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Recursive Algorithms for Estimation of Hidden
Markov Models and Autoregressive Models With

Markov Regime
Vikram Krishnamurthy, Senior Member, IEEE, and George Gang Yin, Senior Member, IEEE

Abstract—This paper is concernedwith recursive algorithms for
the estimation of hidden Markov models (HMMs) and autoregres-
sive (AR) models under Markov regime. Convergence and rate of
convergence results are derived.Acceleration of convergence by av-
eraging of the iterates and the observations are treated. Finally,
constant step-size tracking algorithms are presented and exam-
ined.

Index Terms—Convergence, hidden Markov estimation, rate of
convergence, recursive estimation.

I. INTRODUCTION

MOTIVATED by many important applications in signal
processing, speech recognition, communication sys-

tems, neural physiology, and environment modeling, in this
paper, we consider recursive (online) estimation of the param-
eters of hidden Markov models (HMMs) and jump Markov
autoregressive systems (also known as autoregressive processes
with Markov regime), and develop stochastic approximation
algorithms to carry out the estimation task. Our main effort
is to prove the convergence and rate of convergence of these
recursive estimation algorithms.
An HMM is a discrete-time stochastic process with two com-

ponents such that is a finite-stateMarkov chain
and given , is a sequence of conditionally indepen-
dent random variables; the conditional distribution of de-
pends only of . It is termed a hidden Markov chain since

is not observable and one has to rely on for any
statistical inference task. Such models have been widely used
in several areas including speech recognition and neurobiology;
see [34] and the references therein.
In this paper, we consider both the standard HMMs and the

more general autoregressive models under Markov regime, in
which the autoregressive parameters switch in time according to
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the realization of a finite-state Markov chain, which are widely
used in econometrics [15]–[17], statistical signal processing,
and maneuvering target tracking (see [21] and the references
therein). For such models, the distribution of the observables
depend not only on , but also on . Equiv-
alently, is obtained by a regression on ,
where is the order of regression. The regression functions in-
volved can be either linear or nonlinear. Our objective is to de-
sign and analyze the properties of recursive estimators for the
parameters of such autoregressive (AR) processes with Markov
regime. Strong consistency of the maximum-likelihood (ML)
estimator for AR processes with Markov regime was recently
proved in [21]. Compared with that reference, our effort here is
on the analysis of asymptotic properties of recursive algorithms
for parameter estimation.
Recently, Rydén [35], [36] proposed a batch recursive

algorithm for parameter estimation of standard HMMs. His
main idea is to use a stochastic approximation type algorithm
on batches of data of length . He proved the consistency
by using the classical result of Kushner and Clark [22]; he also
suggested an averaging approach in light of the recent develop-
ment due to Polyak [33] and Ruppert [37] (see also [24] and
[44]). LeGland and Mevel [29] have proved the consistency of
a stochastic approximation algorithm for parameter estimation
of HMMs called the recursive maximum-likelihood estimation
(RMLE) algorithm. The RMLE algorithm in [29] has the
advantage over the recursive-batch approach in [35] in that it is
truly recursive. In Dey, Krishnamurthy, and Salmon-Legagneur
[11] and Holst, Lindgren, Holst, and M. Thuvesholmen [19],
stochastic approximation algorithms are presented for esti-
mating the parameters of AR processes with Markov regime.
However, these papers only provide simulation results of
these algorithms and no proof of convergence or asymptotic
normality is given. For the special case when the observations

belong to a finite set (i.e., is a probabilistic function
of a Markov chain), Arapostathis and Marcus [1] derived and
analyzed recursive parameter estimation algorithms.
The main contributions of this paper are as follows.

1) We present the asymptotic analysis of the recursive max-
imum-likelihood estimation (RMLE) algorithm for esti-
mating the parameters of HMMs and AR processes with
Markov regime. We extend and generalize the results in
[29] to ARmodels withMarkov regime. Note that it is not
possible to extend the batch recursive algorithm and the
analysis in [35] to AR models with Markov regime. This
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is because the algorithm in [35] requires precise knowl-
edge of the distribution of the state given past measure-
ments at time instants , where .
In the RMLE algorithm presented in this paper, the initial
distribution of the state (at time ) given past observations
is forgotten exponentially fast and hence is asymptotically
negligible.
In Section III, we study the convergence and rate of

convergence issues. Different from that of [29] and [35],
we use state-of-the-art techniques in stochastic approxi-
mation (see Kushner and Yin [25]). As a result, the as-
sumptions required are weaker and our formulation and
results are more general than that of Rydén [35], [36]
and LeGland andMevel [29] because we are dealing with
suitably scaled sequences of the iterates that are treated
as stochastic processes rather than random variables. Our
approach captures the dynamic evolution of the RMLE
algorithm. As a consequence, using weak convergence
methods we can analyze the tracking properties of the
RMLE algorithms when the parameters are time varying
(see Sections III and V for details).

2) In Section IV, a modified version of the RMLE algorithm
that uses averaging in both the observations and the it-
erates for accelerating the convergence rate is given and
analyzed.

3) In Section V, a constant step size version of the RMLE
for tracking variations in the parameters of HMMs and
AR processes with Markov regime is analyzed.

4) In Section VI, numerical examples are presented that il-
lustrate the performance of the algorithms for both linear
and nonlinear AR processes with Markov regime.

