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Errata for book

As of Monday 13th March, 2017, here is a list of errors.

Typo Errors:
1. Page 421. Appendix 17.C. bottom of the page. There are a couple of typo errors in

the proof of the UCB algorithm. Also the proof given was too terse (even though
the proof is elementary). Below we give a more detailed proof with the two typos
corrected. Recall that

Hθst = ĉθ,t +B

√
ξ log t
s

, ξ > 1

where ĉθ,t is the arithmetic mean of the rewards from arm θ using s samples until
time t. We assume that the rewards cn(θ) lie in the interval [0, B] for all arms θ ∈ Θ
where B is a known positive real number.
For the reader’s convenience, replace the material on page 421 of the book starting
with: “It only remains to choose τ ...” with the following:
It only remains to choose τ to upper bound the right hand side. Choose

τ = C(θ∗) = E{cn(θ∗)}, and u ≥ 4B2 ξ

(C
(
θ∗)− C(θ)

)2 logn (xx)

(Choose u as the smallest integer satisfying the above inequality.) Then

P
(
Hθst > C(θ∗)

)
= P

(
ĉθ,t − C(θ) > −B

√
ξ log t
s

+ C(θ∗)− C(θ)
)

(a)
≤ P

(
ĉθ,t − C(θ) > 1

2
(
C(θ∗)− C(θ)

))
(b)
≤ exp

(
− s

2B2
(
C(θ∗)− C(θ)

)2 (c)
≤ exp

(
− u

2B2
(
C(θ∗)− C(θ)

)2
(d)
≤ n−2ξ

Also P(Hθ∗st ≤ C(θ∗)) ≤ t−2ξ by Hoeffding’s inequality.

Note: Inequality (a) follows since t ≤ n and then from (xx),√
ξ log t
s
≤

√
ξ logn
s

=
√
u

s

C(θ∗)− C(θ)
2 ≤ C(θ∗)− C(θ)

2 , since u ≤ s.
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(b) follows from Hoeffding’s inequality1 using s samples keeping in mind the as-
sumption that cn(θ) ∈ [0, B], (c) follows since u ≤ s, (d) follows by substituting the
expression for u in (xx).
The rest of the proof then follows as in the book.

Minor typos in Book: Here is the list of minor typos so far:
page 59 sec 3.7.2: Here we state two important results (not result). plural.
page 59: two lines before Sec.3.8. P ′π1 and P ′π2 – the primes ′ (denoting transpose)

are missing.
page 124, Subsection 6.1.2: indexpolicies! Deterministic Markovian should be omitted.

It was meant to be an index command.
page 154: In dynamic programming equation Jk(π). The right hand side of the equality:

e1 should be replaced with e2.
page 159: PROGRAM should be program (lowercase)
page 203: footnote 1: to mean non decreasing
page 206: footnote 4: to mean non decreasing
page 240: replace πi with π(i). and πj with π(j).
page 248: in 11.4.2: L parallel projects (instead of P parallel projects)
page 249: eq (11.17). replace max with argmax.
page 258: in proof of Theorem 12.2.1. Replace Q1(π, 1) with Q(π, 1)
page 259: 6th and 7th line: re[lace B1y with B2y and B2y with B1y.
page 262: Fig 12.2, L(e3, π̄2) and L(e1, π̄1) should be swapped.
page 263: replace π0 with π̃.
page 294: Fig 13.1. Private belief πk should be replaced with ηk.
page 302: (13.39) remove the index k − 1 in π in two places
page 302: (13.40) remove extra { in second eqn
page 314: replace ≤ in (14.4) by ≥.
page 350: Sec 15.5 second last line of page k ∈ ιn: remove the ∈ ιn
page 362: Third last eqn on page, conditioning on ẋj , and ẍj . there is a missing comma

between ẋj , and ẍj
page 367: Eq (16.9): Q(i+, u) should be replaced by Q(i+ 1, u)
page 412: in footnote replace ρl with ρ(l)
page 412: in (17.75) replace θk with θk(l)
page 444: (B.6) replace comma with full stop.
page 444: B3.1 sentence just above the equation for Nt, missing full stop.

1If µn = 1
n

∑n

i=1 xi (i.e., µn is the arithmetic mean using n samples) where xi ∈ [0, B] are i.i.d. with
E{xi} = µ, then

P (µn − µ > ε) ≤ exp
(
−2nε2

B2

)
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Preface to Internet Supplement

This document is an internet supplement to my book “Partially Observed Markov Decision
Processes – From Filtering to Controlled Sensing” published by Cambridge University Press
in 2016.2

This internet supplement contains exercises, examples and case studies. The material
appears in this internet supplement (instead of the book) so that it can be updated. This
document will evolve over time and further discussion and examples will be added.

The website http://www.pomdp.org contains downloadable software for solving POMDPs
and several examples of POMDPs. I have found that by interfacing the POMDP solver
with Matlab, one can solve several interesting types of POMDPs such as those with non-
linear costs (in terms of the information state) and bandit problems.

I have given considerable thought into designing the exercises and case studies in this
internet supplement. They are mainly mini-research type exercises rather than simplistic
drill type exercises. Some of the problems are extensions of the material in the book. The
exercises are suitable as term projects for a graduate level course on POMDPs; many of
these exercises have been used in courses I have taught at UBC.

As can be seen from the content list, this document also contains some short (and in
some cases, fairly incomplete) case studies which will be made more detailed over time.
These case studies were put in this internet supplement in order to keep the size of the
book manageable. As time progresses, I hope to incorporate additional case studies and
other pedagogical notes to this document to assist in understanding some of the material in
the book. Time permitting, future plans include adding a detailed discussion on structural
results for POMDP games; structural results for quasi-variational inequalities, etc.

To avoid confusion in numbering, the equations in this internet supplement are num-
bered consecutively starting from (1) and not chapter wise. In comparison, the equations
in the book are numbered chapterwise.

This internet supplement document is work in progress and will be updated periodically.
Having taught this entire book now as ECE 6950 at Cornell University in Fall os 2016,
minor typos were picked up as indicated in the errata.

I welcome constructive comments from readers of the book and this internet supple-
ment. Please email me at vikramk@cornell.edu

Vikram Krishnamurthy,
2017

2Online ISBN:9781316471104 and Hardback ISBN:9781107134607
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Chapter 2

Stochastic State Space Models

1. As a simple drill exercise show that if a Markov chain has 2× 2 transition matrix

P =
[
1− a b
b 1− b

]

then
Pn = 1

a+ b

[
b a
b a

]
+ (1− a− b)n

a+ b

[
a −a
−b b

]
Therefore the optimal predictor (given by the Chapman Kolmogorov equation) can
be evaluated explicitly as πn = (Pn)′π0 where ′ denotes transpose.

2. Theorem 2.4.2 of the book dealt with the stationary distribution and eigenvalues
of a stochastic matrix (transition probability matrix of a Markov chain). Parts of
Theorem 2.4.2 can be shown via elementary linear algebra.
Statement 2: Define spectral radius λ̄(P ) = maxi |λi|
Lemma : λ̄(P ) ≤ ‖P‖∞ where ‖P‖∞ = maxi

∑
j Pij

Proof: For all eigenvalues λ, |λ|‖x‖ = ‖λx‖ = ‖Px‖ ≤ ‖P‖‖x‖ =⇒ |λ| < ‖P‖.
For a stochastic matrix, ‖P‖∞ = 1 and P has an eigenvalue at 1. So λ̄ = 1.
Statement 3: For non-negative matrix P , P ′π = π implies P ′|π| = |π| where |π|
denotes the vector with element-wise absolute values.
Proof: |π| = |P ′π| ≤ |P ′||π| = P ′|π| So P ′|π| − |π| ≥ 0.
But P ′|π| − |π| > 0 is impossible, since it implies 1′P ′|π| > 1′|π|, i.e., 1′|π| > 1′|π|.

3. Farkas’ lemma is a widely used result in linear algebra. It states: Let M be an m×n
matrix and b an m-dimensional vector. Then only one of the following statements is
true:
(a) There exists a vector x ∈ IRn such that Mx = b and x ≥ 0.
(b) There exists a vector y ∈ IRm such that M ′y ≥ 0 and b′y < 0.

Here x ≥ 0 means that all components of the vector x are non-negative.
Use Farkas lemma to prove that every transition matrix P has a stationary distribu-
tion. That is, for any X ×X stochastic matrix P , there exists a probability vector π
such that P ′π = π. (Recall a probability vector π satisfies π(i) ≥ 0,

∑
i π(i) = 1).

6



Chapter 2. Stochastic State Space Models 7

Hint: Write alternative (a) of Farkas lemma as[
(P − I)′

1′

]
π =

[
0X
1

]
, π > 0

Show that this has a solution by demonstrating that alternative (b) does not have a
solution.

4. Using the maneuvering target model of Chapter 2.6, simulate the dynamics and
measurement process of a target with the following specifications:

Sampling interval ∆ = 7 s
Number of measurements N = 50
Initial target position (−500,−500)′ m
Initial target velocity (0.0, 5.0)′ m/s

Transition probability matrix Pij =
{

0.9 if i = j
0.05 otherwise

Maneuver commands (three) fr =
(

0 0 0 0
)′ (straight)

fr =
(
−1.225 −0.35 1.225 0.35

)′ (left turn)
fr =

(
1.225 0.35 −1.225 −0.35

)′ (right turn)
Observation matrix C = I4×4
Process noise Q = (0.1)2I4×4
Measurement noise R = diag(20.02, 1.02, 20.02, 1.02)
Measurement volume V [−1000, 1000] m in x and y position

[−10.0, 10.0] m/s in x and y velocity
5. Simulate the optimal predictor via the composition method. The composition method

is discussed in §2.5.2.
6. As should be apparent from an elementary linear systems course, the algebraic Lya-

punov equation (2.22) is intimately linked with the stability of a linear discrete time
system. Prove that A has all its eigenvalues strictly inside the unit circle iff for every
positive definite matrix Q, there exists a positive definite matrix Σ∞ such that (2.22)
holds.

7. Theorem 2.7.2 states that |λ2| ≤ ρ(P ). That is, the Dobrushin coefficient upper
bounds the second largest eigenvalue modulus of a stochastic matrix P . Show that

log |λ2| = lim
k→∞

1
k

log ρ(P k)

8. Often for sparse transition matrices, ρ(P ) is typically equal to 1 and therefore not
useful since it provides a trivial upper bound for |λ2|. For example, consider a random
walk characterized by the tridiagonal transition matrix

P =



r0 p0 0 0 · · · 0
q1 r1 p1 0 · · · 0
0 q2 r2 p2 · · · 0
... . . . . . . . . . ...
0 · · · 0 qX−1 rX−1 pX−1
0 · · · 0 0 qX rX


Then using Property 3 of ρ(·) above, clearly

∑
l min{Pil, Pjl} = 0, implying that

ρ(P ) = 1. So for this example, the Dobrushin coefficient does not say anything
about the initial condition being forgotten geometrically fast.

c©Vikram Krishnamurthy 2017



Chapter 2. Stochastic State Space Models 8

For such cases, it is often useful to consider the Dobrushin coefficient of powers of
P . In the above example, clearly every state communicates with every other state
in at least X time points. So PX has strictly positive elements. Therefore ρ(PX)
is strictly smaller than 1 and is a useful bound. Geometric ergodicity follows by
consider blocks of length X, i.e.,

‖PX ′π − PX ′π̄‖TV ≤ ρ(PX)‖π − π̄‖TV

9. Show that the inhomogeneous Markov chain with transition matrix

P (2n− 1) =
[
0.5 0.5
1 0

]
, P (2n) =

[
0 1
1 0

]

is weakly ergodic.
10. Wasserstein distance. As mentioned in §2.8 of the book, the Dobrushin coefficient

is a special case of a more general coefficient of ergodicity. This general definition is in
terms of the Wasserstein metric which we now define: Let d be a metric on the state
space X = {e1, e2, . . . , } where the state space is possibly denumerable. Consider the
bivariate random vector (x, y) ∈ X × X with marginals πx and πy, respectively.
Define the Wasserstein distance as

d(πx, πy) = inf E{d(x, y)}

where the infimum is over the joint distribution of (x, y).
(a) Show that the variational distance is a special case of the Wasserstein distance

obtained by choosing d(x, y) as the discrete metric

d(x, y) =
{

1 x 6= y

0 x = y.

(b) Define the coefficient of ergodicity associated with the Wasserstein distance as

ρ(P ) = sup
i 6=j

d(P ′ei, P ′ej)
d(ei, ej)

Show that the Dobrushin coefficient is a special case of the above coefficient of
ergodicity corresponding to the discrete metric.

(c) Show that the above coefficient of ergodicity satisfies properties 2, 4 and 5 of
Theorem 2.7.2.

11. Ultrametric transition matrices. It is trivial to verify that Pn is a stochastic
matrix for any integer n ≥ 0. Under what conditions is P 1/n a stochastic matrix? A
symmetric ultrametric stochastic matrix P defined in §14.7 of the book satisfies this
property.

12. Composition Method. In the book, we used the composition method as a simula-
tion based method for implementing the optimal predictor. Recall that to generate
samples from p(x) =

∫
p(x|y) p(y) dy, the composition method algorithm had two

steps:
• Generate Y ∼ p(y)

c©Vikram Krishnamurthy 2017



Chapter 2. Stochastic State Space Models 9

• Generate X ∼ p(x|Y )
The proof of the composition method is straightforward as follows: Let W denote
the random variable generated by the algorithm. Then

P(W ≤ w) =
∫

IR
P(I(X ≤ w)|Y = y) p(y) dy =

∫
IR

∫ w

−∞
p(x|y)dx p(y)dy =

∫ w

−∞
p(x)dx.

c©Vikram Krishnamurthy 2017



Chapter 3

Optimal Filtering

3.1 Problems

1. Standard drill exercises include:
(a) Compare via simulations the recursive least squares with the Kalman filter
(b) Compare via simulations the recursive least square and the least mean squares

(LMS) algorithm with a HMM filter when tracking a slow Markov chain. Note
that Chapter 17.3 of the book gives performance bounds on how well a LMS
algorithm can track a slow Markov chain.

(c) Another standard exercise is to try out variations of the particle filter with
different importance distributions and resampling strategies on different models.
Compare via simulations the cubature filter, unscented Kalman filter and a
particle filter for a bearings only target tracking model.

(d) A classical result involving the Kalman filter is the so called innovations state
space model representation and the associated spectral factorization problem
for the Riccati equation, see [2].

(e) Posterior Cramer Rao bound. The posterior Cramer Rao bound [88] for
filtering can be used to compute a lower bound to the mean square error. This
requires twice differentiability of the logarithm of the joint density. For HMMs,
one possibility is to consider the Weiss-Weinstein bounds , see [79]. Chapter 10
of the book gives more useful sample path bounds on the HMM filter using
stochastic dominance.

2. Bayes’ rule interpretation of Lasso.[73] Suppose that the state x ∈ IRX is a
random variable with prior pdf

p(x) =
X∏
j=1

λ

2 exp (−λx(j)) .

Suppose x is observed via the observation equation

y = Ax+ v, v ∼N(0, σ2I)

where A is a known n×X matrix. The variance σ2 is not known and has a prior pdf
p(σ2). Then show that the posterior of (x, σ2) given the observation y is of the form

p(x, σ2|y) ∝ p(σ2) (σ2)−
n+1

2 exp
(
− 1

2σ2 Lasso(x, y, µ)
)

10



Chapter 3. Optimal Filtering 11

where µ = 2σ2λ and

Lasso(x, y, µ) = ‖y −Ax‖2 + µ‖x‖1.

Therefore for fixed σ2, computing the mode x̂ of the posterior is equivalent to com-
puting the minimizer x̂ of Lasso(x, y, µ).
The resulting Lasso (least absolute shrinkage and selection operator) estimator x̂
was proposed in [87] which is one of the most influential papers in statistics since the
1990s. Since Lasso(x, y, µ) is convex in x it can be computed efficiently via convex
optimization algorithms.

3. Show that if X ≤ Y (with probability 1), then E{X|Z} ≤ E{Y |Z} for any informa-
tion Z.

4. Show that for a linear Gaussian system (3.29), (3.30),

p(yk|y1:k−1) = N(yk − yk|k−1, CkΣk|k−1C
′
k +Rk)

where yk|k−1 and Σk|k−1 are defined in (3.31), (3.32), respectively.
5. Finite dimensional filters for polynomial systems with Gaussian noise [9,

34]. As discussed in the book, for a linear system with Gaussian noise, the Kalman
filter is the optimal filter. Consider the following polynomial system with Gaussian
noise:

xk+1 = A(xk) + wk

yk = xk + vk

where w, v are iid Gaussian processes, and A(x) is a polynomial function of the
state x. For example, if the state x is a scalar, then for some positive integer p,

A(x) = A(0) +A(1)x+ . . .+A(p)xp.

Then it is shown in [9, 34] that the optimal state estimate E{xk|y1, . . . , yk} can
be computed via a finite dimensional filter in terms of quantities derived from the
Kalman filter.
The intuition behind the result is as follows: Computing E{xk|y1:k} requires com-
puting E{x2

k|y1:k}. For the Kalman filter case, this is given by the covariance update.
For a higher order polynomial system, one ends with the requirement of computing
E{xp+1

k |y1:k} in order to compute E{xpk|y1:k} for positive integer p. But because the
noise is Gaussian, these higher order moments can be computed explicitly.

6. Stein’s formula. Recall that the derivation of the Kalman filter used some useful
properties of Gaussians. It would be remiss of us not to mention another beautiful
formula involving Gaussians, namely Stein’s formula. We give here the univariate
version: Let x ∼ N(µ, σ2). Then

E{(x− µ) f(x)} = σ2 E
{
df(x)
dx

}
More generally, (x, y) jointly Gaussian implies

cov(f(x), y) = E{df(x)
dx
} cov(x, y)

c©Vikram Krishnamurthy 2017



Chapter 3. Optimal Filtering 12

7. Simulate in Matlab the HMM filter, and fixed lag smoother. Study empirically how
the error probability of the estimates decreases with lag. (The filter is a fixed lag
smoother with lag of zero). Please also refer to [30] for a very nice analysis of error
probabilities.

8. Consider a HMM where the Markov chain evolves slowly with transition matrix
P = I + εQ where ε is a small positive constant and Q is a generator matrix. That
is Qii < 0, Qij > 0 and each row of Q sums to zero. Compare the performance
of the HMM filter with the recursive least squares algorithm (with an appropriate
forgetting factor chosen) for estimating the underlying state.

9. Consider the following Markov modulated auto-regressive time series model:

zk+1 = A(rk+1) zk + Γ (rk+1)wk+1 + f(rk+1)uk+1

where wk ∼ N(0, 1), uk is a known exogenous input. Assume the sequence {zk} is
observed. Derive an optimal filter for the underlying Markov chain rk. (In comparison
to a jump Markov linear system, zk is observed without noise in this problem. The
optimal filter is very similar to the HMM filter).

10. Consider a Markov chain xk corrupted by iid zero mean Gaussian noise and a sinusoid:

yk = xk + sin(k/100) + vk

Obtain a filtering algorithm for extracting xk given the observations.
11. Image Based Tracking. The idea is to estimate the coordinates zk of the target

by measuring its orientation rk in noise. For example an imager can determine which
direction an aircraft’s nose is pointing thereby giving useful information about which
direction it can move. Assume that the target’s orientation evolves according to a
finite state Markov chain. (In other words, the imager quantizes the target orientation
to one of a finite number of possibilities.) Then the model for the filtering problem is

zk+1 = A(rk+1) zk + Γ (rk+1)wk+1

yk ∼ p(y|rk)

Derive the filtering expression for E{zk|y1, . . . , yk}. The papers [85, 45, 22] consider
image based filtering.

12. Consider a jump Markov linear system. Via computer simulations, compare the IMM
algorithm, Unscented Kalman filter and particle filter.

13. Radar pulse train de-interleaving. Consider a radar receiver that receives
radar pulses from multiple periodic sources. (This receiver could be viewed as an
eavesdropper listening to various radars.) It is of interest to estimate the periods of
these sources. For example, suppose:
• source 1 pulses are received at times

2, 7, 12, 17, 22, 27, 32, 37, 42, . . . , (period = 5, phase =2)

• source 2 pulses are received at times

4, 15, 26, 37, 48, 59, 70, 81, . . . , (period = 11, phase = 4) .

c©Vikram Krishnamurthy 2017



Chapter 3. Optimal Filtering 13

The interleaved signal consists of pulses at times

2, 4, 7, 12, 15, 22, 26, 27, 32, 37, 42, . . . .

Notice the above interleaved signal contains time of arrival information only. For
example, at time 37, pulses are received from both sources; but it is assumed that
there is no amplitude information - so the received signal is simply a time of arrival
event at time 37. At the receiver, the interleaved signal (time of arrivals) is corrupted
by jitter noise (modeled as iid noise). So the noisy received signal are, for example,

2.4, 4.1, 6.7, 11.4, 15.5, 21.9, 26.2, 27.5, 30.9, 38.2, 43.6, . . . .

Given this noisy interleaved signal, the de-interleaving problem aims to determine
which pulses came from which source. That is, the aim is to estimate estimate the
periods (namely, 5 and 11) and phases (namely, 2 and 4) of the 2 sources.
The de-interleaving problem can be formulated as a jump Markov linear system.
Define the state x′k = (T ′, τ ′k), consists of the periods T ′ = (T (1), . . . , T (N)) of the N
sources and τ ′k = (τ (1)

k , . . . , τ
(N)
k ), where τ (i)

k denotes the last time source i was active
up to and including the arrival of the kth pulse. Let τ1 = (φ(1), . . . , φ(N)), be the
phases of periodic pulse-train sources. Then

τ ik+1 =
{
τ ik + T i if (k + 1)th pulse is due to source i
τ ik otherwise ; τ i1 = φ(i). (1)

Let ei, i = 1, . . . , N , be the unit N -dimensional vectors with 1 in the ith position.
Let rk ∈ {1, . . . , N} denote the active source at time k. Then one can express the
time of arrivals as the jump Markov linear system

xk+1 = A(rk+1)xk + wk

yk = C(rk)xk + vk

where
A(rk+1) =

[
IN 0N×N

diag(erk+1) IN

]
, C(rk) =

[
01×N e′rk

]
Note that rk is a periodic process and so has transition probabilities

Pi,i+1 = 1, for i < M , and PM,1 = 1

for some integer M , where M depends on the periods and phases of the sources. vk
denotes the measurement (jitter) noise; while wk can be used to model time varying
periods.
Remark: Obviously, there are identifiability issues; for example, if φ(1) = φ(2) and
T (1) is a multiple of T (2) then it is impossible to detect source 1.

