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Ion Channel Biosensors—Part II: Dynamic
Modeling, Analysis, and Statistical Signal Processing
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Abstract—This paper deals with the dynamic modeling, analysis,4
and statistical signal processing of the ion channel switch biosen-5
sor. The electrical dynamics are described by a second-order linear6
system. The chemical kinetics of the biosensor response to analyte7
concentration in the reaction-rate-limited regime are modeled by8
a two-timescale nonlinear system of differential equations. Also,9
the analyte concentration in the mass-transport-influenced regime10
is modeled by a partial differential equation subject to a mixture11
of Neumann and Dirichlet boundary conditions. By using the the-12
ory of singular perturbation, we analyze the model so as to pre-13
dict the performance of the biosensor in transient and steady-state14
regimes. Finally, we outline the use of statistical signal processing15
algorithms that exploit the biosensor dynamics to classify analyte16
concentration.17

Index Terms—.
Q1

18

I. INTRODUCTION19

THE COMPANION paper (Part I) described the construc-20

tion and experimental studies of the ion channel switch21

(ICS) biosensor. The ICS biosensor provides an interesting ex-22

ample of engineering at the nanoscale [1]. Its functionality de-23

pends on approximately 100 lipids and a single ion channel24

modulating the flow of billions of ions in a typical sensing event25

of approximately 5 min. Our modeling and analysis in this paper26

will capture these salient features. Because the biosensor can27

detect analyte concentrations smaller than 1 picomolar, mass28

transfer of analyte over the electrodes becomes the dominant29

design criterion. This requires careful modeling of the chemical30

kinetics (how the analyte molecules interact with the binding31

sites), together with the mass transport dynamics of fluid flow32

(how analyte molecules flow onto the electrodes). Finally, the33

intrinsically digital output from the biosensor permits the use of34

sophisticated statistical signal processing algorithms to estimate35

the type and concentration of analyte.36

A. Main Results37

The following are our main results.38

1) Modeling of Biosensor Electrical Response and Chemical39

Kinetics: In Section II, we give a complete model description
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of the electrical response and chemical kinetics of the biosensor. 40

The electrical dynamics of the ICS biosensor are described by 41

an equivalent second-order linear system. The chemical kinetics 42

detail how the biosensor responds to analyte molecules—from 43

analyte molecules binding to the receptors to the eventual disrup- 44

tion of the ability of gramicidin molecules to form dimers. Thus, 45

we convert the qualitative description of the biosensor operation 46

given in the companion paper into mathematical equations for 47

a dynamical system. 48

2) Analyte Flow and Analysis of Biosensor Dynamics: In 49

Section III, we analyze the biosensor dynamics. We show via 50

eigen decomposition that the biosensor response to analyte con- 51

centration has a two-timescale behavior. This permits analysis of 52

the chemical kinetics as a singularly perturbed system [2], [3]. 53

One of the highlights of this analysis is that it mathematically 54

justifies the experimentally observed response of the biosen- 55

sor to analyte concentration. Another highlight of our modeling 56

and analysis is that we can predict the biosensor performance 57

at very low analyte concentrations (e.g., picomolar to femtomo- 58

lar). In such cases, it is necessary to consider the analyte flow 59

and its interaction with the receptors at the biosensor electrode. 60

We model the analyte flow as a diffusion-type partial differen- 61

tial equation, which interacts with the chemical kinetics when 62

analyte molecules interact with the biosensor. This results in 63

Neumann and Dirichlet boundary conditions [4]–[6]. We show 64

that this model accurately predicts the biosensor performance at 65

low analyte concentrations. 66

3) Statistical Signal Processing: A further goal of detailed 67

modeling and analysis of the biosensor is to design sophisticated 68

statistical signal processing algorithms that exploit these model 69

dynamics to classify analytes and estimate their concentrations. 70

In Section IV, we illustrate how statistical signal processing 71

algorithms can be used to detect the presence of analyte. 72

B. Related Work 73

The companion paper provided a literature review of biosen- 74

sors involving ion channels and tethered lipid membranes. Here, 75

we outline related work in modeling, analysis, and statistical 76

signal processing involving biosensors. The equivalent elec- 77

trical model we introduce in Section II-A for the lipid mem- 78

brane, interfacial capacitance, and electrolyte resistance is sim- 79

ilar to that used in electrophysiological models of cell mem- 80

branes, see [7] for a textbook treatment. The conceptual idea 81

behind electrophysiological models originates from the work 82

of Cole, who pioneered the notion that cell membranes could 83

be likened to an electronic circuit [8]. The chemical kinetics 84

discussed in Section II-B result in a system of nonlinear or- 85

dinary differential equations. The work of Lauffenburger and 86
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Linderman [9] is an excellent example of such chemical kinet-87

