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ABSTRACT The detection of agents whose responses satisfy equilibrium play is useful for predicting the
dynamics of information propagation in social networks. Using Afriat’s theorem of revealed preferences, we
construct a non-parametric detection test to detect if the responses of a group of agents is consistent with
play from the Nash equilibrium of a concave potential game. For agents that satisfy the detection test, it is
useful to learn the associated concave potential function of the game. In this paper, a non-parametric learning
algorithm is provided to estimate the concave potential function of agents with necessary and sufficient
conditions on the response class for the algorithm to be a probably approximately correct learning algorithm.
In the case of response signals measured in noise, a statistical test to detect agents playing a concave potential
game that has a pre-specified Type-I error probability is provided. The detection tests and learning algorithm
are applied to real-world data sets from the Twitter social network and the Ontario power grid.

INDEX TERMS Social network, Afriat’s theorem, detecting equilibrium play, intertemporal utility, Twitter,
energy market, PAC, revealed preferences.

I. INTRODUCTION
This paper presents a non-parametric test to detect if the
response of agents is the result of equilibrium play from a
concave potential game. The main question addressed is: Can
the external influence and response signals from agents in a
social network be used to detect if the agents aremaximizing a
utility function that reveals their preferences?More generally,
is a dataset from a multi-agent system consistent with play
from a Nash equilibrium? If yes, can the associated behavior
of the agents be learned? These are important questions when
considering the diffusion of information over a social net-
work. Consider that there are two important models for infor-
mation diffusion in social networks [1]: influence (contagion)
based diffusion and homophily-driven diffusion. Influence-
based diffusion involves agents influencing other agents to
perform an action such as adopting a new technology of
which several models exist to describe the dynamics [2].
Homophily-driven diffusion is based on the characteristic
behavior of similar agents in the social network.1 Detection

1Reference [3] gives the following illustrative example: ‘‘If your friend
jumped off a bridge, would you jump too?’’ A possible reasons for answering
‘‘yes’’ is that you are friends as a result of your fondness for jumping off
bridges.

of agents that show common behavioral characteristics can
be performed using such methods as matched sample esti-
mation [1]. Using the tools of revealed preferences from the
economics literature, this paper seeks to detect if agents in a
social network share common behavioral characteristics–or
equivalently, to detect if the agents have similar preferences.
If agents share similar preferences, then a learning algorithm
is provided to learn the associated preferences of the agents
of importance for predicting the response of agents.
The preferences of interacting agents engaged in a con-

cave potential are encoded in the concave potential function
of the game. Potential games were introduced by [4] and
are used extensively in the literature to study the strategic
behavior of utility maximization agents. A classical exam-
ple is the congestion game [5]–[7] in which the utility of
each player depends on the amount of resource it and other
players use. Recently the analysis of energy use scheduling
and demand side management schemes in the energy market
was performed using potential games [8]–[10]. In the energy
market, the external influence is typically the price of using
a particular resource, and the response is the amount of the
resource used by the player. Typically, game theory is used
as an analysis tool to understand the interaction of multiple
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agents. In contrast, this paper seeks to detect if the response
signals of players are consistent with the Nash equilibrium
of a concave potential game and learn the associated concave
potential function. The detection of equilibrium play can be
used to gain insight into the dynamics of how information
propagates over a social network which is essential for social
media marketing and public health campaigns.

Are there algorithms available to learn the preferences of
interacting agents? In classical revealed preference theory,
Afriat’s theorem gives a non-parametric finite sample test
to decide if an agents’ response to an external influence is
consistent with utility maximization [11]. Varian [12], [13],
following Afriat’s work, provides a non-parametric learning
algorithm to estimate the utility function of single agents
for predicting responses. Blundell [14] proved that the class
of L-income-Lipschitz response functions is PAC-learnable
using the learning algorithm provided in [15]. For multiple
agents interacting (i.e. players in a game), single agent tests
are not suitable. Typically the study of players in a potential
game involve parametric assumptions on the utility function
of the players. A notable exception is the paper presented by
Deb [16] in which a non-parametric detection test for players
engaged in a concave potential game is developed for intra-
household consumption data based on Varian’s and Afriat’s
work [11], [13]. Using a finite dataset, estimating the utility
function of players in the game theory community has pri-
marily followed a Bayesian parametric approach [17], [18].
For players that are engaged in a concave potential game, it
is desirable to have a non-parametric learning algorithm to
estimate the utility function of players for predicting future
responses. This information can be used to detect and classify
agents’ preferences in a social network.

Consider an n-player game where each player i 2

{1, 2, . . . , n} has a measurable set of actions Xi ✓ Rm
+
with

generic element denoted xi 2 Rm
+
. The utility function of

each player is ui : X ! R where X =

Qn
i=1 X

i
= {x =

(x1, x2, . . . , xn) 2 Rn⇥m
+

}. The game is considered a concave
potential game if there exists a concave potential function
V (x1, x2, . . . , xn) satisfying

ui(xi, x�i) � ui(xj, x�i) > 0
iff V (xi, x�i) � V (xj, x�i) > 0 8xi, xj 2 Xi. (1)

Here, as in standard game theoretic notation, xi denotes the
response of player i, and x�i the response of the remaining
players. In words, in a potential game the incentive of all
players to change their strategy is determined by a single
potential function.

To formalize the problem of detecting if a dataset compris-
ing of external influence and response signals are consistent
with a concave potential game, let t = 0, 1, . . . denote
discrete time, xit 2 Rm denote agent i’s response with respect
to the external influence pt 2 Rm. At each discrete time t an
agent is provided with an external influence pt . Each agent i
then selects a response xit that maximizes their utility subject
to the budget constraint p0

t x
i
t  I it , where I

i
t is the budget of

agent i. Is it possible to use the time series of external influ-
ences and responses D = {(pt , x1t , x

2
t , . . . , x

n
t )}t2{1,2,...,T } to

detect if the agents are playing a concave potential game.
Why consider concave potential games? Deb, following

Varian’s and Afriat’s work, shows that refutable restrictions
exist for the dataset D to satisfy Nash equilibrium [11],
[15], [16]. These refutable restrictions are however, satis-
fied by most D [16]. The detection of agents engaged in a
concave potential game, and generating responses that sat-
isfy Nash equilibrium, provide stronger restrictions on the
dataset D [16], [19].
Main Results: This paper comprises 6 main results.

Sec.II-D presents the preliminaries for detecting if the
datasetD satisfies Nash rationality–that is, agents engaged in
a concave potential game. For a dataset D that satisfies Nash
rationality, Sec.II-D presents our first main result, namely a
non-parametric learning algorithm to estimate the concave
potential function of players in a game. The second main
result of the paper, presented in Sec.II-E, deals with PAC
learnability using an extension of the fat shattering dimen-
sion [20] to vector valued functions. As shown, if the potential
function satisfies the L-income-Lipschitz condition then it is
learnable by the learning algorithm in Sec.II-D. If a dataset
Dobs fails the Nash rationality test, then it may be a result
of noise. Sec.II-F provides our third main result, a statistical
test to detect if a dataset Dobs = {(pt , y1t , y

2
t , . . . , y

n
t ) : t 2

{1, 2, . . . ,T }},D (5) corrupted by additive noise yi = xi+wi
with wi independent and identically distributed, originated
from players in a concave potential game. The statistical test
is shown to have a pre-specified Type-I error probability. The
fourth main result, in Sec.III, is to provide a method to detect
agents with similar preferences in a social network, and a test
for detecting if the response of agents satisfies the maximiza-
tion of an intertemporal utility function. The fifth main result
is a stochastic model for the arrival times of retweets. The
final main result of the paper, presented in Sec.IV, is to illus-
trate the algorithms on real-world datasets. The first dataset
we consider is from the Twitter social network. We show that
the stochastic arrival time of retweets follows a Birnbaum-
Saunders distribution which provides valuable insight into
the behavior of agents in online social networks [21]. It is
illustrated that the agents in the Twitter social network satisfy
utility maximization which allows their associated prefer-
ences to be learned. Additionally, the retweet behavior of
agents satisfies intertemporal utility maximization as a result
of the ageing effect associated with tweets [22], [23]. The
second dataset we consider is the electrical power consump-
tion preferences of different regions in the Ontario power
system. If regions fail the detection test, then price based
demand response initiatives are not suitable to control power
consumption. If maximization behavior is present, then the
learning algorithm presented in this paper can be used to
estimate the utility function of agents. The estimated utility
function can be used in the demand side management frame-
works presented in [8]–[10] in which agents are engaged in a
potential game.
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II. REVEALED PREFERENCES: ARE AGENTS
UTILITY MAXIMIZERS?
In this section we will use the principle of revealed prefer-
ences on datasets to determine how agents in social networks
behave as a function of peer and external influence. The setup
is depicted in the schematic diagram Fig.1.

