effort to simulate each newly visited
state at the initial stages to obtain an estimate of the objective
function. Then, deploying a deterministic optimization mecha-
nism, they search for the global optimum; see [17]–[20]. An-
other class, namely, discrete stochastic approximation methods
[11], [21], distributes the simulation effort through time, and
proceeds cautiously based on the limited information available
at each time. Algorithms from this class primarily differ in
the choice of the sampling strategy, which can be classified
as: i) point-based, such as simulated annealing [22], [23], tabu
search [24], stochastic ruler [25], stochastic comparison and
descent algorithms [26]–[29], ii) set-based, such as branch-and-
bound [30], nested partitions [31], stochastic comparison and
descent algorithms [7], iii) population-based, such as genetic
algorithms. The above methods are categorized under instance-
based random search schemes since they generate new candi-
date solutions using solely the current (population of) solution.
The adaptive search algorithm in this paper is related to an-
other category, namely, model-based random search schemes
[32], in which new solutions are generated via an intermediate
probabilistic model that is updated from the previously seen
solutions in such a way that the search will concentrate on
optima. Examples of such schemes include the cross-entropy
method [33], [34], ant colony optimization [35], [36],model ref-
erence adaptive search [37], gradient-based adaptive stochastic
search [38], and estimation of distribution methods [39], [40].
Another related body of research pertains to the multiarmed
bandit problem [41], which is concerned with optimizing the
cumulative objective function values realized over a period of
time, and the pure exploration problem [42], which involves
finding the best arm after a given number of arm pulls.

All the above works assume static problems—fixed arms’
reward distributions in the case of multiarmed bandit and pure
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exploration schemes—with i.i.d. simulation data/sampled pay-
offs.1 In contrast, this paper addresses nonstationary discrete
stochastic optimization problems with correlated data. The
proposed scheme further differs from the above works in both
the randomized sampling method as well as the belief updating
mechanism. They use decreasing step-sizes, which prevents
tracking time variations, however allows them to achieve almost
sure convergence results (in contrast to weak convergence
results in this paper). Finally, numerical studies in Section VII
reveal that, in contrast to the proposed scheme, bandit-based
algorithms such as upper confidence bound (UCB) [41], [43]
exhibit reasonable efficiency only when the size of the search
space is relatively small.

This work also connects well with earlier efforts [44], [45],
which view optimizing the performance of a system comprising
several decision variables as a noncooperative game with identi-
cal payoff functions, and propose heuristics based on fictitious
play to reach the Nash equilibrium. These schemes, however,
ensure achieving the optimal game outcome (in a distributed
fashion), which could potentially differ from the optimal out-
come for individual players in isolation as targeted in this paper.
They further assume full knowledge of the players’ payoff
functions. This is in contrast to the setting in this paper which
only requires the stream of realized payoffs.

D. Organization
The rest of the paper is organized as follows. Section II

formalizes the main assumption posed on the problem. The pro-
posed adaptive search scheme is then presented in Section III
followed by the theorem entailing the tracking and efficiency
properties in Section IV. Section V gives the proof of the
main theorem. Subsequently, Section VI analyzes the proposed
scheme under slow random time variations. Finally, numerical
examples are provided in Section VII before the concluding re-
marks in Section VIII. The proofs are relegated to the Appendix
for clarity of presentation.

II. MAIN ASSUMPTION

This section formalizes the main assumptions posed on the
sequence of data collected via simulation. Denote by Eℓ the
conditional expectation given Fℓ, the σ-algebra generated by
{Xn(α, i), θn : i ∈ M,α ∈ S, n < ℓ}. We make the following
assumption on the sequence of simulation data.

Assumption 1: For each α ∈ S and i ∈ M,
(1) {Xn(α, i)} is a bounded, stationary, and real-valued se-

quence of random variables;
(2) for any ℓ ≥ 0, there exists X(α, i) such that

1

N

N+ℓ−1∑

n=ℓ

Eℓ{Xn(α, i)}→X(α, i) in probability as N →∞.

The above condition allows us to work with correlated se-
quences of simulation data (on a particular feasible solution)
whose remote past and distant future are asymptotically inde-
pendent. For simplicity, we state the assumption in terms of
the sequence {Xn(α, i)}. The result follows from the mixing
condition with appropriate mixing rates. Examples include
sequences of i.i.d. random variables with bounded variance,
martingale difference sequences with finite second moments,
moving average processes driving by a martingale difference

1See [43] for upper confidence bound policies for nonstationary bandit
problems.

sequence, mixing sequences in which remote past and distant
future are asymptotically independent, certain nonstationary
sequences such as a function of a Markov chain, etc.; see, e.g.,
[7], [46] for further discussions.

The following assumption is made on the random changes
underlying the discrete stochastic optimization problem (3).

Assumption 2: The sequence {θn} is unobservable and its
dynamics are unknown.

The above assumption implies that the explicit dependence
of Xn(α, θn) on θn is unknown. This allows us to simplify the
notation to Xn(α) with all the time variations captured by the
subscript n. We need to emphasize that, although this notation
is similar to the one used in the static problem in (1), the
main difference is that the stochastic process {Xn(α)} is now
nonstationary.

III. SMOOTH BEST-RESPONSE ADAPTIVE SEARCH

A random search algorithm repeatedly takes samples from
the search space according to a randomized sampling strategy
(a probability distribution over the search space). These sam-
ples are then evaluated via real-time simulation experiments,
using which the estimate of the global optimum is revised.
The adaptive random search algorithm proposed in this section
can be simply described as an adaptive sampling scheme.
The appeal of sampling-based methods is because they often
approximate well, with a relatively small number of samples,
problems with a large number of scenarios; see [47] and [48]
for numerical reports. Define by

∆S =

{
p ∈ RS ; pi ≥ 0,

∑

i∈S
pi = 1

}
. (4)

the simplex of all probability distributions on the search space S.
The sampling strategy that we propose, namely, smooth best-
response sampling strategy bγ(·), is inspired by learning algo-
rithms in games [9], [49], and is formally defined below.

Definition 3.1: Choose a perturbation function
ρ(σ) : int(∆S) → R

where int(∆S) represents the interior of the simplex ∆S,
defined in (4), such that:

1) ρ(·) is C1 (i.e., continuously differentiable), strictly con-
cave, and |ρ| ≤ 1;

2) ∥∇ρ(σ)∥→∞ as σ approaches the boundary of ∆S, i.e.,

lim
σ→∂(∆S)

∥∇ρ(σ)∥ = ∞

where ∥ · ∥ denotes the Euclidean norm, and ∂(∆S)
represents the boundary of simplex ∆S.

Given any vector ψ = (ψ1, . . . ,ψS) ∈ RS of beliefs about
objective values at different candidate solutions, the smooth
best-response sampling strategy is then given by

bγ(ψ) := arg min
σ∈∆S

(σ · ψ − γρ(σ)) , 0 < γ < ∆D̃ (7)

where γ determines the exploration weight, and ∆D̃ denotes
the greatest difference in objective function values among the
feasible solutions.

Let I(X) denote the indicator function: I(X) = 1 if the
statement X is true, and I(X) = 0 otherwise. Let further 0S

denote a vector of zeros of size S. The adaptive random search
scheme can then be summarized as in Algorithm 1. Based on
the belief ψn, Algorithm 1 prescribes to take a sample sn from
the search space according to the sampling strategy bγ(ψn),
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given in Definition 3.1. A simulation experiment is then per-
formed to evaluate the sample and obtain Xn(sn). (Recall that
all time variations underlying (3) are captured in the subscript
n since θn, which drives the time variations, is unobservable.)
The simulation output is then fed into a stochastic approxima-
tion algorithm to update the belief and, hence, the sampling
strategy. This is in contrast to most existing algorithms that use
stationary sampling strategies. The proposed algorithm relies
only on the simulation data and requires minimal computational
resources per iteration: It needs only one simulation experiment
per iteration as compared to two in [26] or S (size of the
search space) in [8, Ch. 5.3]. Yet, as evidenced by the numerical
evaluations in Section VII, it guarantees performance gains in
terms of the tracking speed.

Algorithm 1 Smooth Best-Response Adaptive Search

Step 0. Initialization. Choose ρ(·) to satisfy the conditions
of Definition 3.1. Set the adaptation rate 0 < µ ≪ 1 and the
exploration parameter 0 < γ < ∆D̃, where ∆D̃ is an upper
bound on the greatest difference in objective function values
between any two feasible solutions. Initialize

ψ
0

= 0S.