ics and binding. Similar models have been adopted in a lat-88

eral flow bioreactor in [10]. The singular perturbation methods89

we use in Section III-A are well known in nonlinear systems90

theory, see [2]. More sophisticated stochastic singular pertur-91

bation methods are studied in [11]. The mass transport dy-92

namics (partial differential equation) coupled with chemical93

kinetics discussed in Section III-B results in a diffusion par-94

tial differential equation with Neumann and Dirchlet boundary95

conditions [4]–[6]. Similar formulations for binding and dis-96

sociation between a soluble analyte and an immobilized lig-97

and are studied in [12]. Mass transport dynamics are formu-98

lated in [4] and [13] for a two-compartment model where ana-99

lyte molecules move between the two compartments. Goldstein100

et al. [6] discuss the accuracy and theoretical basis of different101

models for mass transport effects in the binding of analytes.102

Dehghan [14] discusses several different finite-difference meth-103

ods to solve the advection–diffusion equation and the stability of104

the numerical methods. Finally, the statistical signal processing105

of ion channel currents (Section IV) is an active area of research106

with several papers published since the 1990s. Hidden Markov107

models (HMMs) have been widely used, see [15] and [16] and108

references therein.109

II. MODELING THE DYNAMICS OF THE ICS BIOSENSOR110

This section constructs mathematical models for the ICS111

biosensor’s response to analyte molecules. In Section II-A and112

II-B, white-box models for the electrical response and chemi-113

cal kinetics are formulated. Finally, a black-box model for the114

biosensor response based on experimental observations is given115

in Section II-C. This sets the stage for Section III where the116

white-box models are analyzed, resulting in a mathematical jus-117

tification of the black-box model.118

A. Electrical Dynamics of the Biosensor119

The ICS biosensor can be viewed as a biological transistor.120

Fig. 1(a) illustrates the equivalent circuit of the biosensor before121

and after the detection of analyte. Fig. 1(b) details the compo-122

nents of the equivalent circuit. The resistor 1/G models the123

biosensor resistance and increases with the presence of analyte.124

C1 denotes the capacitance of the membrane, while C2 denotes125

the interfacial capacitance of the gold substrate. Note that one126

face of the capacitor C2 is charged due to ions in solution, while127

the other face is due to electrons that form the output current128

of the biosensor. Thus, C2 provides the interface between the129

biological sensor (which, as with biological systems, operates130

on ion flow) and the electron flow of electrical instrumentation.131

R2 denotes the resistance of the electrolyte, and its value varies132

depending on the type of electrolyte and the dimensions of the133

return path in the bathing sample solution. In a flow chamber,134

the dimensions of the return path can be sufficiently small so that135

R2 becomes significant. The values of C1 , C2 , R1 , and R2 are136

functions of electrode area. Typical values for 2009 generation137

of ICS biosensors are listed in Table I.138

Let Vout denote the external applied potential and i denote139

the output current as depicted in Fig. 1(b). With Vout(s) and140

Fig. 1. ICS biosensor comprises an ion channel switch. (a) (Top) Switched-on
state when the ion channels are conducting and (bottom) switched-off state when
the ion channels are not conducting. The equivalent electrical circuit shown in
Fig. 1(b) results in a second-order transfer function.

TABLE I
TYPICAL VALUES FOR THE COMPONENTS OF THE EQUIVALENT ELECTRICAL

SYSTEM OF THE ICS BIOSENSOR, DEPICTED IN FIG. 1(b)

I(s) denoting the Laplace transforms, the admittance transfer 141

function of the equivalent circuit parameterized by G is 142

H(s) =
I(s)

Vout(s)
=

s2 + s aG

s2R2 + s(b2 + b1G) + b3G
. (1)

The constants in H(s) are a = 1/C1 , b1 = R2/C1 , b2 = 143

1/C1 + 1/C2 , and b3 = 1/C1C2 . 144

Electrodes in the 2009 generation ICS biosensors have an area 145

of 0.03 cm2 . The resistance of the biosensor when no analyte 146

is present is approximately 60 kΩ. This can be reconciled with 147

the 1011 Ω per channel resistance of gramicidin A as follows. 148

Since there are 108 gramicidin channels per centimeter square, 149

each electrode of area 0.03 cm2 contains approximately 3 × 106 150

channels with approximately half of them dimerized. So, the 151
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effective resistance of all the dimerized ion channels (which152