14. Narrowband Interference and JMLS. Narrowband interference corrupting a
Markov chain can be modeled as a jump Markov linear system. Narrowband inter-
ference can be modeled as an auto-regressive (AR) process with poles close to the
unit circle: for example

ik = a ik−1 + wk
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where a = 1− ε and ε is a small positive number. Consider the observation model

yk = xk + ik + vk

where xk is a finite state Markov chain, ik is narrowband interference and vk is
observation noise. Show that the above model can be represented as a jump Markov
linear system.

15. Bayesian estimation of Stochastic context free grammar. First some per-
spective: HMMs with a finite observation space are also called regular grammars.
They are a subset of a more general class of models called stochastic context free
grammars as depicted by Chomsky’s hierarchy in Figure 3.1.

Definition 2.2: A deterministic grammar G is a four-tuple

G ¼ ðA; E;!; S0Þ (3)

where:
A is the alphabet (the set of terminal symbols of

the grammar);
E is the set of nonterminal symbols of the

grammar;
! is the finite set of grammatical production rules

(syntactic rules);
S0 is the starting nonterminal.

In general, ! is a partially defined function of type

! : ðA [ EÞ$ ! ðA [ EÞ$: (4)

However, as we will see later, certain restrictions applied
to the production rules ! allow us to define some very
useful types of grammars.

In the rest of this paper, unless specified otherwise,
we will write nonterminal symbols as capital letters, and
symbols of the alphabet using lower case letters. This
follows the default convention of the theory of formal
languages.

Def. 2.1 provides a set-theoretic definition of a formal
language. Now, using Def. 2.2 we can redefine the
language in terms of its grammar L ¼" LðGÞ.

To illustrate the use of grammars, consider a simple
language L ¼ LðGÞ whose grammar G ¼ ðA; E;!; S0Þ is
defined as follows:

A ¼ fa; bg S0 ! aS1jb
E ¼ fS0; S1g S1 ! bS0ja: (5)

These are some of the valid strings in this language, and
examples of how they can be derived by repeated
application of the production rules of (5):

1) S0 ) b;
2) S0 ) aS1 ) aa;
3) S0 ) aS1 ) abS0 ) abb;
4) S0 ) aS1 ) abS0 ) abaS1 ) abaa;
5) S0 ) aS1 ) abS0 ) abaS1 ) ababS0 ) ababb;
6) S0 ) aS1 ) abS0 ) abaS1 ) ababS0 ) . . .

) ababab . . . abb;
7) S0 ) aS1 ) abS0 ) abaS1 ) ababS0 ) . . .

) ababab . . . abaa.
This language contains an infinite number of strings

that can be of arbitrary length. The strings start with either
a or b. If a string starts with b, then it only contains one
symbol. Strings terminate with either aa or bb, and consist
of a distinct repeating pattern ab.

This simple example illustrates the power of the
grammatical representation of languages. Very simple
grammars can define rather sophisticated languages.

3) Chomsky Hierarchy of Grammars: In Def. 2.2, the
production rules of the grammar are given in a very general
form. Reference [10] used the properties of the production
rules of grammars to develop a very useful hierarchy that is
known in the literature as the Chomsky hierarchy of
grammars.

• Regular Grammars (RG): Only production rules
of the form S ! aS or S ! a are allowed. This
means that the left-hand side of the production
must contain one nonterminal only, and the right-
hand side could be either one terminal or one
terminal followed by one nonterminal. The gram-
mar of the language in the last example of this
section is a regular grammar. Regular grammars
are sometimes referred to as finite-state grammars.

• CFGs: Any production rule of the form S ! ! is
allowed. This means that the left-hand side of the
production rule must contain one nonterminal
only, whereas the right-hand side can be any
string.

• Context-Sensitive Grammars (CSG): Production
rules of the form "1S"2 ! "1!"2 are allowed.
Here "1;"2 2 ðA [ EÞ$, and ! 6¼ ". In other
words, the allowed transformations of nonterminal
S are dependent on its context "1 and "2.

• Unrestricted Grammars (UG): Any production
rules of the form "1S"2 ! # are allowed. Here "1,
"2, # 2 ðA [ EÞ$. The unrestricted grammars are
also often referred to as type-0 grammars due to
Chomsky [10].

Chomsky also classified languages in terms of the
grammars that can be used to define them. Fig. 1 illustrates
this hierarchy of languages. Each inner circle of this
diagram is a subset of the outer circle. Thus, context-
sensitive language (CSL) is a special (more restricted) form
of unrestricted language (UL), context-free language (CFL)
is a special case of CSL, and regular language (RL) is a

Fig. 1. The Chomsky hierarchy of formal languages.

Visnevski et al. : Syntactic Modeling and Signal Processing of Multifunction Radars

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 1003
Figure 3.1: The Chomsky hierarchy of languages

Stochastic context free grammars (SCFGs) provide a powerful modeling tool for
strings of alphabets and are used widely in natural language processing [58]. For
example, consider the randomly generated string ancmbn where m,n are non-negative
integer valued random variables. Here an means the alphabet a repeated n times.
The string ancmbn could model the trajectory of a target that moves n steps north
and then an arbitrary number of steps east or west and then n steps south, implying
that the target performs a U-turn. A basic course in computer science would show
(using a pumping lemma) that such strings cannot be generated exclusively using a
Markov chain (since the memory n is variable).
If the string ancmbn was observed in noise, then Bayesian estimation (stochastic
parsing) algorithms can be used to estimate the underlying string. Such meta-level
tracking algorithms have polynomial computational cost (in the data length) and
are useful for estimating trajectories of targets (given noisy position and velocity
measurements). They allow a human radar operator to interpret tracks and can be
viewed as middleware in the human-sensor interface. Such stochastic context free
grammars generalize HMMs and facilitate modeling complex spatial trajectories of
targets.
Please refer to [58] for Bayesian signal processing algorithms and EM algorithms
for stochastic context free grammars. [24, 23] gives examples of meta-level target
tracking using stochastic context free grammars.

16. Kalman vs HMM filter. A Kalman filter is the optimal state estimator for the
linear Gaussian state space model

xk+1 = Axk + wk,

yk = C ′xk + vk.
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where w and v are mutually independent iid Gaussian processes.
Recall from (2.28), (2.29) that for a Markov chain with state space X = {e1, . . . , eX}
of unit vectors, an HMM can be expressed as

xk+1 = P ′xk + wk,

yk = C ′xk + vk.

A key difference is that in (2.28), w is no longer i.i.d; instead it is a martingale
difference process: E{wk|x0, x1, . . . , xk} = 0.
From §3.4.4 of the book, it follows that the Kalman filter is the minimum variance
linear estimator for the above HMM. Of course the optimal linear estimator (Kalman
filter) can perform substantially worse than the optimal estimator (HMM filter).
Compare the performance of the HMM filter and Kalman filter numerically for the
above example.

17. Interpolation of a HMM. Consider a Markov chain xk with transition matrix
P where the discrete time clock ticks at intervals of 10 seconds. Assume noisy
measurements are obtained of at each time k. Devise a smoothing algorithm to
estimate the state of the Markov chain at 5 second intervals. (Note: Obviously on
the 5 second time scale, the transition matrix is P 1/2. For this to be a valid stochastic
matrix it is sufficient that P is a symmetric ultrametric matrix or more generally P−1

is an M-matrix [36]; see also §14.7 of the book.)
18. Hierarchical Bayes and Empirical Bayes. There is much fanfare in machine

learning about hierarchical Bayes and empirical Bayes models.
The hierarchical Bayes model is of the form

Θ ∼ p(θ)
X|Θ ∼ p(x|θ)
Y |X ∼ p(y|x)

(2)

θ is called the hyperparameter and can be thought of as a nuisance parameter. The
aim is to compute the posterior p(x|y). Naturally, one can write down Bayes rule for
the posterior p(x|y) by integrating away θ. One can then use a MCMC simulation
based method to sample from the posterior of p(x|y).
The empirical Bayes model is of the form

X|Θ ∼ p(x|θ)
Y |X ∼ p(y|x)

(3)

So there is no explicit density for the hyperparameter θ. Instead typically the maxi-
mum likelihood estimate θ∗ = argmaxθ p(y|θ) is computed. Note

p(y|θ) =
∫
X
p(y|x) p(x|θ) dx

The estimate θ∗ is then plugged into Bayes rule to evaluate the posterior p(x|y, θ∗).

c©Vikram Krishnamurthy 2017



Chapter 3. Optimal Filtering 16

3.2 Case Study. Sensitivity of HMM filter to transition ma-
trix

Almost an identical proof to that of geometric ergodicity proof of the HMM filter in §3.7 can
be used to obtain expressions for the sensitivity of the HMM filter to the HMM parameters.

Aim: We are interested in a recursion for ‖πk − πk‖1 when πk is updated with HMM
filter using transition matrix P and πk is updated with HMM filter using transition matrix
P . That is, we want an expression for

‖T (π, y;P )− T (π, y;P )‖1 in terms of ‖π − π‖1. (4)

Such a bound if useful when the HMM filter is implemented with an incorrect transition
matrix P instead of actual transition matrix P . The idea is that when P is close to P then
T (π, y;P ) is close to T (π, y;P ).

A special case of (4) is to obtain an expression for

‖T (π, y;P )− T (π, y;P )‖1 (5)

that is when both HMM filters have the same initial belief π but are updated with different
transition matrices, namely P and P .

The theorem below obtains expressions for both (4) and (5).

Theorem. Consider a HMM with transition matrix P and state levels g. Let ε > 0 denote
the user defined parameter. Suppose ‖P −P‖1 ≤ ε, where ‖·‖1 denotes the induced 1-norm
for matrices.1 Then

1. The expected absolute deviation between one step of filtering using P versus P is
upper bounded as:

Ey
∣∣g′ (T (π, y;P )− T (π, y;P ))

∣∣ ≤ ε
∑
y

max
i,j

g′(I − T (π, y;P )1′)By(ei − ej) (6)

2. The sample paths of the filtered posteriors and conditional means have the following
explicit bounds at each time k:

‖πk − πk‖1 ≤ ε

max{A(πk−1, yk)− ε, µ(yk)}
+ ρ(P ) ‖πk−1 − πk−1‖1

A(πk−1, yk)
(7)

Here ρ(P ) denotes the Dobrushin coefficient of the transition matrix P and πk is the
posterior computed using the HMM filter with P , and

A(π, y) = 1′ByP ′π
maxiBi,y

, µ(y) = miniBiy
maxiBiy

. (8)

The above theorem gives explicit upper bounds between the filtered distributions using
transition matrices P and P̄ . The Ey in (6) is with respect to the measure σ(π, y;P ) =
1′ByP ′π which corresponds to P(yk = y|πk−1 = π).

1The three statements ‖P ′π − P ′π‖1 ≤ ε, ‖P − P‖1 ≤ ε and
∑X

i=1 ‖(P
′ − P ′):,i‖1π(i) ≤ ε are all

equivalent since ‖π‖1 = 1.
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Proof. The triangle inequality for norms yields

‖πk+1 − πk+1‖TV = ‖T (πk, yk+1;P )− T (πk, yk+1;P )‖TV

≤ ‖T (πk, yk+1;P )− T (πk, yk+1;P )‖TV

+ ‖T (πk, yk+1;P )− T (πk, yk+1;P )‖TV. (9)

Part 1: Consider the first normed term in the right hand side of (9). Applying (3.103)
with π = P ′πk and π0 = P ′πk yields

g′(T (πk, y;P ) − T (πk, y;P )) = 1
σ(π, y;P )g

′ [I − T (π, y, P )1′
]
By(P − P )′π

where σ(π, y;P ) = 1′ByP ′π. Then Lemma 3.7.4(i) yields

g′(T (πk, y;P )− T (πk, y;P ))

≤ max
i,j

1
σ(π, y;P )g

′ [I − T (π, y, P )1′
]
By(ei − ej)‖P ′π − P ′π‖TV

Since ‖P ′π − P ′π‖TV ≤ ε, taking expectations with respect to the measure σ(π, y;P ),
completes the proof of the first assertion.

Part 2: Applying Theorem 3.7.5(i) with the notation π = P ′πk and π0 = P ′πk yields

‖T (πk, y;P )− T (πk, y;P )‖TV ≤
maxiBi,y‖P ′πk − P ′πk‖TV

1′ByP ′πk

≤ ε

2
maxiBi,y
1′ByP ′πk

≤ maxiBi,y ε/2
max{1′ByP ′πk − εmaxiBiy,miniBiy}

. (10)

The second last inequality follows from the construction of P satisfying (10.13b) (recall the
variational norm is half the l1 norm). The last inequality follows from Theorem 3.7.5(ii).

Consider the second normed term in the right hand side of (9). Applying Theorem
3.7.5(i) with notation π = P ′πk and π0 = P ′πk yields

‖T (πk, y;P )− T (πk, y;P )‖TV ≤
maxiBi,y‖P ′πk − P ′πk‖TV

1′ByP ′πk

≤ maxiBi,y ρ(P ) ‖πk − πk‖TV

1′ByP ′πk
(11)

where the last inequality follows from the submultiplicative property of the Dobrushin
coefficient. Substituting (10) and (11) into the right hand side of the triangle inequality
(9) proves the result.

3.3 Case Study. Reference Probability Method for Filtering

We describe here the so called reference probability method for deriving the un-normalized
filtering recursion (3.21). The main idea is to start with the joint probability mass function
of all observations and states until time k, namely, p(x0:k, y1:k). Since this joint density
contains all the information we need, it is not surprising that by suitable marginalization
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and integration, the filtering recursion and hence the conditional mean estimate can be
computed.

Given the relatively straightforward derivations of the filtering recursions given in Chap-
ter 3.3 of the book, the reader might wonder why we present yet another derivation. The
reason is that in more complicated filtering problems, the reference probability method
gives a systematic way of deriving filtering expressions. It is used extensively in [20] to
derive filters in both discrete and continuous time. In continuous time, the reference
probability measure is extremely useful – it yields the so called Duncan-Mortenson-Zakai
equations for nonlinear filtering.

The Engineering Version

Suppose the state and observation processes {xk} and {yk} are in a probability space with
probability measure P. Since the state and observation noise processes are iid, under P,
we have the following factorization:

p(x0:k, y1:k) =
k∏

n=1
p(yn|xn) p(xn|xn−1)π0(x0) (12)

∝
k∏

n=1
pv
(
D−1
n (xn) [yn − Cn(xk)]

)
pw
(
Γ−1
n−1(xn−1) [xn −An−1(xn−1)]

)
π0(x0)

Starting with p(x0:k, y1:k), the conditional expectation of any function φ(xk) is

E{φ(xk)|y1:k} =
∫
φ(xk)p(x0:k, y1:k)dx0:k∫
p(x0:k, y1:k)dx0:k

=
∫
X φ(xk) [

∫
p(x0:k, y1:k)dx0:k−1] dxk∫
p(x0:k, y1:k)dx0:k

(13)

The main idea then is to define the term within the square brackets in the numerator
as the un-normalized density qk(xk) =

∫
p(x0:k, y1:k)dx0:k−1. (Of course then qk(xk) =

p(xk, y1:k)). We now derive the recursion (3.21) for the un-normalized density qk:∫
X
φ(xk)qk(xk)dxk =

∫
X
φ(xk)

∫
p(x0:k, y1:k)dx0:k−1dxk

=
∫
X

∫
X
φ(xk)p(yk|xk)p(xk|xk−1)

[∫
p(x0:k−1, y1:k−1)dx0:k−2

]
dxk−1dxk

=
∫
X

∫
X
φ(xk)p(yk|xk)p(xk|xk−1)qk−1(xk−1)dxk−1dxk

where the second equality follows from (12). Since the above holds for any test function
φ, it follows that the integrands within the outside integral are equal, thereby yielding the
un-normalized filtering recursion (3.21).
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Interpretation as Change of Measure

We now interpret the above derivation as the engineering version of the reference proba-
bility method.2 Define a new probability measure P̄ as having associated density

q(x0:k, y1:k) =
k∏

n=1
pv(yn) pw(xn)π0(x0).

The above equation is tantamount to saying that under this new measure P̄, the processes
{xk} and {yk} are iid sequences with density functions pw and pv, respectively. P̄ will be
called the reference probability measure - under this measure, due to the iid nature of {xk}
and {yk}, the filtering recursion can be derived conveniently, as we now describe.

Let Ē denote expectation associated with measure P̄ , so that for any function φ(xk),
the conditional expectation is

Ē{φ(xk)|y1:k} =
∫
φ(xk)q(x0:k, y1:k)dx0:k

Obviously, to obtain the expectation E{φ(xk)|y1:k} under the probability measure P, it
follows from (13) that

E{φ(xk)|y1:k} =
∫
φ(xk)Λkq(x0:k, y1:k)dx0:k∫
Λkq(x0:k, y1:k)dx0:k

, where Λk = p(x0:k, y1:k)
q(x0:k, y1:k)

(14)

= Ē{Λkφ(xk)|y1:k}
Ē{Λk|y1:k}

The derivation then proceeds as follows.∫
X
qk(x)φ(x)dx = Ē{Λkφ(xk)|Yk} (definition of qk)

=
∫
p(x0:k, y1:k)
q(x0:k, y1:k)

φ(xk)q(x0:k, y1:k)dx0:k

=
∫
p(x0:k−1, y1:k−1)
q(x0:k−1, y1:k−1)

p(yk|xk)p(xk|xk−1)
����pv(yk)����pw(xk)

φ(xk)����pv(yk)����pw(xk)q(x0:k−1, y1:k−1)dx0:k

=
∫
p(x0:k−1, y1:k−1)
q(x0:k−1, y1:k−1)

[∫
X
p(yk|xk)p(xk|xk−1)φ(xk)dxk

]
q(x0:k−1, y1:k−1)dx0:k−1

= Ē{Λk−1

[∫
X
p(yk|xk)p(xk|xk−1)φ(xk)dxk

]
|y1:k−1}

=
∫
qk−1(xk−1)

[∫
X
p(yk|xk)p(xk|xk−1)φ(xk)dxk

]
dxk−1

where the last equality follows from the definition of q in the first equality.
Since this holds for any test function φ(x), we have that the material inside the integral

in the left and right hand side are equal. So

πk(xk) = p(yk|xk)
∫
X
qk−1(xk−1)p(xk|xk−1)dxk−1.

2In continuous time, the change of measure of a random process involves Girsanov’s theorem, see [20].
Indeed the Zakai form of the continuous time filters in the appendix of the book can be derived in a fairly
straightforward manner using Girsanov’s theorem and basic Ito calculus.
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Chapter 4

Algorithms for Maximum
Likelihood Parameter Estimation

1. A standard drill exercise involves deriving the Cramér-Rao bound in terms of the
Fisher information matrix; see wikipedia or any book in statistical signal processing
for an elementary description.

2. Minorization Maximization Algorithm (MM Algorithm). The EM algorithm
is a special case of the MM algorithm1; see [37] for a nice tutorial on MM algorithms.
MM algorithms constitute a general purpose method for optimization and are not
restricted just to maximum likelihood estimation.
The main idea behind the MM algorithm is as follows: Suppose we wish to compute
the maximizer θ∗ of a function φ(θ). The idea is to construct a minorizing function
g(θ, θ(m)) such that

g(θ, θ(m)) ≤ φ(θ) for all θ
g(θ(m), θ(m)) = φ(θ(m)).

(15)

That is, the minorizing function g(θ, θ(m)) lies above φ(θ) and is a tangent to it at
the point θ(m). Here

θ(m) = argmax
θ

g(θ(m−1), θ)

denotes the estimate of the maximizer at iteration m of MM algorithm.
The property (15) implies that successive iterations of the MM algorithm yield

φ(θ(m+1)) ≥ φ(θ(m)).

In words, successive iterations of the MM algorithm yield increasing values of the
objective function which is a very useful property for a general purpose numerical
optimization algorithm. This is shown straightforwardly as follows:

φ(θ(m+1) = φ(θ(m+1)− g(θ(m+1), θ(m)) + g(θ(m+1), θ(m))
a
≥ φ(θ(m+1)− g(θ(m+1), θ(m)) + g(θ(m), θ(m))
b
≥ φ(θ(m)−�������

g(θ(m), θ(m)) +�������
g(θ(m), θ(m))

1MM can also be used equivalently to denote majorization minimization

20
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Inequality (a) follows since g(θ(m+1), θ(m)) ≥ g(θ(m), θ(m)) by definition since θ(m+1) =
argmaxθ g(θ, θ(m)). Inequality (b) follows from (15).
The EM algorithm is a special case of the MM algorithm where

g(θ, θ(m) = Q(θ, θ(m))−Q(θ(m), θ(m)), φ(θ) = LN (θ)− LN (θ(m))

Here LN (θ) = log p(y1:N |θ) is the log likelihood which we want to maximize to
compute the MLE and Q(θ, θ(m)) is the auxiliary log likelihood defined in (4.18)
which is maximized in the M step of the EM algorithm.
Indeed the minorization property (15) was established for the EM algorithm in
Lemma 4.3.2 on page 81 of the book by using Jensen’s inequality.

