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ABSTRACT | Multifunction radars (MFRs) are sophisticated
sensors with complex dynamical modes that are widely used in
surveillance and tracking. This paper demonstrates that sto-
chastic context-free grammars (SCFGs) are adequate models
for capturing the essential features of the MFR dynamics.
Specifically, MFRs are modeled as systems that “speak” a
language that is characterized by an SCFG. The paper shows
that such a grammar is modulated by a Markov chain re-
presenting radar’s policy of operation. The paper also demon-
strates how some well-known statistical signal processing
techniques can be applied to MFR signal processing using
these stochstic syntactic models. We derive two statistical
estimation approaches for MFR signal processing—a maximum
likelihood sequence estimator to estimate radar’s policies of
operation, and a maximum likelihood parameter estimator to
infer the radar parameter values. Two layers of signal
processing are introduced in this paper. The first layer is
concerned with the estimation of MFR’s policies of operation. It
involves signal processing in the CFG domain. The second layer
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is concerned with identification of tasks the radar is engaged in.
It involves signal processing in the finite-state domain. Both of
these signal processing techniques are important elements of a
bigger radar signal processing problem that is often encoun-
tered in electronic warfare applications—the problem of the
estimation of the level of threat that a radar poses to each
individual target at any point in time.

KEYWORDS | Electronic warfare; Galton-Watson branching
process; inside-outside algorithm; maximum likelihood esti-
mation; multifunction radar (MFR); stochastic context-free
grammars (SCFGs); syntactic modeling; syntactic pattern
recognition

I. INTRODUCTION

Statistical pattern recognition has been a major tool used
in building electronic warfare (EW) systems to analyze
radar signals. Conventional radars have been historically
characterized by fixed parameters such as radio frequency,
pulse-width, and peak amplitude [1], [2]. For these radar
characterizations, parametric models are sufficient for
solving signal processing problems such as emitter iden-
tification and threat evaluation. References [3] and [4]
discuss template matching of the intercepted radar signal
against an EW library for both the emitter type and emitter
mode identification. Histogram techniques are described
in [5] to study the temporal periodicities in radar signals
such as pulse repetition intervals.
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With the advent of modern radars, especially multi-
function radars (MFRs), statistical pattern recognition
approaches described above became inadequate. MFRs are
radio-frequency sensors that are widely used in modern
surveillance and tracking systems, and they have the
capability to perform a multitude of different tasks
simultaneously. The list of these tasks often includes
such activities as search, acquisition, multiple target
tracking, and weapon guidance [6]. MFRs use electronic
beam-steering antennas to perform multiple tasks simul-
taneously by multiplexing them in time using short time
slices [7]. At the same time they have to maintain low
probability of being detected and jammed. Indeed, MFRs
are an excellent example of highly complex man-made
large-scale dynamical systems. MFRs’ ability to adaptively
and actively switch modes and change system parameters
greatly limits the applicability of the parametric statistical
pattern recognition approaches. The dimensionality of the
operational state space for such radars is too large for the
statistical approach to be viable.

This paper proposes a different approach to radar
modeling and radar signal processing—one based on
syntactic pattern recognition. The origins of syntactic
modeling can be traced to the classic works of Noam
Chomsky on formal languages and transformational gram-
mars [8]-[11]. The central elements of this work are the
concepts of a formal language and its grammar. Languages
are typically infinite sets of strings drawn from a finite
alphabet of symbols. Grammars, on the other hand, are
viewed as finite-dimensional models of languages that
completely characterize them.

Many different kinds of grammars and languages have
been identified and investigated for practical applications.
Among them, the finite-state grammars (FSGs) and the
context-free grammars (CFGs), as well as their stochastic
counterparts, are currently the most widely used classes of
grammars. Stochastic finite-state grammars (SFSGs), also
known as hidden Markov models, achieved a great success
in the speech community [12], [13]. They were used in
modern tracking systems [14] and in machine vision [15].
On the other hand, stochastic context-free grammars
(SCFGs) are studied in [16] for gesture recognition and
the implementation of an online parking lot monitoring
task. In [17] and [18] they were used in modeling the
dynamics of a bursty wireless communications channel.
References [19] and [20] describe syntactic modeling
applied to bioinformatics, and [21] and [22] apply these
models to the study of biological sequence analysis and
RNA. Finally, application of syntactic modeling to pattern
recognition is covered in depth in [23].

In this paper, we construct a Markov-modulated SCFG
to model an anti-aircraft defense MFR called Mercury. The
more traditional approaches such as hidden Markov and
state space models are suitable for target modeling [14],
[24] but not radar modeling because MFRs are large-scale
dynamical systems and their scheduling involves planning

and preempting that makes state space approach difficult.
In addition to radar modeling, we also consider statistical
radar signal processing. The proposed linguistic model of
MFRs is naturally divided into two levels of abstraction:
task scheduling level and radar control level. We show that
the MFRs’ SCFG representation at task scheduling level is
self-embedding and cannot be reduced to a finite-state
form. Thus, signal processing has to be performed in the
CFG domain. The MFRs’ SCFG representation at the radar
control level, on the other hand, is non-self-embedding
(NSE). Thus, a finite-state model for such a grammar is
obtainable. Finally, we introduce a systematic approach to
convert the radar control level SCFG representation to its
finite-state counterpart.

The reason for such a two-level approach to radar
modeling is that of computational cost. Although SCFGs
provide a compact representation for a complex system
such as MFRs, they are associated with computationally
intensive signal processing algorithms [21], [23], [25],
[26]. By contrast, finite-state representations are not
nearly as compact (the number of states in the finite-state
automaton representing an MFR can be very large [27]),
but the associated signal processing techniques are well-
known and much less computationally demanding (see
discussion on complexity of syntactic parsing algorithms in
[21]). It is therefore advantageous to model MFRs as
SCFGs, and perform signal processing on their finite-state
equivalents as much as possible.

Traditionally, MFRs’ signal modes were represented by
volumes of parameterized data records known as Elec-
tronic Intelligence (ELINT) [1]. The data records are
annotated by lines of text explaining when, why, and how a
signal may change from one mode to another. This makes
radar mode estimation and threat evaluation fairly
difficult. In [28], SCFG is introduced as a framework to
model MFRs’ signal and it is shown that MFRs’ dynamic
behavior can be explicitly described using a finite set of
rules corresponding to the production rules of the SCFG.
SCFG has several potential advantages.

1) SCFG is a compact formal representation that can
form a homogeneous basis for modeling complex
system dynamics [23], [25], [26], and with which
it allows model designers to express different
aspects of MFR control rules in a single frame-
work [28], and automates the threat estimation
process by encoding human knowledge in the
grammar [29], [30].

2) The recursive embedding structure of MFRs’ con-
trol rules is more naturally modeled in SCFG. As
we show later, the Markovian type model has
dependency that has variable length, and the
growing state space is difficult to handle since the
maximum range dependency must be considered.

3) SCFGs are more efficient in modeling hidden
branching processes when compared to stochastic
regular grammars or hidden Markov models with
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the same number of parameters. The predictive
power of an SCFG measured in terms of entropy is
greater than that of the stochastic regular
grammar [31]. SCFG is equivalent to a multitype
Galton-Watson branching process with finite
number of rewrite rules, and its entropy calcula-
tion is discussed in [32].

In summary, the main results of the paper are as

follows.

1) A careful detailed model of the dynamics of an
MFR using formal language production rules. By
modeling the MFR dynamics using a linguistic
formalism such as an SCFG, an MFR can be
viewed as a discrete event system that “speaks”
some known, or partially known, formal language
[33]. Observations of radar emissions can be
viewed as strings from this language, corrupted by
the noise in the observation environment.

2) Formal procedure of synthesis of stochastic
automaton models from the compact syntactic
rules of CFG. Under the condition that the CFG is
NSE, the CFG representation can be converted to
its finite-state counterpart, where the signal
processing is computationally inexpensive.

3) Novel use of Markov modulated SCFGs to model
radar emissions generated by MFR. The complex
embedding structure of the radar signal is
captured by the linguistic model, SCFG, and the
MFR’s internal state, its policies of operation, is
modeled by a Markov chain. This modeling
approach enables the combination of the gram-
mar’s syntactic modeling power with the rich
theory of Markov decision process.

4) Statistical signal processing of SCFGs. The threat
evaluation problem is reduced to a state estima-
tion problem of HMM. The maximum likelihood
estimator is derived based on a hybrid of the
forward-backward and the inside-outside algo-
rithm. (Inside-outside algorithm is an extension of
HMM’s forward-backward algorithm [34].)

The rest of the paper is organized as follows. Section II
provides a self-contained theoretical background of syn-
tactic modeling methodology. Section III describes the
MEFR in detail and its role in electronic warfare. Section IV
and Section V present the threat estimation algorithms and
a detailed description of the synthesis procedure of sto-
chastic automaton models from the syntactic rules of CFG.
Finally, Section VI concludes the paper.

II. ELEMENTS OF SYNTACTIC MODELING

This section presents important elements from the theory
of syntactic modeling, syntactic pattern recognition, and
syntax analysis. The aim is to provide the reader with a
brief overview of the concepts that will be used in the rest
of the paper, and a more comprehensive discussion can be
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found in [23]. We use the definitions and notations
common to the theory of formal languages and computa-
tional linguistics [25], [26].

We will start by introducing the concept of formal
languages. These languages are most accurately defined
in the set-theoretic terms as collections of strings having
a certain predefined structure. In practice, a finite-
dimensional model of the language is required, and it
should help answering the two fundamental questions of
the theory of formal languages.

e Given a language, how can we derive any string
from this language? (The problem of string
generation.)

e Given a certain string and a language, how can we
tell if this string is part of this language? (The
problem of string parsing or syntax analysis.)

The finite-dimensional models of languages that help
answering these fundamental questions are called gram-
mars. If we focus on the problem of string generation, such
grammars are typically called generative grammars. If, on
the other hand, we are interested in string parsing, it is
customary to refer to the language grammars as transfor-
mational grammars.

1) Formal Languages: Let A be an arbitrary set of symbols
that we will call an alphabet. In general, an alphabet does
not have to be finite, but from the practical standpoint we
will assume that A is a finite set of symbols.

Using symbols from A, one can construct an infinite
number of strings by concatenating them together. We call
an e-string an empty string—a string consisting of no
symbols. Let us denote by A" an infinite set of all finite
strings formed by concatenation of symbols from A4, and let
us denote by A" = A" Ue. For example, if A = {a,b,c},
then

A" ={a,b,c,aa,ab, ac, ba, bb, be, ca, cb, cc, aaa, ...} (1)
A*={e,a,b,c,aa,ab,ac,ba, bb, bc, ca, cb, cc, aaa, . . . }. (2)

The A" operation is called positive (transitive) closure of A,
and the A" operation is called Kleene (reflexive and
transitive) closure.