FIGURE 1. Schematic of a social network containing n agents where
pt 2 Rm denotes the external influence, and xi

t 2 Rm the response of
agent i in response to the external influence and other agents at time t .
The aim is determine which agents have similar preferences.

A. AFRIAT’S THEOREM FOR NON-INTERACTING AGENTS
The theory of revealed preferences was pioneered by
Samuelson [24]. The main idea behind revealed preferences
is that an agent will select the response most preferred to all
available responses the agent could have selected. Classical
revealed preference theory has focuses on estimating the util-
ity function of an agent based on the observed actions of the
agent. Afriat’s influential paper [11] in revealed preferences
provides a non-parametric test to detect if the response of
agents are consistent with the maximization of the agents’
utility function. In this section we present Afriat’s Theorem
which forms the basis for detecting the preferences of inter-
acting agents (i.e. agents engaged in a game).

Given a time-series of data D = {(pt , xt ),
t 2 {1, 2, . . . ,T }} where pt 2 Rm denotes the external
influence, xt 2 Rm denotes the response of the agent, and
t denotes the time index, is it possible to detect if the agent
is a utility maximizer? An agent is a utility maximizer if for
every external influence pt , the chosen response xt satisfies

xt (pt , It ) 2 argmax
{p0

t xIt }
u(x) (2)

with u(x) a non-satiated utility function. Non-satiated means
that an increase in any element of response x results in the
utility function increasing.2 As shown by [25], without local
non-satiation the maximization problem (2) may have no
solution.

In (2) the budget constraint p0

t x  It denotes the total
amount of resources available to the agent for selecting
the response x to the influence pt . For example, if pt =

[pt (1), . . . , pt (m)] with pt (i) the electricity price in period

2The non-satiated assumption rules out trivial cases such as a constant
utility function which can be optimized by any response.

i 2 m on day t , and xt = [xt (1), . . . , xt (m)] is the associated
electricity consumption in each period i 2 m on day t , then
the budget It of the agent on each day t is the available
monetary funds for purchasing electricity. In the real-world
social network datasets provided in this paper, further insights
are provided for the budget constraint.
The celebrated ‘‘Afriat’s theorem’’ provides a necessary

and sufficient condition for a finite dataset D to have orig-
inated from an utility maximizer.
Theorem 2.1 (Afriat’s Theorem): Given a dataset D =

{(pt , xt ) : t 2 {1, 2, . . . ,T }}, the following statements are
equivalent:
1) The agent is a utility maximizer and there exists a

non-satiated and concave utility function that
satisfies (2).

2) For scalars ut and �t > 0 the following set of inequali-
ties has a feasible solution:

u⌧ � ut � �t p0

t (x⌧ � xt )  0 for t, ⌧ 2 {1, 2, . . . ,T }.

(3)

3) A non-satiated and concave utility function that
satisfies (2) is given by:

u(x) = min
t2T

{ut + �t p0

t (x � xt )} (4)

4) The dataset D satisfies the Generalized Axiom of
Revealed Preference (GARP), namely for any k  T ,
p0

t xt � p0

t xt+1 8t  k � 1 H) p0

kxk  p0

kx1. ⌅
As pointed out in Varian’s influential paper [12], a remark-
able feature of Afriat’s theorem is that if the dataset can
be rationalized by a non-trivial utility function, then it can
be rationalized by a continuous, concave, monotonic utility
function.
Verifying GARP (statement 4 of Theorem 2.1) on a

dataset D comprising T points can be done using Warshall’s
algorithm with O(T 3) [12], [26] computations. Alternatively,
determining if Afriat’s inequalities (3) are feasible can be
done via a LP feasibility test (using for example interior point
methods [27]). Note that the utility (4) is not unique and is
ordinal by construction. Ordinal means that any monotone
increasing transformation of the utility function will also sat-
isfy Afriat’s theorem. Geometrically the estimated utility (4)
is the lower envelop of a finite number of hyperplanes that is
consistent with the dataset D.

B. AFRIAT’S THEOREM FOR INTERACTING AGENTS
Wenow consider amulti-agent version ofAfriat’s theorem for
deciding if a dataset is generated by playing from the equilib-
rium of a potential game3 An example is the control of power
consumption in the electrical grid. Consider a corporate
network of financial management operators that select the
electricity prices in a set of zones in the power grid. By select-
ing the prices of electricity the operators are expected to be

3As in [16], we consider potential games since they are sufficiently
specialized so that there exist datasets that fail Afriat’s test.
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able to control the power consumption in each zone. The oper-
ators wish to supply their consumers with sufficient power
however given the finite amount of resources the operators
in the corporate network must interact. This behavior can be
modelled as a game. Recent analysis of energy use scheduling
and demand side management schemes in the energy market
have been performed using potential games [8]–[10]. Another
example of potential games are congestion games [4]–[7] in
which the utility of each player depends on the amount of
resource it and other players use.

Consider the social network presented in Fig.1, given a
time-series of data from N agents D = {(pt , x1t , . . . , x

n
t ) :

t 2 {1, 2, . . . ,T }} with pt 2 Rm the external influence, xit
the response of agent i, and t the time index, is it possible
to detect if the dataset originated from agents that play a
potential game?

The characterization of how agents behave as a function
of external influence, for example price of using a resource,
and the responses of other agents in a social network, is key
for analysis. Consider the social network illustrated in Fig. 1.
There are a total of n interacting agents in the network and
each can produce a response xit in response to the other
agents and an external influence pt . Without any a priori
assumptions about the agents, how can the behaviour of the
agents in the social network be learned? In the engineering
literature the behaviour of agents is typically defined a priori
using a utility function, however our focus here is on learning
the behaviour of agents. The utility function captures the
satisfaction or payoff an agent receives from a set of possible
responses, denoted by X . Formally, a utility function u :

X ! R represents a preference relation between responses
x1 and x2 if and only if for every x1, x2 2 X , u(x1)  u(x2)
implies x2 is preferred to x1. Given a time-series of data
D = {(pt , x1t , . . . , x

n
t ) : t 2 {1, 2, . . . ,T }} with pt 2 Rm

the influence, xit the response of agent i, and t the time index,
is it possible to detect if the series originated from an agent
that is an utility maximizer?

In a social network (Fig.1), the responses of agents may
be dependent on both the influence pt and the responses of
the other agents in the network, denoted by x�i

t . The utility
function of the agent must now include the responses of
other agents–formally if there are n agents, each has a utility
function ui(xi, x�i

t ) with xi denoting the response of agent i,
x�i
t the responses of the other n�1 agents, and ui(·) the utility
of agent i. Given a dataset D, is it possible to detect if the
data is consistent with agents playing a game andmaximizing
their individual utilities? We denote this behaviour as Nash
rationality, defined as follows:
Definition 2.1 ( [19], [28], [29]): Given a dataset

D = {(pt , x1t , x
2
t , . . . , x

n
t ) : t 2 {1, 2, . . . ,T }}, (5)

D is consistent with Nash equilibrium play if there exist
utility functions ui(xi, x�i) such that

xit (pt , I
i
t , x

�i) 2 argmax
{p0

t xiI
i
t }

ui(xi, x�i). (6)

In (6), ui(x, x�i) is a non-satiated utility function in x, x�i
=

{xj}j 6=i for i, j 2 {1, 2, . . . , n}, and the elements of pt are
strictly positive. Non-satiated means that for any ✏ > 0,
there exists a xi with kxi � xitk2 < ✏ such that ui(xi, x�i) >

ui(xit , x
�i
t ). If for all xi, xj 2 Xi, there exists a concave

potential function V that satisfies

ui(xi, x�i) � ui(xj, x�i) > 0
iff V (xi, x�i) � V (xj, x�i) > 0 (7)

for all the utility functions ui(·) with i 2 {1, 2, . . . , n}, then
the dataset D satisfies Nash rationality. ⌅
Just as with the utility maximization budget constraint in (2),
the budget constraint p0

t x
i
 I it in (6) models the total amount

of resources available to the agents for selecting the response
xit to the influence pt .
In the following sections, detection tests for utility

maximization, and non-parametric learning algorithms for
predicting agent responses are presented.