3. EM algorithm in more elegant (abstract) notation. Let {Pθ , θ ∈ Θ} be a
family of probability measures on a measurable space (Ω,F) all absolutely continuous
with respect to a fixed probability measure P0, and let Y ⊂ F . The likelihood
function for computing an estimate of the parameter θ based on the information
available in Y is

L(θ) = E0[dPθ
dP0
| Y] ,

and the MLE estimate is defined by

θ̂ ∈ argmax
θ∈Θ

L(θ) .

In general, the MLE is difficult to compute directly, and the EM algorithm provides
an iterative approximation method :
Step 1. Set p = 0 and choose θ̂0.
Step 2. (E–step) Set θ′ = θ̂p and compute Q(·, θ′), where

Q(θ, θ′) = Eθ′ [log dPθ
dPθ′

| Y] .

Step 3. (M–step) Find
θ̂p+1 ∈ argmax

θ∈Θ
Q(θ, θ′) .

Step 4. Replace p by p + 1 and repeat beginning with Step 2, until a stopping
criterion is satisfied.

The sequence generated {θ̂p , p ≥ 0} gives non–decreasing values of the likelihood
function : indeed, it follows from Jensen’s inequality that

logL(θ̂p+1)− logL(θ̂p) ≥ Q(θ̂p+1, θ̂p) ≥ Q(θ̂p, θ̂p) = 0 ,

with equality if and only if θ̂p+1 = θ̂p.
4. Forward-only EM algorithm for Linear Gaussian Model. In §4.4 of the book,

we described a forward-only EM algorithm for ML parameter estimation of the a
HMM. Forward-only EM algorithms can also be constructed for maximum likelihood
estimation of the parameters of a linear Gaussian state space model [21]. These
involve computing filters for functionals of the state and use Kalman filter estimates.
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5. Sinusoid in HMM. Consider a sinusoid with amplitude A and phase φ. It is
observed as

yk = xk +A sin(k/100 + φ) + vk

where vk is an iid Gaussian noise process. Use the EM algorithm to estimate A, φ
and the parameters of the Markov chain and noise variance.

6. In the forward-only EM algorithm of §4.4, the filters for the number of jumps involves
O(X4) computations at each time while filters for the duration time involve O(X3)
at each time. Is it possible to reduce the computational cost by approximating some
of these estimates?

7. Using computer simulations, compare the methods of moments estimator for a HMM
in §4.5 with the maximum likelihood estimator in terms of efficiency. That is generate
several N point trajectories of an HMM with a fixed set of parameters, then compute
the variance of the estimates. (Of course, instances where the MLE the algorithm
converges to local maxima should be eliminated from the computation).

8. Non-asymptotic statistical inference using concentration of measure if very popular
today. Assuming the likelihood is a Lipschitz function of the observations, and the
observations are Markovian, show that the likelihood function concentrates to the
Kullback Leibler function.

9. EM Algorithm for State Estimation. The EM algorithm was used in Chapter
4 as a numerical algorithm for maximum likelihood parameter estimation. It turns
out that the EM algorithm can be used for state estimation, particularly for a jump
Markov linear system (JMLS). Recall from §3.10 that a JMLS has model

zk+1 = A(rk+1) zk + Γ (rk+1)wk+1 + f(rk+1)uk+1

yk = C(rk) zk +D(rk) vk + g(rk)uk.

As described in §3.10, the optimal filter for a JMLS is computationally intractable. In
comparison for a JMLS, the EM algorithm can be used to estimate the MAP (maxi-
mum aposteriori state estimate). system (assuming the parameters of the JMLS are
known). Show how one can compute this MAP state estimate maxz1:k,r1:k P (y1:k|z1:k, r1:k)
using the EM algorithm. In [53] is shown that the resulting EM algorithm involves
the cross coupling of a Kalman and HMM smoother. A data augmentation algorithm
in similar spirit appears in [19].

10. Quadratic Convergence of Newton Algorithm.
We start with some definitions: Given a sequence {θ(n)} generated by an optimization
algorithm, the order of convergence is p if

β = lim sup
n→∞

‖θ(n+1) − θ∗‖
‖θ(n) − θ∗‖p

exists (16)

Also if p = 1 and β < 1, the sequence is said to converge linearly to θ∗ with conver-
gence ratio (rate) β. Moreover, the case p = 1 and β = 0 is referred to as superlinear
convergence.
(a) Recall that the Newton Raphson algorithm computes the MLE iteratively as

θ(n+1) = θ(n) +
(
∇2LN (θ(n))

)−1∇LN (θ(n))
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The Newton Raphson algorithm has quadratic order of convergence in the fol-
lowing sense. Suppose the log likelihood LN (θ) is twice continuous differentiable
and that at a local maximum θ∗, the Hessian ∇2

θLN is positive definite. Then
if started sufficient close to θ∗, Newton Raphson converges to θ∗ at a quadratic
rate. that the model estimates satisfy θ(n) satisfy

‖θ(n+1) − θ∗‖ ≤ β‖θ(n) − θ∗‖2

for some constant β.
This is shown straightforwardly (see any optimization textbook) as follows:

‖θ(n+1) − θ∗‖ = ‖θ(n) − θ∗ +
(
∇2LN (θ(n))

)−1∇LN (θ(n))‖

= ‖
(
∇2LN (θ(n))

)−1
(
∇LN (θ(n))−∇LN (θ∗)−∇2LN (θ(n))

(
θ(n) − θ∗

))
(17)

For ‖θ(n) − θ∗‖ < ρ, it is clear from a Taylor series expansion that

‖∇LN (θ∗)−∇LN (θ(n))−∇2LN (θ(n))
(
θ∗ − θ(n))‖ ≤ β1‖θ(n) − θ∗‖2

for some positive constant β1. Also, ‖
(
∇2LN (θ(n))

)−1‖ ≤ β2.
(b) The convergence order and rate of the EM algorithm has been studied in great

detail since the early 1980s; there are numerous papers in the area; see [93] and
the references therein. The EM algorithm has linear convergence order, i.e.,
p = 1 in (16). Please see [57] and the references therein for examples where EM
exhibits superlinear convergence.
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Chapter 5

Multi-agent Sensing: Social
Learning and Data Incest

5.1 Problems

1. A substantial amount of insight can be gleaned by actually simulating the setup (in
Matlab) of the social learning filter for both the random variable and Markov chain
case. Also simulate the risk-averse social learning filter discussed in §5.2 of the book.

2. CVaR Social Learning Filter. Consider the risk averse social learning discussed
in §5.2. Suppose agents choose their actions ak to minimize the CVaR risk averse
measure

ak = argmin
a∈A

{min
z∈R
{z + 1

α
Eyk [max{(c(xk, a)− z), 0}]}}

Here α ∈ (0, 1] reflects the degree of risk-aversion for the agent (the smaller α is,
the more risk-averse the agent is). Show that the structural result Theorem 5.5.1
continues to hold for the CVaR social learning filter. Also show that for sufficiently
risk-averse agents (namely, α close to zero), social learning ceases and agents always
herd.
Generalize the above result to any coherent risk measure.

3. The necessary and sufficient condition given in Theorem 5.5.3 for exact data incest
removal requires that

An(j, n) = 0 =⇒ wn(j) = 0, where wn = T−1
n−1tn,

and Tn = sgn((In−An)−1) =
[
Tn−1 tn

01×n−1 1

]
is the transitive closure matrix. Thus the

condition depends purely on the adjacency matrix. Discuss what types of matrices
satisfy the above condition.

4. Theorem 5.5.3 also applies to data incest where the prior and likelihood are Gaussian.
The posterior is then evaluated by a Kalman filter. Compare the performance of exact
data incest removal with the covariance intersection algorithm in [17] which assumes
no knowledge of the correlation structure (and hence of the network).
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5. Consensus algorithms [72] have been extremely popular during the last decade and
there are numerous papers in the area. They are non-Bayesian and seek to compute,
for example, the average over measurements observed at a number of nodes in a
graph. It is worthwhile comparing the performance of the optimal Bayesian incest
removal algorithms with consensus algorithms.

6. The data incest removal algorithm in §5.4 of the book arises assumes that agents
do not send additional information apart from their incest free estimates. Suppose
agents are allowed to send a fixed number of labels of previous agents from whom
they have received information. What is the minimum about of additional labels the
agents need to send in order to completely remove data incest.

7. Quantify the bias introduced by data incest as a function of the adjacency matrix.

8. Prospect theory (pioneered by the psychologist Kahneman [38] who won the 2003
Nobel prize in economics) is a behavioral economic theory that seek to model how
humans make decisions amongst probabilistic alternatives. (It is an alternative to
expected utility theory considered in the social learning models of this chapter.) The
main features are:
(a) Preference is an S-shaped curve with reference point x = 0
(b) The investor maximizes the expected value V (x) where V is a preference and x

is the change in wealth.
(c) Decision maker employ decision weight w(p) rather than objective probability p,

where the weight function w(F ) has a reverse S shape where F is the cumulative
probability.

Construct a social learning filter where the utility function satisfies the above as-
sumptions. Under what conditions do information cascades occur?

9. Rational Inattention. Another powerful way for modeling the behavior of (human)
decision makers is in terms of rational inattention. See the seminal work of Sims [83]
where essentially the ability of the human to absorb information is modeled via the
information theoretic capacity of a communication channel.
The one step version of the rational inattention optimization problem is formulated
in [60] and is as follows: Let x ∈ X = {1, 2, . . . , X} denote the unknown state of
nature with prior π0(i) = P(x = i). Choosing action a ∈ {1, . . . , A} results in reward
r(x, a) to the decision maker.
A decision maker aims to optimize both its observation distribution (how it views
the world) and its decision to maximize its reward. Denote the observation control
as u and decision as a. Then a utility maximizer would seek to compute

V (π0) = max
u

Ey{max
a
{Eu{r′ax|y}} = max

u
Ey{max

a
r′aT (π0, y, u)}

= max
u

∑
y

max
a

r′a T (π0, y, u)σ(π0, y, u)

= max
u

∑
y

max
a

r′aBy(u)π0

(18)
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where T denotes Bayes’ rule:

T (π, y, u) = By(u)π
σ(π, y, u) , σ(π, y, u) = 1′By(u)π

and By(u) = diag(P(y|x = 1, u), . . . ,P(y|x = X,u).
In a rational inattention model, an additional term is included for the cost of infor-
mation. So a rationally inattentive utility maximizer seeks to compute

V (π) = max
u

Ey{max
a
{Eu{r′ax|y}} − λ

[
H(π0)−

∑
y

H(T (π0, y, u))σ(π0, y, u)
]

(19)

where H(π) = −
∑X
i=1 π(i) log π(i) denotes the entropy and λ is a non-negative scal-

ing constant.

10. There are several real life experiments that seek to understand how humans interact
in decision making. See for example [7] and [46]. In [7], four models are considered.
How can these models be linked to social learning?

5.2 Social Learning with limited memory

Here we briefly describe a variation of the vanilla social learning protocol (multi-agent
system for estimating the state of a random variable). In order to mitigate herding, assume
that agents randomly sample only a fixed number of previous actions. The aim below is
to describe the resulting setup; see [84] for a detailed discussion.

Let the variable θ ∈ {1, 2} denote the states. Let a ∈ {1, 2} denote the action alphabet
and y ∈ {1, 2} denote the observation alphabet. In this model of social learning with lim-
ited memory, it is assumed that each agent (at time t ≥ N + 1) observes only N randomly
selected actions from the history ht = {a1, a2, . . . , at−1}. In the periods t ≤ N , each agent
acts according to his private belief. This phase is termed as the seed phase in the model.

Let z(1)
t denote the number of times action 1 is chosen until time t, i.e,

z
(1)
t =

t∑
j=1

I(aj = 1).

Let ẑ(1)
t denote the number of times action 1 is chosen in a sample of N randomly observed

actions in the past, i.e, ẑ(1)
t =

∑N
j=1 I(aj = 1).

The social learning protocol with limited memory is as follows:

1.) Private belief update: Agent t makes two observations at each instant t(> N). These
observations correspond to a noisy private signal yt and a sample of N past actions
from the history ht sampled uniformly randomly. Let Byt and Dzt=k denote the
probability of observing yt and (ẑ(1)

t = k) respectively. The private belief is updated
as follows.
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For each draw from the past, the probability of observing action 1 is z(1)
t /(t − 1).

So the probability that at time t, action 1 occurs k times in a random sample of N
observed actions is

P(ẑ(1)
t = k|z(1)

t ) = N !
(N − k)!k!

(
z

(1)
t

t

)k (
1− z

(1)
t

t

)N−k

Therefore, the number of times action ‘1’ is chosen in the sample, ẑ(1)
t , has a distri-

bution that depends on θ according to:

P(ẑ(1)
t = k|θ) =

t∑
z

(1)
t =1

P(ẑ(1)
t = k|z(1)

t )P(z(1)
t |θ)

After obtaining a private noisy signal yt, and having observed (ẑ(1)
t = k), the belief

πt = [πt(1), πt(2)]′ where πt(i) = P(θ = i|ẑ(1)
t , yt) is updated by agent t as:

πt = BytDzt=k
1′BytDzt=k

.

Here B and D are the observation likelihoods of yt and ẑ
(1)
t given the state:

Byt = diag(P(yt|θ = i), i ∈ {1, 2}), Dzt=k =
[
P(ẑ(1)

t = k|θ = 1)
P(ẑ(1)

t = k|θ = 2)

]

2.) Agent’s decision: With the private belief πt, the agent t makes a decision as:

at = argmin
a∈{1,2}

cTa πt

where ca denotes the cost vector.

3.) Action distribution: The distribution of actions P(z(1)
t |θ) in the two states θ = 1, 2

is assumed to be common knowledge at time t. It is updated after the decision of
agent t as follows.

The probability of (at = 1) in period t depends on the actual number of ‘1’ actions
z

(1)
t and on the state according to:

P(at = 1|z(1)
t = n, θ) =

N∑
k=0

2∑
i=1

P(at = 1|y = i, ẑ
(1)
t = k, z

(1)
t = n, θ) P(y = i|θ) P(ẑ(1)

t = k|z(1)
t = n)

where,

P(at = 1|y = i, ẑ
(1)
t = k, z

(1)
t = n, θ) =

{
1 if cT1 By=iDzt=k < cT2 By=iDzt=k;
0 otherwise.

After agent t takes an action, the distribution is updated as:

P(z(1)
t+1 = n|θ) = P(z(1)

t = n|θ)(1−P(at = 1|z(1)
t = n, θ))+P(z(1)

t = n−1|θ)P(at = 1|z(1)
t = n, θ)

(20)
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According to equation (20), the sufficient statistic P(z(1)
t |θ) is growing with time t. It

is noted that this has (t− 2) numbers at time t and hence grows with time. P(z(1)
t+1 = n|θ)

in equation (20) is used to compute Dzt+1 .
With the above model, consider the following questions:

1. Show that there is asymptotic herding when N = 1.
2. Show that for N = 2A, reduction in the historical information will improve social

learning. Also, comment on whether there is herding when N = 2.
3. Show that as N increases, the convergence to the true state is slower. Hint: Even

though more observations are chosen, greater weight on the history precludes the use
of private information.
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Chapter 6

Fully Observed Markov Decision
Processes

6.1 Problems

1. The following nice example from [51] gives a useful motivation for feedback control
in stochastic systems. It shows that for stochastic systems, using feedback control
can result in behavior that cannot be obtained by an open loop system.
(a) First, recall from undergraduate control courses that for a deterministic linear

time invariant system with forward transfer function G(z−1) and negative feed-
back H(z−1), the equivalent transfer function is G(z−1)

1+G(z−1)H(z−1) . So an open loop
system with this equivalent transfer function is identical to a feedback system.

(b) More generally, consider the deterministic system

xk+1 = φ(xk, uk), yk = ψ(xk, uk)

Suppose the actions are given by a policy of the form

uk = µ(x0:k, y1:k)

Then clearly, the open loop system,

xk+1 = φ(xk, µ(x0:k, y1:k)), yk = ψ(xk, µ(x0:k, y1:k))

generates the same state and observation sequences.
So for a deterministic system (with fully specified model), open and closed loop
behavior are identical.

(c) Now consider a fully observed stochastic system with feedback:

xk+1 = xk + uk + wk,

uk = −xk
(21)

where wk is iid with zero mean and variance σ2 (as usual we assume x0 is
independent of {wk}.) Then xk+1 = wk and so uk = −wk−1 for k = 1, 2, . . . .
Therefore E{xk} = 0 and Var{x2

k} = σ2.
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(d) Finally, consider an open loop stochastic system where uk is a deterministic
sequence:

xk+1 = xk + uk + wk

Then E{xk} = E{x0} +
∑k−1
n=0 uk and Var{x2

k} = E{x2
0} + kσ2. Clearly, it is

impossible to construct a deterministic input sequence that yields a zero mean
state with variance σ2.

2. Trading of call options. An investor buys a call option at a price p. He has N
days to exercise this option. If the investor exercises the option when the stock price
is x, he gets x − p dollars. The investor can also decide not the exercise the option
at all.
Assume the stock price evolves as xk = x0 +

∑k
n=1wn where {wn} is in iid process.

Let τ denote the day the investor decides to exercise the option. Determine the
optimal investment strategy to maximize

E{(xτ − p)I(τ ≤ T )}.

This is an example of a fully observed stopping time problem. Chapter 12 considers
more general stopping time POMDPs.
Note: Define sk ∈ {0, 1} where sk = 0 means that the option has not been exercised
until time k. sk = 1 means that the option has been exercised before time k. Define
the state zk = (xk, sk).
Denote the action uk = 1 to exercise option and uk = 0 means do not exercise option.
Then the dynamics are

sk+1 = max{sk, uk}, xk+1 = xk + wk

The reward at each time k is r(zk, uk, k) = (1 − sk)uk(xk − p) and the problem can
be formulated as

max
µ

E{
N∑
k=1

r(zk, uk, k)}

3. Discounted cost problems can also be motivated as stopping time problems (with a
random termination time). Suppose at each time k, the MDP can terminate with
probability 1 − ρ or continue with probability ρ. Let τ denote the random variable
for the termination time. Consider the undiscounted cost MDP

Eµ

{
τ∑
k=0

c(xk, uk) | x0 = i

}
= Eµ

{ ∞∑
k=0

I(k ≤ τ) c(xk, uk) | x0 = i

}

= Eµ

{ ∞∑
k=0

ρkc(xk, uk) | x0 = i

}
.

The last equality follows since P(k ≤ τ) = ρk.
4. We discussed risk averse utilities and dynamic risk measures briefly in §8.6. Also
§6.7.3 discussed revealed preferences for constructing a utility function from a dataset.
Given a utility function U(x), a widely used measure for the degree of risk aversion
is the Arrow-Pratt risk aversion coefficient which is defined as

a(x) = −d
2U/dx2

dU/dx
.
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This is often termed as an absolute risk aversion measure, while x a(x) is termed
a relative risk aversion measure. Can this risk averse coefficient be used for mean
semi-deviation risk, conditional value at risk( CVaR) and exponential risk?

5. A classical result involving utility functions is the following [35, pp.42]: A rational
decision maker who compares random variables only according to their means and
variances must have preferences consistent with a quadratic utility function. Prove
this result.

6.2 Case study. Non-cooperative Discounted Cost Markov
games

§6.4 of the book dealt with infinite horizon discounted MDPs. Below we introduce briefly
some elementary ideas in non-cooperative infinite horizon discounted Markov games. There
are several excellent books in the area [43, 8].

Markov games can be viewed as a multi-agent decentralized extension of MDPs. They
arise in a variety of applications including dynamic spectrum allocation, financial models
and smart grids. Our aim here is to consider some simple cases where the Nash equilibrium
can be obtained by solving a linear programming problem.1

Consider the following infinite horizon discounted cost two-payer Markovian game.
There are two decision makers (players) indexed by l = 1, 2.
• Let u(1)

k ∈ U and u
(2)
k ∈ U denote the action of player 1 and player 2, respectively,

at time k. For convenience we assume the same action space for both players.
• The cost incurred by player l ∈ {1, 2} for state x, actions u(1), u(2) is cl(x, u(1), u(2)).
• The transition probabilities of the Markov process x depends on the actions of both

players:
Pij(u(1), u(2)) = P(xk+1 = j|xk = i, u

(1)
k = u(1), u

(2)
k = u(2))

• Define the policies for the stationary (randomized) Markovian policies for two players
as µ(1), µ(2), respectively. So u(1)

k is chosen from probability distribution µ(1)(xk) and
u

(2)
k is chosen from probability distribution µ(2)(xk). For convenience denote the class

of stationary Markovian policies as µS .
• The cumulative cost incurred by each player l ∈ {1, 2} is

J
(l)
µ(1),µ(2)(x) = E

{ ∞∑
k=0

ρkcl(xk, u
(1)
k , u

(2)
k )|x0 = x

}
(22)

where as usual ρ ∈ (0, 1) is the discount factor.
The non-cooperative assumption in game theory is that the players are interested in

minimizing their individual cumulative costs only; they do not collude.
1The reader should be cautious with decentralized stochastic control. The famous Witsenhausen’s

counterexample formulated in the 1960s shows that even a deceptively simple toy problem in decentralized
stochastic control can be very difficult to solve, see https://en.wikipedia.org/wiki/Witsenhausen\%27s_
counterexample
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6.2.1 Nash equilibrium of general sum Markov game

Assume that each player has complete knowledge of the other player’s cost function. Then
the policies µ(1)∗, µ(2)∗ of the non-cooperative infinite horizon Markov game constitute a
Nash equilibrium if

J
(1)
µ(1)∗,µ(2)∗(x) ≤ J (1)

µ(1),µ(2)∗(x), for all µ(1) ∈ µS

J
(1)
µ(1)∗,µ(2)∗(x) ≤ J (1)

µ(1)∗,µ(2)(x), for all µ(2) ∈ µS .
(23)

This means that unilateral deviations from µ(1)∗, µ(2)∗ result in either player being worse
off (incurring a larger cost). Since in a non-cooperative game collusion is not allowed, there
is no rational reason for players to deviate from the Nash equilibrium (23).

In game theory, two important issues are:
1. Does a Nash equilibrium exist? For the above discounted cost game with finite

action and state space, the answer is ”yes”.