II. PROBLEM FORMULATION

A. Signal Model for HMM and AR Model With Markov Regime
Our signal model is defined on the probability space

as follows. Let be a Markov chain with
finite state space , where is fixed and known.
For , the transition probabilities

are functions of a parameter (vector) in a compact subset
of an Euclidean space. Write .
For the AR model with Markov regime, for , the ob-

served real-valued process is defined by

where is a family of real-valued functions on
, indexed by a parameter , is a scalar se-

quence of independent and identically distributed (i.i.d.) random
variables, is a fixed and known integer, and is a Eu-
clidean space with coordinate projections ,
where . We will discuss the distribution of the ini-
tial vector below. Assume that at each time

, each conditional distribution has a density with re-
spect to (w.r.t.) the Lebesgue measure and denote this density

by . Let be the dimension of the
vector-valued parameter . Other than Section V (where we
consider tracking algorithms), we assume that there is a fixed

, which is the “true” parameter. Our objective is to de-
sign a recursive algorithm to estimate .
In the HMM case, the observed real-valued process

is defined by

Clearly, it is a special case of the above AR model with .

Remark 2.1: For notational simplicity, we have assumed that
and are scalar-valued. The results straightforwardly

generalize to vector-valued processes.

Notation: For notational convenience let
(1)

For the HMM case, , i.e., . In the subsequent
development, we often use as a generic positive constant; its
values may change for different usage. For a function , we
use both and to denote the partial derivative with
respect to . For a vector or a matrix , denotes its trans-
pose. For an integer , let and , respectively, denote the
-dimensional column vector in which each element is and ,
respectively.
Define the -dimensional vector and matrix

by

and

where

(2)
Let the conditional probability distribution of

under be defined as

It is straightforward to show that [21]

The initial choice of is unimpor-
tant since it does not affect the convergence analysis of the es-
timators—it may be taken as an arbitrary stochastic vector with
positive entries. (The idea of substituting the true likelihood by
the conditional likelihood given an initial sequence of observa-
tions goes back to Mann and Wald [31].)
Preliminary Assumptions: Throughout the rest of the paper,

we assume the following conditions hold.

C1) The transition probability matrix is positive, i.e.,
for all for some

known .The process
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is a geometrically ergodic Markov chain on the state
space under . Let denote the unique
invariant measure of .

Remark 2.2: For the HMM case, C1) can be relaxed to the
condition that the transition probability matrix is aperi-
odic and irreducible, see [27].
For the AR model with Markov regime, in general, it is diffi-

cult to verify the geometric ergodicity of for a given param-
eter . In [43], it is shown that for the model

is -uniformly ergodic under the following conditions (note
that -uniform ergodicity implies geometric ergodicity).

i) Sublinearity: The mappings

are continuous and there are positive constants and
such that for some norm on

ii) For some , for . The spectral
radius where

...
...

...

iii) The marginal density of is positive.

The -uniform ergodicity in turn implies that the following
strong law of large numbers and central limit theorem holds for
. Let denote a Borel measurable function

with where for ,

A) The following strong law of large numbers holds for
:

a.s.

B) Define and

Then for all , is well defined, nonneg-
ative, and finite. If then the following central
limit theorem holds:

in distribution

For simplicity, sometimes we write in lieu of
.

C2) The mapping is twice differentiable
with bounded first and second derivatives and
Lipschitz continuous second derivative. For any

, the mapping is
three times differentiable. is continuous on

for each .

C3) For each , the conditional probability cor-
responding to the true parameter,

is continuous in and is strictly
positive w.p. .

Remark 2.3: Assumption C3) is a sufficient condition for
identifiability of for linear AR models with Markov regime
when are normally distributed; see Remark 2.10 below.

Example 2.4 (Linear ARModelWithMarkov Regime): The
fully parameterized linear case with Markov regime may be de-
scribed by letting be the set of stochastic matrices

(3)
and with and being the coordinate pro-
jections, that is, and .
The innovations may have, for example, a standard normal
distribution, in which case is the den-
sity of the normal distribution with mean

and variance . C1) holds under conditions ii) and iii)
of Remark 2.2. C2) is satisfied if the marginal density of is
continuous and has bounded derivatives w.r.t. . Finally, C3)
holds if C1) holds and the marginal density of is positive,
continuous, bounded, and has bounded derivatives w.r.t. ; see
the examples provided in [21] and also [6] and [7] for further
details.

Example 2.5 (HMM): Using similar notation as in the
above example, this is straightforwardly described with as
above and

where and where , are often
referred to as the “state levels” of the HMM.

B. HMM Prediction Filter
In the sequel, our RMLE algorithm will be based on predic-

tion filters for the state of the Markov chain. For all ,
define the -dimensional column vector

where

denotes the predicted density of the Markov chain at time
given observations until time . It is straightforward to show
that this predicted density can be recursively computed as

(4)
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initialized by some . The above equation is commonly
referred to as the HMM prediction filter, “forward” algorithm,
or Baum’s equation [34]. Let denote the simplex in which

resides.
Let denote the partial derivative of

with respect to the th component of the -dimensional
parameter vector . Define the matrix

Clearly, belongs to defined by

Differentiating with respect to yields

(5)

where

Under the measure , the extended Markov chain
has the transition kernel

For any positive integer , each , and any real-valued
function on , define

Let denote the set of locally Lipschitz continuous functions
on in the sense that there

exist nonnegative and satisfying

(6)

for any and any , such that

(7)

We now make the following assumption.