C. DECISION TEST FOR NASH RATIONALITY
This section presents a non-parametric test for Nash ratio-
nality given the dataset D defined in (5). If the dataset D
passes the test, then it is consistent with play according to a
Nash equilibrium of a concave potential game. In Sec.II-D,
a learning algorithm is provided that can be used to pre-
dict the response of agents in the social network provided
in Fig.1.
The following theorem provides necessary and sufficient

conditions for a dataset D to be consistent with Nash ratio-
nality (Definition 2.1). The proof is analogous to Afriat’s
Theorem when the concave potential function of the game
is differentiable [16], [19], [30].
Theorem 2.2 (Multiagent Afriat’s Theorem): Given a

dataset D (5), the following statements are equivalent:
1) D is consistent with Nash rationality (Definition 2.1)

for an n-player concave potential game.
2) Given scalars vt and �it > 0 the following set

of inequalities have a feasible solution for t, ⌧ 2

{1, . . . ,T },

v⌧ � vt �

nX

i=1

�it p
0

t (x
i
⌧ � xit )  0. (8)

3) A concave potential function that satisfies (6) is
given by:

V̂ (x1, x2, . . . , xn) = min
t2T

{vt +

nX

i=1

�it p
0

t (x
i
� xit )}.

(9)

4) The dataset D satisfies the Potential Generalized
Axiom of Revealed Preference (PGARP) if the follow-
ing two conditions are satisfied.
a) For every dataset Di

⌧ = {(pt , xit ) : t 2

{1, 2, . . . , ⌧ }} for all i 2 {1, . . . , n} and all ⌧ 2

{1, . . . ,T }, Di
⌧ satisfies GARP.
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b) The responses xit originated from players in a
concave potential game. ⌅

The intuition that connects the statements 1 and 2 in
Theorem 2.2 is provided by the following results from [29]:
for any smooth potential game that admits a concave poten-
tial function V , a strategy {x1t , x

2
t , . . . , x

n
t } is a pure-strategy

Nash-equilibrium if and only if is a potential maximizer for
each external influence pt . Note that if only a single agent
(i.e. n = 1) is considered, then Theorem 2.2 is identical
to Afriat’s Theorem. Similar to Afriat’s Theorem, the con-
structed concave potential function (9) is ordinal–that is,
unique up to positive monotone transformations.

The non-parametric test for Nash rationality involves deter-
mining if (8) has a feasible solution. Computing parameters
vt and �it > 0 in (8) involves solving a linear program
with T 2 linear constraints in (n + 1)T variables, which
has polynomial time complexity [27]. In the special case
of one agent, the constraint set in (8) is the dual of the
shortest path problem in network flows. Using the graph
theoretic algorithm presented in [31], the solution of the
parameters ut and �t in (3) can be computed with time
complexity O(T 3).

D. LEARNING ALGORITHM FOR RESPONSE PREDICTION
In the previous section a non-parametric tests to detect
if a dataset D is consistent with Nash rationality was
provided. If the D satisfies Nash rationality, then the
Multi-agent Afriat’s Theorem can be used to construct the
concave potential function of the game for agents in the social
network illustrated in Fig.1. In this section we provide a non-
parametric learning algorithm that can be used to predict the
responses of agents using the constructed concave potential
function (9).

To predict the response of agent i, denoted by x̂ i⌧ ,
for external influence p⌧ and budget I i⌧ , the optimization
problem

x̂⌧ = {x̂1⌧ , x̂
2
⌧ , . . . , x̂

n
⌧ } 2 argmax V̂ ({xi}i2{1,2,...,n})

s.t. p0

⌧ x
i
 I i⌧ 8i 2 {1, 2, . . . , n} (10)

is solved using the estimated potential function V̂ (9),
p⌧ , and I i⌧ . Computing x̂ i⌧ requires solving an optimization
problem with linear constraints and concave piecewise linear
objective. The optimization problem for predicting response
can be formulated as a linear program and can be solved
using the interior point algorithm [27]. The algorithm used
to predict the response x̂⌧ = (x̂1⌧ , x̂

2
⌧ , · · · , x̂n⌧ ) is given

below:
Step 1: Select an external influence p⌧ 2 Rm

+
, and response

budget I i⌧ for the estimation of optimal response
x̂⌧ 2 Rm⇥n

+
.

Step 2: For dataset D, compute the parameters vt and �it
using (8).

Step 3: The response x̂⌧ is computed by solving the follow-
ing linear program given {D, p⌧ , I i⌧ }, and {vt , �it }

from Step 2:

max z

s.t. z  vt +

nX

i=1

�it p
0

t (x̂
i
⌧ � xit ) for t = 1, . . . ,T

p0

⌧ x̂
i
⌧  I i⌧ 8i 2 {1, 2, . . . , n} (11)

E. PAC-LEARNABILITY
The prediction algorithm (11) obtains a response function for
the players in a concave potential game that exactly fits the
dataset D in polynomial time. A key question is the amount
of training data needed to estimate the response function–this
is quantified in terms of the sample complexity ⇠ .
Definition 2.2: A class of response functions C from

Rm
+

! Rm⇥n
+

is probably approximately correct (PAC) learn-
able if there exists an algorithmwith the following properties.
For all probability distribution P on the external influence
and response signals, x 2 C, 0  ✏ < 0.5, and 0 

� < 1, when the algorithm is given a dataset D, of size
⇠ = |D| =poly(1/✏,1/�), outputs a hypothesis x̂ 2 C in time
poly(|D|) that satisfies the following.

(i) x̂ is polytime computable,
(ii) x̂ is consistent with x on D,
(iii) E(p,x)(kx̂(p) � x(p)k2

1
) < ✏ with probability 1 � �

where x(p) is the actual response. ⌅
In Definition 2.2, the sample complexity ⇠ encodes the
number of training examples needed for a learner to converge
with high probability to a successful hypothesis–that is, esti-
mating the sample size necessary to ensure the hypothesis
can sufficiently estimate the response for unobserved external
influences. If |D| � ⇠ , then with probability 1 � � the
hypothesis x̂ 2 C will be approximately correct. The learning
algorithm (11) satisfies (i) as solving linear programs can be
done in polynomial time, and from Theorem 2.2 (11) satisfies
(ii). The following argument is used to establish that (11)
satisfies (iii). The relationship being estimated from (11)
is between external influences and responses, that is x :

Rm
+

! Rm⇥n
+

. From (9), the hypothesis class C is the class of
piecewise linear response functions. From Theorem 2.2, for
any dataset satisfying Nash rationality (Definition 2.1) there
is a piecewise linear response function (9) that approximates
the response with zero error on D–that is, for each exter-
nal influence in D, the piecewise linear response function
can predict the associated response exactly. This implies the
class C is dense in the class of Nash rationality responses with
the supremum norm. Hence any responses that satisfy Nash
rationality can be estimated with any accuracy by the class C
of response functions.
From Definition 2.2, the sample complexity ⇠ must be

finite for the learning algorithm (11) to be a PAC learning
algorithm. Obtaining necessary and sufficient conditions for
the class of response functions to be PAC-learnable by (11)
therefore requires the derivation of upper and lower bounds
on the sample complexity ⇠ . The derivation follows that
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provided for utility maximization agents (responses
Rm

+
! Rm

+
) in [31], and for real valued functions R ! R

in [20].
To derive the lower bound on ⇠ it is useful to re-define

the fat shattering dimension for real valued function [20] to
vector valued functions.
Definition 2.3: For � > 0, a set of points p1, . . . , pt 2

0 ⇢ Rm
+

is � -shattered by a class of real functions C
if there exists x1, x2, . . . , xT 2 Rm⇥n

+
and pairs of par-

allel affine hyperplanes (H0,1,H1,1), . . . , (H0,T ,H1,T ) that
satisfy the following. H0,i,H1,i ⇢ Rm⇥n, ; 2 H�

0,i \ H+

1,i,
dist(H0,i,H1,i) � � for i = 1, 2, . . . ,T . For each b =

(b1, b2, . . . , bT ) 2 {0, 1}T there exists a function x̂b 2 C such
that x̂b(pi) 2 xi + H+

0,i if bi = 0 and x̂b(pi) 2 xi + H�

1,i
if bi = 1–that is, the function x̂b witnesses the shatter-
ing of {p1, p2, . . . , pt }. Denote fatC(� ) as the fat shattering
dimension defined as the maximal size of the � -shattered set
in 0. ⌅

The bounds for ⇠ are dependent on the value of fatC(� ).
Hence, fatC(� ) must be finite for (11) to be a PAC learning
algorithm. Theorem 2.3 provides the lower bound on the
sample complexity of ⇠ . The proof is provided in the sup-
plementary material. The main idea of the proof is to show
that there exists at least one probability distribution such that
E(p,x)(kx̂(p) � x(p)k2

1
) > ✏ if ⇠ (✏, �) is not sufficiently

large.
Theorem 2.3: Suppose that C is a class of functions map-

ping from Rm
+

! Rm⇥n
+

. Then any learning algorithm for C
has sample complexity satisfying ⇠ (✏, �) � 0.5 fatC(8mn✏).