act as parallel resistors) is approximately 60 kΩ. The measured153

current is the average effect of the formation and disassociation154

of thousands of dimers, and is approximately continuous valued.155

B. Chemical Kinetics of the Biosensor156

This section formulates the dynamics of the chemical reac-157

tions in the biosensor with the goal of modeling how the biosen-158

sor conductance G in (1) evolves. Recall that G decreases with159

time if analyte molecules are present due to chemical reactions160

that inhibit the formation of gramicidin dimers.161

The reactions involved in the ICS biosensor stem from the162

binding of analyte molecules to the binding sites on the mem-163

brane followed by cross linking of the mobile ion channels to164

these bound analytes. The species involved in these reactions165

are separated into primary species and complexes. The pri-166

mary species are analyte a with concentration A, binding sites167

b with concentration B, free moving monomeric ion channels c168

with concentration C, and tethered monomeric ion channels s169

with concentration S. The complexes denoted as d, w, x, y, and170

z with concentrations, D, W , X , Y , and Z are formed according171

to the following chemical reactions:172

a + b ⇀↽f1
r1

w a + c ⇀↽f2
r2

x w + c ⇀↽f3
r3

y

x + b ⇀↽f4
r4

y c + s ⇀↽f5
r5

d a + d ⇀↽f6
r6

z

x + s ⇀↽f7
r7

z. (2)

In (2), fi and ri , for i = {1, 2, 3, 4, 5, 6, 7}, respectively, de-173

note the forward and backward reaction rate constants. For174

reactions occurring in 3-D space, such as binding of ana-175

lyte with binding sites, the forward reaction rate constants176

fi have units of M−1 · s−1 ( M denotes molar concentration,177

i.e., moles per liter). For reactions occurring in 2-D space,178

such as dimerization of the ion channel, fi , have units of179

centimeter square·per second per molecule. The backward re-180

action rate constants ri have units of per seconds.181

The chemical reactions in (2) give a complete symbolic de-182

scription of the operation of the ICS biosensor that was qual-183

itatively described in Section II of the companion paper. The184

forward part of the first equation reports on an analyte molecule185

a being captured by a binding site b and the resulting complex186

is denoted by w. The third equation states that a free moving187

gramicidin monomer c in the outer leaflet of the bilayer lipid188

membrane (BLM) can bind to the complex w, thus producing189

another complex, denoted by y. An analyte molecule can also190

be captured by the binding site linked to the freely diffusing191

monomer c. The second equation states that this results in the192

production of the complex x. The complex x can still diffuse193

on the outer leaflet of the BLM, and hence can move toward a194

tethered binding site b and bind to it, resulting in the complex y195

(fourth equation). On the other hand, the complex x can diffuse196

on top of the tethered ion channel monomer s, which results197

in the production of complex z (seventh equation). The event198

that determines the biosensor conductance (and thus the current199

flowing through the biosensor) is the binding of the free moving200

ion channel monomer c and the tethered ion channel monomer201

TABLE II
CONCENTRATIONS OF PRIMARY SPECIES IN THE ICS BIOSENSOR

s. This results in the formation of a dimer d (fifth equation). 202

Indeed, the biosensor conductance is proportional to the dimer 203

concentration, i.e., G(t) = constant × D(t). Finally, an analyte 204

molecule can also bind to an already formed dimer, which again 205

produces the complex z (sixth equation). 206

We are now ready to formulate the chemical kinetics of the 207

ICS biosensor. The total reaction rates are straightforwardly 208

obtained from (2) as 209

R1 = f1AB − r1W R2 = f2AC − r2X

R3 = f3WC − r3Y R4 = f4XB − r4Y

R5 = f5CS − r5D R6 = f6AD − r6Z

R7 = f7XS − r7Z. (3)

Define u = {B,C,D, S,W,X, Y, Z}T and r(u(t)) = {R1 , 210

R2 , R3 , R4 , R5 , R6 , R7}T , where T denotes transpose and Ri 211

are defined in (3). Then the nonlinear ordinary differential equa- 212

tion describing the dynamics of the chemical species is 213

d

dt
u = Mr(u(t)) (4)

where M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 −1 0 0 0
0 −1 −1 0 −1 0 0
0 0 0 0 1 −1 0
0 0 0 0 −1 0 −1
1 0 −1 0 0 0 0
0 1 0 −1 0 0 −1
0 0 1 1 0 0 0
0 0 0 0 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The initial concentrations of the primary species in u(0), namely, 214