Theorem 1. A discounted Markov game has at least one Nash equilibrium within
the class of Markovian stationary (randomized) policies.

The proof is in [26] and involves Kakutani’s fixed point theorem.2
2. How can the Nash equilibria be computed? Define the randomized policy of player 1

(corresponding to µ(1)) and player 2 (corresponding to µ(2)) as

p(i, u(1)) = P(u(1)
k = u(1)|xk = i), q(i, u(2)) = P(u(2)

k = u(2)|xk = i)

Then for an infinite horizon discounted cost Markov game, the Nash equilibria (p∗, q∗)
are global optima of the following non-convex optimization problem:

Compute max
2∑
l=1

X∑
i=1

αi

(
V (l)(i)−

∑
u(1),u(2)

cl(i, u(1), u(2))p(i, u(1))q(i, u(2))

− ρ
∑
j∈X

∑
u(1),u(2)

Pij(u(1), u(2))p(i, u(1))q(i, u(2))V (l)(j)
)

with respect to (V (1), V (2), p, q)
subject to V (1)(i) ≤

∑
u(2)

c(i, u(1), u(2))q(i, u(2)) + ρ
∑
j∈X

∑
u(2)

Pij(u(1), u(2))q(i, u(2))V (1)(j),

V (2)(i) ≤
∑
u(2)

c(i, u(1), u(2))p(i, u(1)) + ρ
∑
j∈X

∑
u(1)

Pij(u(1), u(2))p(i, u(1))V (2)(j),

q(i, u(2)) ≥ 0,
∑
u(2)

q(i, u(2)) = 1, i = 1, 2, . . . , X, u(2) = 1, . . . , U

p(i, u(1)) ≥ 0,
∑
u(1)

p(i, u(1)) = 1, i = 1, 2, . . . , X, u(1) = 1, . . . , U.

(24)
2Existence proofs for equilibria involve using either Kakutani’s fixed point theorem (which generalizes

Brouwer’s fixed point theorem to set valued correspondences) or Tarski’s fixed point theorem (which applies
to supermodular games). Please see [59] for a nice intuitive visual illustration of these fixed point theorems.
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In general, solving the non-convex optimization problem (24) is difficult; there can be
multiple global optima (each corresponding to a Nash equilibrium) and multiple local
optima. In fact there is a fascinating property that if all the parameters (transition
probabilities, costs) are rational numbers, the Nash equilibrium policy can involve
irrational numbers. This points to the fact that in general one can only approximately
compute the Nash equilibrium.

Proof. First write (24) in more abstract but intuitive notation in terms of the ran-
domized policies p, q as

max
2∑
l=1

α′
(
V (l) − cl(p, q)− ρP (p, q)V (l)

)
subject to V (1) ≤ c1(u(1), q) + ρP (u(1), q)V (1), u(1) = 1, . . . , U

V (2) ≤ c2(p, u(2)) + ρP (p, u(2))V (2), u(2) = 1, . . . , U
p, q valid pmfs

(25)

It is clear from the constraints that the objective function is always ≤ 0. In fact the
maximum is attained when the objective function is zero, in which case the constraints
hold with equality. When the constraints hold at equality, they satisfy

V
(l)
∗ =

(
I − ρP (p∗, q∗)

)−1
cl(p∗, q∗), l = 1, 2.

This serves as definition of V (l)
∗ and is equivalent to saying3 that V (l)

∗ is the infinite horizon
cost attained by the policies (p∗, q∗). That is,

V
(l)
∗ = cl(p∗, q∗) + ρP (p∗, q∗)V (l)

∗ =⇒ J
(l)
p∗,q∗(x) = V

(l)
∗ . (26)

Also setting V (l) = V
(l)
∗ , the constraints in (25) satisfy

V
(1)
∗ ≤ c1(p, q∗) + ρP (p, q∗)V (1)

∗ , V
(2)
∗ ≤ c2(p∗, q) + ρP (p∗, q)V (2)

∗

implying that
J

(1)
p,q∗(x) ≥ V (1)

∗ , J
(2)
p∗,q(x) ≥ V (2)

∗ . (27)

(26) and (27) imply that (p∗, q∗) constitute a Nash equilibrium.
Remark. The reader should compare the above proof with the linear programming for-

mulation for a discounted cost MDP. In that derivation we started with a similar constraint

V ≤ c1(u(1)) + ρP (u(1))V . (28)

This implies that V < V where V denotes the unique value function of Bellman’s equation.
Therefore the objective was to find maxα′V subject to (28). So in MDP case we obtain a
linear program. In the dynamic game case, in general, there is no value function to clamp
(upper bound) V .

3This holds since from (22), J(l)
p∗,q∗ (x) = cl(p∗, q∗)+ρPcl(p∗, q∗)+ρ2P 2cl(p∗, q∗)+· · ·+. Indeed a similar

expression holds for discounted cost MDPs.
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6.2.2 Zero-sum discounted Markov game

With the above brief introduction, the main aim below is to give special cases of zero-
sum Markov games where the Nash equilibrium can be computed via linear programming.
(Recall §6.4.2 of the book shows how a discounted cost MDP can be solved via linear
programming.)

A discounted Markovian game is said to be zero sum4 if

c1(x, u(1), u(2)) + c2(x, u(1), u(2)) = 0.

That is,
c(x, u(1), u(2)) defn= c1(x, u(1), u(2)) = −c2(x, u(1), u(2)).

For a zero sum game, the Nash equilibrium (23) becomes a saddle point:

Jµ(1)∗,µ(2)(x) ≤ Jµ(1)∗,µ(2)∗(x) ≤ Jµ(1),µ(2)∗(x),

that is, it is a minimum in the µ(1) direction and a maximum in the µ(2) direction.
A well known result from the 1950s due to Shapley is:

Theorem 2 (Shapley). A zero sum infinite horizon discounted cost Markov game has a
unique value function, even though there could be multiple Nash equilibria (saddle points).
Thus all the Nash equilibria are equivalent.

The value function of the zero-sum game is

Jµ(1)∗,µ(2)∗(i) = V (i)

where V satisfies an equation that resembles dynamic programming:

V (i) = val
[
(1− ρ)c(i, u(1), u(2)) + ρ

∑
j

Pij(u(1), u(2))V (j)
]
u(1),u(2) (29)

Here val[M ]u(1),u(2) denotes the value of the matrix5 game with elementsM(u(1), u(2)). Even
though for a specific vector V , the val[·] in the right hand side of (29) can be evaluated by
solving an LP, it is not useful for the Markov zero sum game, since we have a functional
equation in the variable V . So solving a zero sum Markov game is difficult in general.

4A constant sum game c1(x, u(1), u(2)) + c2(x, u(1), u(2)) = K for constant K is equivalent to a zero sum
game. Define c̄l(x, u(1), u(2)) = cl(x, u(1), u(2)) +K/2, l = 1, 2, resulting in a zero sum game in terms of c̄l.

5A zero sum matrix game is of the form: Given a m× n matrix M , determine the Nash equilibrium

(x∗, y∗) = argmax
x

argmin
y

y′Mx, where x, y are probability vectors

The value of this matrix game is val[M ] = y∗′Mx∗ and is computed as the solution of a linear programming
(LP) problem as follows: Clearly maxx miny y′Mx = maxx mini e′iMx where ei, i = 1, 2, . . . ,m denotes the
unit m-dimensional vector with 1 in the i-th position. This follows since a linear function is minimized at
its extreme points. So the minimization over continuum has been reduced to one over a finite set. Denoting
z = mini e′iMx, the value of the game is the solution of the following LP:

val[M ] =


Compute max z
z < e′iMx, i = 1, 2, . . . ,m,
1′x = 1, xj ≥ 0, j = 1, 2 . . . , n

(30)
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Nash Equilibrium as a Non-convex Bilinear Program

To give more insight, as we did in the discounted cost MDP case, let us formulate computing
the Nash equilibrium (saddle point) of the zero sum Markov game as an optimization
problem. In the MDP case we obtained a LP; for the Markov game (as shown below) we
obtain a non-convex bilinear optimization problem.

Define the randomized policy of player 1 (minimizer) and player 2 (maximizer) as

p(i, u(1)) = P(u(1)
k = u(1)|xk = i), q(i, u(2)) = P(u(2)

k = u(2)|xk = i)

In complete analogy to the discounted MDP case in (6.23), player 2 optimal strategy q∗ is
the solution of the bilinear program

max
∑
i

αiV (i) with respect to (V , q)

subject to V (i) ≤
∑
u(2)

c(i, u(1), u(2))q(i, u(2)) + ρ
∑
j∈X

∑
u(2)

Pij(u(1), u(2))q(i, u(2))V (j),

q(i, u(2)) ≥ 0,
∑
u(2)

q(i, u(2)) = 1, i = 1, 2, . . . , X, u(2) = 1, 2, . . . , U.

(31)

By symmetry, player 1 optimal strategy p∗ is the solution of the bilinear program

min
∑
i

αiV (i) with respect to (V , p)

subject to V (i) ≥
∑
u(2)

c(i, u(1), u(2))p(i, u(1)) + ρ
∑
j∈X

∑
u(1)

Pij(u(1), u(2))p(i, u(1))V (j),

p(i, u(1)) ≥ 0,
∑
u(1)

p(i, u(1)) = 1, i = 1, 2, . . . , X, u(1) = 1, 2, . . . , U.

(32)

The key difference between the above discounted Markov game problem and the discounted
MDP (6.23) is that the above equations are no longer LPs. Indeed the constraints are
bilinear in (V , q) and (V , p). So the constraint set for a zero-sum Markov game is non-
convex. Despite (31) and (32) being nonconvex, in light of Shapley’s theorem all local
minima are global minima.

Finally (31) and (32) can be combined into a single optimization problem. To summa-
rize, the (randomized) Nash equilibrium p∗, q∗ of a zero-sum Markov game is the solution
of the following bilinear (noconvex) optimization problem:

max
∑
i

αi
(
V (1)(i)− V (2)(i)

)
with respect to (V (1), V (2), p, q)

subject to V (1)(i) ≤
∑
u(2)

c(i, u(1), u(2))q(i, u(2)) + ρ
∑
j∈X

∑
u(2)

Pij(u(1), u(2))q(i, u(2))V (1)(j),

V (2)(i) ≥
∑
u(2)

c(i, u(1), u(2))p(i, u(1)) + ρ
∑
j∈X

∑
u(1)

Pij(u(1), u(2))p(i, u(1))V (2)(j),

q(i, u(2)) ≥ 0,
∑
u(2)

q(i, u(2)) = 1, i = 1, 2, . . . , X, u(2) = 1, 2, . . . , U

p(i, u(1)) ≥ 0,
∑
u(1)

p(i, u(1)) = 1, i = 1, 2, . . . , X, u(1) = 1, 2, . . . , U.

(33)
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Special cases where computing Nash Equilibrium is an LP

We now give two special examples of zero-sum Markov games that can be solved as a
linear programming problem (LP); single controller games and switched controller games.
In both cases the bilinear terms in (33) vanish and the computing the Nash equilibrium
reduces to solving linear programs.

6.2.3 Example 1. Single Controller zero-sum Markov Game

In a single controller Markov game, the transition probabilities are controlled by one player
only; we assume that this is player 1. So

Pij(u(1), u(2)) = Pij(u(1)) = P(xk+1 = j|xk = i, u
(1)
k = u(1))

Due to this assumption, the bilinear constraint in (31) becomes linear, namely

V (i) ≤
∑
u(2)

c(i, u(1), u(2))q(i, u(2)) + ρ
∑
j∈X

Pij(u(1))V (j)

since
∑
u(2) q(i, u(2)) = 1. Therefore (31) is now an LP which can be solved for q∗, namely:

max
V

∑
i

αiV (i) with respect to (V , q)

subject to V (i) ≤
∑
u(2)

c(i, u(1), u(2))q(i, u(2)) + ρ
∑
j∈X

Pij(u(1))V (j),

q(i, u(2)) ≥ 0,
∑
u(2)

q(i, u(2)) = 1, i = 1, 2, . . . , X, u(2) = 1, 2, . . . , U.

(34)

Solving the above LP yields the Nash equilibrium policy µ(2) for player 2.
The dual problem to (34) is the linear program

Minimize
∑
i∈X

z(i) with respect to (z, p)

subject to p(i, u(1)) ≥ 0, i ∈ X , u ∈ U∑
u(1)

p(j, u(1)) = ρ
∑
i

∑
u(1)

Pij(u(1)) p(i, u(1)) + αj , j ∈ X .

z(i) ≥
∑
u(1)

p(i, u(1)) c(i, u(1), u(2))

The above dual gives the randomized Nash equilibrium policy p∗ for player 1.

6.2.4 Example 2. Switching Controller Markov Game

This is a special case of a zero sum Markov game where the state space X is partitioned
into disjoint sets S(1), S(2) such that S(1) ∪ S(2) = X and

Pij(u(1), u(2)) =
{
Pij(u(1)), i ∈ S(1)

Pij(u(2)), i ∈ S(2)
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So for states in S(1), controller 1 controls that transition matrix, while for states in S(2),
controller 2 controls the transition matrix.

Obviously for i ∈ S(2), (31) becomes an linear program while for i ∈ S(1), (32) becomes
a linear program. As discussed in [26], the Nash equilibrium can be computed by solving
a finite sequence of linear programming problems.
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Chapter 7

Partially Observed Markov
Decision Processes (POMDPs)

Several well studied instances of POMDPs and their parameter files can be found at
http://www.pomdp.org/examples/

1. Much insight can be gained by simulating the dynamic programming recursion for
a 3-state POMDP. The belief state needs to be quantized to a finite grid. We also
strongly recommend using the exact POMDP solver in [14] to gain insight into the
piecewise linear concave nature of the value function.

2. Implement Lovejoy’s suboptimal algorithm and compare its performance with the
optimal policy.

3. Tiger problem: This is a colorful name given to the following POMDP problem.
A tiger resides behind one of two doors, a left door (l) and a right door (r). The state
x ∈ {l, r} denotes the position of a tiger. The action u ∈ {l, r, h} denotes a human
either opening the left door (l), opening the right door (r), or simply hearing (h) the
growls of the tiger. If the human opens a door, he gets a perfect measurement of
the position of the tiger (if the tiger is not behind the door he opens, then it must
be behind the other door). If the human chooses action h then he hears the growls
of the tiger which gives noisy information about the tiger’s position. Denote the
probabilities Bll(h) = p, Brr(h) = q.
Every time the human chooses the action to open a door, the problem resets and
the tiger is put with equal probability behind one of the doors. (So the transition
probabilities for the actions l and r are 0.5).
The cost of opening the door behind where the tiger is hiding is α, possibly reflecting
injury from the tiger. The cost of opening the other door is −β indicating a reward.
Finally the cost of hearing and not opening a door is γ.
The aim is to minimize the cost (maximize the reward) over a finite or infinite horizon.
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To summarize, the POMDP parameters of the tiger problem are:

X = {l, r},Y = {l, r}, U = {l, r, h},

B(l) = B(r) = I2×2, B(h) =
[

p 1− p
1− q q

]

P (l) = P (r) =
[
0.5 0.5
0.5 0.5

]
, P (h) = I2×2,

cl = (α,−β)′, cr = (−β, α)′, ch = (γ, γ)′

4. Open Loop Feedback Control. As described in §7.5.5, open loop feedback control
is a useful suboptimal scheme for solving POMDPs. Is it possible to exploit knowledge
that the value function of a POMDP is piecewise linear and concave in the design of
an open loop feedback controller?

5. Finitely transient policies were discussed in §7.6. For a 2-state, 2-action, 2-observation
POMDP, give an example of POMDP parameters that yield a finitely transient policy
with n∗ = 2.

6. Uniform sampling from Belief space. Recall that the belief space Π(X) is the
unit X − 1 dimensional simplex. Show that a convenient way of sampling uniformly
from Π(X) is to use the Dirichlet distribution

π0(i) = xi∑X
j=1 xj

, where xi ∼ unit exponential distribution.

7. Adaptive Control of a fully observed MDP formulated as a POMDP prob-
lem. Consider a fully observed MDP with transition matrix P (u) and cost c(i, u),
where u ∈ {1, 2, . . . , U} denotes the action. Suppose the true transition matrices P (u)
are not known. However, it is known apriori that they belong to a known finite set of
matrices P (u, θ) where θ ∈ {1, 2, , . . . , L}. As data accumulates, the controller must
simultaneously control the Markov chain and also estimate the transition matrices.
The above problem can be formulated straightforwardly as a POMDP. Let θk denote
the parameter process. Since the parameter θk = θ does not evolve with time, it has
identity transition matrix. Note that θ is not known; it is partially observed since we
only see the sample path realization of the Markov chain x with transition matrix
P (u, θ).
Aim: Compute the optimal policy

µ∗ = argmin
µ

Jµ(π0) = E{
N−1∑
k=0

c
(
xk, uk

)
|π0}

where π0 is the prior pmf of θ. The key point here is that as in a POMDP (and
unlike an MDP), the action uk will now depend on the history of past actions and
the trajectory of the Markov chain as we will now describe.
Formulation: Define the augmented state (xk, θk). Since θk = θ does not evolve,
clearly the augmented state has transition probabilities

P(xk+1 = j, θk+1 = m|xk = i, θk = l, uk = u) = Pij(u, l) δ(l −m), m = 1, . . . , L.
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At time k, denote the history as Hk = {x0, . . . , xk, u1, . . . , uk−1}. Then define the
belief state which is the posterior pmf of the model parameter estimate:

πk(l) = P(θk = l|Hk), l = 1, 2. . . . , L.

(a) Show that the posterior is updated via Bayes’ formula as

πk+1(l) = T (πk, xk, xk+1, uk)(l)
defn=

Pxk,xk+1(uk, l)πk(l)
σ(πk, xk, xk+1) , l = 1, 2. . . . , L

where σ(πk, xk, xk+1, uk) =
∑
m

Pxk,xk+1(uk,m)πk(m).
(35)

Note that πk lives in the L− 1 dimensional unit simplex.
Define the belief state as (xk, πk). The actions are then chosen as

uk = µk(xk, πk)

Then the optimal policy µ∗k(i, π) satisfies Bellman’s equation

Jk(i, π) = min
u
Qk(i, u, π), µ∗k(i, π) = argmin

u
Qk(i, u, π)

Qk(i, u, π) = c(i, u) +
∑
j

Jk+1
(
j, T (π, i, j, u)

)
σ(π, i, j, u) (36)

initialized with the terminal cost JN (i, π) = cN (i).
(b) Show that the value function Jk is piecewise linear and concave in π. Also

show how the exact POMDP solution algorithms in Chapter 7 can be used to
compute the optimal policy.

The above problem is related to the concept of dual control which dates back to
the 1960s [25]; see also [56] for the use of Lovejoy’s suboptimal algorithm to this
problem. Dual control relates to the tradeoff between estimation and control: if
the controller is uncertain about the model parameter, it needs to control the system
more aggressively in order to probe the system to estimate it; if the controller is more
certain about the model parameter, it can deploy a less aggressive control. In other
words, initially the controller explores and as the controller becomes more certain
it exploits. Multi-armed bandit problems optimize the tradeoff between exploration
and exploitation.

8. Optimal Search and Dynamic (Active) hypothesis testing. In §7.7.4 of
the book, we considered the classical optimal search problem where the objective
was to search for a non-moving target amongst a finite number of cells. A crucial
assumption was that there are no false alarms; if an object is not present in a cell
and the cell is searched, the observation recorded is F̄ (not found).
A generalization of this problem is studied in [15]. Assume there are U = {1, 2, . . . , U}
cells. When cell u is searched
• If the target is in cell u then an observation y is generated with pdf or pmf φ(y).
• If the target is not in cell u, then an observation y is generated with pdf or

pmf φ̄(y). (Recall in classical search φ̄(y) is dirac measure on the observation
symbol F̄ .)
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The aim is to determine the optimal search policy µ over a time horizon N to
maximize

Jµ = Eµ max
u∈{1,...,U}

πN (u)}

at the final time N .
Assume the pdf or pmf φ̄(y) is symmetric in y, that is φ̄(y) = φ̄(b− y) for some real
constant b. Then [15, Proposition 3] shows the nice result that the optimal policy is
to search either of the two most likely locations given the belief πk.
The above problem can be viewed as an active hypothesis testing problem, which is
an instance of a controlled sensing problem. The decision maker seeks to adaptively
select the most informative sensing action for making a decision in a hypothesis
testing problem. Active hypothesis testing goes all the way back to the 1959 paper
by Chernoff [18]. For a more general and recent take of active hypothesis testing
please see [66].

c©Vikram Krishnamurthy 2017



Chapter 8

POMDPs in Controlled Sensing
and Sensor Scheduling

1. Optimal Observer Trajectory for Estimating a Markovian Target. This
problem is identical to the search problem described in §7.7. A target moves in space
according to a Markov chain. (For convenience assume X-cells in two dimensional
space. A moving observer (sensor) measures the target’s state (position) in noise.
Assume that the noise depends on the relative distance between the target and the
observer. How should the observer move amongst the X-cells in order to locate where
the target is? One metric that has been used in the literature [52] is the stochastic
observability (which is related to the mutual information) of the target; see also §12.7.
The aim of the observer is to move so as to maximize the stochastic observability of
the target. As described in §7.7, the problem is equivalent to a POMDP.
A more fancy version of the setup involves multiple observers (sensors) that move
within the state space and collaboratively seek to locate the target. Assume that the
observers exchange information about their observations and actions. The problem
can again be formulated as a POMDP with a larger action and observation space.
Suppose the exchange of information between the observers occurs over a noisy com-
munication channel where the error probabilities evolve according to a Markov chain
as in §9.6. Formulate the problem as a POMDP.