Definition 2.1: The language L defined over an alphabet
A is a set of some finite-length strings formed by concate-
nating symbols from A.

Evidently, L C A", and in particular, @, A, and A" are
also languages.

2) Grammars: The definition of the formal language
(Def. 2.1) is extremely broad and therefore, has very
limited practical application. A more useful way of
defining formal languages is through the use of grammars
[81-{11].



Visnevski et al.: Syntactic Modeling and Signal Processing of Multifunction Radars

Definition 2.2: A deterministic grammar G is a four-tuple

G=(A¢ET,S) 3)

where:

A is the alphabet (the set of terminal symbols of
the grammar);

& is the set of nonterminal symbols of the
grammar;

r is the finite set of grammatical production rules
(syntactic rules);

So is the starting nonterminal.

In general, I is a partially defined function of type
I:(AU&)" — (AUE). 4

However, as we will see later, certain restrictions applied
to the production rules I' allow us to define some very
useful types of grammars.

In the rest of this paper, unless specified otherwise,
we will write nonterminal symbols as capital letters, and
symbols of the alphabet using lower case letters. This
follows the default convention of the theory of formal
languages.

Def. 2.1 provides a set-theoretic definition of a formal
language. Now, using Def. 2.2 we can redefine the
language in terms of its grammar L £ L(G).

To illustrate the use of grammars, consider a simple
language L = L(G) whose grammar G = (A, &, T, Sp) is
defined as follows:

A={a,b} So— aS|b
5 = {So,sl} Sl — bSO|a. (5)

These are some of the valid strings in this language, and
examples of how they can be derived by repeated
application of the production rules of (5):

1) So = b;

2) Sy = aS; = aaq;

3) SO = a81 = abSo = abb;

4) So = aS; = abSy = abaS; = abaa;

5) So = aS; = abSy = abaS; = ababSy = ababb;

6) So = aS; = abSp = abaS; = ababSy, = ...

= ababab . . . abb;

7) So = a51 = abSO = aba51 = ababSo = ...

= ababab . . . abaa.

This language contains an infinite number of strings
that can be of arbitrary length. The strings start with either
a or b. If a string starts with b, then it only contains one
symbol. Strings terminate with either aa or bb, and consist
of a distinct repeating pattern ab.

This simple example illustrates the power of the
grammatical representation of languages. Very simple
grammars can define rather sophisticated languages.

3) Chomsky Hierarchy of Grammars: In Def. 2.2, the
production rules of the grammar are given in a very general
form. Reference [10] used the properties of the production
rules of grammars to develop a very useful hierarchy that is
known in the literature as the Chomsky hierarchy of
grammars.

¢ Regular Grammars (RG): Only production rules
of the form S — aS or S — a are allowed. This
means that the left-hand side of the production
must contain one nonterminal only, and the right-
hand side could be either one terminal or one
terminal followed by one nonterminal. The gram-
mar of the language in the last example of this
section is a regular grammar. Regular grammars
are sometimes referred to as finite-state grammars.

e CFGs: Any production rule of the form S — [ is
allowed. This means that the left-hand side of the
production rule must contain one nonterminal
only, whereas the right-hand side can be any
string.

¢ Context-Sensitive Grammars (CSG): Production
rules of the form «;Sa, — By are allowed.
Here aj,a; € (AUE)Y, and B#e. In other
words, the allowed transformations of nonterminal
S are dependent on its context oy and ov,.

e Unrestricted Grammars (UG): Any production
rules of the form a;Sa; — 7y are allowed. Here oy,
az, 7 € (AU E)". The unrestricted grammars are
also often referred to as type-0 grammars due to
Chomsky [10].

Chomsky also classified languages in terms of the
grammars that can be used to define them. Fig. 1 illustrates
this hierarchy of languages. Each inner circle of this
diagram is a subset of the outer circle. Thus, context-
sensitive language (CSL) is a special (more restricted) form
of unrestricted language (UL), context-free language (CFL)
is a special case of CSL, and regular language (RL) is a

context-free
context-sensitive

unrestricted

Fig. 1. The chomsky hierarchy of formal languages.
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Table 1 Deterministic Grammars, Production Rules, and Languages

[ Grammar | Production rule structure | Language |
FSG S —aS Finite State (Regular)
S—a Language (RL)

CFG S—p3 Context-Free
Language (CFL)

CSG a1 Sas — a1 Bas Context-Sensitive
Language (CSL)

UG a1 Sag — v Unrestricted (type-0)
Language (UL)

special case of CFL. Table 1 provides a condensed summary
of the classes of grammars, their production rule structures,
and classes of languages that they define. More detailed
treatment of the Chomsky hierarchy is given by [21].

Syntactic modeling of DES (discrete event system)
developed in this paper will make extensive use of FSG and
CFG. CSG and UG will not be used in our modeling
approach.

4) Relationship Between Regular Languages and Finite-
State Automata:

Definition 2.3: A finite-state automaton (FSA) A is a
five-tuple

A= (Q,Ea5aq07F) (6)
where:
Q is the set of states of the FSA;
b is the set of input symbols of the FSA;
6 is the transition function of the FSA;
qo is the initial state of the FSA;
F is the set of final (accepting) states of the FSA
(FCQ).

FSAs were shown to be equivalent to RG and RL (see
[25], [26], and [35]-[38]). In fact, using Def. 2.2 and
Def. 2.3 we can observe thatif Q = £, 3 = A, and qo = So,
we can relate 6 and I in such a way that L(A) = L(G). L(A)
is also called the language accepted by the FSA A. The set of
final (accepting) states F is the set of states such that any
input string from L(A) causes A to transition into one of
these states. An FSA equivalent of the grammar (5) is
shown in Fig. 2.

5) Context-Free Languages and CFGs: The next, less
restricted member of the Chomsky hierarchy of grammars
is the CFG. Languages that can be accepted by FSAs are
limited in terms of strings that they can contain. The most
famous example of a language that cannot be accepted by
FSAs is the language of palindromes.1 It was shown to be a

'A palindrome is a string that reads the same way both left-to-right and
right-to-left.

1004 PROCEEDINGS OF THE IEEE | Vol. 95, No. 5, May 2007

CFL [26]. A simple language of palindromes can, for
example, be defined by the following set of production
rules:

P — bPb|aPalblale @)

and an example string from this language is
bababaaababab. According to Table 1, the grammar in (7)
is a CFG.

CFGs are often associated with tree-like graphs instead
of FSAs since the dependency between the elements of the
strings of the CFL are nested [25], [26], [35], [39], [40].
Due to this fact, the task of processing the strings from a
CFL is a more computationally complex procedure than
that of an RL. On the other hand, [41] have shown that
CFG could be more compact descriptions of the RL than
RG. It is often convenient to describe complex finite-state
systems in the context-free form, but it is less computa-
tionally intensive to perform analysis of these systems
using FSA. This fact is at the center of the large scale DES
modeling methodology that we are going to develop in the
rest of this section.

As Fig. 1 clearly demonstrates, RL are a proper subset
of the class of CFL. However, given a general CFG, one
cannot tell if this grammar describes an RL or a CFL (this
task was shown to be undecidable [40]). We will now look
at the property of self-embedding of the CFG and see how
this property helps in determining the class of the
languages described by such CFG.

6) Non-Self-Embedding CFGs:

Definition 2.4: A CFG G = (A, &, T, Sp) is self-embedding
if there exists a nonterminal symbol A € £ such that a
string aAf3 can be derived from it in a finite number of
derivation steps, with @, (# ¢ being any string of
terminal and nonterminal symbols.

For example, the nonterminal symbol P in the
palindrome grammar (7) is such a self-embedding nonter-
minal, and the CFG of palindromes is self-embedding.

Fig. 2. FSA equivalent to the grammar example (5). State S, is the
starting state, and T is an accepting state, as indicated
by the double circle.
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Definition 2.5: A CFG G = (A,&,T,Sy) is non-self-
embedding if there exists no nonterminal symbols for
which the condition of the Def. 2.4 can be satisfied.

[11] has demonstrated that if a CFG is NSE, it generates
a finite-state language (FSL). In Section V-A, we will
describe an algorithm to verify the NSE property of CFGs,
and show how to obtain FSAs for these grammars.

7) Stochastic Languages and Stochastic Grammars: A
number of practical applications contain certain amounts
of uncertainty that are often represented by probabilistic
distributions. These factors require extension of the
concepts described above into the domain of stochastic
languages.

Definition 2.6: A weighted grammar G, is a five-tuple

Gy = (A,g,F,PW,So) (8)
where:
A is the alphabet (the set of terminal symbols of
the grammar);
& is the set of nonterminal symbols of the
grammar;
r is the finite set of grammatical production rules
(syntactic rules);
P, is the set of weighting coefficients defined over
the production rules I';
So is the staring nonterminal.
Here is a simple example of a weighted grammar:
S() i) aSl
So —b
S1 — bS;
S, 2. (9)

This grammar has been obtained from grammar (5) by
associating with its productions the set of weights
P, ={(9,1),(1,9)}. Note that the set of weights P,, does
not have to be normalized.

Definition 2.7: A stochastic grammar G is a five-tuple

Gs - (A,g,F,PS,So) (10)

where A, £, T", and S are the same as in Def. 2.6, and P; is
the set of probability distributions over the set of produc-
tion rules I'.

Clearly, stochastic grammars are simply a more
restricted case of the weighted grammars. Here is a simple
example of a stochastic grammar:

So gasl
So 5b

s, 23 bs,

0.9
S1 —a.

(11)

This grammar has been obtained from grammar (5) by
applying to its productions the probability distributions
P, = {(0.9,0.1),(0.1,0.9)}.

Stochastic and weighted grammars are classified and
analyzed on the basis of their underlying characteristic
grammars [23], [42]. A characteristic grammar G, is
obtained from the stochastic grammar G, (weighted
grammar G,) by removing the probability distribution P,
(set of weights P,) from the grammar definition.

If the resulting characteristic grammar is an FSG, the
stochastic grammar is called stochastic finite-state gram-
mar (SFSG). If the characteristic grammar is a CFG, the
stochastic grammar is referred to as an SCFG. For
example, grammar (11) is an SFSG, and grammar (5) is
its characteristic grammar.

Characteristic grammars play important roles in
deriving syntactic models of real-life systems. The typical
procedure is illustrated in Fig. 3. The characteristic
grammar is a bridge between the internal deterministic
rules of the system, and the stochastic environment in
which this system is operating or observed.

8) Stochastic Finite-State Languages, Markov Chains, and
Hidden Markov Models: Just as FSAs constitute one of the

Deterministic grammar

Characteristic grammar

Stochastic grammar

Fig. 3. Derivation procedure for the stochastic grammars. First,

a deterministic grammar for the system is constructed. Then,

after considerations of possible sources of uncertainties,

the deterministic grammar is modified into a characteristic grammar
that accommodates for these uncertainties. Finally, a probability
distribution is assigned to the characteristic grammar,

yielding a stochastic grammar of the system.
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representation forms of FSLs, discrete-state discrete-time
Markov chains are naturally considered the equivalent
representations of the SFSLs [33]. This representation has
been successfully utilized in bioinformatics and computa-
tional genomics [19], [21] as well as in natural language
and speech processing [12].