Step 1. Sampling. Sample sn according to the randomized
strategy

bγ(ψn) = [bγ1(ψn), . . . , bγS(ψn)] ∈ ∆S

where bγ(ψn) is given in Definition 3.1.
Step 2. Evaluation. Perform simulation to obtain Xn(sn).
Step 3. Belief Update.

ψn+1 = ψn + µ [f (sn,ψn, Xn(sn)) −ψn] (5)

where f = col(f1 , . . . , fS ) and

fi (sn,ψn, Xn(sn)) =
Xn(sn)

bγi (ψn)
· I(sn = i). (6)

Step 4. Recursion. Set n ← n + 1 and go to Step 1.

The conditions imposed on the perturbation functionρ(·)leads
to the following distinct properties of the resulting strategy:

1) The strict concavity condition ensures uniqueness ofbγ(·);
2) The boundary condition implies bγ(·) belongs to the

interior of the simplex ∆S.
The smooth best-response sampling strategy (7) approaches the
pure (unperturbed) best-response strategy

arg min
α∈S

eαψ = argmin
α∈S

ψα

when γ→0, and the uniform randomization, when γ→∞. Here,
as in (1) and (3),eα denotes the row unit vector in S-dimensional
Euclidean space with the αth element being equal to one.

It exhibits exploration using the idea of adding random
values to the beliefs.2 Such exploration is natural in any learning
scenario. Let v denote a random column vector that takes values
in RS according to some strictly positive distribution. Given a
belief vector ψ, suppose one samples each feasible solution i
following the choice probability function:

Ci(ψ) = P (arg minα∈S eα[ψ + v] = i) . (8)

2This is in contrast to picking states at random with a small probability, as is
common in game-theoretic learning and multiarmed bandit algorithms.

Using Legendre transformation, [49, Th. 2.1] shows that, re-
gardless of the distribution of the random vector v, a deter-
ministic representation of the form (7) can be obtained for the
best response strategy with added random disturbances v. That
is, the sampling strategy (7) with deterministic perturbation is
equivalent to a strategy that minimizes the sum of the belief and
the random disturbance.

The smooth best-response strategy constructs a genuine
randomized strategy due to the existing exploration captured
by the parameter γ. This is an appealing feature since it cir-
cumvents the discontinuity inherent in algorithms of pure best-
response type [γ = 0 in (7)]; in such algorithms, small changes
in the belief ψ can lead to an abrupt change in the behavior
of the algorithm. Such switching behavior in the dynamics of
the algorithm complicates the convergence analysis. The choice
of the exploration parameter γ depends on the range of the
objective function.

Remark 3.1: An example of the functionρ(·) in Definition 3.1
is the entropy function [9], [50]

ρ(σ) = −
∑

i∈S

σi ln(σi)

which gives rise to the well-known Boltzmann exploration
strategy [51] with constant temperature

bγi (ψ) =
exp(−ψi/γ)∑

j∈S exp(−ψj/γ)
. (9)

Such a strategy is also used in the context of learning in
games, known as logistic fictitious-play [52] or logit choice
function [49].

We now proceed to describe the belief vector and its update
mechanism. The belief is a vector

ψn = col
(
ψ1,n , . . . ,ψS,n

)
∈ RS

where each element ψi,n is the belief up to time n about the
objective function value at alternative i, which can be directly
defined using the output of simulation experiments up to time n
as follows:

ψi,n = (1 − µ)n−1

[
X1(s1)

bγi (ψ1)

]
I(s1 = i)

+ µ
∑

2≤τ≤n

(1 − µ)n−τ

[
Xτ (sτ )

bγi (ψτ )

]
I(sτ = i). (10)

Here, bγi (ψτ ) is the weight that the smooth best-response sam-
pling strategy in Definition 3.1 places on sampling candidate
i at time τ , and I(X) denotes the indicator function. The nor-
malization factor 1/bγi (ψτ ) makes the length of the periods that
each element i is chosen comparable to other elements. The dis-
count factor 0 < µ ≪ 1 is further a small parameter that places
more weight on recent simulation experiments and is necessary
as the algorithm is deemed to track time-varying minima. The
nonrecursive expression (10) verifies that components of the
belief vector can be interpreted as discounted average system
performance at each feasible configuration. Note that (10) relies
only on the data obtained from simulation experiments; it does
not require the system model nor the realizations of θn, which
represents the random changes in the parameters underlying the
discrete stochastic optimization problem. Recall that the effect
of θτ on the random changes underlying the problem is captured
in the subscript τ in Xτ (sτ ).

Remark 3.2: The choice of step-size µ is of critical impor-
tance. Ideally, one would want µ to be small when the belief is
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close to the vector of true objective values, and large otherwise.
Choosing the best µ is, however, not straightforward as it de-
pends on the dynamics of the time-varying parameters (which is
unknown). One enticing solution is to use a time-varying step-
size µn, and an algorithm which recursively updates it as the
underlying parameters evolve. The updating algorithm for µn

will in fact be a separate stochastic approximation algorithm
which works in parallel with the adaptive search algorithm.
Such adaptive step-size stochastic approximation algorithms
are studied in [10], [11, Sec. 3.2], and [53], and are out of the
scope of this paper.

IV. MAIN RESULT: TRACKING THE
NONSTATIONARY GLOBAL OPTIMA

This section is devoted to obtaining asymptotic properties
of the above adaptive random search algorithm. To this end,
we define a regret measure in Section IV-A, which play a
key role in the analysis to follow. Then, a hypermodel is
defined in Section IV-B for the time variations in the parameters
underlying the discrete stochastic optimization problem. The
main theorem entailing the tracking properties of Algorithm 1
is presented in Section IV-C.

A. Regret Measure
The regret for an online learning algorithm is defined as the

“opportunity loss” and compares the performance of an algo-
rithm, selecting among S alternatives, to the performance of
the best of those alternatives in hindsight3 [54]. Accordingly,
we define

rn := (1 − µ)n−1
[
X1(s1) − Xmin,1

]

+ µ
∑

2≤τ≤n

(1 − µ)n−τ
[
Xτ (sτ ) − Xmin,τ

]
(11)

where Xmin,τ denotes the true global optimum at time τ and
{sτ} represents the sequence of candidate solutions sampled
and evaluated by Algorithm 1. Since the algorithm is deemed to
track nonstationary global optima, the regret rn is defined as the
discounted average performance obtained using the proposed
sampling scheme as compared with the true global optimum.
The regret rn is a diagnostic that quantifies the tracking ca-
pability of the algorithm, and is not required to be evaluated
iteratively by the algorithm.

B. Hypermodel
A typical method for analyzing the performance of an adaptive

algorithm is to postulate a hypermodel for the underlying time
variations[10]. Here, we assume that all time-varying underlying
parameters in the problem are finite-state and absorbed to a vec-
tor. For simplicity, we index all possible such vectors by M =
{1, . . . ,Θ}, and work with the indices instead. Evolution of
the underlying parameters can then be captured by an integer-
valued process θn ∈ M, whose dynamics follow a finite-state
discrete-time Markov chain. Let1r and 0r denote r-dimensional
column vectors of ones and zeros, respectively. The following
assumption formally characterizes the hypermodel.

Assumption 3: Let {θn} be a discrete-time Markov chain
with finite state space M = {1, 2, . . . ,Θ}, and transition prob-
ability matrix

P ε := I + εQ, 0 < ε < 1. (12)

3This is in contrast to the decision theory literature, where the regret typically
compares the average realized payoff for a course of action with the payoff that
would have been obtained had a different course of action been chosen.

Here, I denotes the Θ×Θ identity matrix and Q=[qij ]∈RΘ×Θ

is the generator of a continuous-time Markov chain satisfying

qij ≥ 0 for i ̸= j, |qij | ≤ 1 ∀ i, j ∈ M, Q1Θ = 0Θ. (13)

Further, Q is irreducible.
Note in the above assumption that, due to the dominating

identity matrix in (12), {θn} varies slowly with time.
Remark 4.1: It is important to stress that the Markov chain

model is only a hypermodel for time variations underlying
the optimization problem to analyze the tracking capability
of the proposed adaptive random search scheme. The end-
user running the algorithm is in fact oblivious to the time
variations underlying the problem. In other words, θn does not
enter implementation of the algorithm, nor are its dynamics
accounted for in the algorithm design; see Assumption 2.

C. Main Tracking Result
The step-size µ in (5) determines how fast the sampling

strategy is updated. The impact of switching rate of the hyper-
model θn on convergence properties of the proposed adaptive
search scheme is captured by the relationship between µ and ε
in the transition probability matrix (12). Here, we assume:

Assumption 4: ε = O(µ) in the transition probability ma-
trix P ε in Assumption 3.