A∗, B(0), C(0), S(0), and D(0), are given in Table II. The initial 215

concentrations of the secondary species are zero. Note that in 216

Table II, S(0) denotes the initial concentration of the tethered 217

gramicidin monomers. Also, S ≈ S(0) during the experiment. 218

The previous system of equations is obtained as follows. Con- 219

sider, for example, the primary species b in (2). According to 220

the first and fourth equations in (2), b is consumed when it 221

binds to a and x, and is produced when w and y decompose. 222

So the change in the concentration of b can be expressed as 223

dB/dt = −R1 − R4 . This yields the first equation in the sys- 224

tem (4). The evolution of other species is derived similarly, 225

yielding (4). 226

Equation (4) is a complete representation of the chemi- 227

cal kinetics of the biosensor. Recall the biosensor conduc- 228

tance G(t) = constant × D(t), when D(t) denotes the dimer 229
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TABLE III
TYPICAL VALUES OF THE REACTION RATES fi AND ri FOR ANTIGEN–ANTIBODY PAIR hCG-IgG AND STREPTAVIDIN–BIOTIN PAIR

concentration as a function of time and is obtained by solving230

(4). However, note that (4) does not model the dynamics of the231

analyte concentration A. The dynamics of A(x1 , x2 , x3 , t) over232

space (x1 , x2 , x3) and time t are given by the mass transport233

partial differential equation, see Section III-B.234

Example: Table III gives the typical forward and backward235

reaction rate constants (fi , ri) for two important examples. The236

first example deals with protein–receptor interaction such as237

the detection of the protein streptavidin by using biotin as238

the binding site. The second example in Table III deals with239

antigen–antibody interaction such as the detection of the preg-240

nancy hormone [human chorionic gonadotropin (hCG)] by us-241

ing the antibody immunoglobin G (IgG) as the binding sites of242

the biosensor. We will use these values in Section III-A when243

identifying the fast and slow dynamics of (4).244

C. Black-Box Model for Biosensor Response to Analyte245

The final step in this modeling section is to describe the246

input/output behavior of the biosensor. This can be viewed as a247

“black-box model” in comparison to the previous two sections248

where physical/chemical laws were used to construct a “white-249

box” model. Let n = 0, 1, . . . denote discrete time (with typical250

sampling interval of 1 s) and A denote the concentration of251

analyte. As described earlier, the presence of analyte results252

in a decrease of the biosensor conductance G in (1). Detailed253

experimental analysis of the biosensor response show that G254

evolves in discrete time according to one of the three different255

concentration modes M:256

Gn+1 = fM(Gn,A) + wn

M =

⎧
⎪⎨

⎪⎩

1, A is low: f 1(Gn,A) = Gn + κ0

2, A is medium: f 2(Gn,A) = κ1Gn + κ2

3, A is high: f 3(Gn,A) = κ3Gn + κ4

(5)

where κ0 ,κ1 ,κ2 ,κ3 , and κ4 are constants, with |κ1 |, |κ3 | < 1257

to ensure stability of the system (5). The variable wn is a noise258

process that models our uncertainty in the evolution of G. The259

function fM models the fact that the biosensor conductance Gn260

decreases according to one of the three distinct modes depending261

on the analyte concentration A. For low (or no) analyte present262

(M = 1), the conductance decreases linearly. For medium and263

high concentrations (M = 2, M = 3), the decrease in conduc-264

tance is exponential with different decay rates. High analyte265

concentration refers to (A ≥ 10−8 M) and medium analyte con-266

centration refers to (A ≥ 10−9 M). In Section III-A, we show267

Fig. 2. Biosensor response to streptavidin. The figure demonstrates two modes
of decay of the response of the system conductance G [ Ω−1 ] depending on the
analyte concentration, namely, linear and exponential; see [17] and [18] for
details.

that these three distinct modes of behavior, observed in the ex- 268

perimental analysis of the biosensor, can be obtained via singular 269

perturbation analysis of the chemical kinetics of the biosensor. 270

Fig. 2 shows examples of the biosensor response to strepta- 271

vidin with different concentrations and provides a clear demon- 272

stration of the different kinetic regimes of the sensor function; 273

see [17] and [18] for details. The streptavidin–biotin binding 274

pair is one of the strongest and best characterized interactions 275

available, and is used as a model system in this paper. 276

III. ANALYTE FLOW AND BIOSENSOR DYNAMICS 277

Having formulated models for the electrical response and 278

chemical kinetics, we are now ready to analyze these models 279

to predict the ICS biosensor’s response. We will determine how 280

the chemical kinetics (4) interact with the partial differential 281

equation of mass transport of analyte A(x1 , x2 , x3 , t). Here, x1 , 282

x2 , and x3 , respectively, denote the x, y, and z spatial axes, 283

and t denotes continuous time. Substantial insight is gained by 284

considering the following two important subcases. 285

Case 1 (Reaction-rate-limited kinetics): In the reaction-rate- 286

limited kinetics regime, large analyte flow rates, high analyte 287

concentration, or low binding site densities (e.g., millileter per 288

minute flow rate, micromolar concentration, or less than 108 289

binding sites per centimeter square) compensate for the deple- 290

tion of analyte molecules due to rapid reaction at the biomimetic 291
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Fig. 3. Biosensor response to 100 pM and 10 fM concentrations of streptavidin
for various binding site to ion channel densities and flow rates. At 100 pM and
low binding site densities, increasing flow rate (left to right) has little effect. At
10 fM and high binding site densities, flow rate has a large effect. High flow
limits are shown as dashed lines on the left.