2. Risk averse sensor scheduling. As described in §8.4, in controlled sensing ap-
plications, one is interested in incorporating the uncertainty in the state estimate
into the instantaneous cost. This cannot be modeled using a linear cost since the
uncertainty is minimized at each vertex of the simplex Π(X). In §8.4, quadratic
functions of the belief were used to model the conditional variance. A more princi-
pled alternative is to use dynamic coherent risk measures; recall three examples of
such risk measures were discussed in §8.6.
Discuss how open loop feedback control can be used for a POMDP with dynamic
coherent risk measure.

3. Sensor Usage Constraints. The aim here is to how the POMDP formulation of a
controlled sensing problem can be modified straightforwardly to incorporate sensing
constraints on the total usage of particular sensors. Such constraints are often used
in sensor resource management.
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(a) Consider a N horizon problem where sensor 1 can be used at most L times
where L ≤ N . For notational simplicity, assume that there are two sensors,
so U = {1, 2}. Assume that there are no constraints on the usage of the other
sensors.
For notational convenience we consider rewards denoted asR(π, u) =

∑X
i=1R(i, u)π(i)

instead of costs C(π, u) expressed in terms of the belief state π. Show that Bell-
man’s equation is given by

Vn+1(π, l) = max{R(π, 1) +
∑
y

Vn(T (π, y, 1), l − 1)σ(π, y, 1),

R(π, 2) +
∑
y

Vn(T (π, y, 2), l)σ(π, y, 2)}

with boundary condition Vn(π, 0) = 0, n = 0, 1, . . . , N .
(b) If the constraint is that sensor 1 needs to be used exactly L times, then show

that the following additional boundary condition needs to be included:

Vn(π, n) = R(π, 1) +
∑
y

Vn−1(T (π, y, 1), n− 1)σ(π, y, 1), for n = 1, . . . , L.

(c) In terms of the POMDP solver software, the constraint for using sensor 1 at
most L times is easily incorporated by augmenting the state space. Define the
controlled finite state process rk ∈ {0, 2, . . . , L} with (L+1)× (L+1) transition
matrices

Q(1) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . 1

0 0 0 · · · 1

 , Q(2) = I.

Then define the POMDP with:
• transition matrices P (1)⊗Q(1) and P (2)⊗Q(2),
• observation probabilities p(y|x, r, u) = p(y|x, u),
• rewards R(x, r, u) = R(x, u) for r > 0 and R(x, r = 0, u) = 0.

In the problems for Chapter 12, we consider a simpler version of the above
problem for optimal measurement selection of a HMM. In that simpler case,
one can develop structural results for the optimal policy.

4. As described in §8.4, in controlled sensing it makes sense to choose a cost that is
nonlinear in the belief state π in order to penalize uncertainty in the state estimate.
One choice of a nonlinear cost that has zero cost at the vertices of the belief space is

C(π, u) = min
i∈{1,...,X}

π(i).

This cost C(π, u) is piecewise linear and concave in π ∈ Π(X) where Π(X) denotes
the belief space.
Since C(π, u) is positively homogeneous, show that the value function is piecewise
linear and concave for any finite horizon N . Hence the optimal POMDP solvers of
Chapter 7 can be used to solve this nonlinear cost POMDP exactly and therefore
compute the optimal policy.
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Chapter 9

Structural Results for Markov
Decision Processes

1. Supermodularity, Single Crossing Condition & Interval Dominance Order.
A key step in establishing structural results for MDPs is to give sufficient conditions

for u∗(x) = argmaxu φ(x, u) to be increasing in x. In §9.1 of Chapter 9 we gave
two conditions, namely supermodularity and the single crossing condition (which is a
more general condition than supermodularity). More recently, the interval dominance
order has been introduced in [76] as an even more general condition. All three
conditions boil down to the following statement:

φ(x+ 1, u+ 1)− φ(x+ 1, u) ≥ ρ(u)
(
φ(x, u+ 1)− φ(x, u)

)
(37)

where ρ(u) is a strictly positive function of u. In particular,
• Choosing ρ(u) = 1 in (37) yields the supermodularity condition.
• If there exists a fixed positive constant ρ(u) such that (37) holds, then the single

crossing condition holds.
• If there exists a positive function ρ(u) that is increasing1 in u, then (37) yields

the interval dominance order condition (actually this is a sufficient condition for
interval dominance, see [76] for details).

Note that single crossing and interval dominance are ordinal properties in the sense
that they are preserved by monotone transformations.
The sum of supermodular functions is supermodular. Unfortunately, in general, the
um of single crossing functions is not single crossing; however, see [77] for some
results. Discuss if the interval dominance order holds for sums of functions. Can it
be used to develop structural results for an MDP?

2. In general, the sum of single crossing functions is not single crossing. Even a constant
plus a single crossing function is not necessarily single crossing. Sketch the curve
of a single crossing function which wiggles close to zero. Then adding a positive
constant implies that the curve will cross zero more than once. Also the sum of a
supermodular plus single crossing is not single crossing. In terms of φ(x) = f(x, u+
1) − f(x, u), supermodular implies φ(x) is increasing in x. Clearly the sum of an
increasing function and a single crossing is not single crossing in general.

1Recall that in the book we use increasing in the weak sense to mean non-decreasing
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3. Invariance of optimal policy to costs. Recall that Theorem 9.3.1 require that the
MDP costs satisfy assumptions (A1) and (A3) for the optimal policy to be monotone.
Show that for a discounted cost infinite horizon MDP, assumption (A1) and (A3) can
be relaxed as follows:
There exists a single vector φ ∈ IRX such that for every action u ∈ U ,
(A1’) (I − ρP (u))φ is a vector with increasing elements. (Recall ρ is the discount

factor.)
(A3’) (P (u+ 1)− P (u))φ is a vector with decreasing elements.
In other words the structure of the transition matrix is enough to ensure a monotone
policy and no assumptions are required on the cost (of course the costs are assumed
to be bounded)
Hint: Define the new value function V̄ (i) = V (i)− φ(i) . Clearly the optimal policy
remains unchanged and V̄ satisfies Bellman’s equation

V̄ (i) = min
u
{c(i, u)− φ(i) + ρ

∑
j

φ(j)Pij(u) + ρ
∑
j

V̄ (j)Pij(u)}

where ρ ∈ (0, 1) denotes the discount factor.
4. Myopic lower bound to optimal policy. Recall that supermodularity of the

transition matrix (A4) was a key requirement for the optimal policy to be monotone.
In particular, Theorem 9.3.1 shows thatQ(i, u) is submodular, i.e., Q(i, u+1)−Q(i, u)
is decreasing in i. Sometimes supermodularity of the transition matrix is too much
to ask for. Consider instead of (A4) the relaxed condition
(A4’) Pi(u+ 1) ≥s Pi(u) for each row i.
Show that (A4’) together with (A1), (A2) implies that∑

j

Pij(u+ 1)V (j) ≤
∑
j

Pij(u)V (j)

Define the myopic policy µ(i) = argminu c(i, u). Show that under (A1), (A2), (A4’),
µ∗(i) ≥ µ(i). In other words, the myopic policy µ forms a lower bound to the optimal
policy µ∗.

5. Monotone policy iteration algorithm. Suppose an MDP has a monotone policy.
If the MDP parameters are known, then the policy iteration algorithm of §6.4.2 can
be used. If the policy µn−1 at iteration n − 1 is monotone then show that under
the assumptions of (A1), (A2) of Theorem 9.3.1, the policy evaluation step yields
Jµn−1 as a decreasing vector. Also show that under (A1)-(A4), (a similar proof to
Theorem 9.3.1) implies that the policy improvement step yields µn that is monotone.
So the policy iteration algorithm will automatically be confined to monotone policies
if initialized by a monotone policy.

6. Monotone Policies for MDPs with vector-valued states. Consider a MDP
with vector-valued states xk = [xk(1), . . . , xk(L)]′. Here each component xk(l) takes
on X values in a finite set. Obviously, the vector state xk has state space with
cardinality XL. So one can consider an equivalent XL state scalar valued MDP.
However, in many cases, the setup of the MDP is in terms of the evolution of indi-
vidual elements of the state; for example in the extreme case where each component
of the state evolves independently according to a finite state Markov chain. By using
multi-variate first order dominance, give sufficient conditions on the transition matrix
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and costs so that the optimal policy µ∗(i) is increasing in i where i = (i1, i2, . . . , iL):
that is

i ≥ j =⇒ µ∗(i) ≥ µ∗(j).

Here i ≥ j denotes the partial order i1 ≥ j1, i2 ≥ j2, . . . , iL ≥ jL. To give some per-
spective, for multi-variate POMDPs, the book develops the multivariate MLR order
(called the TP2 stochastic order) - such orders are closed under Bayesian updates
and hence ideally suited for developing structural results for POMDPs.

7. Stochastic knapsack problem. Consider the following version of the stochastic
knapsack problem;2 see [81] and also [16]. A machine must operate for T time
points. Suppose that one specific component of the machine fails intermittently.
This component is replaced when it fails. There are U -possible brands one can
choose to replace this component when it fails. Brand u ∈ {1, 2 . . . , U} costs cu and
has an operating lifetime that is exponentially distributed with rate λu. The aim is
to minimize the expected total cost incurred by replacing the failed component so
that the machine operates for T time points.
Suppose a component has just failed. Let t denote the remaining time left to operate
the machine. The optimal policy for deciding which of the U possible brands to
choose the replacement satisfies Bellman’s equation

Q(t, u) = c(u) +
∫ t

0
V (t− τ)λue−λuτdτ, Q(0, u) = 0,

V (t) = min
u∈{1,2,...,U}

Q(t, u), µ∗(t) = argmin
u∈{1,2,...,U}

Q(t, u)

Show that if λuc(u) is decreasing with u, then Q(t, u) is submodular. In particular,
show that

d

dt
Q(t, u) = λuc(u)

Therefore, the optimal policy µ∗(t) has the following structure: Use brand 1 when
the time remaining is small, then switch to brand 2 when the time increases, then
brand 3, etc.
Generalize the above result to the case when time k is discrete and the brand u has
life time pmf p(k, u), k = 0, 1 . . .. Then Bellman’s equation reads

Q(n, u) = c(u) +
n∑
k=0

V (n− k) p(k, u)

V (n) = min
u∈{1,2,...,U}

Q(n, u), µ∗(n) = argmin
u∈{1,2,...,U}

Q(n, u)

What are sufficient conditions in terms of submodularity of the lifetime pmf p(k, u)
for the optimal policy to be monotone?

8. Monotonicity of optimal policy with respect to horizon. Show that the fol-
lowing result holds for a finite horizon MDP. If Qn(i, u) is supermodular in (i, u, n)

2The classical NP hard knapsack problem deals with U items with costs c(1), c(2), . . . , c(U) and lifetimes
t1, t2, . . . tU . The aim is to compute the minimum cost subset of these items whose total lifetime is at most T .
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then Vn(i) = maxuQn(i, u) is supermodular in i, u. Note that checking supermodu-
larity with respect to (i, u, n) is pairwise: so it suffices to check supermodularity with
respect to (i, u), (i, n) and (u, n).
With the above result, consider a finite horizon MDP satisfies the assumptions (A1)-
(A4) of §9.3. Under what further conditions is µ∗n(i) is increasing in n for fixed i?
What does this mean intuitively?

9. Monotone Discounted Cost Markov Games. In § 6.2 on page 31 of this in-
ternet supplement we briefly described the formulation of infinite horizon discounted
cost Markov games. Below we comment briefly on structural results for the Nash
equilibrium of such games.
Consider the infinite horizon discounted cumulative cost of (22). The structural re-
sults developed in this chapter for MDPs extend straightforwardly to infinite horizon
discounted cost Markov games. The assumptions (A1) to (A4) of §9.3 of the book
need to be extended as follows:
(A1) Costs c(x, u, u−) are decreasing in x and u−. Here u− denotes the actions of

others players.
(A2) Pi(u, u−) ≤s Pi+1(u, u−) for each i and fixed u, u−. Here Pi(u, u−) denotes

the i-th row of the transition matrix for action u, u−.
(A3) c(x, u, u−) is submodular in (x, u) and (u, u−)
(A4) Pij(u, u−) is tail-sum supermodular in (i, u, u−). That is,∑

j≥l

(
Pij(u+ 1, u−)− Pij(u, u−)

)
is increasing in i.

Theorem 1. Under conditions (A1)-(A4), there exists a pure Nash equilibrium
(µ(1)∗, µ(2)∗) such that the pure policies µ(1)∗ and µ(2)∗ are increasing in state i.

Contrast this with the case of a general Markov game (§6.2 of this internet supple-
ment) where one can only guarantee the existence of a randomized Nash equilibrium
in general.
The proof of the above theorem is as follows. First for any increasing fixed policy
µ(2) for player 2, one can show via an identical proof to Theorem 9.3.1, the optimal
policy µ(1)∗(x, µ(2)(x)) is increasing in x. Similarly, for any increasing fixed policy µ(1)

for player 1, µ(2)∗(x, µ(1)(x)) is increasing in x. These are obtained as the solution
of Bellman’s equation. In game theory, these are called best response strategies.
Therefore the vector function [µ(1)∗(x), µ(2)∗(x)] is increasing in x. It then follows
from Tarski’s fixed point theorem3 that such a function has a fixed point. Clearly
this fixed point is a Nash equilibrium since any unilateral deviation makes one of the
players worse off.
Actually for submodular games a lot more holds. The smallest and largest Nash
equilibria are pure (non-randomized) and satisfy the monotone property of the above
theorem. These can be obtained via a best response algorithm the simply iterates
the best responses µ(1)∗(x, µ(2)(x)) and µ(2)∗(x, µ(1)(x)) until convergence. There are
numerous papers and books in the area.

3Let X denote a compact lattice and f : X → X denote an increasing function. Then there exists a
fixed point x∗ ∈ X such that f(x∗) = x∗
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Chapter 10

Structural Results for Optimal
Filters

1. In the structural results presented in the book, we have only considered first order
stochastic dominance and monotone likelihood ratio dominance (MLR) since they
are sufficient for our purposes. Naturally there are many other concepts of stochastic
dominance [65]. Show that

MLR =⇒ Hazard rate order =⇒ first order =⇒ second order

Even though second order stochastic dominance is useful for concave decreasing func-
tions (such as the value function of a POMDP), just like first order dominance, it
cannot cope with conditioning (Bayes’ rule).

2. Consider a reversible Markov chain with transition matrix P , initial distribution π0
and stationary distribution π∞. Suppose π0 ≤r π∞. Show that if P has rows that
are first order increasing then πn ≤r π∞.

3. TPn matrix. A key assumption (F2) in the structural results is that the transition
matrix P is TP2. More generally, suppose n = 2, 3, . . .. Then a X ×X matrix P is
said to be totally positive of order n (denoted as TPn) if for each k ≤ n, all the k×k
minors of P are non-negative.

4. TP2 matrix properties.1 §10.5 gave some useful properties of TP2 matrices.
Suppose the X ×X stochastic matrix P is TP2.
(a) Show that this implies that the elements satisfy

P11 ≥ P21 ≥ · · · ≥ PX1

P1X ≥ P2X ≥ · · · ≥ PXX

(b) Suppose P has no null columns. Show that if Pij = 0, then either Pkl = 0 for
k ≤ i and l ≥ j, or Pkl = 0 for k ≥ i and l ≤ j.

(c) Show that
e′1(Pn)′e1 ↓ n, e′X(Pn)′e1 ↑ n.

1Note that a TP2 matrix does not need to be a square matrix; we consider P to be square here since it
is a transition probability matrix.
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Also show that for each n,

e′1(Pn)′ei ↓ i, e′X(Pn)′ei ↑ i

Please see [40] for several other interesting properties of TP2 matrices.
5. MLR dominance is intimately linked with the TP2 property. Show that

π1 ≤r π2 ⇐⇒
[
π′1
π′2

]
is TP2 .

6. Properties of MLR dominance. Suppose X and Y are random variables and
recall that ≥r denotes MLR dominance.2
(a) Show that X ≥r Y is equivalent to

{X|X ∈ A} ≥s {Y |Y ∈ A}

for all events A with P (X ∈ A) > 0 and P (Y ∈ A) > 0 where ≥s denotes first
order dominance. This property is due to [92].

(b) Show that X ≥r Y implies that g(X) ≥r g(Y ) for any increasing function g.
(c) Show that X ≥r Y implies that max{X, c} ≥r max{Y, c} for any positive con-

stant c.
(d) Under what conditions does X ≥r Y imply that −X ≤r −Y ?

Do the above two properties hold for first order dominance?
7. MLR monotone optimal predictor. Consider the HMM predictor given by the

Chapman Kolmogorov equation πk = P ′πk−1. Show that if P is a TP2 matrix and
π0 ≤r π1, then π0 ≤r π1 ≤r π2 ≤r . . ..

8. MLR constrained importance sampling. One of the main results of this chapter
was to construct reduced complexity HMM filters that provably form lower and upper
bounds to the optimal HMM filter in the MLR sense. In this regard, consider the
following problem. Suppose it is known that P ′π ≤r P ′π. Then given the reduced
complexity computation of P ′π, how can this be exploited to compute P ′π?
It is helpful to think of the following toy example: Suppose it is known that x′p ≤ 1
for a positive vector x and probability vector p. How can this constraint be exploited
to actually compute the inner product x′p? Obviously from a deterministic point of
view there is little one can do to exploit this constraint. But one can use constrained
important sampling: one simple estimator is as follows:

1
N

N∑
i=1

xiI(xi ≤ 1)

where index i is simulated iid from probability vector p. In [49] a more sophisticated
constrained importance sampling approach is used to estimate P ′π by exploiting the
constraint P ′π ≤r P ′π.

2Stochastic dominance is a property of the distribution of a random variable and has nothing to do with
the random variable itself. Therefore in the book, we defined stochastic dominance in terms of the pdf or
pmf. Here to simplify notation we use the random variable instead of its distribution.
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9. Posterior Cramer Rao bound. The posterior Cramer Rao bound [88] for filtering
can be used to compute a lower bound to the mean square error. This requires twice
differentiability of the logarithm of the joint density. For HMMs, one possibility is to
consider the Weiss-Weinstein bounds , see [79]. Alternatively, the analysis of [30] can
be used. Compare these with the sample path bounds for the HMM filter obtained
in this chapter.

10. The shifted likelihood ratio order is a stronger order than the MLR order. Indeed,
p > q in the shifted likelihood ratio order sense if pi/qi+j is increasing in i for any j.
(If j = 0 it coincides with the standard MLR order.) What additional assumptions
are required to preserve the shifted likelihood ratio order under Bayes’ rule? Show
that the shifted likelihood ratio order is closed under convolution. How can this
property be exploited to bound an optimal filter?

11. In deriving sample path bounds for the optimal filter, we did not exploit the fact that
T (π, y) increases with y. How can this fact be used in bounding the sample path of
an optimal filter?

12. Neyman-Pearson Detector Here we briefly review elementary Neyman-Pearson
detection theory and show the classical result that MLR dominance results in a
threshold optimal detector.
Given the observation x of a random variable, we wish to decide if x is from pdf f
or g. To do this, we construct a decision policy φ(x). The detector decides

f if φ(x) = 0
g if φ(x) = 1

(38)

The performance of the decision policy φ in (38) is determined in terms of two metrics:
(a) P = P( reject f |f is true )
(b) Q = P( reject f |f is false )

Clearly for the decision policy φ(·) in (38),

P =
∫

IR
f(x)φ(x)dx, Q =

∫
IR
g(x)φ(x)dx.

The well known Neyman-Pearson detector seeks to determine the optimal decision
policy φ∗ that maximizes Q subject to the constraint P ≤ α for some user specified
α ∈ (0, 1]. The main result is

Theorem (Neyman-Pearson lemma). Amongst all decision rules φ such that P ≤ α,
the decision rule φ∗ which maximizes Q is given by

φ∗(x) =

0 f(x)
g(x) ≥ c

1 f(x)
g(x) < c

where c is chosen so that P = α.

Proof. Clearly for any x ∈ IR,(
φ∗(x)− φ(x)

)(
cg(x)− f(x)

)
≥ 0.
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Please verify the above inequality by showing that if φ∗(x) = 1 then both the terms
in the above product are nonnegative; while if φ∗(x) = 0, then both the terms are
nonpositive. Therefore,

c

(∫
φ∗(x)g(x)dx−

∫
φ(x)g(x)dx

)
≥
∫
φ∗(x)f(x)dx−

∫
φ(x)f(x)dx

The right hand side is non-negative since by construction
∫
φ∗(x)f(x)dx = α , while∫

φ(x)f(x)dx ≤ α.

Threshold structure of optimal detector. Let us now give conditions so that
the optimal Neyman-Pearson decision policy is a threshold policy: Suppose now that
f MLR dominates g, that is f(x)/g(x) ↑ x. Then clearly

φ∗(x) =
{

0 x ≥ x∗

1 x < x∗
(39)

where threshold x∗ satisfies ∫ x∗

−∞
f(x)dx = α

Thus if f ≥r g, then the optimal detector (in the Neyman-Pearson sense) is the
threshold detector (39).
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Chapter 11

Monotonicity of Value Function
for POMDPs

1. Theorem 11.2.1 is the main result of the chapter and it gives conditions under
which the value function of a POMDP is MLR decreasing. Condition (C) was the
main assumption on the possibly non-linear cost. Give sufficient conditions for a
quadratic cost 1− π′π+ c′uπ to satisfy (C). Under what conditions does the entropy
−
∑
i π(i) log π(i) + c′uπ satisfy (C).

2. The shifted likelihood ratio order is a stronger order than the MLR order. Indeed,
p > q in the shifted likelihood ratio order sense if pi/qi+j is increasing in i for any j.
If j = 0 it coincides with the standard MLR order. (Recall also the problem in the
previous chapter which says that the shifted likelihood ratio order is closed under
convolution.) By using the shifted likelihood ratio order, what further results on the
value function V (π) can one get by using Theorem 11.2.1.

3. Theorem 11.3.1 gives sufficient conditions for a 2-state POMDP to have a threshold
policy. We have assumed that the observation probabilities are not action dependent.
How should the assumptions and proof be modified to allow for action dependent
observation probabilities?