C4) Under , the extended Markov chain

that resides in is geometrically
ergodic. Consequently, it has a unique invariant proba-
bility distribution under the measure . Thus, for
any and for any function

in , we assume

(8)

where the constant is defined as

Due to the above geometric ergodicity, the initial values
and are forgotten exponentially fast and are hence

asymptotically unimportant in our subsequent analysis.

Remark 2.6 (HMM Case): Recall that in this case,
and . The geometric ergodicity of

is proved in [27]. We briefly summarize their results here.
Define for any and

(9)

where denotes the true parameter. It is shown in [27] that for
a locally Lipschitz function the followng holds.
A sufficient condition for geometric ergodicity of

is that C1) holds, and the mapping is locally
Lipschitz for any [27, Assumption C] and is
finite. A sufficient condition for to be locally
Lipschitz is is finite (see [27, Example 4.3]). Note that if
the noise density , , is Gaussian, then , ,
and are finite for .

Remark 2.7 (AR Model With Markov Regime): The above
conditions on do not directly apply to AR models with
Markov regime. In [13], weaker sufficient conditions are
given for the exponential forgetting of . We summarize
this result and outline how it can be used to show geometric
ergodicity of .

As in [13, Assumption A1], assume in addition to C1) that
for , , and

and
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Suppose and are predictors with initial conditions
and , respectively. Then it is proved in [13, Corol-

lary 1] that

(10)

Compared with the results of [27], is observation independent.
As a consequence, starting from (10) one can obtain the geo-
metric ergodicity of along the lines
of [27, Secs. 3 and 5] as follows.

• By exactly the same steps as the proof of [27, Proposition
3.8], one can establish that for any locally Lipschitz func-
tion ,

(11)
In [27], the exponent for the exponential forgetting
of depends on the observations—hence
integrability conditions such as are required. In
comparisonwith the exponential forgetting (10), it follows
from (11) that [27, Proposition 3.8] holds.

• The proof of geometric ergodicity of
then follows along the lines of [27, Theorem 3.6], but the
argument is much simpler because is observation inde-
pendent.

• As in [27], assume that is Lipschitz con-
tinuous in . Assuming C1) and (10), the geometric ergod-
icity of follows along the same
lines as [27, Sects. 4 and 5]. In particular, for
where , define
and . Then the inte-
grability conditions

and

for all are sufficient for geometric ergodicity of
.

C. Kullback–Leibler Information
The conditional log-likelihood function (suitably normal-

ized) based on the observations is

It is straightforward to show that the conditional log likeli-
hood can be expressed as the sum of terms involving the obser-
vations and the observed state (prediction filter) as follows:

(12)

For the HMM case, under assumptions C1) and C4), [27, Ex-
ample 3.4] shows that the is locally Lips-
chitz if and are finite. This and the geometric ergodicity
yield that the following strong law of large numbers holds.

Proposition 2.8 (HMM Case): Under assumptions C1),
C2), and C4), if and are finite, then for any
there exists a finite such that

w.p. as

where

and denotes the marginal density of the invariant measure
defined on .

For the AR case withMarkov regime the following strong law
of large numbers holds—see [13, Proposition 1] for proof.

Proposition 2.9 (AR With Markov Regime): Under C1),
C2), and C4), with if
and for all then for any

there exists a finite such that

w.p. as

where

and denotes the marginal density of the invariant measure
defined on .

Recall that is the true parameter that we are seeking. Under
C1)–C4), define for any the Kullback–Leibler informa-
tion as

We have proved in [21] that belongs to the set of global
minima of

(13)

In addition, the ML estimator (MLE)

is strongly consistent.

Remark 2.10 (Identifiability in Linear AR Case): Consider
the linear AR process with Markov regime of Example 2.4.
Assume is normally distributed. Assume that the true
model vectors are distinct, so that for
each , there exists a point such
that are distinct. Then
using C3, it is proved in [21, Example 3] that is uniquely
identifiable, in the sense that implies that
up to a permutation of indices.

D. RMLE Algorithm
To estimate , one can search for the minima of the Kull-

back–Leibler divergence . Assuming the function is
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sufficiently smooth, the parameter estimation problem is con-
verted to finding the zeros of . In this paper, we use
a recursive algorithm of stochastic approximation type to carry
out the task.
Recalling that the symbol denotes transpose and differenti-

ating the terms within the summation in (9) with respect to
yields the -dimensional “incremental score vector”

with

(14)
where

(15)

with and defined by (4) and (5), respectively. The RMLE
algorithm takes the form

(16)

In (13), is a sequence of step sizes satisfying
and , is a convex and compact set, and
denotes the projection of the estimate to the set . More pre-
cise conditions will be given later. Note that in (13), following
the usual approach in stochastic approximation, we have col-
lected in . This enables us to treat as a noise
process. Our task to follow is to analyze the asymptotic proper-
ties of (13). Moreover, we also examine its variant algorithms.