surface populated by the binding sites. In this regime, it is292

reasonable to assume that the analyte concentration is approxi-293

mately constant over space and time, i.e., A(x1 , x2 , x3 , t) = A∗,294

where A∗ denotes a constant analyte concentration. We consider295

this case in Section III-A, where we will mathematically justify296

the black-box model (5) by applying singular perturbation anal-297

ysis to the white-box model developed earlier. We will derive298

the empirically observed black-box model (5).299

Case 2 (Mass-transport-influenced kinetics): Here, the300

biosensor chemical kinetics are influenced by both mass trans-301

port and reaction rates. Therefore, the local concentration of ana-302

lyte A(x1 , x2 , x3 , t) varies over space and time. In Section III-B,303

we model the change in analyte concentration over time and304

space by a boundary value partial differential equation.305

Why do analyte mass transport kinetics matter? We start with306

the following motivating example. Fig. 3 shows quantitative pre-307

dictions of the change in the biosensor resistance per unit time308

for various binding site densities and sample flow rates for high309

analyte concentrations (100 pM) and low analyte concentrations310

(10 fM). As shown in Fig. 3, at high analyte concentrations, the311

biosensor response is insensitive to flow rate. This corresponds312

to the reaction-rate-limited kinetics (case 1). However, for low313

analyte concentration and high binding site density, a high flow 314

rate is required to achieve a measurable response. This corre- 315

sponds to mass-transport-influenced kinetics (case 2), [19]. It 316

is also apparent from Fig. 3 that a high binding site density is 317

essential for high sensitivity. With high binding site density, tar- 318

get molecules collide more frequently with receptors, and are 319

thus captured more quickly. The greater the ratio of binding site 320

density to analyte concentration, the faster the response of the 321

biosensor. 322

A. Case 1: Reaction-Rate-Limited Kinetics 323

In this section, the chemical kinetics in the reaction-rate- 324

limited regime (constant analyte concentration A∗ > 1µM) are 325

analyzed as a two-timescale dynamical system. We will use 326

singular perturbation theory to approximate the time evolution 327

of dimer concentration. 328

To determine the slow and fast modes of the nonlinear chemi- 329

cal kinetics depicted in (3) and (4), we compute the eigenvalues 330

λi of the linearized version of (4). For typical parameter values 331

of the ICS biosensor in Tables II and III, |λ7,8 | ≫ |λ1,2,3,4,5,6 |. 332

Therefore, species Y and Z decay at a rate much faster than the 333

other species. Accordingly define the fast species β = {Y,Z} 334

and slow species α = {B,C,D, S,W,X}. Let g(α,β) denote 335

the vector field of the fast variables and f(α,β) the vector field 336

of the slow variables. Equations (3) and (4) can now be expressed 337

as a two-timescale system [initial conditions α(0) and β(0) are 338

specified next (4)] 339

dα

dt
= f(α,β) ϵ

dβ

dt
= g(α,β) (6)

where ϵ ≈ 1/|λ7 | = 10−2 is chosen as the smallest time constant 340

of the governing differential equations [2]. 341

The following theorem uses basic singular perturbation the- 342

ory, specifically Tikhonov’s theorem, [2, Sec. 11.1], as well as 343

the approximate relation S ≈ S(0) to simplify the aforemen- 344

tioned two-timescale nonlinear system. The resulting simpli- 345

fied system yields the evolution of biosensor conductance ver- 346

sus analyte concentration according to the modes described in 347

Section II-C, namely, linear and exponential decays. 348

Theorem 3.1: Consider the chemical species dynamics de- 349

picted by the two-timescale system (6). Then, as ϵ → 0, the 350

dimer concentration D(t) converges to the trajectory D̄(t) de- 351

fined by the following system: 352

d

dt
D̄ = −D̄(r5 + f6A

∗) +
(

f5C +
r6f7X

r6 + r7

)
S(0). (7)