A discrete-state discrete-time Markov chain can be
defined as a stochastic timed automaton [33]:

Definition 2.8: A discrete-time Markov chain defined over
a discrete state space is a tuple

v = (A’ 7T) (12)
where:
A is the N X N state transition probability matrix,
s is the N X 1 vector of initial state probability
distribution, and
N is the number of states in the Markov chain.

We will illustrate the relationship between SFSGs and
Markov chains by looking at the transition structure of the
grammar (11). We can construct a Markov chain that will

reflect the transitions within " of (11) as
0 09 01 1
y=({A=]01 0 09|,mr= |0 (13)
0 o0 0 0

where A and 7 are defined with respect to the state
ordering {So, S1, T} as shown in Fig. 4.

The example above illustrates a strong parallel between
FSAs in the case of deterministic grammars, and Markov
chains in the case of stochastic ones. However, Markov
chains defined by Def. 2.8 do not accommodate for the
alphabet A of the grammar. Therefore, Markov chains can
only capture transition dynamics of the grammar, but do
not address generation and transformation aspects of the

0.9

0.1

Fig. 4. Example of a Markov chain for the SFSG (11). Note that
Markov chains only capture the transition dynamics of the
grammar since the terminal symbols of the grammar

do not feature in the Markov chain structure.

1006 PROCEEDINGS OF THE IEEE | Vol. 95, No. 5, May 2007

SFSGs discussed earlier. Hidden Markov models (HMMs)
address this issue.

HMMs [12], [13], [19] are particularly suitable for
representing stochastic languages of the finite-state
discrete-event systems observed in noisy environments.
They separate the uncertainty in the model attributed to
the observation process from the uncertainties associated
with the system’s functionality. Generally speaking,
HMMs are Markov chains indirectly observed through a
noisy process [13], [33], [43]-[45].

Definition 2.9: A HMM X is a three-tuple

A=(A,B,n) (14)
where:

A is the N X N state transition probability matrix
of the underlying Markov chain,

B is the N X M observation probability matrix
that establishes probability distributions of
observing certain discrete symbols associated
with a certain state of the chain,

™ is the N x 1 vector of initial state probability
distribution of the underlying Markov chain,

N is the number of states of the underlying
Markov chain, and

M is the number of possible discrete observation

symbols.

To illustrate how HMMs relate to SFSGs, we would
like to revisit the grammar (11). The Markov chain for this
grammar is defined by (13). Now we can extend this chain
bringing in the alphabet A of the grammar (11) through
the structure of the observation probability matrix B.

However, this extension requires a transformation of
the structure of the Markov chain in Fig. 4. Def. 2.9
associates the observation probability matrix B with the
states of the chain, whereas SFSGs associate generation of
nonterminals with transitions of the state machine. The
former case is known in the literature as the Moore machine,
and the latter is referred to as the Mealy machine [26].
Therefore, to accommodate for the structural constraints of
the HMM, the Markov chain in Fig. 4 has to be converted to
the Moore machine form as described in detail in [26].

The resulting HMM has the following structure:

0 01 09 O

0
0

0 0.9
1

o (15)
1

us)
I
o R O m

0.1
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0.1

Fig. 5. Example of an HMM for the SFSG (11). Each state is labeled
by two symbols separated by a slash. The first symbol identifies the
state of the system, and the second determines the output produced
by the system in this state. To accommodate for the terminal
symbols of the grammar (11) through the use of the observation
probability matrix B, the structure of the Markov chain in Fig. 4

had to be transformed to the Moore machine. Consequently, the
underlying Markov chain of this HMM has different

set of discrete states {S;,5,,T;,T>}.

0.9

where A as well as rows of m and B are defined with
respect to the state ordering {S;,S,, Ty, T>} as shown in
Fig. 5, and columns of B are defined with respect to the
ordering {a, b}.

ITII. ELECTRONIC WARFARE
APPLICATION—ELECTRONIC
SUPPORT AND MFR

With the above background in syntactic modeling, we are
now ready to study MFRs, and devise electronic support
algorithms that deal with their ever increasing sophistica-
tion of their remote sensing capabilities.

Electronic warfare (EW) can be broadly defined as any
military action with the objective of controlling the
electromagnetic spectrum [46]. An important aspect of
EW is the radar-target interaction. In general, this inter-
action can be examined from two entirely different points
of view—the viewpoint of the radar and the viewpoint of
the target. From the radar’s point of view, its primary goal
is to detect targets and to identify their critical parameters.
From the target’s point of view, the goal is to protect itself
from a radar-equipped threat by collecting radar emissions
and evaluating threat in real time (electronic support). In
this paper, the target’s viewpoint is the focus, and MFRs
are the specific threat considered.

The framework of EW considered in this paper
consists of three layers: receiver/deinterleaver, pulse train
analyzer, and syntactic processor [47]. The layers are
depicted in Fig. 6 and a brief description is given here:
The receiver processes the radar pulses intercepted by the
antenna, and outputs a sequence of pulse descriptor
words, which is a data structure containing parameters
such as carrier frequency, pulse amplitude, or pulse width.
The deinterleaver processes the pulse descriptor words,
groups them according to their possible originating radar
emitters and stores them in their corresponding track
files. The pulse train analyzer processes the track file, and

further groups the pulse descriptor words into radar
words. (See Section III-A for definitions.) Finally, the
syntactic processor analyzes the syntactic structure of the
radar words, estimates the state of the radar system and its
threat level, and outputs the results on a pilot instrumen-
tation panel. Because the receiver, deinterleaver, and
pulse train analyzer have been well studied, the syntactic
processor is the focus of this paper.

The syntactic processor captures the knowledge of the
“language” that MFRs speak. It is a complex system of
rules and constraints that allow radar analysts to distin-

guish “grammatical” radar signal from °

‘ungrammatical”
one. In other words, an analogy is drawn between the
structural description of the radar signal and the syntax of
a language, and the structural description could, therefore,
be specified by the establishment of a grammar [48]. As far
as EW is concerned, the optimal approach is to collect a
corpus of radar samples, and induce the grammar directly
without human intervention. However, because of the
degree of complexity and potential lack of data on the MFR
signal, grammatical induction approach is impractical. As a
result, in this paper, the grammar is constrained to be
SCFG, and its context-free backbone is specified by radar
analysts from studying MFRs’ signal generation mecha-
nism. Section III-A describes MFRs’ system architecture
and the building blocks making up the radar signal, and
Section III-B discusses the shortcomings of HMM and
explains why SCFG is preferred.

A. MFR Signal Model and Its System Architecture
In order to describe MFRs’ system architecture, we
begin with the building blocks making up MFRs’ signal
generation process, and they are defined as follows.
e  Radar word: A fixed arrangement of finite number
of pulses that is optimized for extracting a
particular target information; for example, pulses
with a fixed pulse repetition frequency.

Target
Stochastic /
_environment
Airborne EW System

Multi-Function
Radar

= M=

Fig. 6. The electronic warfare (EW) framework considered in this
paper. The radar signal emitted by the MFR is captured at the EW
system on board the target after being corrupted by the stochastic
environment. The EW system consists of an antenna, a receiver/
deinterleaver, a pulse train analyzer, and a syntactic processor.
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—_— -
a b
(a)
TR T
a b ®) a a

Fig. 7. Radar words can be viewed as fundamental building blocks
of the MFR signal. (a) Shows two distinct radar words labeled as

a and b. (b) lllustrates how a radar phrase as represented by

a pulse sequence can be decomposed into a series of radar

words as defined in (a).

®  Radar phrase (radar task): Concatenation of finite

number of radar words. Each phrase may be imple-

mented by more than one concatenation of radar

words. Examples are search and target acquisition.

®  Radar policy: Preoptimized schemes that allocate

resources to radar phrases. An example is rules of
engagement or policies of operation.

Fig. 7 illustrates how a radar phrase and radar words are

related. Fig. 7(a) shows two radar words that are

@ %

represented by symbols “a” and “b,” where vertical bars
represent radar pulses. Fig. 7(b) illustrates a sequence of
radar words for a radar phrase, and which is constructed
from concatenation of a and b into a sequence “abaa.”

The generation process of radar words is governed
according to MFRs’ system architecture? as illustrated in
Fig. 8. An MFR consists of three main components: situa-
tion assessment, system manager, and phrase scheduler/
radar controller. The situation assessment module pro-
vides feedback of the tactic environment, and the system
manager, based on the feedback, selects a radar policy.
Each radar policy is a resource allocation scheme that
represents tradeoffs between different performance mea-
sures, and it dictates how the phrase scheduler/radar
controller will operate. Examples of the radar policies are
long range track acquisition and short range self protect
target acquisition policies: the major performance mea-
sures in these two policies are false alarm rate and track
latency; track latency (false alarm rate) is tolerable in long
range track acquisition policy (short range self protect
target acquisition policy) and may be sacrificed for lower
false alarm rate (track latency).

The scheduling and generation of radar words, on the
other hand, is dictated by two controllers, phrase
scheduler and radar controller, and their corresponding
queues, planning queue and command queue, respectively.
The reason for having the queues is driven by the need for
MFR to be both adaptive and fast [49]. The planning queue

“The system architecture does not include multiple target tracking
functionalities such as data association. The paper focuses on a single
target’s self protection and threat estimation, and thus models only the
radar signal that a single target can observe.

1008 PROCEEDINGS OF THE IEEE | Vol. 95, No. 5, May 2007

stores scheduled radar phrases that are ordered by time
and priority, and it allows the scheduling to be modified by
phrase scheduler. Due to the system’s finite response time,
radar phrases in the planning queue are retrieved sequen-
tially and entered to the command queue where no further
planning or adaptation is allowed. Radar controller maps
the radar phrases in the command queue to radar words
and which are fixed for execution.

More specifically, the phrase scheduler models MFRs’
ability to plan ahead its course of action and to pro-actively
monitor the feasibility of its scheduled tasks [50]. Such an
ability is essential because MFR switches between radar
phrases, and conflicts such as execution order and system
loading must be resolved ahead of time based on the
predicted system performance and the tactic environment.
In addition, planning is also necessary if MFR is interfaced
with an external device, where the execution of certain
phrases needs to meet a fixed time line. Radar controller, on
the other hand, models MFR’s ability to convert radar
phrases to a multitude of different radar words depending on
the tactic environment. Such an arrangement follows the
macro/micro architecture as described in Blackman and
Popoli [14]; the phrase scheduler determines which phrase
the MFR is to perform that best utilize the system resources
to achieve the mission goal, and the radar controller
determines how the particular phrase is to be performed.