III. ASYMPTOTIC PROPERTIES

The objective of this section is to analyze the convergence and
rate of convergence of the RMLE algorithm proposed in the pre-
vious section. In what follows, we use the results in [25] when-
ever possible with appropriate references noted. For the conver-
gence analysis, we use the ordinary differential equation (ODE)
approach that relates the discrete-time iterations of the RMLE
algorithm to an ODE. For rate of convergence, we present a
weak convergence analysis to examine the dependence of the
estimation error on the step size . We answer the
question for what real number , converges to a
nontrivial limit.
Note that our formulation and results are more general than

that of Rydén [35], [36] because we are dealing with suitably
scaled sequences of the iterates that are treated as stochastic pro-
cesses rather than random variables. Our approach captures the
dynamic evolution of the RMLE algorithm. As a consequence,
we can analyze the tracking properties of the RMLE algorithms
when the parameters are time varying, which is done in Sec-
tion V.

A. Preliminaries
First rewrite the first equation in (13) as

(17)
where is the projection or correction term, i.e., it is
the vector of shortest Euclidean length needed to bring

back to the constraint set if it ever

escapes from (see [25, p. 89] for more discussion). For future
use, denote by the algebra generated by ,
and let denote the conditional expectation with respect to
.
Constraint Set: Let , , be continuously dif-

ferentiable real-valued functions on . Without loss of gener-
ality, let if . Let the constraint set
be

and assume it is connected, compact, and nonempty. A con-
straint is active at if . Define , the set of
indexes of the active constraints at , by
. Define to be the convex cone generated by the set of

outward normals . Suppose
for each , is linearly
independent. If for all , then contains only the
zero element.
To prove the convergence of the algorithm, we use the ODE

approach (see Kushner and Clark [22]); the following devel-
opment follows the framework setup in [25]). Take a piece-
wise-constant interpolation of as follows. Define and

, and
unique for

for .
Let

for
for for .

Define the sequence of shifted process by
for

Define and by

for
and

for

.

Using such interpolations, one then aims to show
is equicontinuous in the extended sense

[25, p. 73] and uniformly bounded. By the Ascoli–Arzelá
theorem, we can extract a convergent subsequence such that its
limit satisfies a projected ODE, which is one whose dynamics
are projected onto the constraint set .
Projected ODE: Consider the projected ODE

(18)
where , and is the projection or con-
straint term. The term is theminimum force needed to keep

. Let be a limit point of (15), ,
and . The points in are
termed stationary points. When , the interior of , the
stationary condition is , and when

, the boundary of , . For more dis-
cussion on projected ODE, see [25, Sec. 4.3] for details. A set
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is locally asymptotically stable in the sense of Liapunov
for (15), if for each , there is a such that all trajec-
tories starting in never leave and ultimately stay
in , where denotes an neighborhood of .

B. Convergence
Assume the following conditions are satisfied.

A1) Conditions C1)–C4) hold.
A2) For each , is uniformly integrable,

, is contin-
uous, and is continuous for each . There exist
nonnegative measurable functions and such
that is bounded on bounded set, and

such that as and

for some

In the above, the expectation is taken w.r.t. the -param-
eterized stationary distribution.

A3) Suppose that is a subset of and is locally
asymptotically stable. For any initial condition
, the trajectories of (15) goes to .

Remark 3.1: For the HMM case, A2) holds if the marginal
density of is Gaussian. A sufficient condition for the uniform
integrability and Lipschitz continuity in A2) is that , ,
and in (8) are finite; see [29].
Consider the AR case with Markov regime: A2) is easily ver-

ifiable for the AR(1) linear case (i.e., in (3))

where

Suppose is a sequence of i.i.d. Gaussian random variables
with zero mean and finite variance . It is easily seen that for
each , is continuously differentiable
w.r.t. with bounded derivatives and hence it is Lipschitz con-
tinuous. It is also clear that the Lipschitz constant depends on

. Thus, by using (4), (5), and (11), A2) is verified.
Higher order linear ARmodels withMarkov regime (i.e., )
can be treated in a similar way with more complex notation.
Regarding the uniform integrability, suppose that for each

, for some . Then the
uniform integrability is verified. If is bounded by
an integrable random variable in the sense

then is also uniformly integrable. More specifically,
if satisfies the condition (6) with verifies

(19)

in lieu of (7), and given by (1) is uniformly integrable, then
the desired uniform integrability can be verified via the use of
Cauchy–Schwarz inequality. In [13, Theorem 2 and Lemma 10]
sufficient conditions are given for for the

AR case with Markov regime. Such conditions also guarantee
the uniform integrability of .

Lemma 3.2: Under the conditions A1) and A2), for each ,
each , and some

(20)

Remark 3.3: To prove the consistency of stochastic approxi-
mation algorithms, a crucial step is to verify that condition (17)
holds. Such conditions were first brought in by Kushner and
Clark in [22]; it is summarized in the current form and referred
to as “asymptotic rate of change” in [25, Secs. 5.3 and 6.1].
These conditions appear to be close to the minimal requirement
needed, and have been proved to be necessary and sufficient
condition in certain cases [42]. To verify this condition, we use
the idea of perturbed state or perturbed test function methods.
Note that our conditions are weaker than that of [35]. Only finite
first moment is needed.

Proof of Lemma 3.2: We use a discounted perturbation.
The use of perturbed test function for stochastic approximation
was initiated by Kushner, and the discounted modification was
suggested in Solo and Kong [39]. For future use, define

For each , define as

and

Then by noting that
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Note that by telescoping

It yields that

Therefore,

as

Owing to A2)

and

so

converges w.p.

and

w.p.

Similarly,

w.p.

and

w.p.