More specifically, suppose the initial dimer concentration D(0) 353

at time t = 0 is within an O(ϵ) neighborhood of β = h(α), 354

where h(α) denotes the solution of the algebraic equation 355

g(α,β) = 0 in (6). Then, for all time t ∈ [0, T ], |D(t) − 356

D̄(t)| = O(ϵ), where T > 0 denotes a finite time horizon. 357

Theorem 3.1 exploits the two-timescale nature of the chem- 358

ical kinetics (6) to arrive at an approximate equation (7) for 359

the dimer concentration D(t), which is within O(ϵ) of the true 360

solution. The proof follows from verifying the conditions of 361

Theorem 11.1 in [2, Sec.11.1], and is omitted due to lack of 362
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space. However, here is some intuition. It can be shown that as363

ϵ ↓ 0, the fast dynamics approach the quasi steady state h(α)364

defined in the theorem. This quasi steady state h(α) of the365

fast variables β is then substituted in the slow dynamics in366

(6), which results in the following approximate dynamics for367

the slow species: dᾱ/dt = f(ᾱ, h(ᾱ)). We are interested in a368

specific component of ᾱ, namely, the approximate dimer con-369

centration D̄, which can be shown to evolve according to (7).370

We can now analyze the response of the biosensor to dif-371

ferent analyte concentrations A∗. Discretizing (7) using Euler’s372

method with step size h > 0 yields373

Dn+1 = (1 − (r5 + f6A
∗)h) Dn

+ h

(
S(0)

(
f5C(r6 + r7) + r6f7X

r6 + r7

))
. (8)

Therefore, the dimerconcentration of the biosensor D evolves374

according to one of the following three modes, depending on375

the concentration of the analyte A∗:376

Dn+1 = fM(Dn,A∗) + wn

M =

⎧
⎪⎨

⎪⎩

1, A∗ is low: f 1(Dn,A∗) = Dn + κ0

2, A∗ medium: f 2(Dn,A∗) = κ1Dn + κ2

3, A∗ high: f 3(Dn,A∗) = κ3Dn + κ4

(9)

where the noise wn is defined similarly to (5). The constants κi377

for i ∈ {1, 2, 3, 4} are computed as378

κ1 = κ3 = (1 − (r5 + f6A
∗)h)

κ2 = κ4 = h

(
S(0)

(
f5C(r6 + r7) + r6f7X

r6 + r7

))
. (10)

Summary: We have shown that the dimer concentration379

evolves according to three distinct modes that depend on the380

analyte concentration. Using (9), since the conductance G is381

directly proportional to dimerconcentration D, we arrive at the382

black-box model (5) of Section II-C, which was based on ex-383

perimental observations.384

B. Case 2: Mass Transport Kinetics385

Here, we consider the second subcase where the ratio of386

analyte concentration to binding site density is small [e.g.,387

A/B = 1 pM/109 = 10−21 , see (2)]. Then mass transport ef-388

fects become the dominant criterion in achieving an acceptable389

response rate of the biosensor to analyte. The analyte concentra-390

tion is no longer a constant A∗, but a function of time and space391

A(x1 , x2 , x3 , t). In this section, the partial differential equation392

governing the mass transport of analyte molecules is derived.393

Analyte is transported to the reacting surface of the ICS394

biosensor, by diffusion and flow, where it reacts with the immo-395

bilized receptors. The flow chamber used for the biosensor has396

a rectangular cross section, and is illustrated in Fig. 4, where397

the height of the chamber along the x3-axis is h = 0.1 mm. The398

length of the chamber along the x1-axis is L = 6 mm and the399

width of the chamber along the x2-axis is W = 2 mm.400

It is shown in [20] that when the aspect ratio h/W is small401

(e.g., less than 0.1), the variations in analyte concentration along402

Fig. 4. Schematic of the flow chamber. The reactive surface is located at
x3 = 0. The solution containing the analyte enters at x1 = 0 and flows along
the x1 -axis.

the width of a flow chamber are negligible. In the case of ICS 403

biosensor with flow chamber shown in Fig. 4, the aspect ratio is 404

0.05. So we can ignore the variations along the x2-axis and the 405

analyte concentration is A(x1 , x3 , t). In the flow chamber, the 406

analyte concentration A(x1 , x3 , t) is governed by the following 407

reaction–diffusion partial differential equation [5] 408

∂A

∂t
= γ

(
∂2A

∂x2
1

+
∂2A

∂x2
3

)
− υ

∂A

∂x1
(11)

where γ is the diffusivity constant of the analyte (e.g., γ ≈ 409

10−6 cm2 ·s−1 for streptavidin or hCG) and υ denotes the flow 410

rate of the sample containing the analyte. There are four bound- 411

ary conditions that need to be considered. 412

1) The chamber boundary at x3 = h is reflective and the mass 413

flux must equal zero. This yields the Neumann boundary 414

condition 415

∂A

∂x3

∣∣∣∣
(x1 ,x3 =h,t)

= 0. (12)