The upper bound on the sample complexity ⇠ is given by
Theorem 2.4. The proof for real valued functions is given
in [20]; the proof for Nash rationality agents is analogous and
so omitted.
Theorem 2.4: Suppose C is a class of response functions

mapping from Rm
+

! Rm⇥n
+

with � < 1. Then any
algorithm that finds function in C that agrees with the sample
is a learning algorithm with sample complexity ⇠ (✏, �) =

O
⇣

1
✏2
(ln2( 1✏ ) fatC(✏) + ln( 1� ))

⌘
for any ✏, � > 0.

Theorems 2.3 and 2.4 provide the necessary and sufficient
conditions for the class of response functions that can be
PAC-learned by (11). As seen, the response functions must
have a finite fatC(� ). Unfortunately the class of all response
functions has an infinite fatC(� ). We consider the class of
response functions that satisfy the L-income-Lipschitz prop-
erty defined below.
Definition 2.4: ( [31]) A response function x : Rm

+
!

Rm⇥n is L-income-Lipschitz if for every p, p0
2 Rm

+
, there

exists positive reals L > 0 such that

kx(p) � x(p0)k1

kp� p0
k1

 L. (12)

⌅
Note, the L-income-Lipschitz property does not impose any
parametric assumptions on the utility function. It merely
imposes a stability assumption on the responses x which

rules out dramatically different responses for similar external
influences p.
The following theorem establishes that the fat shatter-

ing dimension is finite for L-income-Lipschitz response
functions; therefore, when the dataset originates from an
L-income-Lipschitz response function, the dataset is
PAC-learnable by algorithm (11). The theorem is proved
in [31] for the case Rm to Rm, the extension to Rm to Rm⇥n

is analogous and therefore omitted.
Theorem 2.5: If C is a set of L-income-Lipschitz response

functions from Rm
+

! Rm⇥n (Definition 2.4), then the fat
shattering dimension of C satisfies fatC(� )  (L/� )m⇥n for
all L 2 R+.

F. FEASIBILITY TEST FOR NASH RATIONALITY
In real world analysis a dataset may fail the Nash rationality
test (8) as a result of the response xt being measured in noise.
In this section a statistical test is provided to detect for Nash
rationality in a noisy dataset, and provide a mathematical pro-
gram which can be used to construct the associated concave
potential function from noisy measurements.
Here we consider additive noise wt such that measured

dataset is given by:

Dobs = {(pt , y1t , y
2
t , . . . , y

n
t ) : t 2 {1, 2, . . . ,T }}, (13)

consisting of external influence signals pt and noisy observa-
tions yit = xit + wit . In such cases a feasibility test is required
to test if the clean datasetD satisfies Nash rationality (8). Let
H0 andH1 denote the null hypothesis that the clean datasetD
satisfies Nash rationality, and the alternative hypothesis that
D does not satisfy Nash rationality. In devising a statistical
test for H0 vs H1, there are two possible sources of error:

Type-I errors: Reject H0 when H0 is valid.
Type-II errors:Accept H0 when H0 is invalid. (14)

Given the noisy dataset Dobs (13) the following statistical
test can be used to detect if a group of agents select responses
that satisfy Nash equilibrium (6) when playing a concave
potential game:

+1Z

8⇤
{y}

fM ( )d 
H0
?
H1

� . (15)

In the statistical test (15):
(i) � is the ‘‘significance level’’ of the statistical test.
(ii) The ‘‘test statistic’’ 8⇤

{y} is the solution of the
following constrained optimization problem for y =

{(y1t , y
2
t , . . . , y

n
t )}t2{1,2,...,T }:

min 8

s.t. Vt 0 � Vt �

nX

i=1

�it pt · (yit 0 � yit ) �

nX

i=1

�it8  0

�it > 0 8 � 0 for t, t 0 2 {1, 2, . . . ,T }. (16)
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(iii) fM is the pdf of the random variable M where

M ⌘ Max
t,t 0

[
nX

i=1

pt · (wit � wit 0 )]. (17)

The following theorem characterizes the performance of
the decision test (15). The proof is in Appendix A.
Theorem 2.6: Consider the noisy dataset Dobs (13) of

external influence signals and responses. The probability that
the statistical test (15) yields a Type-I error (rejects H0 when
it is true) is less then � . (Recall H0 and H1 are defined
in (14)). ⌅
Note that (16) is non-convex due to

P
�it8; however, since

the objective function is given by the scalar 8, for any fixed
value of8, (16) becomes a set of linear inequalities allowing
feasibility to be straightforwardly determined [32].

If the datasetDobs satisfies (15), then it is desirable to esti-
mate the associated potential function (9) which can be used
to forecast response behavior of the agents using the fore-
casting algorithm (11) for constructing the concave potential
function. Extending the results in [13] for a single agent,
it is possible to estimate the lower bound on the additive
errors allowing the estimation of the parameters {vt , �t } in (9).
This involves solving the following quadratically constrained
quadratic program:

min
nX

i=1

TX

t=1

mX

k=1

(yit (k) � ⌘it (k))
2

s.t. v0t � vt �

nX

i=1

�it p
0

t [(y
i
⌧ � yit ) � (⌘it � ⌘i⌧ )]  0

�it > 0 for t, t 0 2 {1, 2, . . . ,T }. (18)

In (18) ⌘t denotes the minimum deviation of the observed
data yt necessary for xt to have originated from agents satisfy-
ing Nash rationality (i.e. ⌘t is minimum estimate of wt ). Note
that (18) will always have a feasible solution. Therefore prior
to applying (18) to construct the concave potential function
the dataset Dobs must pass the statistical test (15).

III. DYNAMIC MODELS OF TWITTER AGENTS
This section provides methods to cluster agents with similar
preferences, a method to detect for intertemporal utility max-
imization, and a stochastic dynamic model for the response
of agents (e.g. retweets) to tweets. We focus on the Twitter
social network for the application of the methods presented
in this section.

A. DETECTING AGENTS WITH SIMILAR PREFERENCES
Agents with similar preferences have a tendency to asso-
ciate with alike agents, this phenomenon is known as
homophily. Communities formed within microblogs with
agents having similar race, ethnicity, age, religion, edu-
cation, occupation, sex, and wealth are a direct result of
homophily [1], [33], [34]. The diffusion of information over
a social network is dependent on the homophily of the
agents [1]. As such, being able to detect agents with similar

preferences is vital for understanding the diffusion of
information in a social network. Here we present how the
non-parametric utility maximization test (3) can be used to
detect agents with similar preferences.
To detect for agents with similar preferences, this is

identical to asking if the preference ordering of the agents
are in agreement. Consider that each agent i 2 n has an
associated dataset Di of external influences and responses.
Then for all the agents i 2 n to have similar preferences their
associated preference ordering must be in agreement–that is,
the collection of external influences and responses of all the
agents must satisfy utility maximization (3). Formally, agents
i 2 n with similar preferences must satisfy the following:
Definition 3.1: Given a dataset D = {Di

: i 2

{1, 2, 3, . . . , n}} with Di
= {(pit , x

i
t ) : t 2 {1, 2, . . . ,T i}}, the

agents i 2 n have similar preferences if there exists a utility
function (4) that rationalizes the dataset D. ⌅
Recall from Sec.II-C that testing if the dataset D satisfies
utility maximization can be done using (3). Notice that the
detection test for agents with similar preferences is general
as the experimentalist can select the desired external influ-
ence pt and response xt for analysis. In real world observa-
tions it is conceivable that the response xt is measured in noise
in which case the observed dataset Dobs may fail the utility
maximization test (3). In such cases the feasibility test (16)
can be used to detect if the measured dataset Dobs satisfies
utility maximization.