Consequently, w.p. as . Likewise,

and hence w.p. as . As a result,
w.p.

and
w.p.

Therefore, the asymptotic rate of change of

is w.p. as

The proof of the lemma is concluded.

Theorem 3.4: Assume conditions A1) and A2). There is a
null set such that for all , is
equicontinuous (in the extended sense as in [25, p. 73]). Let

denote the limit of some convergent sub-
sequence. Then the pair satisfies the projected ODE (15), and

converges to an invariant set of the ODE in .
Assume A3). Then the limit points are in w.p. . If,

in particular, , and visit infinitely
often w.p. , then w.p. .

Proof: The proof follows fromLemma 3.2, [25, Theorems
6.1.1 and 5.2.2].

Remark 3.5: In view of [22, Theorem 5.3.1], the set of sta-
tionary points of (15) is the set of Kuhn–Tucker points

KT there exist such that

As observed in [21], for linear AR processes with Markov
regime, the only global minima of are and possibly
also parameters equal to up to a permutation of states.

C. Rate of Convergence
Since our main concern here is the convergence rate, we as-

sume that , the interior of , and that converges to
w.p. . Suppose the following conditions hold.

A4) where either
a) or
b) .

A5) For each , for some
and is uniformly integrable.

A6) w.p. and is tight.
A7) a) has continuous partial derivatives for each

, is continuously differentiable, and
is Hurwitz (i.e., all of its eigenvalues

have negative real parts).
b) If A4) a) holds (in this case, ), then

is also Hurwitz.
A8) Denote . For , define

and such that

Remark 3.6: Assumption A4) is a condition on the step size.
Strictly speaking, it is not an assumption since the step size is
at our disposal. Typical examples include for some

, which satisfies a) in A4), and for some
, which satisfies b) in A4). It also covers a wide

variety of other cases.
In the HMM case, a sufficient condition for A5) to hold is that
, , , and are finite, see [29, Assumption B′].

These hold for example, when is a sequence of Gaussian
noises.
Condition A5) can be verified for linear Gaussian autoregres-

sive processes with Markov regime. Consider the AR(1) case
, where the meaning and conditions of
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the parameters are as in Remark 3.1. In view of the discussion
in Remark 2.4, it is easily seen that

and

Since a normal distribution has finite moments of any order

and

In view of (4), (5), and (11), . Higher
order linear AR models with Markov regime (i.e., ) can
be treated in a similar waywithmore complex notation. Themo-
ment condition is needed in functional central limit theorem; see
[5], [14]. If the noise has moment generating function, then
all moments are finite. In the Gaussian case, it is characterized
by the first two moments.
Again, we can supply sufficient conditions ensuring the uni-

form integrability. For example, as in the discussion in Remark
3.1, in view of (6), if is uniformly integrable and
verifies

(21)

in lieu of (16), the uniform integrability can be verified by use
of Hölder inequality.
Condition A7) ensures the limit stochastic differential equa-

tion (22) is asymptotically stable. That is, is a stable matrix
(see the definition of in Theorem 3.9). Such a stability is nec-
essary for the rate of convergence study; see the discussion after
Theorem 3.9, in particular, the asymptotic covariance represen-
tation (23).
The smoothness condition of is used for convenience

only. Aiming to obtaining local limit result, the only require-
ment is that is locally linearizable by a stable matrix. The
smoothness assumption can be replaced by

(22)

where is a stable matrix (the real parts of its eigenvalues are
all negative). Under (19), all the subsequent development goes
through with replaced by . Note also that the form
of (19) is a standard condition used in stochastic approxima-
tion. Finally, [13] provides a central limit theorem for the score
vector.
Condition A8) simply says that the correlation decays suffi-

ciently fast. It is shown in [27, Example 5.2] that for the HMM
case, if defined in (8) is finite, then is locally
Lipschitz. As a result, is geometrically ergodic. For
the AR case if is locally Lipschitz in , i.e., (6) holds
then is geometrically ergodic and satisfies (8). For the
linear Gaussian AR case with Markov regime, A8) is easily ver-
ifiable; see also the remarks about A2). The condition we pro-

posemodels that of amixing process. As indicated in [5, p. 168],
for example, themixing condition is satisfied for aMarkov chain
that verifies a Doeblin condition, has one ergodic class, and is
aperiodic; the condition is also satisfied for certain functions of
mixing processes.
The tightness of the rescaled sequence can be verified by

using a perturbed Liapunov function method. Sufficient condi-
tions can be given. In fact, in Section IV, we will prove such an
assertion. We assume this condition here for simplicity.
By the smoothness of , a Taylor expansion leads to

and

Since w.p. and , the reflection term can be
effectively dropped for the consideration of rate of convergence;
we do so henceforth. Using , we obtain

(23)

where in probability due by use of the Taylor ex-
pansion and the uniform integrability of . Now
define

where Let be the piecewise-
constant interpolation of on .

Lemma 3.7: Under A1), A5), and A7), for each

w.p. , as

w.p. as

Proof: Note

By A1), is stationary and ergodic. Thus
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converges w.p. to

The first assertion is verified.
Since is uniformly integrable, byA5), the

dominated convergence theorem then yields

w.p. .

The second assertion is also proved.