The MFR’s operational details that are to be modeled
are described here. Phrase scheduler processes the radar
phrases in the planning queue sequentially from left to
right. (If the queue is empty, an appropriate radar phrase is
inserted.) To process different types of radar phrases,
phrase scheduler calls their corresponding control rules;

K/_\r\/ o
(\ Random y

Environment

\./u/
Situation Radar —
Assessment Controller Command Queue
System Phrase <« |
Manager Scheduler Planning Queue

Fig. 8. The figure illustrates MFRs’ system architecture. The situation
assessment module evaluates the tactic environment and provides
feedback to the system manager. The system manager, based on the
feedback, selects the radar policy in which the phrase scheduler/radar
controller will operate. The phrase scheduler initiates and schedules
radar phrases in the planning queue and the phrases fixed for
execution are moved to the command queue. The phrases in the
command queue are mapped to appropriate radar words by the radar
controller and are sent to MFR for execution.
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(a) (b)
B— bB B B—AB B
BC
EN b B B
b /B
AN

Fig. 9. The figure illustrates the derivation process with two different
types of production rules. (a) The derivation of the rule of regular
grammar type. (b) The derivation of the rule of CFG type.

the rule takes the radar phrase being processed as input,
and responds by appending appropriate radar phrases into
the command queue and/or the planning queue. The
selection of the control rules is a function of radar policies,
and which are expressed by how probable each rule would
be selected. Similar to phrase scheduler, the radar con-
troller processes the radar phrases in the command queue
sequentially and maps the radar phrases to radar words
according to a set of control rules.

B. Inadequacy of HMM for Modeling MFR

The distinguishing features of MFRs compared to
conventional radars are their ability to switch between
radar tasks, and their use of schedulers to plan ahead the
course of action [49]. In order to model such features, as
will be shown later in the next section, partial production
rules of the form

1) B—bBand

2) B — AB|BC|bB
are devised (See Section III-D for details); Fig. 9 illustrates
the production rules and their derivations. The signifi-
cance of the rules is that since HMM is equivalent to
stochastic regular grammar [51] [rules of the form 1)], and
MFRs follow rules that strictly contain regular grammar
[rules of the form 2) cannot be reduced to 1)], HMM is not
sufficient to model MFRs’ signal. Furthermore, for sources
with hidden branching processes (MFRs), SCFG is shown
to be more efficient than HMM; the estimated SCFG has
lower entropies than that of HMM [31].

Remark: The set of production rules presented above is a
self-embedding CFG and thus its language is not regular,
and cannot be represented by a Markov chain [10]. For the
rules presented, self-embedding property can be shown by
a simple derivation

B — AB — ABC.

In addition to the self-embedding property derived
from the scheduling process, the generation of words by
the radar controller poses another problem. For each radar
phrase scheduled, a variable number of radar words may be

generated. If HMM is applied to study the sequence of
radar words, the Markovian dependency may be of variable
length. In this case, maximum length dependency needs to
be used to define the state space, and the exponential
growing state space might be an issue.

C. A Syntactic Approach to MFR

In terms of natural language processing, we model the
MFR as a system that “speaks” according to an SCFG.
Based on the discussion in Section III-A, the syntactic
approach is suitable in modeling the phrase scheduler
because the scheduler operates according to a set of formal
rules. On the other hand, the radar controller is suitably
modeled because of two reasons: 1) each sequence of radar
words is semantically ambiguous, i.e., many statistically
distinct patterns (radar word sequence) possess the same
semantic meanings (radar phrase), and 2) each radar
phrase consists of finite number of radar words, and radar
words are relatively easy to discriminate.

A Simple Example of MFR: As an illustrative example
showing the correspondence between the grammar and
the MFR, consider production rules of the form 1) A — aA
and 2) A — BA, where A and B are considered as radar
phrases in the planning queue and a as a radar phrase in
the command queue. The rule A — dA is interpreted as
directing the phrase scheduler to append a to the queue
list in the command queue, and A in the planning queue.
Similarly, A — BA is interpreted as delaying the execution
of A in the scheduling queue and inserting B in front
of it. Suppose the planning queue contains the radar
phrase A, a possible realization of the radar words’
generation process is illustrated in Fig. 10. (The figure

A
Phrase A
Scheduler B
ab] [ | [BJA] [ ]
Radar A A
Controller WYy yw

Command Planning

queue queue

Fig. 10. A possible realization of the scheduling process represented
by a grammatical derivation process. A and B are radar phrases in
the planning queue, a and b are radar phrases in the command queue
and w and y are radar words.
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Table 2 List of All Mercury Emitter Phrase Combinations According to the
Functional State of the Radar

[ Phrase | Words Il Phrase | Words |
W1 W2W4WS W1 WTWTWT
Four-Word WW4WsW] W2WTW7WT
Search WAWsW W2 W3WTW7rW7
W5 W1 W2W4 WaWTWTWT
W1 W3WsW1 W5 W7 WTWT
Three-Word W3WsW1W3 WeWTWTWT
Search W5W1W3Ws5 W1 WSWIWS
W1 W1 W1 W1 W2 WWIWS
W2 W2W2W2 W3WIWIWS
Acquisition W3W3W3W3 Track WAWSWIWS
WAWL WL WS Maintenance W5 WIWIWS
W5 WsWHWS (TM) WEWIWIWS
W1 W6 W6 W6 W1 WWYW9
NAT W WEWEWE W2WYWYWY
or W3WeWeWe W3W9W9W9
™ WAWEWEWE W4 W9WYWY
W5 W6 W6 W6 W5 W9 W9 W9
W7 W6 W6 W6 W6 WY WY W9
Range WRWEWeWe WrW7W7W7
Resolution WYWEWEWE WRWRWIWS
Acq., NAT, TM WEWEWEWE WYW9WYW9

also illustrates the operation of the radar controller; the
triangle represents the mapping of the radar phrase to the
radar words, which are denoted by y and w.) It can be
seen that as long as the command queue phrases appear
only to the left of planning queue phrases in the rule,
the command queue and the planning queue are well
represented.

D. A Syntactic Model for an MFR Called Mercury

The syntactic modeling technique is discussed in this
subsection, and the discussion is based on an anti-aircraft
defense radar called Mercury. The radar is classified and
its intelligence report is sanitized and provided in
Appendix A. Table 2 provides an exhaustive list of all
possible Mercury phrases, and associates them with the
functional states of the radar. This table was obtained from
specifications in the sanitized intelligence report and is
central to grammatical derivations that follow.

The SCFG modeling the MFR is G = {N, UN,,T,,
P, UP,,S}, where N, and N, are nonterminals represent-
ing the sets of radar phrases in the planning queue and
command queue respectively, T is terminals representing
the set of radar words, P, is production rules mapping N,
to (N, U Np)+, P, is the set of production rules mapping
N, to T}, and S is the starting symbol. It should be noted
that the selection of production rules is probabilistic
because MFR’s inner workings cannot be known com-
pletely. In this subsection, each components of MFR as
illustrated in 8 will be discussed in turn.

1) Phrase Scheduler: The phrase scheduler models the
MFR’s ability to plan and to preempt radar phrases based
on the radar command and the dynamic tactic environ-
ment. Its operational rules for the scheduling and
rescheduling of phrases are modeled by the production
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rule P,, and it is found that P, could be constructed from a
small set of basic rules. Suppose N, = {A,B,C} and
N. = {a, b, c}, The basic control rules that are available to
the phrase scheduler are listed below

Markov
Adaptive

B — bB|bC
B — AB|BC

Terminating B — b.

The interpretation of the rules follows the example
given at the end of the previous subsection. A rule is
Markov if it sent a radar phrase to the command queue, and
rescheduled either the same or different radar phrase in
the planning queue. A rule is adaptive if it either pre-
empted a radar phrase for another radar phrase or if it
scheduled a radar phrase ahead of time in the radar’s time
line after the current phrase. A rule is terminating if it sent
a radar phrase to the command queue without scheduling
any new phrases.

The significance of the Markov rule is obvious, as it
represents the dynamics of FSA. A simple example of the
Markov rule is illustrated in Fig. 11 based on Mercury’s
functional states. According to the specifications in
Appendix A, relative to each individual target, the Mercury
emitter can be in one of the seven functional states—search,
acquisition, nonadaptive track (NAT), three stages of
range resolution, and track maintenance (TM). The transi-
tions between these functional states can be captured by
the state machine illustrated in Fig. 11.

The Mercury’s state machine is generalized by in-
cluding the adaptive and terminating rules. The inclusion

Fig. 11. Mercury emitter functionality at the high level. There are
seven functional states of the emitter (search, acquisition, NAT,
three stages of range resolution, and TM). The transitions
between the states are defined according to the specification of
Appendix A. The state machine is shown as the Moor automaton
with outputs defined by the states. A corresponding phrase from
Table 2 is generated in every state of the automaton.
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of the adaptive rule models MFRs’ ability to reschedule
radar phrases when the system loading or the tactic envi-
ronment changes. The two adaptive rules model after the
MFRs’ ability to 1) preempt and 2) Plan the radar phrases.
The preempt ability is demonstrated by the rule B — AB
where the radar phrase B is preempted when a higher
priority task A enters the queue. On the other hand, the
ability to plan is captured in the rule B — BC where the
phrase C is scheduled ahead of time if its predicted
performance exceeds a threshold. On the other hand, the
terminating rule reflects the fact that the queues have
finite length, and the grammatical derivation process must
terminate and yield a terminal string of finite length.

All the control rules, except the adaptive rule, could be
applied to any radar phrases available. The adaptive rule
schedules phrases ahead of time and thus requires a
reasonable prediction on the target’s kinematics; it would
not be applicable to phrases where the prediction is
lacking. Applying the rules to Mercury’s radar phrases, the
production rule P, could be constructed and it is listed in
Fig. 12.

2) Radar Controller and the Stochastic Channel: In this
section, we develop deterministic, characteristic, and
stochastic phrase structure grammars of the Mercury’s
radar controller as described in Appendix A. The grammar
is derived as a word-level syntactic model of the emitter.