B. DETECTING INTERTEMPORAL UTILITY MAXIMIZATION
In the field of psychology and economics, the topic of
intertemporal choice studies the preferences of agents over
time–that is, the tradeoff between utility at different periods of
time. An example is hyperbolic discounting in which agents
have a preference for selecting items that arrive sooner rather
then later [35], such as decreasing the time before a retweet
to a tweet in the Twitter social network. Using revealed
preference theory non-parametric tests for habit formation
and rational anticipation are provided in [35] and [36]. In this
section a non-parametric test for intertemporal choice for a
measured set of external influences and responses is pro-
vided. If the dataset satisfies the test for intertemporal choice,
then we illustrate how the associated intertemporal utility
function can be constructed.
Consider a dataset D = {(pk , xk ) : k 2 {1, 2, . . . ,K }}

of external influences pk = [p1k , . . . , p
T
k ] 2 Rm⇥T and

responses xk = [x1k , . . . , x
T
k ] 2 Rm⇥T with k denoting

the epoch number, T the total number of observations in
each epoch, and m the number of items for each observation.
A general intertemporal utility function we can consider is to
test if the dataset D is consistent with:

xk (pk , Ik ) 2 argmax
{p0

k xIk }
{U (x)}, (19)

where U (x) is the intertemporal utility function.
A necessary and sufficient condition for the dataset D to
satisfy (19) is provided by Afriat’s Theorem. To test for
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specific forms of intertemporal utility such as exponential
discounting U (x) =

PT
t=1 �

(t�1)u(xt ) for � 2 (0, 1], time-
separable utility U (x) =

PT
t=1 u

t (xt ), and quasi-hyperbolic
discounting U (x) = u(x1) + �

PT
t=2 u(x

t ) for � 2 (0, 1]
requires stronger restrictions than Afriat’s Theorem. Here we
consider the detection of monotonic time discounting when
the utility function is given by:

U (x) =

TX

t=1

D(t)ut (xt ) (20)

with D(t) a monotonic function D(t) : T ! R known as
the discounting function, ut (xt ) : xt ! R, and U (x) the
intertemporal utility function. The following theorem pro-
vides necessary and sufficient conditions for the dataset D to
have originated from the intertemporal utility function (20).
The proof is provided in Appendix A.
Theorem 3.1: (Intertemporal Utility): Given a dataset

D = {(pk , xk ) : k 2 {1, 2, . . . ,K }} (21)

the following statements are equivalent:
1) D is consistent with intertemporal utility maximiza-

tion (19) with the non-satiated and concave utility
function given by (20).

2) Given scalars utk and �k > 0 the following
set of inequalities have a feasible solution for k,
q 2 {1, . . . ,K } and t 2 {1, 2, . . . ,T }

utq � utk � �k
1

D(t)
pt0k (x

t
q � xtk )  0. (22)

3) A non-satiated intertemporal utility function that
satisfies (19) is given by:

Û (x) =

TX

t=1

min
k

{D(t)utk + �kpt0k (x
t
� xtk )}. (23)

The non-parametric test for monotonic time discounting is
provided by determining if (22) has a feasible solution for
a given D(t). Computing the parameters utk and �k > 0
in (22) involves solving a linear program with K 2T con-
straints in (1 + T )K variables which has polynomial time
complexity [27].

C. TWITTER RETWEET DYNAMICS
If the agents’ response to a tweet satisfy intertemporal utility
maximization, then it is of interest to model the arrival times
of retweets. In this section a stochastic dynamic model is
constructed to model the arrival times of retweets.

Consider that the retweets to a tweet arrive in a time period
[0,T ] and the retweets are characterized by a set of moments
{t ij }(1  j  nitot) with n

i
tot the total number of retweets related

to tweet i. Without loss of generality we have that 0  t i1 

· · ·  t i
nitot

 T . Denoting ni(t) as the total number of retweets
for tweet i at time t , we consider the following model for the

retweet dynamics:

ni(t) = nitot

tZ

0

f i(t; ✓ i)dt. (24)

In (24) f i(t; ✓ i) accounts for the temporal inhomogeneity of
the retweets and is defined by a normalized probability dis-
tribution function. Note that since the retweet number is dis-
crete valued, ni(t) is discrete valued, however for sufficiently
large numbers of retweets we can take ni(t) to be continuous
parameter. Typically the arrival times in social systems satisfy
a Poisson process which corresponds to the arrival times satis-
fying an exponential distribution [37]. In the Twitter network
however there may be a lag time prior to an agent reading
the tweet which can be modeled using the log-normal or
Birnbaum-Saunders distribution. Three possible distributions
are considered in this paper: the exponential, log-normal,
and Birnbaum-Saunders distributions. Using real-world data
from the Twitter social network the goal is to estimate which
of the three distributions is in agreement with the observed
arrival times of the retweets.
Remark: To utilize (24) for predicting ni(t) requires the

total number of tweets nitot be known. In [38] a statistical rela-
tionship was constructed between the number of followers
of a Twitter agent and the expected number of retweets nitot.
Denoting Ni

o as the number of followers of the agent that
posted tweet i, then the following relation was empirically
determined nitot = ↵iN i

o with ↵
i generated from a log-normal

distribution. The estimation of a deterministic value for nitot
is complex as the behavior of followers must be quantified.
The reader is referred to [39] and [40] for further information
on predicting the retweet number nitot.

IV. REAL-WORLD DATASETS FROM TWITTER
AND ENERGY MARKET
In this section we apply the decision and feasibility tests
from Sec.II and Sec.III to real-world datasets from Twitter
and the Ontario Energy Market. The first dataset analyzed is
composed of the tweets and retweets from the Twitter Social
Network. We illustrate that the retweet dynamics of tweets
follows a Birnbaum-Saunders distribution, and the diffusion
of information in the network is dependent on the polarity4

of the tweets. Additionally, we illustrate that the tweeting
behavior of Twitter agents satisfies utility maximization (3).
The second dataset analyzed is the power consumption of
different zones in the Ontario power grid. The results of the
feasibility test suggest that the zones power demands are
consistent with equilibrium play from aNash equilibrium (i.e.
the zones are engaged in a concave potential game over a
corporate network).

4Here polarity is defined as whether the text expresses a negative-neutral-
positive polarity with -1 denoting the highest negative polarity, and 1 the
highest positive polarity [41].
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A. TWITTER SOCIAL NETWORK: RETWEET DYNAMICS
AND UTILITY MAXIMIZATION
In this section the retweet dynamics and diffusion character-
istics in the Twitter network are analyzed. We show that the
retweet dynamics follows a Birnbaum-Saunders distribution.
With the insight gained from the analysis of the retweet
dynamics and diffusion characteristics, the utility maximiza-
tion test (3) is applied to investigate how the number of views
and polarity affect the time before a retweet occurs and the
polarity of the associated retweet. This information can be
used to cluster agents with similar preferences, as discussed in
Sec.III. Additionally, the intertemporal utility maximization
test (22) is applied to gain insight into the Twitter agents
preference for posting retweets. As discussed in [42], Twitter
may rely on a huge amount of agent-generated data which can
be analyzed to provide novel personal advertising to agents.
Therefore results provided in this section can be used in social
media marketing strategies to improve a brand and for brand
awareness.

1) RETWEET DYNAMICS IN TWITTER
In this section we consider which of the three distribu-
tions (i.e. exponential, log-normal, or Birnbaum-Saunders)
is in agreement with the observed retweet dynamics in the
Twitter network. We also consider the importance the
polarity of a tweet has on the diffusion of information
in Twitter. The results provide insight for defining an
appropriate external influence pt and response xt to test for
utility maximization (3) and intertemporal utility maximiza-
tion (22). The Twitter data is obtained using the Twitter
Streaming API5 and a custom python script. The polarity
of the tweets and retweets is computed using TextBlob.6

Only tweets and retweets containing the word ‘‘ebola’’
are considered for analysis. The complete lexical retweet
network contains 4,131,521 agents with 310,709 edges.
The largest connected subnetwork contains 142,236 agents
and 188,903 edges and is illustrated in Fig.2 for the first
48 hours. The total duration of data collection is from
October 15th 2014 at 9:00 pm for a duration of 290 hours.