Lemma 3.8: Under A1), A5), and A8), converges
weakly to a Brownian motion with covariance where

(24)

Proof: Note that

Since

by virtue of A8), and

It follows from the tightness criterion (see [14], [23]), is
tight in .
By Prohorov’s theorem (see [5], [14]), we can extract a con-

vergent subsequence. Do so and for simplicity, still index it by
with limit denoted by . For any bounded and continuous

function , any integer , any real numbers , , and any
for , we have that are measur-

able and

as
Owing to A5), is uniformly integrable. This together
with the estimate above and the weak convergence implies

Thus, is a continuous martingale. Next consider its
quadratic variation. We have

as

where is given by (21). Therefore, the limit is a
Brownian motion with covariance as desired. Since the
limit does not depend on the chosen subsequence, the lemma
follows.

To carry out the weak convergence analysis, an appropriate
way is to truncate the dynamics of and works with a trun-
cated version with first. One then proceeds
with proving the tightness and weak convergence of
and finally passing the limit to (see [23], [25] for ref-
erences). Using the lemmas above, carrying out the details as
in [25, Sections 10.1 and 10.2], we establish the following the-
orem.

Theorem 3.9: A1), and A4)–A8). Then the sequence
converges weakly in

to , where is a Brownian motion with covari-
ance and is stationary such that

(25)
where

under A4) a)
under A4) b).

Remark 3.10: In the sense of equivalence of probability dis-
tribution on , we can write

which is the stationary solution of (22). The reason for using
is mainly because it allows us to write

as in the above representation involving the entire past of the
Brownian motion (see [25, Ch. 10] for further details).
Note that the above theorem effectively gives the rate of con-

vergence result. That is, it gives the order of the scaling, namely,
and the asymptotic covariance. To further illustrate, rewrite

(22) as

where is a standard Brownian motion. The asymptotic co-
variance of the underlying process is a solution of the al-
gebraic Liapunov equation , and has the
following representation:

(26)

An immediate consequence is that as

i.e., it is asymptotically normal with asymptotic covariance .
The result we have obtained is more general than that of [35].
First it is from a stochastic process point of view, and focuses on
trajectories of the normalized sequence of the estimation errors.
Second, it coves a broad range of step-size sequences.
Note that the step sizes have a major influence on the rate of

convergence. This is clearly seen from the representations of
corresponding to assumptions A4) a) and A4) b), respectively;
see also the related work [45] for the rate results for global op-
timization algorithms.
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IV. CONVERGENCE ACCELERATION BY ITERATE AND
OBSERVATION AVERAGING

For designing recursive algorithms, to improve the asymp-
totic efficiency is an important issue. The effort for analyzing
stochastic approximation type of algorithm in this direction can
be traced back to that of Chung [9]. Suppose that
for some and that there is a unique asymptotic stable
point in the interior of . Then is asymptot-
ically normal. Among the ’s given above, the best one is
as far as the scaling factor is concerned. If one uses ,
then it can be demonstrated that the best choice of is the in-
verse of the gradient of evaluated at . This quantity
is normally not available. One could construct a sequence of es-
timates, but the amount of computation is often infeasible, espe-
cially for many applications we encounter in the hiddenMarkov
estimation. In addition, from a computation point of view, one
may not wish to use a rapidly decreasing sequence of step sizes
decaying as since this produces a very slowmove-
ment in the initial stage.
Taking these into consideration, an approach of using iterate

averaging was suggested in Polyak [33] and Ruppert [37] in-
dependently. The idea is that after using a larger than
step-size sequence in an initial estimation, one takes an average
of the resulting iterates yielding asymptotic optimality. Their re-
sults were extended in Yin [44] for mixing type of signals, and
generalized further in Kushner and Yang [24] together with an
explanation on why the approach works well using a two-time
scale interpretation. Meanwhile, Bather [2] suggested another
approach that requires the use of not only the iterate averaging
but also the averaging in the observation. Schwabe [38] exam-
ined further this approach. The convergence and asymptotic op-
timality were obtained in Yin and Yin [46] for correlated noise.
Treating the HMM estimation problem, Rydén [35] sug-

gested to adopt the iterate averaging to improve the efficiency of
the estimation scheme. In this paper, motivated by the work [2],
we use an averaging approach with averaging in both iterates
and observations. This approach seems to have a smoothing
effect that is useful for the initial stage of approximation.
Henceforth, for notational simplicity, we take the initial time of
the iteration to be and consider an algorithm of the form

(27)

where is the same constraint set as given before. Note that the
algorithm above has the two-time scale interpretation; see [24]
(see also [4] and [25]). Rewrite the first equation above as

(28)

where is the projection term. We proceed to analyze the
above algorithm.

A. Convergence
In what follows, we take with .

More general step size sequences can be treated. The particular

form of the step sizes are selected to simplify the argument and
notation in the proof. Note that strictly speaking, (25) is not a
recursion for in the usual stochastic approximation setting.
First, let us rewrite it in a more convenient form.
In view of the definition in (25), taking difference of
and using

we arrive at

for (29)
where .
In [46], dealing with an unconstrained algorithm, we used a

recursive formulation similar as above, and examined an aux-
iliary sequence that is known to converge. Then we compared
the difference of the estimates with that of the auxiliary process,
and upper-bounded their difference by means of Gronwall’s in-
equality. Here we use a somewhat different approach and treat
(26) directly. Define and the same as before. We
have the following result.

Theorem 4.1: Under the conditions of Theorem 3.4, its con-
clusions continue to hold for (24).