2) At the biomimetic surface, x3 = 0, the mass flux must 416

equal the time rate of change of the concentration of the 417

species that combine with a. This results in the Neumann 418

boundary condition 419

∂A

∂x3

∣∣∣∣
(x1 ,x3 =0,t)

= − 1
γ

(
∂X

∂t
+

∂W

∂t
+

∂Z

∂t

)
. (13)

The chemical kinetics ∂X/∂t and ∂W/∂t are defined in 420

(4). 421

3) At the entry to the flow cell, x1 = 0, the analyte concen- 422

tration is equal to the injection concentration Ā, and at 423

x1 = L, where the analyte exits, the mass flux is zero. 424

These yield the third (Dirichlet) and fourth (Neumann) 425

boundary conditions 426

A(x1 = 0, x3 , t) = Ā
∂A

∂x1

∣∣∣∣
(x1 =L,x3 ,t)

= 0. (14)

Summary: The analyte concentration A(x1 , x3 , t) is obtained 427

by solving (11) subject to mixed Neumann and Dirchlet bound- 428

ary conditions (12)–(14). 429

C. Model Evaluation 430

How good are the aforementioned models in predicting the 431

ICS biosensor response? We conducted experiments on the ICS 432

biosensor for detecting streptavidin at concentrations of 10 and 433

100 fM, and 10 pM. Fig. 5 illustrates the highly sensitive re- 434

sponse of the biosensor and how this response depends on the 435
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Fig. 5. (a) Response of ICS sensor for the concentrations shown and
150 µL/min flow rate. When the flow stops (indicated by arrows in the fig-
ure), the response stops at all concentrations. This is due to analyte depletion
at the sensor surface. (b) Dependency of response of sensor to flow rate (black
dots). The lines (purple) through the data points are predicted by the model. The
straight line at 150 Ω/s is the high flow response limit. The red diamonds are
phosphate buffer saline (PBS) controls. (c) Predicted and experimental titration
curves for the ICS sensor response to streptavidin in the range 1–100 fM at
150 µL/min. The triangles are experimental data and the diamonds are from
the model.