FourW Search > | < ThreeW Search > |
ACQ > | < NAT > | < RR1 > |

RR2 > | < RR3> | < TM >

ThreeW SearchPhrase >< ThreeW Search > |
ThreeW SearchPhrase >< ACQ > |
ThreeW SearchPhrase >

FourW SearchPhrase >< FourW Search > |
FourW SearchPhrase >< ACQ > |

FourW SearchPhrase >

AcqPhrase >< ACQ > |

AcqPhrase >< NAT > |

< ThreeW Search > —

< FourW Search > hnd

< ACQ > —

AcgPhrase >< ThreeW Scarch > |
AcgPhrase >< IFourW Search > |
AcqPhrase >

NATPhrase >< NAT > | < NATPhrase >
NATPhrase >< RRy > |

NATPhrase >< ThreeW Search > |

< NAT > —

NATPhrase >< FourW Search >
RRyPhrase >< RR1 > | < RRyPhrase >
RRjPhrase >< RRy >

RRj Phrase >< ThreeW Search > |
RRqPhrase >< FourW Search >
RRypPhrase >< RRy > | < RRgPhrase >
RRgPhrase >< RR3 >

RRoPhrase >< ThreeW Search > |
RIRgPhrase >< FourW Search >
RRzPhrase >< RR3 > | < RRgPhrase >
RR3Phrase >< TM > |

RRgPhrase >< ThreeW Search > |
RR3Phrase >< FourW Search >
TMPhrase >< TM > | < TMPhrase >

< RR; > —

< RRy > —

< RR3 > —

<TM > —
RR3z >< TM > |
TMPhrase >< ThreceW Scarch > |

ANNNANNNNANNNANNNNNNNANNNANANANANNNNANNNANNANNANANANNANA

TMPhrase >< FourW Secarch >

Fig. 12. Production rules of Mercury’s phrase scheduler.

We consider how the dynamics of radar words that make
up one of the individual vertical slots in Fig. 23 captures
internal processes occurring within the radar emitter.

Deterministic Grammar: According to Def. 2.2, a
deterministic grammar is defined through its alphabet,
the set of nonterminals, and the set of grammatical
production rules. Using the Mercury specification of
Appendix A, we can define the alphabet as

A: {W17W27W37W4,W57W6,W7,W87W9} (16)

where wy, ..., wg are the words of the Mercury emitter.

At every functional state, the radar emits a phrase
consisting of four words drawn from the Table 2. Some
phrases are unique and directly identify the functional
state of the radar (i.e. [w;wawsws] can only be encountered
during search operations). Other phrases are characteristic
to several radar states (i.e. [wgwewgwg| can be utilized in
acquisition, NAT, and TM). These phrases form strings in
the radar language that we are interested in modeling
syntactically.

To complete the derivation of the grammar, we must
define the rules for the (XPhrase) nonterminals where X
stands for the corresponding name of the emitter state in
which this phrase is emitted.

Using data from Table 2, we define the triplets

Te — wewews Tg — wgwgwg
T7 = wzwzwy;  Tg — wowgwy

and the blocks of four words

Q1 —mwiwiwiw;  Qp — wawawawy Q7 — wrwywrwy

Q2 —wowawowy Qs — Wswswsws Qg — WgWgWgWwg

Q3 —wswswswz Qg — wgWeWeWe Qg — WowoWowg.

The (ThreeWSearchPhrase) and (FourWSearchPhrase)
rules are:

(FourWSearchPhrase)
— WiWWaWs [Wawawswy [wawswiwy [wswywywy
(ThreeWSearchPhrase)

— WW3WsW; [W3wswiws [wswiwsws.

The (AcqPhrase) rules are

(AcqPhrase) — Q1]Q2|Q3]Q4]Qs|Qs.-
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The (NATPhrase) rules are

(NATPhrase) — S1Ts|Qs

Sl — W1|W2|W3|W4‘w5.
The range resolution rules are

(RR;Phrase) — w;Tg
(RRyPhrase) — wgTe
(RR3Phrase) — woTs.

Finally, the track maintenance rules are

(TMPhrase) — (FourWTrack)|{ThreeWTrack)

<FOUTWTY(1C’Q> — Q6|Q7|Q8|Q9
(ThreeWTrack) — S1T6|S2T7|S2Ts|S2To
Sz — Sl|W6

Sl g W1|W2|W3|W4|W5.

According to the Chomsky hierarchy discussed in
Section II, this grammar is a CFG.

Characteristic Grammar: The characteristic grammar of
the Mercury emitter must extend the deterministic grammar
to accommodate for the possible uncertainties in the real life
environment. These uncertainties are due to the errors in
reception and identification of the radar words. Conceptu-
ally, this process can be described by the model of the
stochastic erasure channel with propagation errors.

To accommodate for the channel impairment model,
we have to make two modifications to the deterministic
grammar of the Mercury emitter. First of all, the alphabet
(16) has to be expanded to include the character—the
character indicating that no reliable radar signal detection
was possible

A ={o}UuA

= {®7W17W27W37W47W57W67W77W87W9}' (17)

Finally, we introduce an additional level of indirection
into the grammar by adding nine new nonterminals
Wi, ..., Wy and nine new production rules

(18)

W; — O|wi|wy|ws|wa|ws|we w7 ws|wo

where i = 1,...,9. The reason for this modification will
become apparent when we associate probabilities with the
production rules of the grammar.

1012 PROCEEDINGS OF THE IEEE | Vol. 95, No. 5, May 2007

Stochastic Grammar: The channel impairment model has
the following transition probability matrix:

P,=[p, P, Ps Ps Ps Py P; Ps Po| (19)

where p; = [pij]o<j<o is the probability that the transmit-
ted radar word i being inferred by the pulse train analysis
layer of the EW receiver as radar word j via the noisy and
corrupted observations.

The stochastic radar grammar can be obtained from the
characteristic grammar by associating probability vectors
of (19) with the corresponding productions of (18)

D
Wi = O|wi|wa|ws|wy|ws |we w7 |ws|wo

(20)

where i =1,...,9. Thus, the complete stochastic gram-
mar of the Mercury emitter is shown in Fig. 13.

Strictly speaking, this grammar should be called
weighted grammar rather than stochastic. As shown by
[23], a stochastic CFG must satisfy the limiting stochastic
consistency criterion. However, [23] demonstrates that
useful syntactic pattern recognition techniques apply
equally well to both the stochastic, and the weighted
CFGs. Therefore, we are not concerned with satisfying the
stochastic consistency criterion at this point.

E. MFR and System Manager—Markov
Modulated SCFG

From the previous section, the phrase scheduler and
the radar controller are modeled by constructing the
context-free backbone of the MFR grammar. The third

< AcqPhrase > QR11Q21RQ31Q41Q51RQ6

< NATPhrase > S1761Q6
< RRjPhrase > Wy lg
< RRyPhrase > Wy Ts
< RRzPhrase > WoTg

< TMPhrasc > < FourWTrack » | << ThreceW Track >

< FourW Search > W) Wo Wy W5 Wo Wy Ws W) Wy Ws W) W |We W) Wo W,
< ThreeW Search > W1 W3 W5 W1 |Ws W5 W W3 |W5 Wy W3 W
QelQ71Qs1Qg

S1T6S2T7152Tg|S2Ty

< FourWTrack >
< ThreeWTrack >
Sz S1|We

S W1 [Wy | Wa | Wy W5

L i e N LN E o A E S E A

Te We W Wg

T Wy Wo Wy

Tg WgWgWg

Tg Wo Wo Wo

Qi W, W W, Wy

w; 2wy |wglwg|wglws lwg|wy|wg|wyg
i=1,.... 9

Fig. 13. Weighted grammar of the Mercury emitter. This grammar,
like its deterministic counterpart, is a CFG.
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component of the MFR as described in Section III-A is the
system manager. The operation of the system manager is
deciding on the optimal policy of operation for each time
period, and which is modeled by assigning production rule
probabilities to the context-free backbone. The evolution
of the policies of operation is driven by the interaction
between the targets and the radar, and the the production
rules’ probabilities conveniently represent the resource
allocation scheme deployed.

The state space of MFR is constructed based on
different tactic scenarios. Let k = 0,1, ... denote discrete
time. The policies of operation x;, is modeled as a M-state
Markov chain. Define the transition probability matrix as
A= [aji]MxM’ where a;= P(x, = ej|x—1 = e,») for
i,j€{1,2,...,M}. For example, depending on the
loading condition of the MFR, two states may be defined
according to the amount of resources allocated to MFR’s
target searching and target acquisition functions. More
specifically, one state may consider the scenario where the
number of targets detected is low, and thus higher
proportion of radar resources are allocated to search
functions. The other state may consider the scenario where
the number of targets detected is high, and resources are
allocated to target acquisition and tracking functions.

In each state, the MFR will “speak” a different
“language,” which is defined by its state-dependent
grammar. Denote the grammar at state e; as G =
{N, UN,, T, P, U P, S}, and it is noted that the grammars’
context-free backbone is identical for all i except the
probability distributions defined over their production
rules. Each state of MFR is characterized by its policy of
operations, and which determines the resource allocation
to the targets. Obviously, the more resource allocated to
the target, the higher the threat MFR poses on the target.
From this perspective, threat estimation of MFR is reduced
to a state estimation problem.

One practical issue is that the signal generated by radar
systems has finite length, and this finiteness constraint must
be satisfied by the SCFG is the model is to be stable. We
discuss this point by first defining the stochastic mean matrix.

Definition: Let A, B € N, the stochastic mean matrix My
is a |[N| x |N| square matrix with its (A, B)th entry being
the expected number of variables B resulting from
rewriting A

My(A,B) =

>

NE(NUT)"s.t.(A—n)€P

P(A — n)n(B;n)

where P(A — ) is the probability of applying the
production rule A — 7, and n(B;7n) is the number of
instances of B in n [52].

The finiteness constraint is satisfied if the grammar in
each state satisfies the following theorem.

Theorem: If the spectral radius of My is less than one,
the generation process of the SCFG will terminate, and the
derived sentence is finite.

Proof: The proof can be found in [52].

IV. SIGNAL PROCESSING
IN CFG DOMAIN

A. Overview of MFR Signal Processing at
Two Layers of Abstractions

In the previous section, we have considered the
representation problem where the MFR is specified as a
Markov modulated SCFG, and its production rules derived
from the radar words’ syntactic structure. In this and the
next section, we will deal with the signal processing of the
MFR signal and present algorithms for state and
parameter estimation. The signal processing problem is
illustrated in Fig. 14, where it is decomposed into two
layers of abstractions; the radar controller layer and the
phrase scheduler.

The higher layer of processing is discussed in Section IV,
where the state and parameter estimation are both pro-
cessed in the CFG framework. Based on the estimated
radar phrases passed from the radar control layer (hard
decision is applied in the passing of radar phrases), the
MFR’s policies of operation is estimated by a hybrid of the
Viterbi and the inside algorithm. In addition, maximum
likelihood parameter estimator of the unknown system
parameters will be derived based on the Expectation
Maximization algorithm.

In Section V, a principled approach is discussed to deal
with the signal processing of the NSE CFG. A synthesis
procedure that converts an NSE CFG to its finite-state
counterpart in polynomial time is introduced. The radar
controller will be shown to be NSE, and its finite-state
representation will be derived. Once the radar controller is

A
Phrase CFG Domain
Scheduler
B

lalol | | [Bla] ||

Radar A A
Finite State Domain

Controller WYy yw

Command  Planning

queue queue

Fig. 14. signal processing in two levels of abstractions,
the word level and the phrase level.
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in its finite-state form, its signal processing could be
performed with an FSA.