Proof: Define , , and on
as the piecewise-constant interpolations of the second, the third,
and the fourth terms on the right-hand side of the equality sign
of (26); for , these terms are

Then we have

By applying Lemma 3.2 to each of the functions above, we
conclude that there is a null set such that for all ,

is equicontinuous (in the extended sense
[25, p. 73]). Extract a convergent subsequence with index
and limit . We proceed to characterize the
limit.
Work with a fixed sample path for , and suppress the
dependence. For , with given , split into

three terms
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where denotes the integer part of . As , it is
easy to see that

For , by A2), we have

as and

We next analyze the third term. In view of Lemma 3.2, for
each fixed

w.p. .

What we need to do now is to approximate by some fixed
. To do so, for given , let be a finite collec-
tion of disjoint sets with diameter smaller than , and
for , and . Write

For fixed , as , the above term goes to by Lemma
3.2. It then follows that the limit is zero as and then

.
Using the same technique, we can show and

as . The desired limit then follows.

B. Asymptotic Optimality
To proceed, we demonstrate the averaging algorithm is

asymptotically efficient. In what follows, assume that
w.p. , and . Thus, the boundary of , namely, ,
is reached only a finite number of times. Without loss of
generality, we drop the reflection term and assume the
iterates are bounded and in .
Estimate of : The estimate is of stability type.

We use the perturbed Liapunov function method that is to add
a small perturbation to a Liapunov function. The purpose of the

addition of the small perturbation is to result in desired cancel-
lations. Define the perturbations and by

(30)

respectively, where

and

Their use will be clear from the subsequent development.

Theorem 4.2: Assume that A1), A2), and A5)–A8) hold, for
sufficiently small

(31)
and

(32)

Then and
for large enough.

Proof: Use a Taylor expansion

where

Rewrite (26) as

(33)

The w.p. convergence of to , A2), and the uniform
integrability of imply that w.p. . Let
be sufficiently small. Given small enough, there is an

such that for all

and w.p. (34)

By modifying the process on a set of probability at most , we
may suppose that (31) holds for all and all condi-
tions hold for themodified process. Denote themodified process
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by . The tightness of will imply the tightness of
. Thus, for the tightness proof, without loss of gener-

ality, assume the original process itself satisfies inequality
(31).
Since is Hurwitz, by virtue of the inverse Liapunov

stability theorem, for any symmetric and positive definite ma-
trix

has a unique solution that is symmetric and positive definite.
Choose a pair of symmetric and positive-definite matrices
and such that where
and and denote the maximum and minimal
eigenvalues of a symmetric and positive-definite matrix , re-
spectively.
Define a Liapunov function by

Then

(35)

Given , denote to be such that as and

Define the perturbed Liapunov function by

Then in the calculation of , three
negative terms cancel that of the terms on the third, the fourth,
and the fifth lines of (32). Since

we obtain

(36)

Taking expectation and using the assumptions, detailed compu-
tation then leads to

where as . Recall that for
sufficiently small . Using (29), . It follows
that for

Iterating on the above inequality

This, in turn, yields that as desired.
Thus, the estimate for is obtained. The estimate

for can be obtained similarly with the use of the
recursion for .

Asymptotic Normality: First, we deduce an asymptotic
equivalency which indicates that has a very
simple form. Then the asymptotic normality follows.
Note that the algorithm as a recursion for is

Define and . We then obtain

(37)
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Define a matrix-valued product as

.
Writing down the solution of (34) in its variational form leads

to

(38)

Lemma 4.3: Assume the conditions of Theorem 4.2. Then
the following assertions hold:
a) As

where in probability as .
b) Define

for

Then

where in probability uniformly in .
Proof: We prove only the first assertion. The second one

can be proved analogously. Examine (35) term by term. Let us
begin with the last term. Using Theorem 4.2 and the bounded-
ness of

as

We also have (by using Theorem 4.2),

as
and

as

For the term on the second line of (35), using a partial sum-
mation

Since

where in probability as . Similarly, we have

in probability.
Thus, asymptotically the term on the second line of (35) is given
by

Theorem 4.4: Under the conditions of Lemma 4.3,
converges weakly to a Brownian motion with the optimal co-
variance , where is given by (21).

Proof: By virtue of the argument as in [24], [25], it can be
shown that converges weakly to a Brownian
motion. Owing to and the continuity of ,

. Likewise, it follows from A2) and the
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boundedness of the iterates,
as . Therefore, the covariance of the resulting Brownian
motion

Finally, by Slutsky’s theorem, the desired result follows.

Remark 4.5: An interesting problem to study concerns the
rates of convergence taking into consideration the computa-
tional budget devoted to the underlying computation. Such
problems were dealt with in [26]; see also the subsequent
generalization in [41].

V. CONSTANT STEP-SIZE TRACKING ALGORITHMS

In this section, we study algorithms with a constant step size,
i.e., . These algorithms can be used to track AR
model with Markov regime whose parameters vary slowly with
time. The pertinent notion of convergence is in the sense of weak
convergence (see [14], [23], [25]). The algorithm of interest is

Again a constraint set is used for the estimation scheme. In the
subsequent development, to save some notation, we often write

in lieu of for simplicity, and retain the dependence
whenever necessary. To proceed, rewrite the recursion as

(39)

where is the reflection or projection term.
Define the piecewise-constant interpolations by

for
for and

and
for

for

where is the integer part of .