The above condition states that the time-varying parameters
underlying the discrete stochastic optimization problem evolve
with time on a scale that is commensurate with that determined
by the step-size of Algorithm 1. In our analysis to follow, both
ε and µ go to 0. This condition merely indicates that they go to
0 at the same rate.

We take the ordinary differential equation (ODE) approach—
introduced by Ljung in [55] and developed later in [11]—in our
convergence analysis. Thus, in lieu of working with the discrete
iterates directly, we examine continuous-time piecewise con-
stant interpolation of the iterates, which is defined as follows:

rµ(t) = rn for t ∈ [nµ, (n + 1)µ) . (14)

This will enable us to get a limit ODE, whose stationary
points conclude the tracking result. These details are, however,
relegated to a later section which provides the detailed analysis.
Let x+ = max{0, x}. The following theorem is the main result
of this paper and implies that the sequence {sn} generated by
Algorithm 1 most frequently samples from the global optima set.

Theorem 4.1: Suppose Assumptions 1–4 hold. Let tµ be
any sequence of real numbers satisfying tµ → ∞ as µ → 0. For
any η > 0, there exists γ(η) > 0 such that if γ ≤ γ(η) in (7),
then (rµ(· + tµ) − η)+ → 0 in probability as µ → 0. That is,
for any δ > 0

lim
µ→0

P (rµ(· + tµ) − η ≥ δ) = 0.

Proof: See Section V for the detailed proof. !
Interpretation of Theorem 4.1: The above theorem evi-

dences the tracking capability of Algorithm 1 by looking at the
worst case regret, and showing that it will be asymptotically less
than some arbitrarily small value.4 Clearly, ensuring a smaller
worst case regret requires sampling the global optimizer more
frequently. Put differently, the higher the difference between the
objective function value of a feasible solution and the global op-
timum, the lower must be the empirical frequency of sampling

4This result is similar to the Hannan consistency notion [56] in repeated
games, however, in a nonstationary setting.
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that solution to maintain the regret below a certain small value.
Here, rµ(·+tµ) essentially looks at the asymptotic behavior of
rn. The requirement tµ→∞ as µ→0 means that we look at
rn for a small µ and large n with nµ→∞. It shows that, for a
small µ, and with an arbitrarily high probability, rn eventually
spends nearly all of its time in the interval [0, η+δ) such that
δ→0 as µ→0. Note that, for a small µ, rn may escape from
the interval [0, η+δ). However, if such an escape ever occurs,
will be a “large deviations” phenomena—it will be a rare event.
The order of the escape time (if it ever occurs) is often of the
form exp(c/µ) for some c>0. The probability of the escape in
fact is exponentially small; see [11, Ch. 6.10] for details.

Remark 4.2: The choice of exploration factor γ essentially
determines the size of the random disturbances v in (8), and
affects both the convergence rate and efficiency of the proposed
algorithm as illustrated in Fig. 2. Larger γ increases the explo-
ration weight versus exploitation, hence, more time is spent on
simulating nonpromising elements of the search space. In prac-
tice, one can initially start with γ = ∆D̃, where ∆D̃ is an upper
bound on the greatest difference in objective function value be-
tween any two feasible solution based on the outputs of prelim-
inary simulation experiments. To achieve an asymptotic regret
of at most η in Theorem 4.1, one can then periodically solve
for γ(η) in

bγ(η)(ψn) · ψn = min
i∈S

ψi,n + η (15)

and reset 0<γ<γ(η) in the smooth best-response strategy (7).
Note that, to allow adaptivity to the time variations un-

derlying the problem, Algorithm 1 selects nonoptimal states
with some small probability. Thus, one would not expect the
sequence of samples eventually spend all its time in the global
optima set before it undergoes a jump. In fact, {sn} may visit
each feasible solution infinitely often. Instead, the sampling
strategy implemented by Algorithm 1 ensures the empirical
frequency of sampling nonoptimal elements stays very low.

V. ANALYSIS OF THE SMOOTH BEST-RESPONSE
ADAPTIVE SEARCH ALGORITHM

This section is devoted to both asymptotic and nonasymptotic
analysis of the adaptive search algorithm. In this section, we
work with the following two diagnostics.

(1) Regret rn: It quantifies the ability of the adaptive search
algorithm in tracking the random unpredictable jumps of
the global optimum, and is defined in Section IV-A.

(2) Empirical Sampling Distribution zn: It is well-known
that efficiency of a discrete stochastic optimization al-
gorithm is defined as the percentage of times that the
global optimum is sampled [8]. Accordingly, we define
the vector

zn = col
(
z1,n , . . . , zS,n

)
∈ RS

where each element zi,n records the percentage of times
that element i was sampled and simulated up to time n.
It is iteratively updated via the stochastic approximation
recursion

zn+1 = zn + µ [esn − zn] , 0 < µ < 1 (16)

where ei ∈ RS denotes the unit vector whose ith compo-
nent is equal to one. The small parameter µ introduces an
exponential forgetting of the past sampling frequencies
and allows us to track the evolution of underlying param-
eters. Besides quantifying efficiency, the maximizing

element of the empirical sampling frequency will be
used to locate the global optimizer in Section VI.

The rest of this section is organized into three subsections:
Section V-A characterizes the limit system associated with
discrete time iterates of the adaptive search scheme and the two
diagnostics defined above. Next, Section V-B proves that such a
limit system is globally asymptotically stable with probability
one and characterizes its global attractors. The analysis up
to this point considers µ small and n large, but µn remains
bounded. Finally, to obtain the result presented in Theorem 4.1,
we let µn go to infinity in Section V-C, and conclude asymptotic
stability of the interpolated process associated with the regret.

A. Weak Convergence to Markovian Switching ODE
In this subsection, we use weak convergence methods to

derive the limit dynamical system associated with the iterates
(rn, zn). Before proceeding further, let us recall some defini-
tions and notation:

Definition 5.1: Let Zn and Z be Rn-valued random vectors.
(1) Zn converges to Z weakly, denoted by Zn ⇒ Z , if for

any bounded and continuous function h(·)
Eh(Zn) → Eh(Z) as n → ∞.

(2) The sequence {Z(n)} is tight if for each η > 0, there
exists a compact set Kη such that

P(Zn ∈ Kη) ≥ 1 − η for all n.

Weak convergence is a generalization of convergence in
distribution to a function space. The definitions of tightness
and weak convergence extend to random elements in more
general metric spaces. On a complete separable metric space,
tightness is equivalent to relative compactness, which is known
as Prohorov’s Theorem [57]. By virtue of this theorem, we
can extract convergent subsequences when tightness is verified.
In what follows, we use a martingale problem formulation to
establish the desired weak convergence. To this end, we first
prove tightness. The limit process is then characterized using
a certain operator related to the limit martingale problem. We
refer the reader to [11, Ch. 7] for further details on weak
convergence and related matters.

Define the vector of the true objective function values for all
feasible solutions when θn = θ is held fixed:

X(θ) := col
(
X(1, θ), · · · , X(S, θ)

)
(17)

where X(s, θ) is defined in (4). Let further

ψ̂n := ψn − X(θn) (18)

denote the error in tracking the true objective function values
via the simulation data at time n. Let further

Y n :=

⎡

⎣
ψ̂n

rn

zn

⎤

⎦ . (19)

It can be easily verified that Y n satisfies the recursion

Y n+1 = Y n + µ
[
A

(
sn, ψ̂n, Xn(sn)

)
− Y n

]

+ µ

[
X(θn) − X(θn+1)

0S+1

]
(20)
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where

A
(
sn, ψ̂n, Xn(sn)

)

=

⎡

⎢⎣
f
(
sn, ψ̂n + X(θn), Xn(sn)

)
− X(θn)

Xn(sn) − Xmin,n

esn

⎤

⎥⎦ . (21)

Here, f(·, ·, ·) is a vector-valued function, whose individual
elements are defined in (6), and X(·) is defined in (17). As is
widely used in the analysis of stochastic approximations, we
consider the piecewise constant continuous time interpolated
processes

Y µ(t) = Y n,
θµ(t) = θn,

for t ∈ [nµ, (n + 1)µ) . (22)

we use D([0,∞) : G) to denote the space of functions that are
defined in [0,∞), taking values in G, and are right continuous
and have left limits (Càdlàg functions) with the Skorohod topol-
ogy (see [11, p. 228]). The following theorem characterizes the
limit process of the stochastic approximation iterates (20) as a
Markovian switching ODE.