4. How can Theorem 11.3.1 be modified if dynamic risk measures of §8.6 are considered?
(see also §13.3).

5. Finite dimensional characterization of Gittins index for POMDP bandit
[50]: §11.4 dealt with POMDP multi-armed bandit problem. Consider a POMDP
bandit where the Gittins index (11.18) is characterized as the solution of Bellman’s
equation (11.19). Since the value function of a POMDP is piecewise linear and con-
cave (and therefore a finite dimensional characterization), it follows that a value
iteration algorithm for (11.19) that characterizes the Gittins index also has a finite
dimensional characterization. Obtain an expression for this finite dimensional char-
acterization for the Gittins index (11.18) for a horizon N value iteration algorithm.

6. §11.4 of the book deals with structural results for POMDP bandits. Consider the
problem where several searchers are looking for a stationary target. Only one searcher
can operate at a given time and the searchers cannot receive state estimate informa-
tion from other searchers or a base-station. The base station simply sends a 0 or 1
signal to each searcher telling them when to operate and when to shut down. When
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it operates, the searcher obtains moves according to a Markov chain and obtains
noisy information about the target. Show how the problem can be formulated as a
POMDP multi-armed bandit.
Show how a radar seeking to hide its emissions (low probability of intercept radar)
can be formulated approximately as a POMDP bandit.

7. How does the structural result for the Gittins index for a POMDP bandit specialize
to that of a full observed Markov decision process bandit problem?

8. Consider Problem 7 on page 39 of Chapter 7 where optimal adaptive control of a
fully observed MDP was formulated as a POMDP. Give conditions that ensure that
the value function Jk(i, π) is MLR decreasing in π and also monotone in i. What
are the implications of this monotonicity in terms of dual control (i.e., exploration
vs exploitation)?

9. Optimality of Threshold Policy for 2-state POMDP Recall that Theorem
11.3.1 in the book gave sufficient conditions for the optimal policy of a 2-state
POMDP to be a threshold. Consider the proof of Theorem 11.3.1 in Appendix
11.A of the book. The last step involved going from (11.28) to a simpler expression
via tedious but elementary steps. Here we specify what these steps are.
Start with (11.28) in the book:

I3 =
[
σ(π̄, y, 2) + σ(π̄, y, 1)

T (π̄, y, 1)− T (π, y, 2)
T (π, y, 2)− T (π̄, y, 2) + σ(π, y, 1)

T (π, y, 2)− T (π, y, 1)
T (π, y, 2)− T (π̄, y, 2)

]

=
I31 + I32 + I33

σ(π, y, 2) (T (π, y, 2)− T (π̄, y, 2))
I31 = σ(π, y, 2)σ(π̄, y, 1) (T (π̄, y, 1)− T (π, y, 2))
I32 = σ(π, y, 2)σ(π̄, y, 2) (T (π, y, 2)− T (π̄, y, 2))
I33 = σ(π, y, 2)σ(π, y, 1) (T (π, y, 2)− T (π, y, 1))

(40)

The second element of HMM predictors P (a)′π and (P (a)′π̄) are denoted by ba2,
ba1, a = 1, 2 respectively. Here ba2 is defined as follows

ba2 = (1− π(2))P12(a) + π(2)P22(a). (41)

Consider the following simplification of the term I31 by using ba2 and ba1.

I31 =(B1y(1− b22) +B2yb22)B2yb11 − (B1y(1− b11) +B2yb11)B2yb22

=B1yB2y(b11 − b22)
(42)

Similarly, I32 and I33 are simplified as follows

I32 = B1yB2y(b22 − b21), I33 = B1yB2y(b22 − b12) (43)

Substituting (42), (43) in (40) yields the following

I3 = B1yB2y
b11 + b22 − b21 − b12

σ(π, y, 2) (T (π, y, 2)− T (π̄, y, 2))
(44)
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Substituting (41) for bij and some trivial algebraic manipulations yield the following

I3 = B1yB2y(π(2)− π̄(2))
P22(2)− P12(2)− (P22(1)− P12(1))
σ(π, y, 2) (T (π, y, 2)− T (π̄, y, 2)) . (45)

10. Consider the following special case of a POMDP. Suppose the prior belief π0 ∈ Π(X)
is known. From time 1 onwards, the state is fully observed. How can the structural
results in this chapter be used to characterize the optimal policy?
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Chapter 12

Structural Results for Stopping
Time POMDPs

12.1 Problems

Most results in stopping time POMDPs in the literature use the fact that the stopping set
is convex (namely, Theorem 12.2.1). Recall that the only requirements of Theorem 12.2.1
are that the value function is convex and the stopping cost is linear. Another important
result for finite horizon POMDP stopping time problems is the nested stopping set property
S0 ⊆ S1 ⊆ S2 . . .. The following exercises discuss both these aspects.

1. Nested stopping set structure. Consider the stopping time POMDP dynamic
programming equation

V (π) = min{c′1π, c′2π +
∑
y

V (T (π, y, u))σ(π, y, u)}.

Define the stopping set as

S = {π : c′1π ≤ c′2π +
∑
y

V (T (π, y, u))σ(π, y, u)} = {π : µ∗(π) = 1 (stop) }

Recall the value iteration algorithm is

Vn+1(π) = min{c′1π, c′2π +
∑
y

Vn(T (π, y, u))σ(π, y, u)}, V0(π) = 0.

Define the stopping sets Sn = {π : c′1π ≤ c′2π +
∑
y Vn(T (π, y, u))σ(π, y, u)}.

Show that the stopping sets satisfy S0 ⊆ S1 ⊆ S2 . . . implying that

S = ∪nSn

2. Explicit characterization of stopping set. Theorem 12.2.1 showed that for a
stopping time POMDP, the stopping set S is convex. By imposing further conditions,
the set S can be determined explicitly. Consider the following set of belief states

So = {π : c′1π ≤ c′2π + c′1P
′π} (46)
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Suppose the transition matrix P and observation probabilities B of the stopping time
POMDP satisfy the following property:

π ∈ So =⇒ T (π, y) ∈ So, ∀y ∈ Y. (47)

(a) Prove that So = S. Therefore, the hyperplane c′1π = c′2π + c′1P
′π determines

the stopping set S.
The proof proceeds in two steps: First prove by induction on the value iteration
algorithm that for π ∈ So, Vn(π) = c′1π, for n = 1, 2 . . ..
Second, consider a belief π such that the optimal policy goes one step and then
stops. This implies that the value function is V (π) = c′2π + c′1P

′π. Therefore
clearly c′2π + c′1P

′π < c′1π. This implies that π /∈ So. So for any belief π such
that µ∗(π) goes one step and stops, then π /∈ So. Therefore, for any belief π
such that µ∗(π) goes more than one step and stops, then π /∈ So.
The two steps imply that So = S.Therefore that the stopping set is explicitly
given by the polytope in (46).

(b) Give sufficient conditions on P and B so that condition (47) holds for a stopping
time POMDP.

3. Show that an identical, proof to Theorem 12.2.1 implies that the stopping sets Sn,
n = 1, 2, . . . are convex for a finite horizon problem.

4. Choosing a single sample from a HMM. Suppose a Markov chain xk is observed
in noise sequentially over time as yk ∼ Bxk,y, k = 1, 2 . . . , N . Over a horizon of length
N , I need to choose a single observation yk to maximize E{yk}, k ∈ 1, . . . , N . If at
time k I decide to choose observation yk, then I get reward E{yk} and the problem
stops. If I decide not to choose observation yk, then I can use it to update my
estimate of the state and proceed to the next time instant. However, I am not
allowed to choose yk at a later time.
(a) Which single observation should I choose?

Show that Bellman’s equation becomes

Vn+1(π) = max
u∈{1,2}

{r′π,
∑
y

Vn(T (π, y))σ(π, y)}

where the elements of r are r(i) =
∑
y yBiy, i = 1, . . . , X. Here u = 1 denotes

choose an observation, while u = 2 denotes do not choose an observation.
(b) Show using an identical proof to Theorem 12.2.1 that the region of the belief

space Sn = {π : µ∗(µ) = 1} is convex. Moreover if ((F1),(F2)) hold, show that
e1 belongs to Sn. Also show that S0 ⊆ S1 ⊆ S2 . . ..

(c) Optimal Channel sensing. Another interpretation of the above problem is
as follows: The quality xk of a communication channel is observed in noise. I
need to transmit a packet using this channel. If the channel is in state x, I incur
a cost c(x) for transmission. Given N slots, when should I transmit?

5. Optimal measurement selection for a Hidden Markov Model (Multiple
stopping problem). The following problem generalizes the previous problem as
follows. I need to choose the best L observations of a Hidden Markov model in a
horizon of length N where L ≤ N? If I select observation k then I get a reward
E{yk}, if I reject the observation then I get no reward. In either case, I use the
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observation yk to update my belief state. (This problem is also called the multiple
stopping problem in [67].) Show that Bellman’s dynamic programming recursion
reads:

Vn+1(π, l) = max{r′π +
∑
y

Vn(T (π, y), l − 1)σ(π, y),
∑
y

Vn(T (π, y), l)σ(π, y)}, n = 1, . . . , N

with initial condition Vn(π, 0) = 0, n = 0, 1, . . . and boundary conditions

Vn(π, n) = r′π +
∑
y

Vn−1(T (π, y), n− 1)σ(π, Y ), n = 1, . . . , L.

The boundary condition says that if I have only n time points left to make n obser-
vations, then I need to make an observation at each of these n time points. Obtain
a structural result for the optimal measurement selection policy. (Notice that the
actions do no affect the evolution of the belief state π, they only affect l, so the
problem is simpler than a full blown POMDP.)

6. Separable POMDPs. Recall that the action space is denoted as U = {1, 2, . . . , U}.
In analogy to [35, Chapter 7.4], define a POMDP to be separable if: the exists a subset
Ū = {1, 2 . . . , Ū} of the action space U such that for u ∈ Ū
(a) The cost is additively separable: c(x, u) = φ(u)+g(x) for some scalars φ(u) and

g(x).
(b) The transition matrix Pij(u) depends only on j. That is the process evolves

independently of the previous state.
Assuming that the actions u ∈ Ū are ordered so that φ(1) < φ(2) < . . . < φ(Ū),
clearly it is never optimal to pick actions 2, . . . , Ū . So solving the POMDP involves
choosing between actions {1, Ū+1, . . . , U}. So from Theorem 12.2.1, the set of beliefs
where the optimal policy µ∗(π) = 1 is convex.
Solving for the optimal policy for which the actions {Ū + 1, . . . , U} arise is still as
complex as a solving a standard POMDP. However, the bounds proposed in Chapter
14 can be used.
Consider the special case of the above model where Ū = U and instead of (a), c(x, u)
are arbitrary costs. Then show that the optimal policy is a linear threshold policy.

12.2 Case Study: Bayesian Nash equilibrium of one-shot
global game for coordinated sensing

This section gives a short description of Bayesian global games. The ideas involve MLR
dominance of posterior distributions and supermodularity and serves as a useful illustration
of the structural results developed in the chapter.

We start with some perspective: Recall that in the classical Bayesian social learning,
agents act sequentially in time. The global games model that has been studied in economics
during the last two decades, considers multiple agents that act simultaneously by predicting
the behavior of other agents. The theory of global games was first introduced in [13] as
a tool for refining equilibria in economic game theory; see [62] for an excellent exposition.
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Global games represent a useful method for decentralized coordination amongst agents;
they have been used to model speculative currency attacks and regime change in social
systems, see [62, 39, 4]. Applications in sensor networks and cognitive radio appear in
[41, 42].

12.2.1 Global Game Model

Consider a continuum of agents in which each agent i obtains noisy measurements Y (i) of
an underlying state of nature X. Here

Y (i) = X +W (i), X ∼ π, W (i) ∼ pW (·)

Assume all agents have the same noise distribution pW . Based on its observation y(i),
each agent takes an action ui ∈ {1, 2} to optimize its expected reward

R(X,α, u = 2) = X + f(α), R(X,u = 1) = 0 (48)

Here α ∈ [0, 1] denotes the fraction of agents that choose action 2 and f(α) is a user
specified function. We will call f the congestion function for reasons explained below.

As an illustrative example, suppose x (state of nature) denotes the quality of a social
group and y(i) denotes the measurement of this quality by agent i. The action ui = 1
means that agent i decides not to join the social group, while ui = 2 means that agent
i joins the group. The utility function R(ui = 2, α) for joining the social group depends
on α, where α is the fraction of people who decide to join the group. If α ≈ 1, i.e., too
many people join the group, then the utility to each agent is small since the group is too
congested and agents do not receive sufficient individual service. On the other hand, if
α ≈ 0, i.e., too few people join the group, then the utility is also small since there is not
enough social interaction. In this case the congestion function f(α) would be chosen as
a quasi-concave function of α (that increases with α up to a certain value of α and then
decreases with α).

Since each agent is rational, it uses its observation y(i) to predict α, i.e., the fraction
of other agents that choose action 2. The main question is: What is the optimal strategy
for each agent i to maximize its expected reward?

12.2.2 Bayesian Nash Equilibrium

Let us now formulate this problem: Each agent chooses its action u ∈ {1, 2} based on a
(possibly randomized) strategy µ(i) that maps the current observation Y (i) to the action
u. In a global game we are interested in symmetric strategies, i.e., where all choose the
same strategy denoted as µ. That is, each agent i deploys the strategy

µ : Y (i) → {1, 2}.

(Of course, the action µ(Y (i)) picked by individual agents i depend on their random obser-
vation Y (i). So the actions picked are not necessarily identical even though the strategies
are identical).

Let α(x) denote the fraction of agents that select action u = 2 (go) given the quality
of music X = x. Since we are considering an infinite number of agents that behave

c©Vikram Krishnamurthy 2017



Chapter 12. Structural Results for Stopping Time POMDPs 59

independently, α(x) is also (with probability 1) the conditional probability that an agent
receives signal Y (i) and decides to pick u = 2, given X. So

α(x) = P (µ(Y ) = 2|X = x). (49)

We can now define the Bayesian Nash equilibrium (BNE) of the global game. For each
agent i given its observation Y (i), the goal is to choose a strategy to optimize its local
reward. That is, agent i seeks to compute strategy µ(i),∗ such that

µ(i),∗(Y (i)) ∈ {1 (stay) , 2 (go) } maximizes E[R(X,α(X), µ(i)(Y (i)))|Y (i)]. (50)

Here R(X,α(X), u) is defined as in (48) with α(X) defined in (49).
If such a strategy µ(i),∗ in (50) exists and is the same for all agents i, then they

constitute a symmetric BNE for the global game. We will use the notation µ∗(Y ) to
denote this symmetric BNE.
Remark: Since we are dealing with an incomplete information game, players use randomized
strategies. If a BNE exists, then a pure (non-randomized) version exists straightforwardly
(see Proposition 8E.1, pp.225 in [59]). Indeed, with y(i) denoting realization of random
variable Y (i),

E[R
(
X,α(X), µ(Y (i))

)
|Y (i) = y(i)] =

2∑
u=1

E[R(X,α(X), u)|Y (i) = y(i)]P (u|Y (i) = y(i)).

Since a linear combination is maximized at its extreme values, the optimal (BNE) strategy
is to choose P (u∗|Y (i) = y(i)) = 1 where

u∗ = µ∗(y(i)) = argmax
u∈{1,2}

E[R(X,α(X), u)|Y (i) = y(i)]. (51)

For notational convenience denote

R(y, u) = E[R(X,α(X), u)|Y (i) = y(i)]

12.2.3 Main Result. Monotone BNE

With the above description, we will now give sufficient conditions for the BNE µ∗(y) to be
monotone increasing in y (denoted µ∗(y) ↑ y). This implies that the BNE is a threshold
policy of the form:

µ∗(y) =
{

1 y ≤ y∗

2 y > y∗

Before proving this monotone structure, first note that µ∗(y) ↑ y implies that α(x) in (49)
becomes

α(x) = P (y > y∗|X = x) = P (x+ w > y∗) = P (w > y∗ − x) = 1− FW (y∗ − x)

Clearly from (51), a sufficient condition for µ∗(y) ↑ y is that

R(y, u) =
∫
R(x, α(x), u) p(x|y)dx
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is supermodular in (y, u) that is

R(y, u+ 1)−R(y, u) ↑ y.

Since R(X,u = 0) it follows that R(y, 1) = 0. So it suffices that R(y, 2) ↑ y.
1. What are sufficient conditions on the noise pdf pW (·), and congestion function f(·)

in (48) so that R(y, 2) ↑ y and so BNE µ∗(y) ↑ y?
Clearly sufficient conditions for R(y, 2) ↑ y are:
(a) p(x|y) is MLR increasing in y,
(b) IR(x, α(x), 2) is increasing in x.

But we know that p(x|y) is MLR increasing in y if the noise distribution is such that
pW (y − x) is TP2 in x, y
Also R(x, α(x), 2) is increasing in x if its derivative wrt x is positive. That is,

d

dx
R(x, α(x), 2) = 1 + df

dα

dα

dx
= 1 + df

dα
pW (y∗ − x) > 0

To summarize: The BNE µ∗(y) ↑ y if the following two conditions hold:
(a) p(y|x) = pW (y − x) is TP2 in (x, y)
(b)

df

dα
> − 1

pW (y∗ − x)
Note that a sufficient condition for the second condition is that

df

dα
> − 1

maxw pW (w)

2. Suppose W is uniformly distributed in [−1.1]. Then using the above conditions
show that a sufficient condition on the congestion function f(α) for the BNE to be
monotone is that df/dα > −2.

3. Suppose W is zero mean Gaussian noise with variance σ2. Then using the above
conditions show that a sufficient condition on the congestion function f(α) for the
BNE to be monotone is that df/dα > −

√
2πσ.

12.2.4 One-shot HMM Global Game

Suppose that X0 ∼ π0, and given X0, X1 is obtained by simulating from transition
matrix P . The observation for agent i is obtained as the HMM observation

Y (i) = X1 +W (i), W (i) ∼ pW (·).

In analogy to the above derivation, characterize the BNE of the resulting one-shot
HMM global game. (This will require assuming that P is TP2.)
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Chapter 13

Stopping Time POMDPs for
Quickest Change Detection

1. For classical detection theory, a “classic” book is the multi-volume [89].
2. As mentioned in the book, there are two approaches to quickest change detection:

Bayesian and minimax. Chapter 13 of the book deals with Bayesian quickest detec-
tion which assumes that the change point distribution is known (e.g. phase distribu-
tion). The focus of Chapter 13 was to determine the structure of the optimal policy
of the Bayesian detector by showing that the problem is a special case of a stopping
time POMDP. [91] uses nonlinear renewal theory to analyze the performance of the
optimal Bayesian detector.
The minimax formulation for quickest detection assumes that the change point is
either deterministic or has an unknown distribution. For an excellent starting point
on performance analysis of change detectors with minimax formulations please see
[86] and [75]. The papers [54, 64] gives a lucid description of the analysis of change
detection in this framework.

3. Shiryaev Detection Statistic. In the classical Bayesian formulation of quickest de-
tection described in §12.2, a two state Markov chain is considered to model geometric
distributed change times. Recall (12.6), namely,

P =
[

1 0
1− P22 P22

]
, π0 =

[
0
1

]
, τ0 = inf{k : xk = 1}. (52)

where 1− P22 is the parameter of the geometric prior.
In classical detection theory, the belief state πk is written in terms of the Shiryaev
detection statistic rk which is defined as follows:

rk
defn= 1

1− P22
× πk(2)

1− πk(2) (53)

Clearly rk is an increasing function of πk(2) and so all the monotonicity results in
the chapter continue to hold. In particular Corollary 12.2.2 in the book holds for rk
implying a threshold policy in terms of rk.
In terms of the Shiryaev statistic rk, it is straightforward to write the belief state
update (HMM filter for 2 state Markov chain) as a function of the likelihood ratio as
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follows:
rk = 1

1− p (rk−1 + 1)L(yk) (54)

where
p = 1− P22, L(yk) = B2yk

B1yk
(likelihood ratio)

In (54) by choosing p→ 0, the Shiryaev detection statistic converges to the so called
Shiryaev-Roberts detection statistic. Note that as p→ 0 (equivalently P22 → 1), the
Markov chain becomes a slow Markov chain. We have analyzed in detail how to track
the state of such a slow Markov chain via a stochastic approximation algorithm in
Chapter 17 of the book.
The Shiryaev-Roberts detector for change detection reads:
(a) Update the Shiryaev-Roberts statistic

rk = (rk−1 + 1)L(yk)

(b) If rk ≥ r∗ then stop and declare a change. Here r∗ is a suitably chosen detection
threshold.

Please see [74] for a nice survey description of minimax change detection and also
the sense in which the above Shiryaev-Roberts detector is optimal.

4. Classical Bayesian sequential detection. This problem shows that classical
Bayesian sequential detection is a trivial case of the results developed in Chapter 12.
Consider a random variable x ∈ {1, 2}. So we have a degenerate Markov chain with
transition matrix P = I. Given noisy observations yk ∼ Bxy, accumulated over time,
the aim is to decide if the underlying state is either 1 or 2.
Taking stop action 1 declares that the state is 1 and stops. Taking stop action 2
declares that the state is 2 and stops. Taking action 3 at time k simply takes another
measurement yk+1. The misclassification costs are:

c(x = 2, u = 1) = c(x = 1, u = 2) = L.

The cost of taking an additional measurement is c(x, u = 3) = C. What is the
optimal policy µ∗(π)?
Since P = I, show that the dynamic programming equation reads

V (π) = min{π2L, π1L, C +
∑
y

V (T (π, y))σ(π, y)}

T (π, y) = Byπ

1′Byπ
, σ(π, y) = 1′Byπ,

where π = [π(1), π(2)]′ is the belief state. Note that y ∈ Y where Y can be finite or
continuum (in which case

∑
denotes integration over Y).