Theorem 5.1: Suppose that converges weakly to
as , that for each , the stationary sequence

is uniformly integrable, that is
continuous for each , that and is
continuous, and that for each and each , as

in probability (40)

Then converges weakly to that is a solution of the
ODE (15), provided the ODE has a unique solution for each
initial condition.

Let be a sequence of real numbers such that
as . Then for almost all , the limit of
belongs to an invariant set of (15). If is asymptotically stable,
then the invariant set is in . In addition, suppose that

is the unique point such that . Then
converges weakly to .

Remark 5.2: Note that compared to the w.p. conver-
gence, the conditions here are much weaker. In fact, only
weak ergodicity in the form of (37) is needed. If the stronger
geometric ergodicity holds (see the sufficient conditions given
in Section III), then (37) is automatically satisfied. The proof
of the theorem essentially follows from the development of
[25, Ch. 8]. Owing to the projection, is bounded, so it
is tight. Then all the conditions in [25, Theorem 8.2.2] are
satisfied. The assertion follows. To proceed, we state a rate of
convergence result below.

Theorem 5.3: Suppose that the conditions of Theorem 5.1
hold, that there is a nondecreasing sequence of real numbers

satisfying as such that converges
weakly to the process with constant value , that there
exists such that is tight, and
that A5), A7) a), and A8) are satisfied. Define

for

for

Then converges weakly in to
, and

where is a Brownian motion having covariance with
given by (21).

VI. NUMERICAL EXAMPLES

We refer the reader to [10] for several numerical examples
that illustrate the performance of the RMLE and the recursive
expectation–maximization (EM) algorithm for HMMparameter
estimation. Also [11] presents several numerical examples that
illustrate the performance of the recursive EM algorithm in es-
timating AR processes with Markov regime. (The recursive EM
algorithm is identical to the RMLE algorithm apart from the fact
that it uses a different step size). Our aim here is to illustrate
the performance of the RMLE algorithm for parameter estima-
tion of AR models with Markov regime in two numerical exam-
ples. In [21], off-line ML parameter estimation was performed
on these two numerical examples.

Example 1: Linear AR Model With Gaussian Noise: Con-
sider a second-order ( ) AR model of the type

Let , , and let the true parameters be
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TABLE I
LINEAR CASE WITH NORMAL ERRORS

TABLE II
NONLINEAR AUTOREGRESSION WITH NORMAL ERRORS

The parameter vector can be taken as

i.e., . Fifty independent sample paths based on the above
model were generated. For each sample path, the RMLE algo-
rithm was run initialized at

Table I gives the sample means and standard deviations (in
parenthesis) over these 50 replications for various step sizes
with and without averaging.

Comments: The best results were obtained for . We
found that for the algorithms with iterate averaging and step
sizes of the form , , the RMLE algorithm became
numerically ill-conditioned for some sample paths. Averaging
of both observations and iterates appears to have better transient
characteristics.
Fixed-Step Size Tracking: The following time-varying linear

AR model was simulated:

Fig. 1 illustrates the tracking performance of the RMLE algo-
rithm for step sizes of and . The RMLE
algorithm was initialized at

Example 2: Nonlinear Autoregression With Gaussian
Noise: Here we consider a first-order nonlinear
autoregression of the type

where is an i.i.d. sequence of standard normal random vari-
ables.
Let , , and the true parameters be

The initial parameter estimate

was chosen as

Table II gives the sample means and standard deviations (in
parenthesis) over these 50 replications for various step sizes
with and without averaging.
Here is more difficult to estimate than , which might be

explained by the inequality ; the exponential function
decays faster and is thus smaller in comparison to

the noise for .
By conducting several numerical experiments for the above

nonlinear autoregressive model we noticed that the convergence
of the RMLE algorithmwas sensitive to initialization of . The
closer the initial value was picked to , the slower the
initial convergence of the algorithm. For initializations

and in the region and the algo-
rithm converged to the true parameter values within 40 000 time
points.
Fixed-Step Size Tracking: The following time-varying ver-

sion of the above nonlinear AR model was simulated:
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Fig. 1. Tracking performance of RMLE for linear AR model. Step sizes are and , respectively. The parameters are specified in Section VI.

Fig. 2 illustrates the tracking performance of the RMLE al-
gorithm for step sizes of

and

The RMLE algorithm was initialized at

VII. CONCLUSION AND EXTENSIONS

We have focused on developing asymptotic properties of re-
cursive estimators of stochastic approximation type for hidden
Markov estimation. Convergence and rate of convergence re-
sults are obtained for both decreasing and constant step-size
algorithms. In addition, we have demonstrated that algorithms
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Fig. 2. Tracking performance of RMLE for nonlinear ARmodel. Step sizes are and , respectively. The parameters are specified in Section VI.

with averaging in both iterates and observations are asymptoti-
cally optimal in the sense they have the best scaling factor and
achieve the “smallest possible” variances. For future research, it
is both interesting and important to design continuous-time re-
cursive estimators for hiddenMarkov estimation. It will be of in-

terest from a practical point of view to consider problems under
simulation based setting. Recent efforts in this direction can be
found in the work of Ho and Cao [18], Konda and Borkar [8],
L’Ecuyer and Yin [26], Tang, L’Ecuyer, and Chen [40] among
others.
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