Theorem 5.1: Consider the recursion (20) and suppose
Assumptions 1–4 hold. The interpolated process (Y µ(·), θµ(·))
is tight in D([0,∞) : R2S+1 × M) and, as µ → 0, converges
weakly to (Y (·), θ(·)) that is a solution of the Markovian
switched ODE

dY

dt
= F (Y , θ(t)) − Y (23)

where

F (Y , θ(t))=

⎡

⎢⎢⎣

0S

bγ
(
ψ̂+X (θ(t))

)
·X (θ(t))−Xmin(θ(t))

bγ
(
ψ̂+X (θ(t))

)

⎤

⎥⎥⎦. (24)

Here, 0S is column zero vector of size S, X(·) is defined in
(17), and

Xmin(θ) := minα∈S X(α, θ) (25)

where X(α, θ) is defined in Assumption 1. Further, θ(t) is a con-
tinuous time Markov chain with generator Q (see Assumption 3).

Proof: The proof uses stochastic averaging theory based
on [11]; see Appendix A for the detailed argument. !

The limit system derived in the above theorem is a dynamical
system modulated by a continuous-time Markov chain θ(t).
At any given instance, the Markov chain dictates which
regime the system belongs to. The system then follows the
corresponding ODE until the modulating Markov chain jumps
into a new state—that is, the limit system (23) is only piecewise
deterministic.

B. Stability Analysis of the Markovian Switching ODE
We next proceed to analyze stability and characterize the set

of global attractors of the limit system. In view of (23), there
exists no explicit interconnection between the dynamics of r(t)
and z(t). To obtain the result presented in Theorem 4.1, we need
to look only at the stability of

d

dt

[
ψ̂
r

]
=

[
0S

bγ
(
ψ̂+X (θ(t))

)
·X (θ(t))−Xmin (θ(t))

]
−
[
ψ̂
r

]
.

(26)

The first component is asymptotically stable, and any trajectory
ψ̂(t) decays exponentially fast to 0S as t → ∞. This essentially
establishes that realizing the simulation observations Xn(sn)
provides sufficient information to construct an unbiased esti-
mator of the true objective function values. Next, substituting
the global attractor ψ̂ = 0S , we analyze stability of

dr

dt
= bγ (X(θ(t)) · X (θ(t)) − Xmin (θ(t)) − r. (27)

Let

R[0,η) = {r ∈ R; 0 ≤ r < η}. (28)

We break down the stability analysis of (27) into two steps:
First, we examine the stability of each deterministic subsystem,
associated with each θ ∈ M when θ(t) = θ is held fixed. The
set of global attractors is shown to comprise R[0,η) for all θ ∈
M. The slow switching condition then allows us to apply the
method of multiple Lyapunov functions [58, Ch. 3] to analyze
stability of the switched system.

Theorem 5.2: Consider the limit Markovian switched ODE
given in (27). Let r(0) = r0 and θ(0) = θ0. For any η > 0, there
exists γ(η) such that, if γ < γ(η) in (7), the following results
hold:

1) If θ(t) = θ is held fixed, the set R[0,η) is globally asymp-
totically stable for each θ ∈ M, i.e.,

lim
t→∞

d
(
r(t), R[0,η)

)
= 0 (29)

where d(·, ·) denotes the usual distance function.
2) For the Markovian switching ODE, the set R[0,η) is

globally asymptotically stable almost surely.

Proof: For detailed proof, see Appendix B. !
The above theorem states that the set of global attractors of

the switching ODE (27) is the same as that for all deterministic
ODEs, obtained by fixing θ(t) = θ ∈ M in (27), and consti-
tutes R[0,η). This sets the stage for Section V-C which concludes
the desired tracking result in Theorem 4.1.

C. Asymptotic Stability of the Interpolated Process
This section completes the proof of Theorem 4.1 by looking

at the asymptotic stability of the interpolated process

yµ(t) = yn :=

[
ψ̂n

rn

]
for t ∈ [nµ, (n + 1)µ) . (30)

In Theorem 5.1, we considered µ small and n large, but µn
remained bounded. This gives a limit switched ODE for the
sequence of interest as µ → 0. Here, we study asymptotic
stability and establish that the limit points of the switched ODE
and the stochastic approximation algorithm coincide as t → ∞.
We thus consider the case where µ → 0 and n → ∞, however,
µn → ∞ now. Nevertheless, instead of considering a two-stage
limit by first letting µ → 0 and then t → ∞, we study yµ(t +
tµ) and require tµ → ∞ as µ → 0. The following corollary
concerns asymptotic stability of the interpolated process.

Corollary 5.1: Let

Yη =
{
col(x, r); x = 0S , r ∈ R[0,η)

}
. (31)

4It can be shown that the sequence {ψn} induces the same asymptotic
behavior as the beliefs developed using the brute force scheme [8, Ch. 5.3]
about objective function values.
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Denote by {tµ} any sequence of real numbers satisfying
tµ → ∞ as µ → 0. Assume {y(n) : µ > 0, n < ∞} is tight
or bounded in probability. Then, for each η ≥ 0, there exists
γ(η) ≥ 0 such that if γ ≤ γ(η) in (7)

yµ(· + tµ) → Yη, as µ → 0. (32)

Proof: We only give an outline of the proof, which
essentially follows from Theorems 5.1 and 5.2. Define ŷµ(·) =
yµ(· + tµ). Then, it can be shown that ŷµ(·) is tight. For any
T1 < ∞, take a weakly convergent subsequence of {ŷµ(·),
ŷµ(· − T1)}. Denote the limit by (ŷ(·), ŷT1

(·)). Note that
ŷ(0) = ŷT1

(T1). The value of ŷT1
(0) may be unknown, but

the set of all possible values of ŷT1
(0) (over all T1 and

convergent subsequences) belongs to a tight set. Using this and
Theorems 5.1 and 5.2, for any ϱ>0, there exists a Tϱ<∞ such
that for all T1 > Tϱ, d(ŷT1

(T1), Yη) ≥ 1 − ϱ. This implies that
d(ŷ(0), Yη) ≥ 1 − ϱ, and the desired result follows. !

VI. CASE OF SLOW RANDOM TIME VARIATIONS

This section is devoted to the analysis of the adaptive search
scheme when the random evolution of the parameters under-
lying the discrete stochastic optimization problem occurs on a
timescale that is much slower as compared to the adaptation
rate of the adaptive search algorithm with step-size µ. More pre-
cisely, we replace Assumption 4 with the following assumption.

Assumption 5: 0 < ε ≪ µ in the transition probability
matrix P ε in Assumption 3.

The above assumption introduces a different timescale to
Algorithm 1, which leads to an asymptotic behavior that is
fundamentally different as compared with the case ε = O(µ)
that we analyzed in Section V. Under Assumption 5, θ(·) is the
slow component and Y (·) is the fast transient in (23). It is well-
known that, in such two timescale systems, the slow component
is quasi-static—remains almost constant—while analyzing the
behavior of the fast timescale. The weak convergence argument
then shows that (Y µ(·), θµ(·)) converges weakly to (Y (·), θ)
as µ → 0 such that the limit Y (·) is a solution to

dY

dt
= F (Y , θ) − Y (33)

where

F (Y , θ) =

⎡

⎢⎢⎣

0S

bγ
(
ψ̂ + X(θ)

)
· X(θ) − Xmin(θ)

bγ
(
ψ̂ + X(θ)

)

⎤

⎥⎥⎦ . (34)

Technical details are omitted for brevity; see [11, Ch. 8] for
details.

Our task is then to investigate stability of this limit system.
Recall (19). In view of (34), there exists no explicit intercon-
nection between the dynamics of r and z in (33). Therefore, we
start by looking at

d

dt

[
ψ̂
r

]
=

[
0S

bγ
(
ψ̂ + X(θ)

)
· X(θ) − Xmin(θ)

]
−
[
ψ̂
r

]
.

The first component is asymptotically stable, and any trajectory
ψ̂(t) decays exponentially fast to 0S as t → ∞. The first part
in Theorem 5.2 also shows that, for the second component, the
set R[0,η) is globally asymptotically stable for all θ ∈ M.

It remains to analyze stability of

d

dt

[
ψ̂
z

]
=

[
0S

bγ
(
ψ̂ + X(θ)

)
]
−
[
ψ̂
z

]
.