To gain insight into how polarity and the social network
impact the retweet dynamics, consider the lexical retweet
network illustrated in Fig.2. The graph structure shows a
tightly connected central region of highly influential agents
which include Twitter accounts such as @CNN, @FoxNews,
@NBCNews, and @HuffingtonPost. The edge intensity in
Fig.2 provides insight on the retweet dynamics. Notice that
for agents with a large in degree the retweets typically occur
in a short period of time on the order of 1-12 hours. This
behavior has been observed in popularity dynamics of
literature and YouTube videos [43] and is associated with
a decrease in the ability to attract new attention after age-
ing. This suggests that the retweet dynamics of agents may

5https://dev.twitter.com/streaming/overview
6TextBlob - Python based Text Processing Tool Suit,

http://textblob.readthedocs.org/en/dev/

FIGURE 2. Visualization of the estimated retweet network and retweet
dynamics obtained by tracking real-time tweets which contain the word
‘‘ebola’’ over a period of 290 hours starting from October 15th 2014 at
9:00 pm. Fig.2 represents the largest connected subgraph of the
measured retweet network. Isolated agents (without edges) and
self-loops were filtered out of the network. In Fig.2 the estimated retweet
count is computed using (24) with f i (t; ✓ i ) given by the exponential
distribution (green line), log-normal distribution (red line), and
Birnbaum-Saunders distribution (blue line). The estimated parameters ✓ i

are provided in Table 1. Time 0 and 6 represent tweets from @cnnbrk,
time 2 from @foxnews, and at time 4 from @nytimes. (a) Lexical retweet
network for ‘‘ebola’’. The polarity of the tweet is provided by the colour:
red is negative, green positive, and grey is neutral. The polarity is only
illustrated for agents with a degree larger then 5. The time of the retweets
is indicated by the edge intensity, black to white with black indicating the
initial time. (b) Real and estimated retweet count ni (t) for specific tweets
in the Ebola retweet network in Fig.2. (c) Polarity of lexical graphs
described in Sec.IV-A.

satisfy intertemporal utility maximization (22). Can the
retweet dynamics of agents be modeled by (24) using an
exponential, log-normal, or Birnbaum-Saunders distribution?
Consider the retweet dynamics of the popular news agents
@FoxNews, @cnnbrk, and @nytimes. Fig.2 provides the
measured and computed ni(t) for 4 tweets (2 from@cnnbrk).
As seen, the three distributions provide an accurate estimate
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of the arrival times of retweets. The predictive accuracy of
each is measured using the root mean squared error with
the results provided in Table 1. The distribution that has the
lowest root mean squared error is the Birnbaum-Saunders
distribution, as seen from the results in Table 1. How does the
polarity of the tweet affect the dynamics of the retweet? Let us
consider two tweets for from@cnnbrkwhich are spaced apart
by 170 hours. These are depicted in Fig.2 with the first tweet
at time 0, and the second at time 6. Note that the change in fol-
lowers and friends was negligible over the 170 hours between
tweets, therefore only the content of the tweets impact the
retweet dynamics. The tweet at time 0 has a polarity of �0.5,
and at time 6 a polarity of 0.3. As seen in Fig.2, the results
suggest that the greater the polarity the greater the number
of retweets. Therefore the polarity of the tweets contributes
to the retweet dynamics. How does the polarity of a tweet
affect the polarity of retweets? Consider the lexical retweet
network depicted in Fig.2. For a tweet with high polarity,
both the number of retweets and the polarity of the retweets
increase compared to a low polarity tweet. This suggests that
increasing the polarity of a tweet will increase the polarity of
the retweets.

2) UTILITY MAXIMIZATION IN THE TWITTER
SOCIAL NETWORK
Using the insight gained from the analysis of the retweet
dynamics, we now consider the application of the decision
test (3) for utility maximization to detect for agents with
similar preferences (Definition 3.1), and the detection test for
intertemporal utility maximization (22) in the Twitter social
network.

First we consider the detection of agents with similar pref-
erences, as discussed in Sec.III. To apply the decision test for
utility maximization (3) we must consider the definition of
the external influence pt and the associated response xt in
the Twitter network. There are two important considerations
when selecting the definition of pt and xt . First, the agents
is subject to a linear resource constraint such that p0

t xt = It
holds. A necessary condition for this to hold is that for each
i 2 m, as pt (i) increases the associated response xt (i) must
decrease. Second, the magnitude of the elements of pt (i.e.
pt (1), pt (2), . . . , pt (m)) should not differ by more than one
order of magnitude. Additionally, the elements of xt should
not differ by more than one order of magnitude. To see
the importance of the magnitude of pt and xt , consider the
following case when m = 2. The associated resource budget
is given by pt (1)xt (1) + pt (2)xt (2) = It . If the elements of
xt do not differ by more than one magnitude, and
pt (1) � pt (2), then pt (1)xt (1) ⇡ It in which case the
estimated preference of the agent is to always select xt (1).
Additionally, the associated response of the agent can be esti-
mated trivially with xt (1) = It/pt (1) and xt (2) = 0. To avoid
this trivial case, the magnitude of the external influence and
response must be considered. Here we consider the external
influence to be defined by pit = [log10(#viewers), neutrality]
for each tweet t observed by agent i 2 n. The #viewers is

FIGURE 3. Estimated utility function u(xt ), external influence and
response, and the estimated Cobb-Douglas demand functions for
D defined in Sec.IV-A. (a) Estimated utility function u(xt ) using dataset D
defined in Sec.IV-A and constructed using the non-parametric learning
algorithm (4) from Afriat’s Theorem. (b) Agents’ response x resulting from
the normalized external influence pt /It –that is, pt 0xt /It = 1. The gray
dots indicate the experimental data D defined in Sec.IV-A, and the solid
and dotted lines represent the fitted Cobb-Douglas demands xt (1) and
xt (2) respectively.

estimated by the total number followers, friends, and lists the
agent i contains. The neutrality of the tweeted text is com-
puted as the absolute value of the reciprocal of the polarity of
the tweet fromTextBlob. By defining pit (1) as log10(#viewers)
ensures that the elements of pit do not differ by more than
an order of magnitude. The associated response taken by
each agent that retweets in the network is given by xit =

[1t, polarity] where 1t denotes the time between the tweet
and retweet in minutes. The polarity of the retweet computed
from TextBlob with a multiplicative factor of 10 to ensure the
elements of xt do not differ by more then one order of magni-
tude. Intuitively, as #viewers increases the time before the first
retweet 1t is expected to decrease. Additionally, the results
in [44] suggest that as the neutrality of the tweet decreases the
associated retweet polarity is expected to increase. Therefore
we consider the resource budget It to satisfy It = p0

t xt .
Do all the agents in the lexical retweet network in Fig.2

have similar preferences (Definition 3.1)? Given the network
is composed of n = 142, 236 agents, the expected out-
come is that all agents in the network in Fig.2 fail to have
similar preferences. As expected, if we consider all agents
then they fail to satisfy utility maximization and therefore
do not have similar preferences. Let us consider a subgraph
of agents in the lexical retweet network in Fig.2 composed
of n = 3 agents selected at random. For these n = 3
agents, their responses satisfy the similar preference criterion
(Definition 3.1). To gain insight into the ordinal preference
relations of the n = 3 agents, we construct the associated
utility function which is provided in Fig.3. As seen in Fig.3,
agents prefer to increase the delay of retweeting compared
with increasing the polarity of the retweet. Though we con-
sider n = 3 agents, it is possible that other agents in Fig.2
would have similar preferences in agreement the preferences
provided in Fig.3. Finding such agents involves the repeated
application of (Definition 3.1) to groups of agents in Fig.2
and can be used to cluster agents with similar preferences.
Can the preferences of the n = 3 agents represented by

the utility function in Fig.3 be estimated by the elementary
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Cobb-Douglas utility function? The Cobb-Douglas utility
function is given by u(x) =

P
↵(i)x(i) with

P
↵(i) = 1.

The associated Cobb-Douglas demand function is given by
xt = ↵(i)It/p)t(i). The parameter ↵(i) encodes the preference
for the associated response x(i). To test if the Cobb-Douglas
utility function can be used to estimate the preferences of
the agents, we fit the Cobb-Douglas demand function to the
associated responses in Fig.3 by minimizing the least-square
error. The results are provided in Fig.3 with ↵(1) = 0.72 and
↵(2) = 0.28. As expected, x(1) is preferred to response x(2).
From the results in Fig.3, we conclude that the Cobb-Douglas
utility function provides a reasonable estimate of the prefer-
ences of the n = 3 agents. Recall that the utility function
constructed from Afrait’s theorem (3) has zero error for the
associated response of the agents in Fig.3.