From Theorem 12.2.1 we immediately know that the stopping sets

R1 = {π : µ∗(π) = 1}, and R2 = {π : µ∗(π) = 2}

are convex sets. Since the belief state is two dimensional, it belongs to a one di-
mensional simplex. In terms of the second component π(2), R1 and R2 are intervals
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in the unit interval [0, 1]. Clearly π(2) = 0 ∈ R1 and π(2) = 1 in R2. Therefore
R1 = [0, π∗1] and R2 = [π∗2, 1] for some π∗1 ≤ π∗2. So the continue region is [π∗1, π∗2].
Of course, Theorem 12.2.1 in the book is much more general since it does not require
X = 2 states and xk can evolve according to a Markov chain with transition matrix
P (whereas in the simplistic setting above, x is a random variable).

5. Stochastic Ordering of Passage Times for Phase-Distribution. In quickest
detection, we formulated the change point τ0 to have a phase type (PH) distribution.
A systematic investigation of the statistical properties of PH-distributions can be
found in [71]. The family of all PH-distributions forms a dense subset for the set of
all distributions [71] i.e., for any given distribution function F such that F (0) = 0,
one can find a sequence of PH-distributions {Fn, n ≥ 1} to approximate F uniformly
over [0,∞). Thus PH-distributions can be used to approximate change points with
an arbitrary distribution. This is done by constructing a multi-state Markov chain
as follows: Assume state ‘1’ (corresponding to belief e1) is an absorbing state and
denotes the state after the jump change. The states 2, . . . , X (corresponding to beliefs
e2, . . . , eX) can be viewed as a single composite state that x resides in before the jump.
To avoid trivialities, assume that the change occurs after at least one measurement.
So the initial distribution π0 satisfies π0(1) = 0. The transition probability matrix is
of the form

P =
[

1 0
P (X−1)×1 P̄(X−1)×(X−1)

]
. (55)

The first passage time τ0 to state 1 denotes the time at which xk enters the absorbing
state 1:

τ0 = min{k : xk = 1}. (56)

As described in §13.1 of the book, the distribution of τ0 is determined by choosing
the transition probabilities P , P̄ in (55). The distribution of the absorption time to
state 1 is denoted by

νk = P(τ0 = k)

and given by
ν0 = π0(1), νk = π̄′0P̄

k−1P , k ≥ 1, (57)

where π̄0 = [π0(2), . . . , π0(X)]′.
Definition. Increasing Hazard Rate: A pmf p is said to be increasing hazard
rate (IHR) if

F̄i+1

F̄i
↓ i, where F̄i =

∞∑
j=i

pj

Aim. Show that if the transition matrix P in (55) is TP2 and initial condition
π0 = eX , then the passage time distribution νk in (57) satisfies the increasing hazard
rate (IHR) property; see [82] for a detailed proof.

6. Order book high frequency trading and social learning. Agent based models
for high frequency trading with an order book have been studied a lot recently [6].
Agents trade (buy or sell) stocks by exploiting information about the decisions of
previous agents (social learning) via an order book in addition to a private (noisy)
signal they receive on the value of the stock. We are interested in the following:
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(1) Modeling the dynamics of these risk averse agents, (2) Sequential detection of a
market shock based on the behavior of these agents.
The agents perform social learning according to the protocol in §13.4.1 of the book.
A market maker needs to decide based on the actions of the agents if there is a sudden
change (shock) in the underlying value of an asset. Assume that the shock occurs
with a phase distributed change time. The individual agents perform social learning
with a CVaR social learning filter as in §5.2 of the book. The market maker aims to
determine the shock as soon as possible.
Formulate this decision problem as a quickest detection problem. Simulate the value
function and optimal policy. Compare it with the market maker’s optimal policy
obtained when the agents perform risk neutral social learning. See [44] for details.
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Chapter 14

Myopic Policy Bounds for
POMDPs and Sensitivity

1. To obtain upper and lower bounds to the optimal policy, the key idea was to change
the cost vector but still preserve the optimal policy. [48] gives a complete description
of this idea. What if a nonlinear cost was subtracted from the costs thereby still
keeping the optimal policy the same. Does that allow for larger regions of the belief
space where the upper and lower bounds coincide? Is it possible to construct different
transition matrices that yield the same optimal policy?

2. First order dominance of Markov chain sample paths. In §10.2 of the book we
defined the importance concept of copositive dominance to say that if two transition
matrices P1 and P2 satisfy P1 � P2 (see Definition 10.2.3), then the one step ahead
predicted belief satisfies the MLR dominance property

P ′1π ≤r P ′2π.

If we only want first order stochastic dominance, then the following condition suffices:
Let U denote the X ×X dimensional triangular matrix with elements Uij = 0, i > j
and Uij = 1, i ≤ j.
(a) Show the following result:

P1U ≥ P2U =⇒ P ′1π1 ≥s P ′2π2 if π1 ≥s π2.

(b) Consider the following special case of a POMDP. Suppose the prior belief π0 ∈
Π(X) is known. From time 1 onwards, the state is fully observed. How can the
structural results in this chapter be used to characterize the optimal policy?

3. In [55] it is assumed that one can construct a POMDP with observation matrices
B(1), B(2) such that (i) T (π, y, 2) ≥r T (π, y, 1) for each y and (ii) σ(π, 2) ≥s σ(π, 1).
Prove that it is impossible to construct an example that satisfies (i) and (ii) apart
from the trivial case where B(1) = B(2). Therefore Theorem 14.3.1 does not apply
when the transition probabilities are the same and only the observation probabilities
are action dependent. For such cases, Blackwell dominance is used.

4. Extensions of Blackwell dominance idea to POMDPs.
Blackwell dominance was used in §14.7 of the book to construct myopic policies that
bound the optimal policy of a POMDP. Below we show that Blackwell dominance is
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quite finicky when it comes to POMDP structural results. In particular, even with
minor changes in the definition, the proof of Theorem 14.7.1 can break down.
Recall that observation matrix B(2) Blackwell dominates B(1) (meaning that B(2)
is more accurate than B(1))

B(2) � B(1) if B(1) = B(2)R

for some stochastic matrix R. In Theorem 14.7.1 we assumed that the POMDP has
dependency structure x → y(2) → y(1). That is, the observation distributions are
Bx,y(2)(2) = p(y(2)|x), Bx,y(1)(1) = p(y(1)|x), and Ry(2),y(1) = p(y(1)|y(2)).
(a) Standard Case: Recall the proof of Theorem 14.7.1 which is written element

wise below for improved clarity: The j-th element of the updated belief using
the HMM filter is

Tj(π, y(1), 1) =
∑
y(2)

∑
i π(i)Pij p(y(2)|j) p(y(1)|y(2))∑

m

∑
y(2)

∑
i π(i)Pim p(y(2)|m) p(y(1)|y(2))

=

∑
y(2)

∑
i π(i)Pijp(y(2)|j)

∑
l

∑
m
π(l)Plmp(y(2)|m)∑

l

∑
m
π(l)Plm p(y(2)|m) p(y

(1)|y(2))∑
m

∑
y(2)

∑
i π(i)Pimp(y(2)|m) p(y(1)|y(2))

=
∑
y(2) Tj(π, y(2), 2)σ(π, y(2), 2)p(y(1)|y(2))∑

y(2) σ(π, y(2), 2) p(y(1)|y(2))

Then clearly σ(π,y(2),2) p(y(1)|y(2))∑
y(2) σ(π,y(2),2) p(y(1)|y(2)) is a probability measure w.r.t y(2).

(b) Pre-multiplication definition: Consider now the following minor modifica-
tion of the definition of Blackwell dominance. Suppose B(1) = RB(2) (that is
R premultiplies B(2)) instead of the standard definition B(1) = B(2)R. One
would still expect that B(1) is more noisy than B(2). However, the proof of
Theorem 14.7.1 no longer holds and there seems no obvious way to salvage it.
Of course, if B(1) = RB(2) and we make the additional assumption that B(2) �
R, then clearly B(2) � B(1) and the proof of Theorem 14.7.1 holds.

(c) State dependent Blackwell dominance: Consider next the more general
POMDP where p(y(1)|y(2), x) depends on the state x. (In Theorem 14.7.1 and
example (a) above this was functionally independent of x.) Then

Tj(π, y(1), 1) =
∑
y(2) Tj(π, y(2), 2)σ(π, y(2), 2) p(y(1)|y(2), j)∑

y(2)
∑
m σ(π, y(2), 2) p(y(1)|y(2),m)

Now
σ(π, y(2), 2) p(y(1)|y(2), j)∑

y(2)
∑
m σ(π, y(2), 2) p(y(1)|y(2),m)

is no longer a probability measure w.r.t. y(2) since j in the numerator is a fixed
index. The proof of Theorem 14.7.1 no longer holds.

(d) Next consider the case where the observation distribution is p(y(2)
k |xk, xk−1) and

p(y(1)|y(2)). Then the proof of Theorem 14.7.1 continues to hold.
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5. Blackwell dominance implies higher channel capacity. Show that if B(1)
Blackwell dominates B(2), i.e., B(2) = B(1)Q for some stochastic matrix Q, then
the capacity of a channel with likelihood probabilities given by B(1) is higher than
that with likelihood probabilities B(2). Please see [78] and references therein for a
discussion of the relation of Blackwell dominance and channel capacity.

6. Positively homogeneous concave value function. Recall a positively homoge-
neous function φ(·) satisfies φ(αx) = αφ(x) for any α ≥ 0.
It is easily to prove that a positively homogeneous function φ(·) is concave iff

φ(
∑
i

xi) ≥
∑
i

φ(xi)

Since the value function V (π) of a POMDP is positively homogeneous and concave,
it follows that∑
y

V (T (π, y, u))σ(π, y, u) =
∑
y

V (By(u)P ′(u)π) ≥ V (
∑
y

By(u)P ′(u)π) = V (P ′(u)π)

The above result is also obtained as a special case of Blackwell dominance of B(u) �
1
Y 1 where 1

Y 1 is the non-informative observation probability matrix.
7. Combining Copositive and Blackwell Dominance. Recall that the structural

result involving Blackwell dominance deals with action dependent observation prob-
abilities but assumes identical transition matrices for the various actions. Show
that copositive dominance and Blackwell dominance can be combined to deal with a
POMDP with action dependent transition and observation probabilities of the form:
Action u = 1: P 2, B.
Action u = 2: P,B2.
Give numerical examples of POMDPs with the above structure.
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Chapter 15

Part IV. Stochastic Approximation
and Reinforcement Learning

Here we present three case studies of stochastic approximation algorithms. The first case
study deals with online HMM parameter estimation and extends the method described
in Chapter 17. The second case study deals with reinforcement learning of equilibria in
repeated games. The third case study deals with discrete stochastic optimization (recall
§17.4 gave two algorithms) and provides a simple example of such an algorithm.

15.1 Case Study. Online HMM parameter estimation

Recall from Chapter 17 that estimating the parameters of a HMM in real time is motivated
by adaptive control of a POMDP. The parameter estimation algorithm can be used to
estimate the parameters of the POMDP for a fixed policy; then the policy can be updated
using dynamic programming (or approximation) based on the parameters and so on.

This case study outlines several algorithms for recursive estimation of HMM parame-
ters. The reader should implement these algorithms in Matlab to get a good feel for how
they work.

Consider the loss function for N data points of a HMM or Gaussian state space model:

JN (θ) = E{
N∑
k=1

cθ(xk, yk, πθk)} (58)

where xk denotes the state, yk denotes the observation, πθk denotes the belief state, and θ
denotes the model variable.

The aim is to determine the model θ that maximizes this loss function.
An offline gradient algorithm operates iteratively to minimize this loss as follows:

θ(l+1) = θ(l) − ε∇θJN (θ)
∣∣
θ=θ(l) (59)

The notation |θ=θ(l) above means that the derivatives are evaluated at θ = θ(l).
An offline Newton type algorithm operates iteratively as follows:

θ(l+1) = θ(l) −
[
∇2
θJN (θ)

]−1∇θJN (θ)
∣∣
θ=θ(l) (60)
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15.1.1 Recursive Gradient and Gauss-Newton Algorithms

A recursive online version of the above gradient algorithm (59) is

θk = θk−1 − ε∇θcθ(xk, yk, πθk)
∣∣
θ=θk−1

π
θk−1
k = T (πθk−1

k−1 , yk; θk−1)
(61)

where T (πθk−1
k−1 , yk; θk−1) is the optimal filtering recursion at time k using prior π

θk−1
k−1 ,

model θk−1 and observation yk. The notation |θ=θk−1 above means that the derivatives are
evaluated at θ = θk−1 Finally, ε is a small positive step size.

The recursive Gauss Newton algorithm is an online implementation of (60) and reads

θk = θk−1 − I−1
k ∇θcθ(xk, yk, π

θ
k)
∣∣
θ=θk−1

Ik = Ik−1 + ε∇2cθ(xk, yk, πθk)
∣∣
θ=θk−1

π
θk−1
k = T (πθk−1

k−1 , yk; θk−1)

(62)

Note that the above recursive Gauss Newton is a stochastic approximation algorithm with
a matrix step size Ik.

15.1.2 Justification of (61)

Before proceeding with examples, we give a heuristic derivation of (61). Write (59) as

θ
(k)
k = θ

(k−1)
k − ε∇θJN (θ)

∣∣
θ=θ(k−1)

k

Here the subscript k denotes the estimate based on observations y1:k. The superscript (k)
denotes the iteration of the offline optimization algorithm.

Suppose that at each iteration k we collect one more observation. Then the above
algorithm becomes

θ
(k)
k = θ

(k−1)
k−1 − ε∇θJk(θ)

∣∣
θ=θ(k−1)

k−1
(63)

Introduce the convenient notation
θk = θ

(k)
k .

Next we use the following two crucial approximations:
• First, make the inductive assumption that θk−1 minimized Jk−1(θ) so that

∇θJk−1(θ)
∣∣
θ=θk−1

= 0

Then from (58) it follows that

∇θJk(θ)
∣∣
θ=θk−1

= ∇θE{cθ(xk, yk, πθk)}
∣∣
θ=θk−1

(64)

• Note that evaluating the right hand side of (64) requires running a filter and its
derivates wrt θ from time 0 to k for fixed model θk−1. We want a recursive approx-
imation for this. It is here that the second approximation is used. We revlaute the
filtering recursion using the a sequence of available model estimates θt, t = 1, . . . , k
at each time t. In other words, we make the approximation

π
θk−1
k = T (πθk−1

k−1 , yk; θk), k = 1, 2, , . . . , (65)
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To summarize, introducing approximations (64) and (65) in (63) yields the online gradient
algorithm (61). The derivation of the Gauss-Newton algorithm is similar.

15.1.3 Examples of online HMM estimation algorithm

With the algorithms (61) and (62) we can obtain several types of online HMM parameter
estimators by choosing different loss functions J in (58). Below we outline two popular
choices.

1. Recursive EM algorithm1

Recall from the EM algorithm, that the auxiliary likelihood for fixed parameter θ̄ is

Qn(θ, θ̄) = E{log(p(x0:n, y1:n|θ)|y1:n, θ̄)} = E{
n∑
k=1

log pθ(xk, yk|xk−1)|y1:n, θ̄}

With θo denoting the true model, θ denoting the model variable, and θ̄ denoting a fixed
model value, define

Jn(θ, θ̄) = Ey1:n{Qn(θ, θ̄)|θo}.
To be more specific, for a HMM, from (4.26), in the notation of (58),

cθ(yk, θ̄) =
X∑
i=1

πθ̄k|n(i) logBθ
iyk

+
X∑
i=1

X∑
j=1

πθ̄k|n(i, j) logP θij . (66)

where P θ denotes the transition matrix and Bθ is the observation matrix and θ̄ is a fixed
model for which the smoothed posterior πθ̄k|n is computed.

Note that cθ is a reward and not a loss; our aim is to maximize Jn. The idea then is to
implement a Gauss-Newton stochastic gradient algorithm for maximizing Jn(θ, θ̄) for fixed
model θ̄, then update θ̄ and so on. This yields the following recursive EM algorithm:

1. For k = n∆+ 1, . . . (n+ 1)∆ run

θk = θk−1 + I−1
k

∑
i

∇θcθ(yk, θ̄n−1)πθ̄nk (i)

Ik = Ik−1 + ε
∑
i

∇2cθ(i, yk, πθk)
∣∣
θ=θk−1

πθ̄nk (i)

π
θ̄n−1
k = T (πθ̄n−1

k−1 , yk; θk−1) (HMM filter update)

(67)

Here πθ̄k|n and πθ̄k|n(i, j) in (66) are replaced by filtered estimates πθ̄k and πθ̄k−1(i)P θ̄ijBθ̄
j yk.

2. Then update θ̄n+1 = θ(n+1)∆, set n to n+ 1 and go to step 1.
To ensure that the transition matrix estimates are a valid stochastic matrix, one can

parametrize it in terms of spherical coordinates, see (16.18).
As an illustrative example, suppose we wish to estimate the X-dimension vector of

state levels g = (g(1), g(2), . . . , g(X))′ of a HMM in zero mean Gaussian noise with known
variance σ2. Assume the transition matrix P is known. Then θ = g and

cθ(yk, θ̄) = − 1
2σ2

∑
i

πθ̄k(i)
(
yk − g(i)

)2 + constant

1This name is a misnomer. More accurately the algorithm below is a stochastic approximation algorithm
that seeks to approximate the EM algorithm
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2. Recursive Prediction Error (RPE)

Suppose g is the vector of state levels of the underlying Markov chain and P the transition
matrix. Then the model to estimate is θ = (g, P ). Offline prediction error methods seek
to find the model θ that minimizes the loss function

JN (θ) = E{
N∑
k=1

(yk − g′πk|k−1)2}

So squared prediction error at each time k is

cθ(xk, θk, πθk) =
(
yk − g′P ′πθk−1

)2 (68)

Note that unlike (58) there is no conditional expectation in the loss function. Note the
key difference compared to the recursive EM. In the recursive EM cθ(xk, yk) is functionally
independent of πθ and hence the recursive EM does not involve derivatives (sensitivity)
of the HMM filter. In comparison, the RPE cost (68) involves derivatives of πθk−1 with
respect to θ. Then the derivatives with respect to θ can be evaluated as in §17.2.

3. Recursive Maximum likelihood

This was discussed in §17.2. The cost function is

cθ(xk, θk, πθk) = log
[
1′Byk(θ)πθk|k−1

]
Recursive versions of the method of moment estimation algorithm for the HMM pa-

rameters is presented in [61].

15.2 Case Study. Reinforcement Learning of Correlated
Equilibria

This case study illustrates the use of stochastic approximation algorithms for learning the
correlated equilibrium in a repeated game. Recall in Chapter 17 we used the ordinary dif-
ferential equation analysis of a stochastic approximation algorithm to characterize where it
converges to. For a game, we will show that the stochastic approximation algorithm con-
verges to a differential inclusion (rather than a differential equation). Differential inclusions
are generalization of ordinary differential equations (ODEs) and arise naturally in game-
theoretic learning, since the strategies according to which others play are unknown. Then
by a straightforward Lyapunov function type proof, we show that the differential inclu-
sion converges to the set of correlated equilibria of the game, implying that the stochastic
approximation algorithm also converges to the set of correlated equilibria.

15.2.1 Finite Game Model

Consider a finite action static game2 comprising two players l = 1, 2 with costs cl(u(1), u(2))
where u(1), u(2) ∈ {1, . . . , U}. Let p and q denote the randomized policies (strategies) of

2For notational convenience we assume two players with identical action spaces. All the results below
straightforwardly generalize to multiple players and non-identical action spaces.
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the two players: p(i) = P(u(1) = i) and q(i) = P(u(2) = i). So p, q are U dimensional
probability vectors that live in the U − 1 dimensional unit simplex Π. Then the policies
(p∗, q∗) constitute a Nash equilibrium if the following inequalities hold:∑

u(1),u(2)

c1(u(1), u(2)) p∗(u(1)) q∗(u(2)) ≤
∑
u(2)

c1(u, u(2)) q∗(u(2)), u = 1, . . . , U

∑
u(1),u(2)

c2(u(1), u(2)) p∗(u(1)) q∗(u(2)) ≤
∑
u(1)

c2(u(1), u) p∗(u(1)), u = 1, . . . , U.
(69)

Equivalently, (p∗, q∗) constitute a Nash equilibrium if for all policies p, q ∈ Π,∑
u(1),u(2)

c1(u(1), u(2)) p∗(u(1)) q∗(u(2)) ≤
∑

u(1),u(2)

c1(u(1), u(2)) p(u(1)) q∗(u(2))

∑
u(1),u(2)

c2(u(1), u(2)) p∗(u(1)) q∗(u(2)) ≤
∑

u(1),u(2)

c2(u(1), u(2)) p∗(u(1)) q(u(2))
(70)

The first inequality in (70) says that if player 1 cheats and deploys policy p instead of
p∗, then it is worse off and incurs an higher cost. The second inequality says that same
thing for player 2. So in a non-cooperative game, since collusion is not allowed, there is
no rational reason for any of the players to unilaterally deviate from the Nash equilibrium
p∗, q∗.

By a standard application of Kakutani’s fixed point theorem, it can be shown that for
a finite action game, at least one Nash equilibrium always exists. However, computing it
can be difficult since the above constraints are bilinear and therefore nonconvex.

15.2.2 Correlated Equilibrium

The Nash equilibrium assumes that the player’s act independently. The correlated equilib-
rium is a generalization of the Nash equilibrium. The two players now choose their action
from the joint probability distribution π(u(1), u(2)) where

π(i, j) = P(u(1) = i, u(2) = j).

Hence the actions of the players are correlated. Then the policy π∗ is said to be a correlated
equilibrium if ∑

u(2)

c1(u(1), u(2))π∗(u(1), u(2)) ≤
∑
u(2)

c1(u, u(2))π∗(u(1), u(2))

∑
u(1)

c2(u(1), u(2))π∗(u(1), u(2)) ≤
∑
u(1)

c2(u(1), u)π∗(u(1), u(2))
(71)

Define the set of correlated equilibria as

C =
{
π : (71) holds and π(u(1), u(2)) ≥ 0,

∑
u(1),u(2)

π(u(1), u(2)) = 1
}

(72)

Remark: In the special case where the players act independently, the correlated equilibrium
specializes to a Nash equilibrium. Independence implies the joint distribution π∗(u(1), u(2))
becomes the product of marginals: so π∗(u(1), u(2)) = p∗(u(1))q∗(u(2)). Then clearly (71)
reduces to the definition (69) of a Nash equilibrium. Note that the set of correlated
equilibria specified by (72) is a convex polytope in π.
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Why Correlated Equilibria?