The first component is asymptotically stable. Substituting the
global attractor ψ̂ = 0S , we look at

dz

dt
= bγ

(
X(θ)

)
− z

which is globally asymptotically stable. Further, and any trajec-
tory z(t) converges exponentially fast to bγ(X(θ)) as t → ∞.

Combining the above steps, one can obtain the same asymp-
totic stability result as that presented in Corollary 5.1. Further,
using a similar argument, it can be shown that

zµ(· + tµ) → bγ
(
X(θ)

)
in probability as µ → 0

where {tµ} is any sequence of real numbers satisfying tµ → ∞
as µ → 0. Therefore, for any δ > 0

lim
µ→0

P
(∥∥zµ(· + tµ) − bγ

(
X(θ)

)∥∥ ≥ δ
)

= 0 (35)

where ∥ · ∥ denotes the Euclidean norm. Feeding in the vector
of true objective function values X(θ) for any θ, the smooth
best-response strategy in Definition 3.1 outputs a randomized
strategy with the highest probability assigned to the global op-
timum. This in turn implies that the maximizing element of the
empirical sampling distribution zµ(· + tµ) represents the global
optimum. The following corollary summarizes this result.

Corollary 6.1: Denote the most frequently visited state by

smax
n = arg maxi∈S zi,n

where zi,n is the ith component of zn. Further, define the
continuous time interpolated sequence

smax,µ(t) = smax
n for t ∈ [nµ, (n + 1)µ) .

Then, under Assumptions 1, 3, and 5, smax,µ(· + tµ) converges
in probability to the global optima set Q(θ). That is, for any δ>0

lim
µ→0

P (d (smax,µ(· + tµ), Q(θ)) ≥ δ) = 0 (36)

where d(·, ·) denotes the usual distance function.
The above corollary simply asserts that, for a small µ and for

any θ ∈ M, the most frequently sampled element, with a high
probability, eventually spends nearly all its time in the global
optima set.

VII. NUMERICAL EXAMPLES

This section illustrates the performance of Algorithm 1,
henceforth referred to as AS, using the examples in [26], [27].
The performance of the AS scheme will be compared against
the following algorithms in the literature, which are proved to
be globally convergent:

1) Random Search (RS) [26], [28]: RS is a modified hill-
descending algorithm. Let πn ∈ RS represent the empirical
sampling frequency of the elements of the search space. The
RS algorithm is summarized in Algorithm 2. For static discrete
stochastic optimization problems, the constant step-size µ in
(37) is replaced with the decreasing step-size µn = 1/n. Each
iteration of the RS algorithm requires one random number
selection, O(S) arithmetic operations, one comparison and two
independent simulation experiments.
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Algorithm 2 Random search (RS) [26], [28]

Step 0. Initialization. Select s0 ∈ S. Set πi,0 = 1 if i = s0,
and 0 otherwise. Set s∗0 = s0 and n = 1.
Step 1. Random search. Sample a candidate solution s′n
uniformly from the set M − sn−1.
Step 2. Evaluation and Acceptance. Simulate to obtain
Xn(sn−1) and Xn(s′n). If Xn(s′n) < Xn(sn−1), let sn =
s′n; otherwise, let sn = sn−1.

Step 3. Occupation Probability Update.

πn = πn−1 + µ [esn − πn−1] , 0 < µ < 1 (37)

where ei is a unit vector with the ith element being equal to one.
Step 4. Global Optimum Estimate.

s∗n ∈ argmax
i∈S

πi,n.

Let n ← n + 1 and go to Step 1.

2) Upper Confidence Bound (UCB) [41], [43]: The UCB
algorithms belong to the to the family of “follow the perturbed
leader” algorithms. Let B denote an upper bound on the ob-
jective function and ξ > 0 be a constant. The UCB algorithm is
summarized below in Algorithm 3. For a static discrete stochas-
tic optimization problem, we set µ = 1 in (39); otherwise, the
discount factor µ has to be chosen in the interval (0, 1). Each
iteration of the UCB algorithm requires O(S) arithmetic oper-
ations, one maximization and one simulation of the objective
function.

Algorithm 3 Upper confidence bound (UCB) [41], [43]

Step 0. Initialization. For each i∈S, simulate to obtain X0(i),
and set X̂i,0 =X0(i), mi,0 =1. Select 0<µ≤1, and set n=1.
Step 1. Sampling. Sample a candidate solution

sn = argmaxi∈S

[
X̂i,n−1 + 2B

√
ξ ln(Mn−1 + 1)

mi,n−1

]

where mi,n−1 =
n−1∑

τ=1

µn−1−τ I(sτ = i)

Mn−1 =
S∑

i=1

mi,n−1 (38)

and B is an upper bound on the objective function.
Step 2. Evaluation. Simulate to obtain Xn(sn).
Step 3. Update Belief.

X̂i,n =
1

mi,n

n∑

τ=1

µn−τXτ (sτ )I(sτ = i). (39)

Step 4. Global Optimum Estimate.
s∗n ∈ arg max

i∈S
X̂i,n.

Let n ← n + 1 and go to Step 1.

Notice that the UCB algorithm is designed to find the global
maximizer, whereas both the AS and RS schemes seek to find
the global minimizer. Therefore, one needs to be careful to
accordingly modify the simulation data (multiply by −1 in the
case of UCB) when comparing these algorithms. Throughout

this section, we use ρ(x) as in Remark 3.1. In comparison to the
RS and UCB algorithms, the proposed scheme requires O(S)
arithmetic operations, one random number selection and one
simulation of the objective function at each iteration.

In what follows, we start with a static discrete stochastic op-
timization example, and then proceed to the regime-switching
setting.

A. Example 1: Static Discrete Stochastic Optimization
Consider the following example described in [26, Sec. 4].

Suppose that the demand dn for a particular product has a
Poisson distribution with parameter λ:

dn ∼ f(α;λ) =
λα exp(−λ)

α!
.

The objective is then to find the number that maximizes the
demand probability, subject to the constraint that at most S units
can be ordered. This problem can be formulated as a discrete
deterministic optimization problem

argmax
α∈{0,1,...,S}

[
f(α;λ) =

λα exp(−λ)

α!

]
(40)

which can be solved analytically. Here, we aim to solve the
following stochastic variant. Find

argmin
α∈{0,1,...,S}

−E {I(dn = α)} (41)

where I(·) denotes the indicator function. Clearly, the set of
global optimizers of (40) and (41) coincide. This enables us to
check the results obtained using the search schemes.

We consider the following two cases of the rate parameter λ
in (40): i) λ = 1, which implies that the set of global optimizers
is Q = {0, 1}, and ii) λ = 10, in which case the set of global
optimizers is Q = {9, 10}. For each case, we further study
the effect of the size of search space on the performance
of algorithms by considering two instances: i) S = 10, and
ii) S = 100. Since the problem is static in the sense that Q
is fixed for each case, one can use the results of [59] to show
that if the exploration factor γ in (7) decreases to zero suffi-
ciently slowly, the sequence of samples {sn} converges almost
surely to the global minimum. More precisely, we consider the
following modifications to Algorithm 1:

(1) The constant step-size µ in (5) is replaced by decreasing
step-size µn = 1/n;

(2) The exploration factor γ in (7) is replaced by 1/nβ ,
0 < β < 1.

By the above construction, {sn} will eventually become reduci-
ble with singleton communicating class Q. That is, the sequence
of samples {sn} eventually spends all its time in the global
optimum. This is in contrast to the sequence of samples taken
by Algorithm 1 in the regime-switching setting, which is dis-
cussed in the following example. The main reason for the above
modifications is comparability to existing schemes, which use
decreasing step-sizes, for the performance comparison purpose.
In the context of stochastic recursive algorithms, it is unfair
to compare the performance of a constant step-size algorithm
with a diminishing step-size algorithm. Therefore, we take two
approaches: In this example, the above modifications are made
to devise a diminishing step-size variant of Algorithm 1. In
Example 2, we make modifications on the existing algorithms
to devise their corresponding constant step-size variants, and
compare them with Algorithm 1 with no modifications.
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TABLE I
EXAMPLE 1: PERCENTAGE OF INDEPENDENT RUNS OF ALGORITHMS

THAT CONVERGED TO THE GLOBAL OPTIMUM SET IN
n ITERATIONS. (a) λ = 1. (b) λ = 10

Fig. 1. Example 1. Proportion of simulation effort expended on states
outside the global optima set (λ = 1, S = 100).