Following the state space notation introduced in the
,X,) be the (un-
,Va) be the
corresponding intercepted radar signal stored in the track
file. Each ~y, = (wy,ws,. .

previous section, let xp., = (xo,xl, c.
known) state sequence, and vyi., = (71, 72, - - -

.,wmk) is a string of concate-
nated terminal symbols (radar words), and my is the
length of .

In order to facilitate the discussion of the estimation
algorithms, it is convenient to introduce the following
variables:

e Forward variable:

fl(k’) - P(71372; e Yy Xk = ei)
e  Backward variable:
bi(k) = P(’Ykﬂ» Vet25 - - - ,’Yn|xle = ei)

e Inside variable:

ﬁ;(h P; Q) = P<wpq|Aquaxk = ei)

e  QOutside variable:

Ol;:(k, p, q) = P<w1(p—1)7Ai;q7w(q+1)m|xk = ei)

where wp, is the subsequence of terminals from pth
position of 7; to gth position, and Aéq is the nonterminal

. .ok
A € N, which derives wyq, or A = wy,. Fig. 15 illustrates
the probabilities associated with inside and outside
variables.

~.~“ Al"',

“«"""Outside prvobabil'i’fy»,,'
P<w1 pflAg;qwqﬁ»l m)

Inside Probability
Fig. 15. Inside and outside probabilities in SCFG.
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B. Bayesian Estimation of MFR’s State via
Viterbi and Inside Algorithms
The estimator of MFR’s state at time k is

X = arg max P(xx = ei|n)

and which could be computed using the Viterbi algorithm.
Define

5i(k) -

max  P(xo,xp, - . .
X0 5X1 5+ Xk—1

,Xk:l',’)/l,’}/z,...,’}/k)

the Viterbi algorithm computes the best state sequence
inductively as follows:

1) Initialization: 6;(1) = mo;(71), for 1 <i < M.

2) Induction:

6i(k +1) = max [éi(k)aﬁ(z,b)]oi('ykﬂ),

1<j<M
where 1<k<n—1land1<i<M
Yi(k+1) = arglr%};uid 6i(k)aj;,

where1<k<n—1and1l<i<M.

3) Termination:

Xn = arg max, 6i(n)

4)  Path backtracking:

X = V1 (Xpr1), k=n—-1n—-2,...,1

where 0;(7) is the output probability of the string 7
generated by the grammar G;. An efficient way to calculate
the probability is by the inside algorithm, a dynamic
programming algorithm that inductively calculates the
probability.

The inside algorithm computes the probability o;(7)
inductively as follows:

1) Initialization: §;(k, k) = P(A/ — wy|G;).

2) Induction:

q—1

ﬂi(p’ q) = Z Z P(Aj - ArAs)ﬁr(pa d)ﬂS(d +1, q)

rs d=p

for Vj, 1 < p<q < m.
3) Termination: o;(y.) = 1 (1, mp).
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Running both the Viterbi and the inside algorithms, the
posteriori distribution of the states given the observation
could be computed.

C. MFR Parameter Estimation Using EM Algorithm

The Expectation Maximization (EM) algorithm is a
widely used iterative numerical algorithm for computing
maximum likelihood parameter estimates of partially
observed models. Suppose we have observations
T, ={m,..., .} available, where n is a fixed positive
integer. Let {Ps,¢ € ®} be a family of probability
measures on (2, F) all absolutely continuous with respect
to a fixed probability measure P,. The likelihood function
for computing an estimate of the parameter ¢ based on the
information available in I, is

dp,
£n(¢) = Eo |:d_PD |Fn:|

and the maximum likelihood estimate (MLE) is defined by

pe argmax L, ().
Pped

The EM algorithm is an iterative numerical method for
computing the MLE. Let qgo be the initial parameter
estimate. The EM algorithm generates a sequence of
parameter estimates {¢;} j € Z" as follows:

Each iteration of the EM algorithm consists of two

steps: ~ .
Step 1)  (Expectation-step) Set ¢ = ¢ and compute
Q(-, ¢), where
Qe,9) = 10g IF ]
Step 2) (Maximization-step) Find

Qf;j+1 € arg max Q(o, &)

Using Jensen’s inequality, it can be shown (see Theorem 1
in [53]) that sequence of model estimates {¢;}, j € Z*
from the EM algorithm are such that the sequence of

likelihoods {Ln(qgj)}, j € Z* is monotonically increasing
with equality if and only if ¢4, = ¢;.

In Section IV-B, MFR’s state estimation problem was
discussed. However, the algorithm introduced assumes

Syntactic Modeling and Signal Processing of Multifunction Radars

complete knowledge of system parameters, i.e., the
Markov chain’s transition matrix and the SCFG’s produc-
tion rules. In reality, such parameters are often unknown.
In this subsection, EM algorithm is applied to a batch of
noisy radar signal in the track file, and system parameters
are estimated iteratively.

In EM’s terminology, the intercepted radar signal
(radar words), 7., is the incomplete observation se-
quence, and we have complete data if it is augmented
with {xg.i, C1n}- X0 is the state sequence of the MFR
system. Cy,, = (Cy,...,C,) is the number of counts each
production rule is used to derive ., and in particu-
lar, Cp=(CHA — m;m),CHA — %), - - .CY(A — 1 7)
for k=1,2,...,n and C'(A— n;y) for i=1,2,...,M
is the number of counts grammar G; applies the
production rule A — 7 in deriving .

Denote the parameter of interest as ¢ = {aﬁ,Pl(A —
n),PHA —n),...,P(A — 1)}, where P(A — n) is set of
probabilities of all the production rules defined in
grammar i, the complete-data likelihood is written as

n

‘cn<¢) = P(’yka Ck‘X}g, ¢)P(Xk|Xk,17 ¢)P(X0|¢)

k=1

In order to facilitate the discussion of the EM algorithm,
the following two variables are introduced:

Xi(k) =P(x, = ei|71n)
_ Hlob(k)
S filk)bi(k)
P(x, = €jy X1 = el Y1)
fi(R)ajioi(Vi+1)bi(k + 1)

- Sl i fik)aoi (e )bi(k +1)

(k) =

The Expectation step of the EM algorithm yields the
following equation:

E;(log £a(9))

= Z DD B A= mw)

k=1 x, A% T%

x log P*(A — 1) Xy, (k)

+ En: Z Z log(axk‘xk—l)éxk—lxh(k - 1)

k=1 X, Xp—1

+ZZ]OngO Xxo )

=1 Xxo
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where E;(C%(A — ;7)) can be computed using inside
and outside variables [51].

The maximization step of the EM algorithm could be
computed by applying Lagrange multiplier. Since the
parameters we wish to optimize are independently
separated into three terms in the sum, we can optimize
the parameter term by term. The estimates of the
probabilities of the production rules can be derived using
the first term of the equation, and the updating equation is

a2 B (CHA = m o)) x (R)
Pra—m= D 2ot EG(CH(A — 1 7)) X ()

Similarly, the updating equation of the transition matrix
aﬁ is

S gik)

a]‘ n—1
P Xj(k)

Under the conditions in [54], iterative computations of the
expectation and maximization steps above will produce a
sequence of parameter estimates with monotonically
nondecreasing likelihood. For details of the numerical
examples, the parameterization of the Markov chain’s
transition matrix by logistic model, and the study of the
predictive power (entropy) of SCFGs, please see [55].

V. SIGNAL PROCESSING IN
FINITE-STATE DOMAIN

In this section, we deal with the lower layer of signal pro-
cessing as described in Section IV-A. Before we discuss
finite-state modeling and signal processing of syntactic MFR
models, we need to provide some additional definitions.

1) CFGs and Production Graphs: The property of self-
embedding of CFGs introduced in Section II is not very
easy to determine through a simple visual inspection of
grammatical production rules. More precise and formal
techniques of the self-embedding analysis rely on the
concept of CFG production graphs.

Definition 5.1: A production graph P(G) for a CFG
G=(AET,Sy) is a directed graph whose vertices
correspond to the nonterminal symbols from &, and there
exists an edge from vertex A to vertex B if and only if there
is a production in I such that A — aBg.

Definition 5.2: A labeled production graph P;(G) for a CFG
G=(A,E&,T,Sy) is a production graph P(G) with the set of
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labels lab(T") defined over the set of edges of P(G) in the
following way:

lab(A — B)
|l ifforeveryA— aBfel,a#¢,0=c¢,
) if forevery A— aBf el',a=¢,8 #¢, (21)
b if forevery A— aBBel',a #¢,0#c¢,

u ifforeveryA—aBfel,a=¢[F=c.

Note that the production graphs of Def. 5.1 and
Def. 5.2 are not related to FSAs or FSLs described earlier.
They are simply useful graphical representations of CFGs.

Let us consider an example grammar (reproduced from
[56] with modifications)

A ={a,b,c,d},
&=1{S,A,B,C,D,E,F},
S — DA

A — bEaB

B — aE|S
C—bD

D — daCla

E — D|Cc|aF|Fc
F — bd

(22)

The labeled production graph for this grammar is
illustrated in Fig. 16.

Definition 5.3: A transition matrix M(G) for the labeled
production graph Pi(G) of a CFG G = (A,&,T,Sy) is an

N x N matrix whose dimensions are equal to the number of

Fig. 16. Production graph for the grammar in (22).
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nonterminal symbols in £ (number of vertices in the pro-
duction graph), and whose elements are defined as follows:

m;;(G) = {lab(Ai —4) if Ay —apfeT. (23)

The transition matrix of the labeled production graph
in Fig. 16 with respect to the vertex ordering
{S,A,B,C,D,E,F} has the following structure:

01 00 7r 00

001 00 Ub O

u 000010
MG)=[0 0 0 0 I 0 0 (24)

0001000

000 r uoO b

(0 0000 0 O]

In Section V-A, we will use production graphs and transition
matrices in analysis of self-embedding property of CFG.

A. CFG-Based Finite-State Model Synthesis

This subsection is devoted to development of a pro-
cedure that allows to automatically synthesize a finite-state
model of a DES using its CFG model as an input. We
introduce a theoretical framework for determining
whether a specified CFG of the system actually represents
an FSL and provide an automated polynomial-time
algorithm for generating the corresponding FSA.

This synthesis procedure consists of four basic steps.

1) Test of self-embedding. A CFG that is deter-
mined to be NSE describes an FSL (see Section II).
Therefore, an FSA can be synthesized from this
grammar.

2) Grammatical decomposition. First, the NSE
CFG is broken down into a set of simpler FSGs.

3) Component synthesis. Once the grammar has
been decomposed into a set of simpler gram-
mars, an FSA can be synthesized for every one
of these FSGs.

4) Composition. Finally, the components from the
previous step are combined together to form a
single FSA that is equivalent to the original NSE
CFG of the MFR.

This procedure is based on combined results published in
[41] and [57].