John F. Nash proved in his famous paper [69] that every game with a finite set of players
and actions has at least one mixed strategy Nash equilibrium. However, as asserted by
Robert J. Aumann 3 in the following extract from [5], “Nash equilibrium does make sense if
one starts by assuming that, for some specified reason, each player knows which strategies
the other players are using.” Evidently, this assumption is rather restrictive and, more
importantly, is rarely true in any strategic interactive situation. He adds:

“Far from being inconsistent with the Bayesian view of the world, the notion of
equilibrium is an unavoidable consequence of that view. It turns out, though,
that the appropriate equilibrium notion is not the ordinary mixed strategy equi-
librium of Nash (1951), but the more general notion of correlated equilibrium.”
– Robert J. Aumann

This, indeed, is the very reason why correlated equilibrium [5] best suits and is central to
the analysis of strategic decision-making.

There is much to be said about correlated equilibrium; see Aumann [5] for rationality
arguments. Some advantages that make it ever more appealing include:

1. Realistic: Correlated equilibrium is realistic in multi-agent learning. Indeed, Hart
and Mas-Colell observe in [32] that for most simple adaptive procedures, “. . . there
is a natural coordination device: the common history, observed by all players. It
is thus reasonable to expect that, at the end, independence among players will not
obtain;”

2. Structural Simplicity: The correlated equilibria set constitutes a compact convex
polyhedron, whereas the Nash equilibria are isolated points at the extrema of this
set [70]. Indeed from (72), the set of correlated equilibria is a convex polytope in π.

3. Computational Simplicity: Computing correlated equilibrium only requires solving a
linear feasibility problem (linear program with null objective function) that can be
done in polynomial time, whereas computing Nash equilibrium requires finding fixed
points;

4. Payoff Gains: The coordination among agents in the correlated equilibrium can
lead to potentially higher payoffs than if agents take their actions independently (as
required by Nash equilibrium) [5];

5. Learning: There is no natural process that is known to converge to a Nash equilib-
rium in a general non-cooperative game that is not essentially equivalent to exhaustive
search. There are, however, natural processes that do converge to correlated equilib-
ria (the so-called law of conservation of coordination [33]), e.g., regret-matching [31].

Existence of a centralized coordinating device neglects the distributed essence of so-
cial networks. Limited information at each agent about the strategies of others further

3Robert J. Aumann was awarded the Nobel Memorial Prize in Economics in 2005 for his work on conflict
and cooperation through game-theoretic analysis. He is the first to conduct a full-fledged formal analysis
of the so-called infinitely repeated games.
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complicates the process of computing correlated equilibria. In fact, even if agents could
compute correlated equilibria, they would need a mechanism that facilitates coordinating
on the same equilibrium state in the presence of multiple equilibria—each describing, for
instance, a stable coordinated behavior of manufacturers on targeting influential nodes in
the competitive diffusion process [90]. This highlights the significance of adaptive learning
algorithms that, through repeated interactive play and simple strategy adjustments by
agents, ensure reaching correlated equilibrium. The most well-known of such algorithms,
fictitious play, was first introduced in 1951 [80], and is extensively treated in [27]. It,
however, requires monitoring the behavior of all other agents that contradicts the infor-
mation exchange structure in social networks. The focus below is on the more recent
regret-matching learning algorithms [11, 12, 31, 32].

Figure 15.1 illustrates how the various notions of equilibrium are related in terms of the
relative size and inclusion in other equilibria sets. As discussed earlier in this subsection,
dominant strategies and pure strategy Nash equilibria do not always exist—the game of
“Matching Pennies” being a simple example. Every finite game, however, has at least one
mixed strategy Nash equilibrium. Therefore, the “nonexistence critique” does not apply
to any notion that generalizes the mixed strategy Nash equilibrium in Figure 15.1. A
Hannan consistent strategy (also known as “universally consistent” strategies [29]) is one
that ensures, no matter what other players do, the player’s average payoff is asymptoti-
cally no worse than if she were to play any constant strategy for in all previous periods.
Hannan consistent strategies guarantee no asymptotic external regrets and lead to the so-
called “coarse correlated equilibrium” [63] notion that generalizes the Aumann’s correlated
equilibrium.

Hannan Consistent

Correlated Equilibria

Randomized Nash

Pure Nash

Dominant Strategies

Figure 15.1: Equilibrium notions in non-cooperative games. Enlarging the equilibria set
weakens the behavioral sophistication on the player’s part to distributively reach equilib-
rium through repeated plays of the game.

c©Vikram Krishnamurthy 2017



Chapter 15. Part IV. Stochastic Approximation and Reinforcement Learning 75

15.2.3 Reinforcement Learning Algorithm

To describe the learning algorithm and the concept of regret, it is convenient to deal with
rewards rather than costs. Each agent l has utility reward rl(u(l), u−l) where u(l) denotes
the action of agent l and u−l denotes the action of the other agents. The action space for
each agent l is {1, 2, . . . , U}. Define the inertia parameter

µ ≥ U
(

max rl(u, u−l)−min rl(u, u−l)
)

(73)

Each agent then runs the regret matching Algorithm I. Algorithm I assumes that once
a decision is made by an agent, it is observable by all other agents. However, agent l does
not know the utility function of other agents. Therefore, a learning algorithms such as
Algorithm I is required to learn the correlated equilibria.

The assumption that the actions of each agent are known to all other agents can be
relaxed; see [32] for ”blind” algorithms that do not require this.

Algorithm I Regret Matching Algorithm for Learning Correlated Equilibrium of Game
Each agent l with utility reward rl(u(l), u−l) independently executes the following:

1. Initialization: Choose action u
(l)
0 ∈ {1, . . . , U} arbitrarily. Set Rl1 = 0.

2. Repeat for n = 1, 2, . . ., the following steps:
Choose Action: u(l)

n ∈ {1, . . . , U} with probability

P(u(l)
n = j|u(l)

n−1 = i, Rln) =


|Rln(i,j)|+

µ j 6= i,

1−
∑
m 6=i

|Rln(i,m)|+
µ j = i

(74)

where inertia parameter µ is defined in (73) and |x|+ defn= max{x, 0}.
Regret Update: Update the U × U regret matrix Rln+1 as

Rln+1(i, j) = Rln(i, j) + ε
(
I{u(l)

n = i}
(
rl(j, u−ln )− rl(i, u−ln )

)
−Rln(u, j)

)
. (75)

Here ε� 1 denotes a constant positive step size.

Discussion and Intuition of Algorithm I

1. Adaptive Behavior: In (75), ε serves as a forgetting factor to foster adaptivity to the
evolution of the non-cooperative game parameters. That is, as agents repeatedly take
actions, the effect of the old underlying parameters on their current decisions vanishes.
2. Inertia: The choice of µ guarantees that there is always a positive probability of playing
the same action as the last period. Therefore, µ can be viewed as an “inertia” parameter:
A higher µ yields switching with lower probabilities. It plays a significant role in breaking
away from bad cycles. It is worth emphasizing that the speed of convergence to the
correlated equilibria set is closely related to this inertia parameter.
3. Better-reply vs. Best-reply: In light of the above discussion, the most distinctive feature
of the regret-matching procedure, that differentiates it from other works such as [28], is
that it implements a better-reply rather than a best-reply strategy4. This inertia assigns

4This has the additional effect of making the behavior continuous, without need for approximations [31].
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positive probabilities to any actions that are just better. Indeed, the behavior of a regret-
matching decision maker is very far from that of a rational decision maker that makes
optimal decisions given his (more or less well-formed) beliefs about the environment. In-
stead, it resembles the model of a reflex-oriented individual that reinforces decisions with
“pleasurable” consequences [32].

We also point out the generality of Algorithm I, by noting that it can be easily trans-
formed into the well-known fictitious play algorithm by choosing u(l)

n+1 = arg maxk Rln+1(i, j)
deterministically, where u(l)

n = i, and the extremely simple best response algorithm by fur-
ther specifying ε = 1.
4. Computational Cost: The computational burden (in terms of calculations per iteration)
of the regret-matching algorithm does not grow with the number of agents and is hence
scalable. At each iteration, each agent needs to execute two multiplications, two additions,
one comparison and two table lookups (assuming random numbers are stored in a table)
to calculate the next decision. Therefore, it is suitable for implementation in sensors with
limited local computational capability.
5. Global performance metric Finally, we introduce a metric for the global behavior of the
system. The global behavior zn at time k is defined as the empirical frequency of joint
play of all agents up to period k. Formally,

zn =
∑
τ≤k

(1− ε)k−τeuτ (76)

where euτ denotes the unit vector with the element corresponding to the joint play uτ being
equal to one. Given zn, the average payoff accrued by each agent can be straightforwardly
evaluated, hence the name global behavior. It is more convenient to define zn via the
stochastic approximation recursion

zn = zk−1 + ε [eun − zk−1] . (77)

The global behavior zn is a system “diagnostic” and is only used for the analysis of
the emergent collective behavior of agents. That is, it does not need to be computed
by individual agents. In real-life application such as smart sensor networks, however, a
network controller can monitor zn and use it to adjust agents’ payoff functions to achieve
the desired global behavior.

15.2.4 Ordinary Differential Inclusion Analysis of Algorithm I

Recall from Chapter 17 that the dynamics of a stochastic approximation algorithm can
be characterized by an ordinary differential equation obtained by averaging the equations
in the algorithm. In particular, using Theorem 17.1.1 of Chapter 17, the estimates gener-
ated by the stochastic approximation algorithm converge weakly to the averaged system
corresponding to (75) and (77), namely,

dR(i, j)
dt

= Eπ
{
I(ut = i)

(
rl(j, u−l)− rl(i, u−l)

)
−R(i, j)

}
=
∑
u−l

[
π(i|u−l)

(
rl(j, u−l)− rl(i, u−l)

)]
π(u−l)−R(i, j)

dz

dt
= π(i|u−l)π(u−l)− z

(78)
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where π(u(l), u−l) = π(u−l|u(l))π(u(l)) is the stationary distribution of the Markov process
(u(l), u−l).

Next note that the transition probabilities in (74) of u(l)
n given Rn are conditionally

independent of u−ln . So given Rn, π(i|u−l) = π(i). So given the transition probabilities in
(74), clearly the stationary distribution π(u(l)) satisfies the linear algebraic equation

π(i) = π(i)
[
1−

∑
j 6=i

|R(j, i)|+

µ

]
+
∑
j 6=i

π(j) |R(i, j)|+

µ
.

which after cancelling out π(i) on both sides yields∑
i 6=j

π(i)|R(i, j)|+ =
∑
i 6=j

π(j)|R(j, i)|+ (79)

Therefore the stationary distribution π is functionally independent of the inertia parame-
ter µ.

Finally note that as far as player l is concerned, the strategy π(u−l) is not known. All
is known is that π(u−l) is a valid pmf. So we can write the averaged dynamics of the regret
matching Algorithm I as

dR(i, j)
dt

∈
∑
u−l

[
π(i)

(
rl(j, u−l)− rl(i, u−l)

)]
π(u−l)−R(i, j)

dz

dt
∈ π(i)π(u−l)− z

 π(u−l) ∈ valid pmf

∑
i 6=j

π(i)|R(i, j)|+ =
∑
i 6=j

π(j)|R(j, i)|+

(80)

The above averaged dynamics constitute an algebraically constrained ordinary differential
inclusion.5 We refer the reader to [10, 11] for an excellent exposition of the use of differential
inclusions for analyzing game theoretical type learning algorithms.

Remark: The asymptotics of a stochastic approximation algorithm is typically cap-
tured by an ordinary differential equation (ODE). Here, although agents observe u−l, they
are oblivious to the strategies π(u−l) from which u−l has been drawn. Different strate-
gies π(u−l) result in different trajectories of Rn. Therefore, Rt and zt are specified by a
differential inclusions rather than ODEs .

15.2.5 Convergence of Algorithm I to the set of correlated equilibria

The previous subsection says that the regret matching Algorithm I behaves asymptotically
as an algebraically constrained differential inclusion (80). So we only need to analyze the
behavior of this differential inclusion to characterize the behavior of the regret matching
algorithm.

5Differential inclusions are a generalization of the concept of ordinary differential equations. A generic
differential inclusion is of the form dx/dt ∈ F(x, t), where F(x, t) specifies a family of trajectories rather
than a single trajectory as in the ordinary differential equations dx/dt = F (x, t).
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Theorem 1. Suppose every agent follows the “regret-matching”Algorithm I. Then as
t→∞: (i) R(t) converges to the negative orthant in the sense that

dist
[
R(t),R−

]
= inf
r∈IR−

∥∥R(t)− r
∥∥⇒ 0; (81)

(ii) z(t) converges to the correlated equilibria set C in the sense that

dist[z(t), C] = inf
z∈C
‖z(t)− z‖ ⇒ 0. (82)

The proof below shows the simplicity and elegance of the ordinary differential equa-
tion (inclusion) approach for analyzing stochastic approximation algorithm. Just a few
elementary lines based on the Lyapunov function yields the proof.

Proof. Define the Lyapunov function

V
(
R
)

= 1
2
(
dist

[
R, IR−

])2 = 1
2
∑
i,j

(∣∣R(i, j)
∣∣+)2. (83)

Evaluating the time-derivative and substituting for dR(i, j)/dt from (80) we obtain

d

dt
V
(
R
)

=
∑
i,j

∣∣R(i, j)
∣∣+ · d

dt
R(i, j)

=
∑
i,j

∣∣R(i, j)
∣∣+[(rl(j, u−l)− rl(i, u−l))π(i)−R(i, j)

]
=
∑
i,j

∣∣R(i, j)
∣∣+(rl(j, u−l)− rl(i, u−l))π(i)

︸ ︷︷ ︸
=0 from (79)

−
∑
i,j

∣∣R(i, j)
∣∣+R(i, j)

= −2V
(
R
)
. (84)

In the last equality we used∑
i,j

∣∣R(i, j)
∣∣+R(i, j) =

∑
i,j

(∣∣R(i, j)
∣∣+)2 = 2V

(
R
)
. (85)

This completes the proof of the first assertion, namely that Algorithm I eventually generates
regrets that are non-positive.

To prove the second assertion, from Algorithm I, the elements of the regret matrix are

Rk(i, j) = ε
∑
τ≤k

(1− ε)k−τ
[
rl
(
j, u−lτ

)
− rl

(
u(l)
τ , u

−l
τ )
]
I(u(l)

τ = i)

=
∑
u−l

z(i, u−l)
[
rl(j, u−l)− rl(i, u−l)

]
(86)

where z(i, u−l) denotes the empirical distribution of agent l choosing action i and the rest
playing u−l. On any convergent subsequence {zk}k≥0 → π, then

lim
k→∞

Rk(i, j) =
∑
u−l

π(i, u−l)
[
rl(j, u−l)− rl(i, u−l)

]
(87)
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where π(i, u−l) denotes the probability of agent l choosing action i and the rest playing
u−l. The first assertion of the theorem proved that the regrets converge to non-positive
values (negative orthant). Therefore (87) yields that∑

u−l

π(i, u−l)
[
rl(j, u−l)− rl(i, u−l)

]
≤ 0

implying that π is a correlated equilibrium.

15.2.6 Extension to switched Markov games

Consider the case now where rewards rl(u(l), u−l) evolve according to an unknown Markov
chain θn. Such a time varying game can result from utilities in a social network evolving
with time or the number of players changing with time. The reward for agent l is now
rl(u(l), u−l, θn). The aim is to track the set of correlated equilibria C(θn); that is use the
regret matching algorithm I so that agents eventually deploy strategies from C(θn). If θn
evolves with transition matrix I+ ε2Q (where Q is a generator), then it is on a slower time
scale than the dynamics of the regret matching Algorithm I. Then a more general proof in
the spirit of Theorem 17.3.3 yields that the regret matching algorithm can track the time
varying correlated equilibrium set C(θn). Moreover, in analogy to §17.3.4, if the transition
matrix for θn is I + εQ, then the asymptotic dynamics are given by a switched Markov
differential inclusion, see [47, 68].

15.3 Stochastic Search-Ruler Algorithm

We discuss two simple variants of Algorithm 25 that require less restrictive conditions for
convergence than condition (O). Assume cn(θ) are uniformly bounded for θ ∈ Θ. Neither
of the algorithms given below are particularly novel; but they are useful from a pedagogical
point of view.

It is convenient to normalize the objective (17.43) as follows: Let α ≤ cn(θ) ≤ β
where α denotes a finite lower bound and β > 0 denotes a finite upper bound. Define the
normalized costs mn(θ) as

mn(θ) = cn(θ)− α
β − α

, where 0 ≤ mn(θ) ≤ 1. (88)

Then the stochastic optimization problem (17.43) is equivalent to

θ∗ = arg min
θ∈Θ

m(θ) where m(θ) = E{mn(θ)} (89)

since scaling the cost function does not affect the minimizing solution. Recall Θ =
{1, 2, . . . , S}.

Define the loss function

Yn(θ, un) = I (mn(θ)− un) where I(x) =
{

1 if x > 0
0 otherwise

(90)

Here un is a independent uniform random number in [0, 1]. The uniform random number
un is a stochastic ruler against which the candidate mn(θ) is measured. The result was
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originally used in devising stochastic ruler optimization algorithms [1] – although here we
propose a more efficient algorithm than the stochastic ruler. Applying Algorithm 25 to
the cost function E{Yn(θ, un)} defined in (90) yields the following stochastic search-ruler
algorithm:

Algorithm II Stochastic Search-Ruler
Identical to Algorithm 25 with cn(θn) and cn(θ̃n) replaced by Yn(θn, un) and Yn(θ̃n, ũn).
Here un and ũn are independent uniform random numbers in [0, 1].

Analogous to Theorem 17.4.1 we have the following result:

Theorem 1. Consider the discrete stochastic optimization problem (17.43). Then the
Markov chain {θn} generated by Algorithm II has the following property for its stationary
distribution π∞:

π∞(θ∗)
π∞(θ) = m(θ)

m(θ∗)
(1−m(θ∗))
(1−m(θ)) > 1. (91)

The theorem says that Algorithm II is attracted to set the global minimizers G. It
spends more time in G than any other candidates. The restrictive condition (O) is not
required for Algorithm II to be attracted to G. Theorem 1 gives an explicit representation
of the discriminative power of the algorithm between the optimizer θ∗ and any other
candidate θ in terms of the normalized expected costsm(θ) andm(θ∗). Algorithm II is more
efficient than the stochastic ruler algorithm of [3] when the candidate samples are chosen
with equal probability. The stochastic ruler algorithm of [3] has asymptotic efficiency
π(θ∗)/π(θ) = (1−m(θ∗))/(1−m(θ)). So Algorithm II has the additional improvement in
efficiency due to the additional multiplicative term m(θ)/m(θ∗) in (91).
Variance reduction using common random numbers: A more efficient implementation of Al-
gorithm II can be obtained by using variance reduction based on common random numbers
(discussed in Appendix A.2.4 of the book) as follows: Since un is uniformly distributed in
[0, 1], so is 1−un. Similar to Theorem 1 it can be shown that the optimizer θ∗ is the minimiz-
ing solution of the following stochastic optimization problem θ∗ = arg minθ E{Zn(θ, un)}
where

Zn(θ, un) = 1
2 [Yn(θ, un) + Yn(θ, 1− un)] (92)

where the normalized sample cost mn(θ) is defined in (89). Applying Algorithm II with
Zn(θn, un) and Zn(θ̃n, un) replacing Yn(θn, un) and Yn(θ̃n, un), respectively, yields the vari-
ance reduced search-ruler algorithm.

In particular, since the indicator function I(·) in (90) is a monotone function of its
argument, it follows that Var{Zn(θ, un)} ≤ Var{Yn(θ, un)}. As a result one would expect
that the stochastic optimization algorithm using Zn would converge faster.

Proof. We first show that θ∗ defined in (89) is the minimizing solution of the stochas-
tic optimization problem θ∗ = arg minθ E{Yn(θ, un)}. Using the smoothing property of
conditional expectations (3.11) yields

E{I (mn(θ)− un)} = E{E{I (mn(θ)− un) |mn(θ)}}
= E{P(un < mn(θ))} = E{mn(θ)} = m(θ)
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The second equality follows since expectation of an indicator function is probability, the
third equality holds because un is a uniform random number in [0,1] so that P(un < a) = a
for any a in [0, 1].

Next we show that the state process {θn} generated by Algorithm II is a homogeneous,
aperiodic, irreducible, Markov chain on the state space Θ with transition probabilities

Pij = P (θn = j|θn−1 = i) = 1
S − 1m(i)

(
1−m(j)

)
.

That the process {θn} is a homogeneous aperiodic irreducible Markov chain follows from
its construction in Algorithm II – indeed θn only depends probabilistically on θn−1. From
Algorithm II, given candidate i and its associated cost Yn(i, un), candidate j is accepted
if its associated cost Ỹn(j, ũn) is smaller. So

Pij = 1
S − 1P (Ỹn(j, ũn) < Yn(i, un))

= 1
S − 1P (mn(j) < ũn)P (mn(i) > un)

Finally, for this transition matrix, it is easily verified that

π∞(θ) = κ(1−m(θ))
∏
j 6=θ

m(j) (93)

is the invariant distribution where κ denotes a normalization constant. Hence

π∞(θ∗)
π∞(θ) = m(θ)

m(θ∗)
(1−m(θ∗))
(1−m(θ)) = 1/m(θ∗)− 1

1/m(θ)− 1 > 1

since m(θ∗) is the global minimum and therefore m(θ∗) < m(θ) for θ ∈ Θ − G.
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