In this example, we set β = 0.2 and γ = 0.01. We further
set B = 1, and ξ = 0.5 in Algorithm 3. To compare the com-
putational costs of the schemes and give a fair comparison,
we use the number of simulation experiments performed by
each algorithm when evaluating its performance. Close scrutiny
of Table I leads to the following observations: In all three
algorithms, the speed of convergence decreases when either
S or λ (or both) increases. However, the effect of increasing
λ is more substantial since the objective function values of
the worst and best states are closer when λ = 10. Given equal
number of simulation experiments, higher percentage of cases
that a particular method has converged to the global optima
indicates convergence at a faster rate. Table I confirms that the
AS algorithm ensures faster convergence in each case.

To evaluate and compare efficiency of the algorithms, the
sample path of the number of simulation experiments performed
on nonoptimal feasible solutions, i.e., 1−

∑
i∈Q zi,n, is plotted

in Fig. 1, when λ=1 and S =100. As can be seen, since the RS
method randomizes among all (except the previously sampled)
feasible solutions at each iteration, it performs approximately

Fig. 2. Example 1. Sensitivity to γ when λ = 1 and S = 10. (Top) Con-
vergence speed. (Bottom) The distribution of simulation experiments
(efficiency) after n = 104 iterations.

Fig. 3. Example 1. Smaller adaptation rate µ ensures lower asymptotic
regret at the expense of higher transient regret due to lower learning rate
(λ = 1, S = 10).

98% of the simulations on nonoptimal elements. Further, the
UCB algorithm switches to its exploitation phase after a longer
period of exploration as compared to the AS algorithm. Fig. 1
thus confirms that the AS algorithm has the supreme balance
between exploration of the search space and exploitation of the
simulation data. Fig. 2 further illustrates the sensitivity of both
the convergence speed and the efficiency of Algorithm 1 to the
exploration parameter γ. As can be seen, larger γ increases both
the number of simulation experiments that the algorithm
requires to locate the global optimum, and the proportion of
simulations performed on nonoptimal feasible solutions.

Finally, Fig. 3 considers Algorithm 1 in a static setting,
however, with no modifications to the step-size (i.e., constant
step-size µ) and illustrates the implication of the convergence
result in Theorem 4.1, namely, lower asymptotic regrets are
achievable by choosing smaller step-sizes µ. As can be seen,
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Fig. 4. Example 2. (Top) Sample path of the estimate of the global
optimum. The global optima set is {0, 1}, for 0 < n < 103 , and {9, 10},
for 103 ≤ n < 105. (Bottom) Proportion of simulation experiments on
nonoptimal feasible solutions when the global optima set evolves at
n = 103.

lower asymptotic regrets come at the expense of higher regrets
experienced in the transient state, due to slower learning rate
µ. This further justifies the use of a decreasing step-size in the
static settings; that is, the step-size is larger at the beginning to
enable faster learning and improve transient behavior and be-
comes smaller over time to asymptotically achieve zero regret.
In nonstationary environments, however, decreasing step-sizes
will prevent the algorithm to follow the random unpredictable
jumps of the global optimum, thereby justifying the use of
constant step-sizes.

B. Example 2: Regime-Switching Discrete
Stochastic Optimization

Consider the discrete stochastic optimization problem de-
scribed in Example 1 with the exception that now λ(θn) jump
changes between 1 and 10 according to a Markov chain {θn}
with state space M = {1, 2}, and transition probability matrix

P ε = I + εQ, Q =

[
−0.5 0.5
0.5 −0.5

]
. (42)

The regime-switching discrete stochastic optimization we aim
to solve is then (41), where S = 10

dn ∼ f (α;λ(θn)) =
λα(θn) exp (−λ(θn))

α!
(43)

and λ(1) = 1 and λ(2) = 10. The sets of global optimizers are
then, Q(1) = {0, 1} and Q(2) = {9, 10}, respectively. In the
rest of this section, we assume γ = 0.1, and µ = ε = 0.01.

Fig. 4 (top) shows tracking capability of the algorithms for a
slow Markov chain {θn} that undergoes a jump from θ = 1 to
θ = 2 at n = 103. As can be seen, contrary to the RS algorithm,

Fig. 5. Example 2. Proportion of time the global optimum estimate does
not match the true global optimum versus the switching speed of the
global optimizers set after n = 106 iterations.

both the AS and UCB methods properly track the changes;
however, the AS algorithm responds faster to the jump. In the
sample path shown, s0 = 8. Due to the reinforcement learning
nature of the AS algorithm, sampling a particular feasible solu-
tion increases the probability of sampling it again in the follow-
ing period. This, together with the fact that the global optimizer
is estimated by the most frequently sampled feasible solution,
explains why the estimate of the global optimizer is 8 until
75 simulations have been performed. However, as n increases,
more simulations are preformed on other feasible solutions
due to the exploration component in the sampling strategy,
hence, the estimates of objective function values become
more accurate. Simultaneously, the sampling strategy is be-
ing updated using these more accurate estimates by over-
weighting the feasible solution with the minimum estimate
value. This steadily increases the empirical frequency of sam-
pling the true global optimizer, and enables the algorithm
to detect it after 75 iterations. This effect is illustrated in
Fig. 4 (bottom) by showing that the frequency of sampling
nonoptimal feasible solutions declines as n increases. Evi-
dently, the AS algorithm provides the supreme balance between
exploration and exploitation, and properly responds to the
random switching.

Finally, Fig. 5 compares efficiency of algorithms for dif-
ferent values of ε in (42), which determines the speed of
random switchings. Each point on the graph is an average
over 100 independent runs of 106 iterations of the algorithms.
As expected, the estimate of the global optimum spends more
time in the global optimum for all methods as the speed of
time variations decreases. The estimate provided by the AS
algorithm, however, differs from the true global optimum less
frequently as compared with the RS and UCB methods.

VIII. CONCLUSION

This paper has considered discrete stochastic optimization
via simulation where the global optimum is nonstationary and
undergoes random unpredictable jumps over time. We proposed
a class of sampling-based adaptive search algorithms based
on a smooth best-response strategy, that is inspired by ficti-
tious play learning rules in the game theory. The convergence
analysis proved that, if the underlying time variations occur
on the same timescale as the updates of the proposed adaptive
search algorithm, it will properly track the time variations of
the global optima set by showing that a regret measure can be
made and kept arbitrarily small. Further, if the global optimum
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evolves on a slower timescale, the most frequently sampled
solution tracks the global optima set. The proposed scheme thus
exhausts most of its simulation efforts on the global optima set,
which promotes its deployment as an online control mechanism
to enable self-configuration of large-scale stochastic systems.
It further allows correlation amongst the collected simulation
observations, which is more realistic in practice. Numeri-
cal examples confirmed superior efficiency and convergence
speed as compared with the existing random search and pure
exploration methods.

APPENDIX A
PROOF OF THEOREM 5.1

We first prove tightness of the interpolated process Y µ(·).
Consider the sequence {Y n}, defined in (19). Because of the
boundedness of the sequences, for any 0 < T1 < ∞ and n ≤
T1/µ, {Y n} is bounded w.p.1. As a result, for any κ̃ > 0

sup
n≤T1

µ

E∥Y n∥κ̃ < ∞

where in the above and hereafter ∥ · ∥ denotes the Euclidean
norm. We will also use t/µ to denote the integer part of t/µ for
each t > 0. Next, considering the interpolated process Y µ(·)
(defined in (22)) and the recursion (20), for any t, u > 0, δ > 0,
and u < δ, it can be verified that

Y µ(t+u)−Y µ(t)=µ

(t+u)/µ−1∑

k= t
µ

[
A
(
sk, ψ̂k, Xk(sk)

)
−Y k

]

+

(t+u)/µ−1∑

k= t
µ

[
X(θk) − X(θk+1)

0S+1

]
(44)

where A(·, ·, ·) is a vector function defined in (21). The bound-
edness of the sequences {Xn(s, θ)}, {sn}, and {θn} then
implies that

Eµ
t ∥Y µ(t + u) − Y µ(t)∥2 = O(u)

where Eµ
t denotes the conditional expectation given the

σ-algebra generated by the µ-dependent past data up to time t.
By virtue of the tightness criteria [60, Th. 3, p. 47] or [11, Ch. 7],
it follows that

lim
δ→0

lim sup
µ→0

[
E
{

sup
0≤u≤δ

Eµ
t ∥Y µ(t + u)−Y µ(t)∥2

}]
= 0. (45)

Therefore, Y µ(·) is tight in D([0,∞] : R2S+1). In view of
[28, Prop. 4.4], θµ(·) ⇒ θ(·) such that θ(·) is a continuous time
Markov chain with generator Q; see Assumption 3. As a result,
the pair (Y µ(·), θµ(·)) is tight in D([0,∞] : R2S+1 × M).