1) Verification of Non-Self-Embedding: As was mentioned
earlier, if a CFG of a system is in the NSE form, this CFG
has an equivalent finite-state representation. However,
given an arbitrarily complex CFG, it is not possible to
verify the NSE property of this grammar by simple visual
inspection.

Table 3 semiring Operations of Sum and Product

[ Sum 1 Product |

o~ ~| o] o] ~| =~
[l N R R o K ol
(o] o] o] §en] Hen] Nen]

o O o S| S O
Lol 3|~

~| | | o =~ |
el E==) = e =

2lo|o3|~lo
gle o3|~
e|o|o 3| ~[X

IR RIS

lo|o 3| ~[+

In this section, we present a formal verification
procedure of the NSE property of an arbitrary CFG. This
procedure is based on the one described in [41], but it has
been modified to suite the needs of the DES grammars.

Let us start by defining the concept of a semi-ring [58]:

Definition 5.4: A semi-ring is a set S together with
addition “+” and multiplication “X” operations defined
over the elements of this set in such a way that they satisfy
the following properties:

1) additive associativity: (Ve,g,f € S)(e +g)

e+ (g+f);
2) additive commutativity: (Ve,g € Sle+g=g+e;
3) multiplicative associativity: (Ve,g,f € S)(e X g)
X f—ex (g xf):

4) left and right distributivity: (Ve,g,f € S)e X
(g+) = (exg)+(exf) and (e+g)xf=
(e % f) + (g % )

Let us now define a semiring over the set of labels of
production graphs of CFGs. This set of labels is introduced
by Def. 5.2 and Def. 5.3. The sum and product operations of
this semiring are listed in Table 3.

If M(G) is a transition matrix of the CFG G (see
Def. 5.3), then, using the semiring operations of Table 3,
we define the steady-state matrix of the production graph
of this grammar as

+f=

N

M=N(6) = Y _M(6)]

i=1

(25)

where N is the dimension of the transition matrix M(G).
[41] have proven that if

diag[M="(G)]

does not contain labels “b,” the corresponding grammar G
is NSE. This demonstrates that the NSE property of a CFG
can be verified in polynomial time.

To illustrate the application of this algorithm, let us
revisit the example CFG (22). The labeled production
graph for this grammar is shown in Fig. 16, and the
transition matrix of this graph is given by (24).
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diag[M="(G)] = [1,1,1,1,1,0,0], therefore, CFG (22)
is NSE. In the remainder of this section, we will describe a
three-step procedure that accepts an NSE CFG and
automatically synthesizes an FSA that is equivalent to
this grammar.

2) Grammatical Decomposition: We start by introducing
the concept of the grammatical ®-composition.

Definition 5.5: If G; = (Ay,£1,T1,81) and G, = (A, &,
I';,S;) are two CFGs with £,NE; =0 and E,N A, =0,
then @-composition of these grammars is defined as

G:G1@G2:(A,€,F,S)

where A=A \E;UA, E=EUE, T =T,UT,, and
S == Sl.

[41] have demonstrated that for any NSE CFG G there
exist n FSGs G,G,,...,G, such that G=G®
G2 @ ... D G,. They have also shown that every FSG G;
of this decomposition is equivalent to some strongly
connected component of the production graph P(G).

The grammatical decomposition procedure consists of
the following steps.

1) Let Pi(G),Py(G),...,P,(G) be n strongly

connected components of the production graph
P(G). Then &; of the FSG G; is the same as the set
of vertices in P;(G).

2) The set of terminal symbols of the FSG G; is found

through the following recursive relationship:

A, =A
Anfl ZAUE,,

Ay =AUEU...UE,
AleUEZU...UE,‘n

3) The set of grammatical production rules I'; C I is
defined as T'; = {A — alA € &}

4) Finally, the start symbol S; for the FSG G is
chosen as S of the original NSE CFG G, and S; for
i=2,...,nis chosen to be an arbitrary nonter-
minal from the corresponding set &;.

One of the most efficient procedures to decompose a
directed graph into a set of strongly connected components
involves Dulmage—Mendelsohn decomposition [59] of the
production graph’s adjacency matrix. This decomposition
finds a permutation of the vertex ordering that renders the
adjacency matrix into upper block triangular form. Each
block triangular component of the transformed adjacency
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Fig. 17. Strongly connected components of the production graph
shown in Fig. 16.

matrix corresponds to a strongly connected component of
the production graph.

Now consider an example of the decomposition
procedure applied to grammar (22). Its production graph
includes four strongly connected components shown in
Fig. 17. The four FSG components of this CFG are

Al = {a7 b7 C7 d7 C7 D7 E}7

gl = {SaAv B}a
G, — S — DA, (262)
I't =< A — bEaB, ;,
B — aE|S
Sl = S
A, = {a,b,c,d,C,D,F},
&, ={E},
G, =| {£} (26b)
I'; = {E — D|Cc|aF|Fc},
Sz =E
A3 = {a7 b,C,d},
& = {Ca D}7
Gs = C — bD, , (26¢)
F3 = )
D — daCla
S; ={X|X € &}
A4 = {av b,C, d}v
&, = {F},
Go=| " {r} (26d)
F4 = {F — bd}7
qS4: F

where, in (26c), X may represent either of the non-
terminals contained in £3.
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3) Synthesis of Finite-State Components: The next step
involves synthesis of individual FSAs for each of the FSGs
Gy1,Gz,...,G, obtained at the step of grammatical
decomposition. This is a straightforward mechanical
procedure well described in the literature [23], [25],
[26], [35], [40], [42].

The FSA for the example grammars (26) are shown in
Fig. 18. They have the following structure:

¥ = A,
Q=5UQ,
A= & =6(T), , (27a)
q@ ={S},
Fi=HeQ
¥y = A,
Q=85UQ,
Ay =| 6 =06(I2), |, (27b)
Go = {E}v
F,=HeQ,
Y3 = As,
Q=EUQ;,
A= | 8 =6y, , (27¢)
o = {{X}X €&},
F;=HeQ
Y4 = Ay,
Q= &,UQ,,
Ay =1 64 =06(Iy), (27d)
Go = {F}v
F,=HeQ,
bd
(d)

Fig. 18. Components of the FSA for the grammar (22). States that
are not labeled in these graphs are considered intermediate

and have no direct representation in the set of nonterminals of the
grammars. (a) Corresponds to the grammar (26a). (b) Corresponds
to the grammar (26b). (c) Corresponds to the grammar (26c).

(d) Corresponds to the grammar (26d).

where Q] are the sets of intermediate states required for
construction of the automaton i that are not present in the
set of nonterminals of the corresponding grammar G;.

Note that we present here simplified versions of FSAs
highlighting only the important structural aspects. Specif-
ically, in Fig. 18(c) and (d) transitions labeled with
nonterminals “da” and “bd,” when rigorously treated,
require the insertion of an intermediate state. Also, before
constructing an FSA, the grammar should have been
converted to the unit production free form so that every
edge in the graphs in Fig. 18 corresponds to the generation
of a single nonterminal. We will suppress these interme-
diate steps in the rest of this paper, and, without loss of
generality, will adopt a slightly simplified form of FSA
representation.

4) Composition of the FSA: The final step of the FSA
synthesis procedure for a given NSE CFG involves com-
position of the FSA components obtained at the previous
step. A recursive “depth-first” algorithm that performs this
operation was developed by [57] and its modified version
was presented by [56]. Here we present an alternative,
“breadth-first” algorithm.

The FSA composition procedure is formalized in terms
of two algorithms presented below. The main procedure
“createFSA” initializes the composition operation and
calls the function “expandFSA” that performs the actual
FSA composition. We will illustrate this procedure by an
example composing FSA components shown in Fig. 18.

Algorithm 1 Procedure “createFSA” creates an FSA

1) procedure CREATEFSA(Sp,As,...,A,) > Creates
an FSA from components Ay, ..., A,
2) ¥ — {So} > Initializing set of transitions
3) Q —{¢,H} > Adding intermediate states
4) 6 —{6(d,S) = {H}} > Adding initial
transition
> Setting initial state
6) F — {H} > Setting terminal states
7) A—(3,Q,6,q,F) > Initializing the FSA
8) A — expandFSA(A, Ay, ..., A,) > Calling the
expansion procedure
9) end procedure

5) q — ¢

Algorithm 2 Function “expandFSA” inserts FSA compo-
nents into the FSA A

1) function ExPANDFSA(A,A4,...
FSA components into A
2) for all A; and a € ¥ do

,A,) > Inserts

3) if « € Q; then b If transition matches a
state
4) qfrom < argq(é(qa, Ol)) > Saving from

state
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5) Gro < O(qfrom, ¥) > Saving to state

6) Y — XY\ aUX; > Expanding set of
transitions

7) Q < QU Q; > Expanding set of states

8) 6« 6U0d > Appending transition

structure

9) for all 6(qj, 3) == qfrom do

10) 5((1}-, B) — a > Rerouting qfrom
inputs
11) end for
12) for all 6(q;, B) € F; do
13) 6(%‘» B) = Gro > Rerouting gy,
inputs
14) end for
15) Q<< Q\F > Removing term.
states of A;

16) Q < Q\ gfrom > Removing ggom state
17) end if
18) end for
19) return A > Returning the complete FSA A
20) end function

The initialization step involves creation of a “dummy”
FSA that contains two states—an intermediate state and a
terminal state. It also contains one transition from the
intermediate state to the terminal state on symbol Sy = S
from the original NSE CFG (22). This FSA is shown in
Fig. 19(a).

The function “expandFSA” accepts the “dummy” FSA
as well as four FSA components shown in Fig. 18. It then
transforms the “dummy” FSA into a real automaton by
consecutively inserting FSA components and rewiring
transitions.

The step-by-step composition procedure is illustrated
in Fig. 19(b)-(e). First, the FSA shown in Fig. 18(a) is
inserted into the FSA in Fig. 19(a) instead of the transition
labeled S. The resulting intermediate FSA is shown in
Fig. 19(b). Next, all the E-transitions are replaced with the
FSA in Fig. 18(b). The resulting intermediate FSA is shown
in Fig. 19(c). Then, all the F-transitions are replaced with
the FSA in Fig. 18(d). The resulting intermediate FSA is
shown in Fig. 19(d). Finally, all the C- and D-transitions

. . . e
T D D D T ARG b 1S
3 a
q s A s A)b s A p 5 @b
b Y | T da
_{E E ¢ +—E}—(C)
Sapes ° ¢ (EedY5 (C)
- E v a LF( | a dbd | NG
R . ; EC) a U abd
,“? 5 — o= “Bde Bt bdc
a a T = -
v s - a ¢ (25
ELC El ¢ Dy<—E)=(C
NE o] da
E o [ D(abd g b3 )\ b
1 FY /6 7 a\ | /bdc  a
y \ (3 W,
H (W) H Dalld c H -
D
(@) (b) (c) (d) (e)

Fig. 19. Synthesis procedure of the FSA for the example CFG (22).
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are replaced with the FSA in Fig. 18(c). The final auto-
maton equivalent to the grammar (22) is shown in
Fig. 19(e). Note that the labels of the states in Fig. 19
are not the unique state identifiers. These labels are shown
to illustrate the composition procedure and to provide
linkage with the states of the original FSA shown in Fig. 18.