analyte flow rate. Fig. 5(a) shows the experimentally observed436

increase in biosensor resistance for flow rate υ = 150 µL/min. It437

shows that as the analyte concentration is increased, the biosen-438

sor exhibits faster response. It is remarkable that the biosensor439

responds to concentrations as low as 10 fM. To validate this440

experimental response, several tests were conducted in which a441

bolus of streptavidin at 10 fM, 100 fM, or 10 pM was added to442

the feed line, requiring 20 min to reach the sensor. The line was443

operated at a constant flow rate of 150 µL/min. We computed the444

“purge time” required at this flow rate for the bolus to purge the 445

residual buffer from the line. Our experiments show that at this 446

“purge time,” the resistance started to increase. When the flow 447

was stopped, the resistance increase stopped, as depicted by the 448

arrows in Fig. 5(a). Restarting the flow caused the resistance 449

rise to recommence. 450

The aforementioned experimentally measured response rate 451

of the biosensor was compared with that predicted by our model. 452

We computed the predicted response as follows. The mass trans- 453

port effects were computed by solving (11) subject to boundary 454

conditions (12)–(14) via the finite-element method on the rect- 455

angular flow cell shown in Fig. 4. The chemical kinetics were 456

computed by solving (4) numerically. This yields the dimer 457

concentration D(t) in (4) and also the biosensor conductance 458

G. Fig. 5(b) shows the experimentally measured response rate 459

(black dots) to 10 fM streptavidin at various flow rates from 460

0 to 200 µL/min. Also shown (in purple) is the theoretical re- 461

sponse rate predicted by our model. As can be seen by eye- 462

balling the plots, the predicted performance of the biosensor 463

closely matches the experimental performance. Fig. 5(b) shows 464

the experimental and predicted response rate in the reaction- 465

rate-limited region of operation. Finally, Fig. 5(c) shows the 466

predicted and experimental response rate in the range of 0– 467

100 fM streptavidin. It confirms that the biosensor response rate 468

increases with analyte concentration. 469

IV. SIGNAL PROCESSING WITH BIOSENSOR 470

Our goal in this section is to describe how the measurements 471

from the biosensor can be used to detect the presence and con- 472

centration of analytes. Today’s generation of ICS biosensor has 473

electrodes of 1 mm radius comprising millions of individual 474

gramicidin channels. The measured current is of the order of 475

microamperes. The measurement noise is insignificant (apart 476

from a slow baseline drift). So, for the ICS biosensor, the con- 477

centration of the analyte can be determined straightforwardly 478

from the three dynamic modes described in (5). It is a future 479

goal to miniaturize these electrodes. Electrode sizes of 1 µm 480

radius comprise only a few ion channels. The current pulses 481

from individual channels can be resolved and the biosensor 482

records a finite-state “digital” output. The arrival of individual 483

analyte molecules can then be detected at individual electrodes. 484

This allows for exploitation of the analyte flow equations in 485

Section III-B for measurements at multiple electrodes result- 486

ing in enhanced sensitivity. The noise levels are substantial and 487

careful modeling of the noise distribution is required. 488

Construction of ICS biosensors with microelectrodes is the 489

subject of our on-going research. Here, we provide a proof of 490

concept of the signal processing capabilities by using a sim- 491

pler biosensor setup, see [21] for experimental details. For ex- 492

perimental convenience, we used a covalently linked dimer of 493

gramicidin ion channels (called bisgramicidin A) incorporated 494

into an untethered bilayer membrane excised from a giant lipid 495

vesicle seen in Fig. 6. The bilayer is supported over the 1 µm 496

diameter opening of a micropipette as shown in Fig. 7. 497

With the biosensor setup shown in Fig. 7, the contact area 498

between the micropipette and liposome contains only 2–5 bis- 499
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Fig. 6. (Left) Fluorescence image of biosensor’s horizontal optical section
shows the bisgramicidin A channels labeled using fluorescein isothiocyanate
(FITC) and identified by the green color. (Right) Phase-contrast image of the
same horizontal slice shows the overall shape of the biosensor.

Fig. 7. Photograph of glass micropipette and liposome, with block diagram of
the electrical detection scheme. The solution in the recording pipette was 0.5 M
KCl with the liposomes suspended in a 0.5-M NaCl solution. The conductance
of bisgramicidin channels under these conditions is approximately 20 pS.

gramicidin channels. So the measured current is of the order500

of tens of picoamperes and measurement noise becomes a501

significant issue. The combined response of these channels502

yields a finite-state signal that can be modeled as a finite-state503

Markov chain (see [21] for details). The current pulses that504

generate this finite-state signal are thought to arise from con-505

formational interconversion in the bisgramicidin A secondary506

structure [22]. The measured biosensor signal can be modeled as507

a noisy finite-state Markov chain, i.e., a hidden Markov model508

(HMM) [15]. Modeling the noise is a challenging task. It arises509

from thermal noise, the antialiasing effect from sampling, and510

an open channel noise with its power proportional to the inverse511

of frequency. Fig. 8 shows the power spectral density of a typi-512

cal sequence of biosensor recordings, and shows that the power513

decreases at a rate of −10 dB/dec at low frequencies, indicating514

the presence of 1/f noise. This 1/f noise is discussed in other515

studies of bisgramicidin A ion channels, see [23]. To model516

this correlated noise process, we used an autoregressive (AR)517

Gaussian process that comprises white Gaussian noise process518

Wk filtered by an all-pole filter, see [21] for the use of Ljung-box519

test for model adequacy.520

Having verified the adequacy of the HMM for representing521

the biosensor current, it is straightforward to construct an HMM522

maximum-likelihood classifier to detect analyte molecules. We523

Fig. 8. Power spectral density of biosensor response clearly shows the 1/f
open channel noise and the antialiasing effect.

refer to [21] for details of the HMM classifier equations and 524

performance of the biosensor on experimental data. 525

V. CONCLUSIONS AND EXTENSIONS 526

In this paper, we constructed models for the electrical, chem- 527

ical, and analyte mass transport dynamics of the ICS biosen- 528

sor. The chemical kinetics of the biosensor were modeled as a 529

two-timescale nonlinear dynamical system in the reaction-rate- 530

limited case. Using singular perturbation theory, we explained 531

mathematically the experimentally observed behavior of the 532

biosensor to analyte concentration. For low analyte concentra- 533

tions, mass transport dynamics became the dominant design 534

constraint. By comparing with the experimental response, we 535

showed that the mass transport flow model coupled with chem- 536

ical kinetics accurately predict the biosensor response. Finally, 537

for micro-sized electrodes, we described how statistical sig- 538

nal processing algorithms can be use to classify the analyte 539

concentration. 540

When employing antibodies or other well-defined receptors, 541

stochastic detection in conjunction with spatial analysis across 542

an electrode array can yield improved sensitivity in the biosen- 543

sor. An extension of this study is to examine the coherence of 544

channel noise across such an array of electrodes. We anticipate 545

an improvement in detection threshold proportional to N rather 546

than
√

N , where N is the number of independently read elec- 547

trodes in the array. Such enhanced versions of the biosensor 548

will yield performance closer to the capabilities of antennae in 549

moths and the olfaction receptor epithelia in dogs. 550
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