Using Prohorov’s theorem [11], one can extract a weakly
convergent subsequence. For notational simplicity, we still
denote the subsequence by Y µ(·) with limit Y (·). By the
Skorohod representation theorem [11] (with a slight abuse of
notation), Y µ(·) → Y (·) w.p.1, and the convergence is uniform
on any compact interval. We now proceed to characterize the
limit Y (·) using martingale averaging methods.

First, one can show the last term in (44) contributes nothing to
the limit. To obtain the desired limit, it will then be proved that
the limit (Y (·), θ(·)) is the solution of the martingale problem
with operator L defined as follows. For all i ∈ M,

Lg(x, i) =∇′
xg(x, i) [F (x, i) − x] + Qg(x, ·)(i)

Qg(x, ·)(i) =
∑

j∈M
qijg(x, j) (46)

and, for each i ∈ M, g(·, i) : Rr 2→ R with g(·, i) ∈ C1
0

(C1 function with compact support). Further, ∇xg(x, i) de-
notes the gradient of g(x, i) with respect to x, and F (·, ·) is
defined in (24). Using an argument similar to [12, Lemma 7.18],
one can show that the martingale problem associated with the
operator L has a unique solution. Thus, it remains to prove that
the limit (Y (·), θ(·)) is the solution of the martingale problem.
To this end, it suffices to show that, for any positive arbitrary
integer κ0, and for any t, u > 0, 0 < tι ≤ t for all ι ≤ κ0, and
any bounded continuous function h(·, i), for all i ∈ M

Eh (Y (tι), θ(tι) : ι ≤ κ0)

×

⎡

⎣g (Y (t + u), θ(t + u)) − g (Y (t), θ(t))

−
t+u∫

t

Lg (Y (v), θ(v)dv)

⎤

⎦ = 0. (47)

To verify (47), we work with (Y µ(·), θµ(·)) and prove that the
above equation holds as µ → 0.

By the weak convergence of (Y µ(·), θµ(·)) to (Y (·), θ(·))
and the Skorohod representation, it can be seen that

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

× [g (Y µ(t + u), θµ(t + u)) − g (Y µ(t), θµ(t))]

→ Eh (Y (tι), θ(tι) : ι ≤ κ0)

× [g (Y (t + u), θ(t + u)) − g (Y (t), θ(t))] .

Now, choose a sequence of integers {nµ} such that nµ →
∞ as µ → 0, but δµ = µnµ → 0, and partition [t, t + u] into
subintervals of length δµ. Then

g (Y µ(t + u), θµ(t + u)) − g (Y µ(t), θµ(t))

=
t+u∑

ℓ:ℓδµ=t

[
g
(
Y ℓnµ+nµ , θℓnµ+nµ

)
− g

(
Y ℓnµ , θℓnµ+nµ

)]

+
t+u∑

ℓ:ℓδµ=t

[
g
(
Y ℓnµ , θℓnµ+nµ

)
− g

(
Y ℓnµ , θℓnµ

)]
(48)

where
∑t+u

ℓ:ℓδµ=t denotes the sum over ℓ in the range t ≤
ℓδµ < t + u.

First, we consider the second term on the r.h.s. of (48);
see (49), shown at the top of the next page. Concerning the
first term on the r.h.s. of (48), see (50) shown at the top of
the next page, where ∇xy denotes the gradient column vector
with respect to vector x, and ∇′

x
g represents its transpose. For

notational simplicity, we write ∇
ψ̂
g(Y ℓnµ , θℓnµ), ∇rg(Y ℓnµ ,

θℓnµ), and ∇zg(Y ℓnµ , θℓnµ) as ∇
ψ̂
g, ∇rg, and ∇zg respec-

tively. The rest of the proof is divided into three steps, each
concerning one of the terms in (50).

Step 1: We start by looking at the first term on the r.h.s.
of (50), and rewrite it as (51), shown at the top of the next
page, where Xk(·, θ) is defined by Assumption 1. Note that
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lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

⎡

⎣
t+u∑

ℓ:ℓδµ=t

[
g
(
Y ℓnµ , θℓnµ+µ

)
−g

(
Y ℓnµ , θℓnµ

)]
⎤

⎦

= lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

⎡

⎣
t+u∑

ℓ:ℓδµ=t

Θ∑

i0=1

Θ∑

j0=1

ℓnµ+nµ−1∑

k=ℓnµ

[
g
(
Y ℓnµ , j0

)
P(θk+1 =j0|θk = i0)−g

(
Y ℓnµ , i0

)]
I(θk = i0)

⎤

⎦

= Eh (Y (tι), θ(tι) : ι ≤ κ0)

⎡

⎣
t+u∫

t

Qg (Y (v), θ(v)) dv

⎤

⎦ (49)

lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

⎡

⎣
t+u∑

ℓ:ℓδµ=t

[
g
(
Y ℓnµ+nµ , θℓnµ+nµ

)
− g

(
Y ℓnµ , θℓnµ+nµ

)]
⎤

⎦

= lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
ψ̂
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

[
f
(
sk, ψ̂k + X(θk), Xk(sk)

)
− X(θk)

]
− 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

ψ̂k

⎤

⎦

+ δµ∇′
r
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

[
Xk(sk)−Xmin,k

]
− 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

rk

⎤

⎦+δµ∇′
z
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

esk−
1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

zk

⎤

⎦

⎤

⎦ (50)

lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
ψ̂
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

Θ∑

θ̌=1

Θ∑

θ=1

Eℓnµ

{
I
(
θk = θ|θℓnµ = θ̌

) [
f
(
sk, ψ̂k + X(θ), Xk(sk, θ)

)
− X(θ)

]}
⎤

⎦

⎤

⎦ (51)

for large k with ℓnµ≤k<ℓnµ+nµ and k−ℓnµ→∞, by [28,
Prop. 4.4], for some k̂0 > 0

(I+εQ)k−ℓnµ =Z((k−ℓnµ)ε)+O(ε+exp
(
−k̂0(k−ℓnµ)

)

dZ(t)

dt
=Z(t)Q, Z(0) = I.

For ℓnµ ≤ k ≤ ℓnµ + nµ, ε = O(µ) yields that (k −
ℓnµ)ε → 0 as µ → 0. For such k, Z((k − ℓnµ)ε) → I . There-
fore, by the boundedness of X(θ) and fk, it follows that, as
µ → 0

1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

∥∥∥Eℓnµ

{
f
(
sk, ψ̂k+X(θ), Xk(sk, θ)

)
−X(θ)

}∥∥∥

×
∣∣Eℓnµ

{
I(θk = θ)|I

(
θℓnµ = θ̌

)}
− I

(
θℓnµ = θ̌

)∣∣ → 0.

Therefore, (51) reduces to

lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
ψ̂
g

⎡

⎣
Θ∑

θ̌=1

I
(
θℓnµ = θ̌

)
⎡

⎣− X(θ̌)

+
1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

Eℓnµ

{
f
(
sk, ψ̂k+X(θ̌), Xk(sk, θ̌)

)}
⎤

⎦

⎤

⎦

⎤

⎦.

(52)

It is more convenient to work with the individual elements of
f(·, ·, ·). Substituting for the ith element from (6) into the last
line of (52), we obtain

1

nµ

Θ∑

θ̌=1

ℓnµ+nµ−1∑

k=ℓnµ

I
(
θℓnµ = θ̌

)
Eℓnµ

×

⎧
⎨

⎩
Xk(i, θ̌)

bγi

(
ψ̂k + X(θ̌)

) · I(sk = i)

⎫
⎬

⎭

=
1

nµ

Θ∑

θ̌=1

ℓnµ+nµ−1∑

k=ℓnµ

Eℓnµ

{
Xk(i, θ̌)

}
I
(
θℓnµ = θ̌

)
(53)

since Eℓnµ{I(sk = i)}=bγi (ψℓnµ
). Recall that ψℓnµ

= ψ̂ℓnµ
+

X(θℓnµ). However, in the last line of (52), θℓnµ = θ̌ is
held fixed. Therefore, ψℓnµ

= ψ̂ℓnµ
+ X(θ̌). Note further that

θℓnµ = θµ(µℓnµ). In light of Assumptions 1–3, by the weak
convergence of θµ(·) to θ(·), the Skorohod representation, and
using µℓnµ → v, it can be shown by combining (52) and (53)
that, as µ → 0