Given the results of the retweet dynamics in Fig.2, does
the retweet dynamics of agents in the Twitter social network
satisfy intertemporal utility maximization (22)? The goal is to
classify if the retweet dynamics satisfy a general intertempo-
ral utility, a time-separable utility, or exponential discounting
utility. Recall these intertemporal utility functions are defined
below (19). The results provide new insights into the behavior
of the Twitter community in response to tweets. To apply the
intertemporal utility maximization test (22), we consider each
tweet epoch k to be defined as the time between the first tweet
and the next tweet. Each epoch k is composed of T periods.
The external influence is given by ptk = [ptk (1), p

t
k (2)] with

ptk (i) the total number of followers in subperiod i of period
t 2 T in epoch k . The response is given by xtk = [xtk (1), x

t
k (2)]

with xtk (i) defined as the total number of retweets in subperiod
i of period t 2 T in epoch k . A total of K = 20 epochs and
T = 3 periods are used to construct the dataset D. Given the
total number of retweets for each tweet k is

PT
t=1 x

t
k , we con-

sider the social impact budget Ik to satisfy the linear relation
Ik = p0

kxk . The dataset D = {(pk , xk ) : k 2 {1, 2, . . . ,K }}

(21) is used to classify if an intertemporal utility function
exists that is consistent with (20).

Using the non-parametric test (22), the dataset D (21)
is consistent with the exponential discounted intertemporal
utility function (19), with discount factor � � 0.1. The dataset
straightforwardly satisfies the general and separable utility
function since it satisfies the more restrictive detection test
for exponential discounted utility. This shows that the utility
obtained by a later retweet is discounted compared to that
obtained for an immediate retweet. This result is expected as
it has been shown for both short term and long term timescales
that humans have a preference for immediate rewards com-
pared to delayed rewards [22], [23]. As seen in Fig.2, the
number of retweets dramatically increases for earlier periods
of each epoch compared to later.

B. ONTARIO ELECTRICAL ENERGY MARKET
In this section we consider the application of the feasibility
test for Nash rationality (15) to the aggregate power consump-
tion of different zones in the Ontario power grid. A sampling
period of T = 79 days starting from January 2014 is used

to generate the dataset D for the analysis. All price and
power consumption data is available from the Independent
Electricity System Operator7 (IESO) website. Each zone is
considered as an agent in a corporate social network. If the
feasibility test is satisfied, then this suggests that zones power
consumption is consistent with equilibrium play from a con-
cave potential game. This analysis provides useful infor-
mation for constructing demand side management (DSM)
strategies for controlling power consumption in the electricity
market. For example, if a utility function exists it can be
used in the DSM strategy presented in [45] and [46]. Note
that the study of corporate social networks was pioneered by
Granovetter [47], [48] which shows that the social structure of
the network can have important economic outcomes. Exam-
ples include agents choice of alliance partners, assumption of
rational behavior, self interest behavior, and the learning of
other agents behavior.
To apply the feasibility test Nash rationality (15) requires

that the external influence pt and response of agents xt must
be defined. In the Ontario power grid the wholesale price of
electricity is dependent on several factors such as consumer
behaviour, weather, and economic conditions. Therefore the
external influence is defined as pt = [pt (1), pt (2)] with pt (1)
the average electricity price between midnight and noon,
and pt (2) as the average between noon and midnight with t
denoting day. The response of each zone i 2 10 correspond
to the total aggregate power consumption in each respective
time associated with pt (1) and pt (2) and is given by xit =

[xit (1), x
i
t (2)] with i 2 {1, 2, . . . , n}. The budget I it of each

zone has units of dollars as pt has units of $/kWh and xit units
of kWh.
Let us first consider if the aggregate power consumption

from each zone satisfies the utility maximization test (3). We
find that the aggregate consumption data of each zone does
not satisfy Afriat’s utility maximization test (3), however,
could this be a result of measurement noise? Assuming the
power consumption of agents are independent and identically
distributed, the central limit theorem suggests that the aggre-
gate consumption of regions follows a zero mean normal
distribution with variance � 2. The noise term w in (17) is
given by the normal distribution N (0, � 2). Therefore, to test
if the failure is a result of noise, the statistical test (15) is
applied for each region, and the noise level � 2 estimated for
the dataset Dobs to satisfy the � = 95% confidence interval
for utility maximization. The results are provided in Fig.4.
As seen from Fig. 4, the Essa, West, Toronto, and East

zones do not satisfy the utility maximization requirement.
This results as the required noise level � for the stochastic
utility maximization test to pass is too high comparedwith the
average power consumption. Therefore if each zone is inde-
pendently maximizing then only 60% of the Ontario power
grid satisfies the utilitymaximization test. However it is likely
that the zones are engaged in a concave potential game–this
would not be a surprising result as network congestion games

7http://ieso-public.sharepoint.com/
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FIGURE 4. Average consumption (gray) and associated noise level �
(black) for the price and demand data to satisfy utility maximization in
each of the 1,. . . ,10 zones in the Ontario power grid defined in Sec.IV-B.
The average hourly consumption over the T = 79 days starting from
January 2014.

have been shown to reduce peak power demand in distributed
demand management schemes [9].

To test if the dataset D is consistent with Nash rationality
the detection test (8) is applied. The dataset for the power con-
sumption in the Ontario power gird is consistent with Nash
rationality. Using (11), a concave potential function for the
game is constructed. Using the constructed potential function,
when do agents prefer to consume power? The marginal rate
of substitution8 (MRS) can be used to determine the preferred
time for power usage. Formally, the MRS of xi(1) for xi(2) is
given by

MRS12 =

@V̂/@xi(1)

@V̂/@xi(2)
.

From the constructed potential function we find that
MRS12 > 1 suggesting that the agents prefer to use power
in the time period associated with xt (1)–that is, the agents are
willing to give up MRS12 kWh of power in the time period
associated with xi(2) for 1 additional kWh of power in time
period associated with xi(1).

The analysis in this section suggests that the power
consumption behavior of agents is consistent with players
engaged in a concave potential game. Using the feasibil-
ity test for Nash rationality (15) the agents preference for
using power was estimated. This information can be used
to improve the DSM strategies presented in [45] and [46] to
control power consumption in the electricity market.

V. CONCLUSION AND FUTURE WORK
In this paper detection and feasibility tests were presented to
detect if the response of agents is the result of equilibrium
play from a concave potential game with a focus on learning
the preferences of agents in social networks. Specifically a
non-parametric feasibility test to detect if a group of agents
responses are consistent with play from the Nash equilibrium
of a concave potential game. To learn the preferences of
agents a non-parametric learning algorithm is provided to
infer the concave potential function of interacting agents
engaged in a concave potential game. We prove necessary

8The amount of one good that an agent is willing to give up in exchange
for another good while maintaining the same level of utility.

and sufficient conditions on the response class for the algo-
rithm to be a probably approximately correct (PAC) learning
algorithm. If the response signals are corrupted by noise, a
statistical test to detect agents playing a game that has a pre-
specified Type-I error probability is provided. The algorithms
are applied to two real-world datasets from the Twitter social
network and Onatrio power grid to learn the preferences of
agents.
In future work we consider the refinement of the PAC

learnability bounds using the fact that the demand functions
are derived from monotone concave potential functions. This
was not used in any derivations of the bounds for the PAC
learnability requirement presented in Sec.II-E. As illustrated
in [49] for single agents if the utility function is linear or
linearly separable with bounded derivatives then the learn-
ing algorithm will have an improved polynomial sample-
complexity compared to the general monotonic and concave
utility functions considered in this paper. A standing assump-
tion used throughout the paper is that the budget constraint
is assumed to be linear. For non-linear budget sets the detec-
tion test for homophily is equivalent, however learning the
associated concave potential function is non-trivial in this
case. The learning algorithms in this paper rely on estimating
the concave potential function from the class of piecewise-
linear concave potential functions. As illustrated in [50] for
single agents, utilizing (11) for prediction has the potential of
generalizing very poorly. This results as the structure of exter-
nal influence may bear no connection with the structure of
the associated utility function. Utilizing kernel methods may
offer a practical alternative to allow the underlying concave
potential function to be learned in the case of a non-linear
budget.

VI. APPENDIX A
PROOFS
Lemma 6.1: Suppose the functions {xb : b =

(b1, b2, . . . , bT ) 2 {0, 1}T } witness the shattering of
{p1, p2, . . . , pT }. Then, for any x 2 Rm⇥n

+
and labels b, b0

2

{0, 1}T such that bi 6= b0

i for 1  i  T , either kxb(pi) �

xk1 > � /(2mn) or kxb0 (pi) � xk1 > � /(2mn). ⌅

PROOF OF LEMMA 6.1
Proof: Since the max exceeds the mean, it follows that

if xb and xb0 correspond to labels such that bi 6= b0

i then

kxb(pi) � xb0 (pi)k1 �

1
mn

kxb(pi) � xb0 (pi)k2 >
�

mn
.