B. State Machine Synthesis of the Mercury
Radar Controller

As stated in [23], the analysis of stochastic and
weighted grammars must be performed using their
characteristic counterparts. However, since the character-
istic grammar is so close to the original deterministic
grammar, we can perform the NSE property test directly
on the deterministic CFG.

Following the verification procedures as described in
Section V-Al, the diagonal elements of the steady-state
analysis matrix can be shown to be

diagM=N(G))=fo o L1 111110 ... o

and which confirms that the Mercury’s radar controller
grammar is an NSE CFG. Therefore, an FSA of the radar
controller can be synthesized from the grammar of Fig. 13.

Using the Dulmage-Mendelsohn decomposition, 29
strongly connected components of the production graph of
the CFG of the Mercury emitter were obtained, and the
production graph is illustrated in Fig. 20. As shown in
Section II, each strongly connected component of the
production graph corresponds to an FSG. FSAs for each of
these FSGs are shown in Figs. 21 and 22. The complete
state machine of the Mercury emitter can be obtained by
applying the FSA composition operatiom.3

The final step of the synthesis procedure involves
transformation of the deterministic state machine of the
Mercury emitter into a stochastic model, taking into
account the probability distributions determined by the
structure of the stochastic grammar shown in Fig. 13. At
this stage, the probabilistic elements of the problem that
led to the development of the stochastic radar grammar
[e.g., the channel impairment probability distribution (19)]
are brought into the structure of the radar model.
This conversion procedure is illustrated in Section II in
(12)—(15). The procedure is essentially a simple mechan-
ical operation of converting the Mealy state machine to the
Moor automaton and assigning the probabilities of tran-
sitions as shown in (13), and the probabilities of ob-
servations as demonstrated in (15).

C. Finite-State Signal Processing
The finite-state model of the radar controller grammar
is based on the HMM. Once this model is obtained, the

®Due to the very large size of the final Mercury state machine, we do
not include it in this paper.
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Fig. 20. Production graph of the Mercury grammar.

AcqPhrase

=FourWWTrack=

forward-backward algorithm also known as HMM-filter can
be applied to statistical signal processing based on this
model. This algorithm is well-known and studied in detail
n [27] and [44]. 2)

VI. CONCLUSION

The main idea of this paper is to model and characterize
MFRs as a string generating device, where the control rules
are specified in terms of an SCFG. This is unlike modeling
of targets, where hidden Markov and state space models are
adequate [14], [24]. The threat of the MFR is recognized as
its policy of operation, and it is modeled as a Markov chain
modulating the probabilities of the MFR’s production
rules. The paper shows how a large scale dynamical system 3)
such as MFRs is expressed by a compact representation,
and demonstrates the flexibility of translating from one
representation to another if the self-embedding property is
satisfied. Based on the SCFG representation, a maximum
likelihood sequence estimator is derived to evaluate the
threat poses by the MFR, and a maximum likelihood 4)
parameter estimator is derived to infer the unknown
system parameters with the EM algorithm. Since SCFGs
are multitype Galton—Watson branching processes, the
algorithms proposed in this paper can be viewed as filtering
and estimation of a partially observed multitype Galton— 5)
Watson branching processes. For details of numerical
examples of the constructed model, and the study of the
predictive power (entropy) study, please see [55].

Several extensions of the ideas in this paper are worth
considering.

1) The algorithms studied in this paper are inherently

off-line. It is of interest to study stochastic ap-
proximation algorithms for adaptive learning of the

MFR grammar and real-time evaluation of the
threat. For HMMs, such real-time state and param-
eter estimation algorithms are well known [60].
In this paper we have constructed SCFG models
for the MFR radar as it responds to the dynamics of
atarget. Recall from Fig. 6 that in this paper we are
interested in electronic warfare from the target’s
point of view. An interesting extension of this pa-
per that we are currently considering is optimizing
the trajectory of the target to maximize the amount
of information obtained from the CFG. Such
trajectory optimization can be formulated as a
stochastic control problem involving an SCFG (or
equivalently a Galton—Watson branching process).
The SCFG signal processing algorithms presented
in this paper consider an iid channel impairment
model. It is important to extend this to Rayleigh
fading channels. Sequential Monte Carlo method,
such as particle filtering, can be applied to cope
with fading channel.

In this paper we deal exclusively with optimizing
the radar signal at the word level. Analogous to
cross layer optimization on communication system
[61], cross layer optimization can be applied to
radar signal processing at the pulse and word level.
This paper deals exclusively with modeling and
identifying MFRs in open loop. That is, we do not
model the MFR as a feedback system which
optimizes its task allocation in response to the
target. See [62] for a Lagrangian MDP formulation
of radar resource allocation. Modeling, identify-
ing, and estimating an MFR in closed loop is a
challenging task and will require sophisticated
real time processing (See point 1 above). B
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Fig. 21. Mercury state machine components.

APPENDIX

A. Functional Specification of the “Mercury” Emitter
This appendix contains a sanitized version of a textual

intelligence report describing the functionality of the

emitter called “Mercury”.*

1) General Remarks: The timing of this emitter is based
on a crystal-controlled clock. Each cycle of the clock is
known as a crystal count (Xc) and the associated time
interval is the clock period. All leading edge emission
times and dead-times can be measured in crystal counts
(integer multiples of the clock period).

Most of the information below relates to search,
acquisition, and tracking functions only. Missile engage-
ment modes (launching, guidance, and fusing) can also be
fit into the structure below, but with some modifications.

“*The specification of this emitter was provided by Dr. Fred A. Dilkes
of Defence R&D Canada. It is based on specifications of some real-life
anti-aircraft defense radars, but has been altered and declassified before
the release.
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Fig. 22. Mercury state machine components.

2) Radar Words: The timing of this emitter is dictated by
a substructure called a word. Words occur sequentially in
the pulse train so that one word begins as the previous
word is ending. There are nine distinct words, denoted by
wi,...,wq. Each has the same length (on the order of
several milliseconds), and is associated with a fixed integer
number of crystal counts. For the purpose of this paper we
will consider all words of the radar distinguishable from
each other.

3) Time-Division Multiplexing—Phrases and Clauses: This
system is an MFR capable of engaging five targets in a
time-multiplexed fashion using structures called clauses
and phrases. A phrase is a sequence of four consecutive
words. A clause is a sequence of five consecutive phrases
(see Fig. 23).

Each phrase within a clause is allocated to one task,
and these tasks are independent of each other. For in-
stance, the radar may search for targets using phrases 1, 3,
and 4, while tracking two different targets using phrases 2
and 5.

4) Search-While-Track Scan: One of the generic func-
tional states of the radar is a search scan denoted by
<FourWSearch>. In the <FourWSearch> scan, the words
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Fig. 23. The output sequence of this radar is formed so that the
clauses follow each other sequentially. As soon as the last word

of the last phrase of a clause is emitted, the first word of the first
phrase of the new clause follows. Although the process is linear

in time, it is very convenient to analyze the radar output
sequence as a two-dimensional table when clauses are stacked
together not horizontally, but vertically. In that case, boundaries
of phrases associated with multiplexed tasks align, and one can
examine each multiplexed activity independently by reading radar
output within one phrase from top to bottom.

are cycled through the quadruplet of words
w; —wy — wy — ws. The radar will complete one cycle
(four words) for each beam position as it scans in space.
This is done sequentially using all unoccupied word
positions and is not dictated by the clause or phrase
structure. (Note that the radar does not have to start the
cycle with W1 at each beam position; it could, for instance,
radiate wg — ws — w; — w; or any other cyclic permutation
at each beam position.)

It is possible for the entire system to operate in a
search-only state in which no target tracks are maintained
during the search. However, <FourWSearch> can also be
multiplexed with target tracking functions. In the latter
case, some of the words within each clause are occupied
by target tracking and will not engage in search functions.
Only the available phrases (those that are not occupied)
are cycled through the quadruplet of words. Since the
number of beam positions in the scan is fixed, the rate at
which the radar is able to search a given volume of space
is proportional to the number of available words; as a
result, simultaneous tracking increases the overall scan
period.

The radar has another scan state called
<ThreeWSearch>. This is similar to <FourWSearch> except
that it uses only a triplet of words w; —ws; —ws (and
dwells on each beam position with only three words). It
can also be multiplexed with automatic tracking.

5) Acquisition Scan: When the radar search scan detects a
target of interest, it may attempt to initiate a track. This
requires the radar scan to switch from one of the search

behaviors to one of the acquisition patterns. All of the
acquisition scans follow these steps sequentially.

a)  Switch from Search to Acquisition: The switch from
search to acquisition begins with all available
words being converted to the same variety of
word: one of wy, ..., wg, chosen so as to optimize
to the target Doppler shift. Words that are
occupied with other tracks continue to perform
their tracking function and are not affected by the
change from search to acquisition. The available
words perform one of several scan patterns in
which each beam position dwells only for the
period of one word.

b) Nonadaptive track: Then, one of the available
phrases becomes designated to track the target of
interest. This designation will perpetuate until the
track is dropped. Correspondingly, either the last
three or all four of the words within that
designated phrase become associated with the
track and switch to we (a nonadaptive track
without range resolution). The remaining avail-
able words continue to radiate in the variety
appropriate to the target Doppler.

c) Range resolution: At this point the radar has angular
track resolution but still suffers from range ambi-
guities. After some variable amount of time, the first
word in the designated phrase will hop between
words w7, wg, and wg, in no predictable order. It will
dwell on each of those varieties of words only once
in order to resolve the range ambiguity, but dwell-
time for each variety is unpredictable.

d) Return from Acquisition to Search: Finally, once the
radar has established track, it is ready to terminate
the acquisition scan. Thereafter, until the track is
dropped, either the last three or all four words of
the designated phrase will be occupied with the
track and will not be available for search functions
or further acquisitions. The radar then returns to
one of the search-while-track functions. All
occupied words maintain their tracks and all
available words (possibly including the first word
of the designated track phrase) execute the
appropriate scan pattern.

Only one acquisition can be performed at any given time.

6) Track Maintenance: Each track is maintained by either
the last three or all four words of one of the phrases. Those
words are considered occupied and cannot participate in
search or acquisition functions until the target is dropped.
The radar performs range tracking by adaptively changing
amongst any of the high pulse repetition frequency words
(we, . . ., wg) in order to avoid eclipsing and maintain their
range gates.

Occasionally, the system may perform a range verifi-
cation function on the track by repeating the range
resolution steps described above.
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