1

nµ

Θ∑

θ̌=1

ℓnµ+nµ−1∑

k=ℓnµ

Eℓnµ

{
Xk(i, θ̌)

}
I
(
θµ(µℓnµ) = θ̌

)

→
Θ∑

θ̌=1

X(i, θ̌)I
(
θ(v)= θ̌

)
=F (i, θ(v)) in probability. (54)
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lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ

nµ
∇′

r
g

ℓnµ+nµ−1∑

k=ℓnµ

⎡

⎣
Θ∑

θ̌=1

[
S∑

i=1

EℓnµXk(i, θ̌)I(sk = i) − Xmin(θ̌)

]
I
(
θℓnµ = θ̌

)
⎤

⎦

⎤

⎦

= lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ

nµ
∇′

r
g

ℓnµ+nµ−1∑

k=ℓnµ

⎡

⎣
Θ∑

θ̌=1

[
S∑

i=1

bγi

(
ψℓnµ

)
EℓnµXk(i, θ̌) − Xmin(θ̌)

]
I
(
θℓnµ = θ̌

)
⎤

⎦

⎤

⎦ (57)

A similar argument for the first term in (52) yields

lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
ψ̂
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

[
f
(
sk, ψ̂k+X(θk), Xk(sk)

)

−X(θk)
]
⎤

⎦

⎤

⎦→0S . (55)

Using the technique of [11, Ch. 8], it can be shown that

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
ψ̂
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

ψ̂k

⎤

⎦

⎤

⎦

→ Eh (Y (tι), θ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∫

t

∇′
ψ̂
g (Y (v), θ(v)) ψ̂(v)dv

⎤

⎦ as µ → 0. (56)

Step 2: Next, we concentrate on the second term in (50).
By virtue of the boundedness of Xk(i, θ) (see Assumption 1),
and using a similar argument as in Step 1, we have (57),
shown at the top of the page. Here, we used Eℓnµ{I(sk =
i)} = bγi (ψℓnµ

) as in Step 1 of the proof. Recall that ψk =

ψ̂k + X(θk) from (18). Note further that ψℓnµ
= ψµ(µℓnµ)

and θℓnµ = θµ(µℓnµ). By the weak convergence of θµ(·) to
θ(·), the Skorohod representation, and using µℓnµ → v and
Assumptions 1–3, it can then be shown

Θ∑

θ̌=1

1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

bγi (ψµ(µℓnµ)) Eℓnµ

{
Xk(i, θ̌)

}

× I
(
θµ(µℓnµ) = θ̌

)

→ bγi

(
ψ̂(v)+X (θ(v))

)
X(i, θ(v)) in prob. as µ→0. (58)

Using a similar argument for the second term in (57), we
conclude that, as µ → 0, we have (59), shown at the top of the
next page. Finally, similar to (56), we have

Eh(Y µ(tι), θ
µ(tι) : ι≤κ0)

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
r
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

rk

⎤

⎦

⎤

⎦

→ Eh (Y (tι), θ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∫

t

∇′
r
g (Y (v), θ(v)) r(v)dv

⎤

⎦ as µ → 0. (60)

Step 3: Next, we concentrate on the last term in (50). Using
similar arguments as in Step 1 and 2, we have

lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
z
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

S∑

i=1

ei ·Eℓnµ{I(sk = i)}

⎤

⎦

⎤

⎦

= lim
µ→0

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
z
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

Θ∑

θ̌=1

I
(
θℓnµ = θ̌

)

×
[

S∑

i=1

bγi

(
ψ̂ℓnµ

+X(θ̌)
)

· ei

]]]
.

(61)

Noting that θℓnµ = θµ(µℓnµ), by the weak convergence of
θµ(·) to θ(·), the Skorohod representation, and using µℓnµ →
v, it can then be shown

1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

Θ∑

θ̌=1

I
(
θµ(µℓnµ) = θ̌

)

×
[

S∑

i=1

bγi

(
ψ̂

µ
(µℓnµ) + X(θ̌)

)
· ei

]

→ bγ
(
ψ̂(v) + X (θ(v))

)
in probability as µ → 0. (62)

Therefore, as µ → 0, we have

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
z
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

S∑

i=1

esk

⎤

⎦

⎤

⎦

→ Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∫

t

∇′
z
g (Y (v), θ(v)) bγ

(
ψ̂(v) + X (θ(v))

)
dv

⎤

⎦ .

(63)

Finally, similar to (56), we have

Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
z
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

zk

⎤

⎦

⎤

⎦

→ Eh (Y (tι), θ(tι) : ι ≤ κ0)

×

⎡

⎣
t+u∫

t

∇′
z
g (Y (v), θ(v)) z(v)dv

⎤

⎦ as µ → 0. (64)

Combining Steps 1 to 3 concludes the proof.
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Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0) ×

⎡

⎣
t+u∑

ℓ:ℓδµ=t

δµ∇′
r
g

⎡

⎣ 1

nµ

ℓnµ+nµ−1∑

k=ℓnµ

[
Xk(sk) − Xmin,k

]
⎤

⎦

⎤

⎦

→ Eh (Y µ(tι), θ
µ(tι) : ι ≤ κ0)

⎡

⎣
t+u∫

t

∇′
r
g (Y (v), θ(v))

[
bγ

(
ψ̂(v) + X (θ(v))

)
· X (θ(v)) − Xmin (θ(v))

]
dv

⎤

⎦ (59)

APPENDIX B
PROOF OF THEOREM 5.2

We first prove that each subsystem—associated with each
θ ∈ M when θ(t) = θ is held fixed—is globally asymptoti-
cally stable, and R[0,η) is its global attracting set. Define the
Lyapunov function

Vθ(r) = r2. (65)

Taking the time derivative, and applying (27), we obtain

d

dt
Vθ(r) = 2r ·

[
bγ

(
X(θ)

)
· X(θ) − Xmin(θ) − r

]
.

Since the objective function is bounded across the feasible set
for each θ ∈ M, we have

d

dt
Vθ(r) ≤ 2r · [C(γ, θ) − r] (66)

for some constant C(γ, θ). Recall the smooth best-response
sampling strategy bγ(·) in Definition 3.1. The parameter γ
simply determines the magnitude of perturbations applied to the
objective function. It is then clear that C(γ, θ) is monotonically
increasing in γ.

In view of (66), for each η > 0, γ̂ can be chosen small enough
such that, if γ ≤ γ̂ and r ≥ η

d

dt
Vθ(r) ≤ −Vθ(r). (67)

Therefore, each subsystem is globally asymptotically stable
and, for γ ≤ γ̂

lim
t→∞

d
(
r(t), R[0,η)

)
= 0.

Finally, stability of the regime-switching ODE (23) is ex-
amined. We can use the above Lyapunov function to extend
[15, Cor. 12] to prove global asymptotic stability w.p.1.

Theorem B. 1 [15, Cor. 12]: Consider the switched system

ẇ(t) = f (w(t), θ(t))

w(0) = w0, θ(0) = θ0, w(t) ∈ Rr, θ(t) ∈ M (68)

where θ(t) is the state of a continuous time Markov chain with
generator Q. Define

q := max
θ∈M

|qθθ | , and q̃ := max
θ,θ′∈M

q
θθ′ .

Suppose there exist continuously differentiable functions Vθ :
Rn → R+, for each θ ∈ M, and class K∞ functions a1 , a2 :
R+ → R+ such that the following hold for some H ⊂ Rr:

1) Vθ(w) > 0 for all w ̸∈ H;
2) a1(d(w, H))≤Vθ(w)≤a2(d(w, H)), ∀w∈Rr, θ∈M;
3) [∇Vθ]′f(w, θ) ≤ −λVθ(w), ∀w ∈ Rr, ∀ θ ∈ M;
4) Vθ(w) ≤ vVθ′(w), ∀w ∈ Rr, θ, θ′ ∈ M;
5) (λ + q̃)/q > v > 1.

Then, the regime-switching system (68) is globally asymptot-
ically stable almost surely, and H constitutes its global attractor
set.

The quadratic Lyapunov functions (65) satisfies hypothesis 2
in Theorem B.1; see (67). Further, since the Lyapunov functions
are the same for all subsystems θ ∈ M, existence of v > 1 in
hypothesis 3 is automatically guaranteed. Hypothesis 4 simply
ensures that the switching signal θ(t) is slow enough. Given that
λ = 1 in hypothesis 2, it remains to ensure that the generator Q
of Markov chain θ(t) satisfies 1 + q̃ > q. This is satisfied since,
in view of (13)}, |q

θθ̃
| ≤ 1 for all θ, θ̃ ∈ M.
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