This implies that for any x 2 Rm⇥n
+

either kxb(pi) � xk1 >

� /(2mn) or kxb0 (pi) � xk1 > � /(2mn) ⌅

PROOF OF THEOREM 2.3
Proof: Set T =

1
2 fatC(8mn✏), then there exists a set

P = {p1, p2, . . . , p2T } that is shattered by C, the class of
functions mapping from Rm

+
! Rm⇥n

+
. To prove ⇠ (✏, �) >

1
2 fatC(8mn✏), it suffices to show that at least one distribution
P of the external influences and responses in the datasetD (5)
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requires a large sample. Equivalently, we must show that the
probability of E(p,x)(kx̂(p) � x(p)k2

1
) > ✏ is greater then

zero with x a function chosen at random that witnesses the
shattering of P, and x̂ 2 C the hypothesis function obtained
from the learning algorithm.

Denote P as the uniform distribution on P, and CS = {xb :

b = (b1, b2, . . . , b2T ) 2 {0, 1}2T }with CS the set of functions
that witness the shattering of P. Denote xb as a function
chosen uniformly at random from CS . From Lemma 6.1 with
� = 8mn✏, for any b, b0

2 {0, 1}2T with bi 6= b0

i, either
kx̂(p) � xb(p)k1 > 4✏ or kx̂(p) � xb0 (p)k1 > 4✏ for any
fixed function x̂. It follows that the probability that kx̂(p) �

xb(p)k1 > 4✏ is at least 0.5. Therefore, using Markov’s
inequality, Eb(kx̂(p) � xb(p)k1) > 2✏.

Consider the following randomization. Select uniformly
◆ = (i1, i2, . . . , iT ) ⇢ [2T ] and b = (b1, b2, . . . , b2T ) 2

{0, 1}2T , and construct the random sample Sb = {(pij , xb(pij ) :

j 2 {1, 2, . . . , 2T }}. Given Sb, a learning algorithm returns a
function x̂Sb . It follows from Lemma 6.1, with � = 8mn✏,
that the probability that kx̂Sb (p) � xb(p)k1 > 4✏ for p 2

P � {pi1 , pi2 , . . . , piT } is at least 0.5. Utilizing Markov’s
inequality we obtain that

Eb,◆(Eb (kx̂Sb (p) � xb(p)k21)) > 2✏,

where b is the uniform distribution on {(p1, xb(p1)), . . . ,
(pT , xb(pT ))}. Therefore, for some b0

2 {0, 1}2T we have
that E◆(Eb0 (kx̂Sb0 (p) � xb0 (p)k2

1
)) > 2✏. Without loss of

generality we can assume thatEb0 (kx̂Sb0 (p)�xb0 (p)k2
1
) > M

for some finite M . It follows that

P◆(Eb0 (kx̂Sb0 (p) � xb0 (p)k2
1
) > ✏) >

✏

M
.

Hence xb0 is not PAC-learnable by a sample of size
T =

1
2 fatC(8mn✏).

PROOF OF THEOREM 2.6
Proof: Consider a dataset D (5) that satisfies Nash

rationality (8). Given D, the inequalities (8) have a feasible
solution. Denote the solution parameters of (8), given D, by
{�iot > 0,Vo

t }. Substituting xit = yit � wit , from (13), into
the inequalities obtained from the solution of (8) given D,
we obtain the inequalities:

Vo
t 0 � Vo

t �

nX

i=1

�iot pt · (yit 0 � yit )

�

nX

i=1

�iot pt · (wit � wit 0 )  0. (25)

Substitute 3 =

Pn
i=1 �

io
t , and M , defined by (17),

into (25), and recall that �iot > 0, to obtain:

Vo
t 0 � Vo

t �

nX

i=1

�iot pt · (yit 0 � yit ) �3M  0. (26)

A solution of (16) given Dobs, defined by (13), is denoted
by {8⇤

{y}, �i⇤t ,V ⇤

t }. By comparing the inequalities obtained

from the solution of (16) givenDobs, and the inequalities (26),
notice that {8⇤

{y} = M , �i⇤t = �iot ,V ⇤

t = Vo
t } is a

feasible, but not necessarily optimal solution of (16) given
Dobs. Therefore, for D satisfying malicious cooperation, it
must be the case that8⇤

{y}  M . This asserts, under the null
hypothesisH0, that8⇤

{y} is upper bounded byM . For a given
8⇤

{y}, the integral in (15) is the probability of 8⇤
{y}  M ;

therefore, the conditional probability of rejecting H0 when
true is less then � .

PROOF OF THEOREM 3.1
Proof: We prove Theorem 3.1 by construction showing

that (1) ! (2), (2) ! (3), and (3) ! (1) which provides the
necessary and sufficient conditions.
(1) ! (2): Suppose the dataset D = {(pk , xk ) :

k 2 {1, 2, . . . ,K }} (21) is generated by the utility maxi-
mization (19) of a non-satiated, differentiable, and concave
intertemporal utility function (20). Given the sum of a set
of concave functions is concave, and that D(t) > 0 8t 2

{1, 2, . . . ,T }, each utility function ut (xt ) is concave. There-
fore for all t 2 {1, 2, . . . ,T } and k, q 2 {1, 2, . . . ,K } the
following inequalities are satisfied:

ut (xtq) � ut (xtk ) � rut (xtk )
0(xtq � xtk )  0. (27)

From the Karush-Khun-Tucker conditions, if xk solves the
maximization problem (19), then there must exist Lagrange
multiplies �k such that

D(t)rut (xtk ) = �kptk (28)

is satisfied for all k 2 {1, 2, . . . ,K }. Since ut (xt ) is a non-
satiated concave function, and all the entries in ptk are strictly
positive, the Lagrange multipliers satisfy the condition
�k > 0. Substituting (28) into (27) the inequalities (22) result.
(2) ! (3): If we have scalars utk and �k > 0

that satisfy (22), then we must find a non-satiated and
concave intertemporal utility function that rationalized the
dataset D (21). Notice that the concavity condition pro-
vides K overestimates of the intertemporal utility function
for an arbitrary bundle x since U (x) 

PT
t=1 D(t)[u

t
k +

�k
1

D(t)p
t0
k (x

t
� xtk )] for k 2 {1, 2, . . . ,K }. To construct the

utility function we therefore take the lower envelope of the
hyperplanes to obtain (23). To verify this construction works
we must show that for any given x satisfying p0

kx  p0

kxk
that U (x)  U (xk ). First for all k 2 {1, 2, . . . ,K } we have
from (23) that:

max
p0

k xIk
{Û (x)}  max

p0

k xIk
{

TX

t=1

D(t)utk + �kpt0k (x
t
� xtk )}

=

TX

t=1

D(t)utk + �kpt0k (x
t
k � xtk )

=

TX

t=1

D(t)utk . (29)
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TABLE 1. Fitted Distribution Parameters

Hence for all k 2 {1, 2, . . . ,K } we have that Û (x) =PT
t=1 D(t)u

t
k . For all q 2 {1, 2, . . . ,K } we have that

Û (x) =

TX

t=1

min
k

{D(t)utk + �kpt0k (x
t
q � xtk )}

=

TX

t=1

D(t)utq. (30)

Denoting x̂k as the solution of (19) given Û (x) and D, and
xk as the solution of (19) given U (x) (20) and D. Then (29)
and (30) establish that x̂k = xk8k 2 {1, 2, . . . ,K }.

(3) ! (1): Since Û (x) (23) is a piecewise-linear function
it also satisfies non-satiation and the concavity condition.

VII. APPENDIX B
DISTRIBUTION PARAMETERS
Three distributions f i(t; ✓ i) are considered for the tempo-
ral dynamics of retweets describe by (24): the exponential,
log-normal, and Birnbaum-Saunders. These functions are
provided below for reference:

f i(t; �i) = �i exp(��t),

f i(t; � i, µi) =

1
p

2⇡� it
exp(�

(ln(t) � µi)2

2� i2
),

f i(t;↵i,� i) =

�q t
� i

+

q
� i

t

�

2↵i
p

2⇡ t
exp

⇣
�q t

� i
+

q
� i

t

�2

2↵i2

⌘
. (31)

Using the Twitter data provided in Fig.2, the parameters of the
three distributions (31) are estimatedwith the results provided
in Table 1. The Time in Table 1 indicates the initial time of
the tweet in Fig.2, and RMSE denotes the root mean squared
error.
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