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Abstract—This paper presents a game-theoretic approach to
node activation control in parameter estimation via diffusion least
mean squares (LMS). Nodes cooperate by exchanging estimates
over links characterized by the connectivity graph of the network.
The energy-aware activation control is formulated as a noncoop-
erative repeated game where nodes autonomously decide when
to activate based on a utility function that captures the trade-off
between individual node’s contribution and energy expenditure.
The diffusion LMS stochastic approximation is combined with
a game-theoretic learning algorithm such that the overall en-
ergy-aware diffusion LMS has two timescales: the fast timescale
corresponds to the game-theoretic activation mechanism, whereby
nodes distributively learn their optimal activation strategies,
whereas the slow timescale corresponds to the diffusion LMS. The
convergence analysis shows that the parameter estimates weakly
converge to the true parameter across the network, yet the global
activation behavior along the way tracks the set of correlated
equilibria of the underlying activation control game.

Index Terms—Adaptive networks, correlated equilibrium,
diffusion LMS, distributed estimation, game theory, stochastic
approximation.

I. INTRODUCTION

T HIS paper deals with a novel game-theoretic mechanism

by which nodes learn how to activate diffusion least mean

squares (LMS) [1], [2]. The diffusion LMS aims for a group

of nodes to estimate/track an unknown common parameter by

taking noisy measurements and relying solely on in-network

processing. Due to limited communication capability, nodes

can exchange information only with neighbors determined by

the connectivity graph. At successive times, each node: (i)

exchanges estimates with neighbors and fuses the collected

data via a pre-specified combiner function [3]; (ii) uses the
fused data and local measurements to refine its estimate via an
LMS-type adaptive filter. Performing data fusion on the same
timescale as the measurements enables the adaptive network to

respond in real-time to temporal and spatial evolution of the

data statistics [1], [4]. Due to measurement noise suppression

through ensemble averaging, such diffusion LMS schemes
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Fig. 1. Energy-aware diffusion LMS: (a) Local behavior, (b) Global behavior.

improve the estimation performance, yet yield savings in

computation, communication and energy expenditure.

Can one make such adaptive networks even more power-ef-

ficient by allowing each node to activate diffusion LMS only
when its contribution outweighs the activation cost? Consis-

tent with the decentralized essence of the diffusion LMS, we

resort to distributed activation mechanisms whereby nodes

autonomously make activation decision based on optimizing

a utility function. This utility function captures the trade-off

between the “value” of the data that activation of each node

provides and the costs associated with it. Nodes do not take

measurements and update estimates if they choose to sleep,

nor do they exchange and fuse neighboring estimates. Benefits
from developing such smart data sensing protocols are three-

fold: Staying sleep yields savings in energy, communication

and computational resources. Naturally, there exists a trade-off

between the convergence rate and how aggressively nodes

activate the diffusion LMS. This allows the network controller

to adjust nodes’ utilities such that the desired estimation/con-

vergence expectations (suited to the particular application) are

met.

The intertwined role of adaptation and learning, crucial to the

self-configuration of nodes, makes game-theoretic learning an
appealing theoretical framework, wherein sophisticated global

behavior can be guaranteed as the long-run outcome of nodes

locally groping for optimality. In this paper, we devise an en-

ergy-aware diffusion LMS by equipping nodes with a game-the-

oretic learning algorithm that prescribes nodes when to activate;

see Fig. 1(a).
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Main Results: Our main results in this paper are as follows:

1) An Ordinary Differential Equation Approach for Stability

Analysis of Diffusion LMS: Let denote

the vector of estimates for all nodes at time and represent

the true parameter. We show here that, by properly rescaling the

periods at which measurements and data fusion take place, one

can reformulate the diffusion LMS algorithm proposed in [1],

which reads

and
(1)

as a classical stochastic approximation algorithm with small

step-size of the form

(2)

In (1), denotes the transpose operator. This new formula-

tion allows us to use the ordinary differential equation (ODE)

method [5], [6] (perhaps the most powerful technique in the

analysis of stochastic approximation or recursive stochastic

algorithms) to show stability of diffusion LMS by affirming
asymptotic stability of the origin for an ODE associated

with the deviation error . This in turn implies

asymptotic consistency of the small step-size diffusion LMS

algorithm in (2). This approach brings about several advan-

tages: (i) simpler derivation of known results can be obtained

for the diffusion LMS; (ii) one can consider models with

correlated noise (as opposed to [1], [2], [4]); and (iii) the weak

convergence methods [6, Chapter 8] can be applied in the case

of time-varying true parameter.

2) Game-Theoretic Formulation for the Energy-Aware Acti-

vation Control: Energy-aware activation of the diffusion LMS

is formulated as a noncooperative repeated game with neigh-

borhood structure where nodes repeatedly face the decision as

whether to activate or sleep. Associated with each decision,

there corresponds a reward/penalty that captures the trade-off

between the “potential value” of the node contribution and its

energy cost. The set of correlated equilibria [7] is introduced as

the solution for this game.

3) Game-Theoretic Learning Mechanism for Energy-Aware

Diffusion LMS: A novel two time-scale stochastic approxima-

tion algorithm is proposed that combines the diffusion LMS

(slow timescale) with a game-theoretic learning algorithm (fast

timescale) for activation control; see Fig. 1(a). The game-the-

oretic activation mechanism is essentially a non-linear adap-

tive filter of regret-matching type [8], [9] that prescribes the
node whether to “activate” or “sleep” according to a random-

ized policy being updated based on perceived utilities. The pro-

posed energy-aware diffusion LMS is scalable, robust to delays,

and requiresminimalmessage passing among nodes. Our results

show that the proposed algorithm is asymptotically consistent

yet the global activation behavior along the way tracks the set

of correlated equilibria [7] of the underlying activation control

game; see Fig. 1(b). Correlated equilibrium is a generalization

of Nash equilibrium and describes a condition of competitive

optimality. It is, however, more preferable for online adaptive

learning in distributed systems with tight computation/energy

constraints due to structural and computational simplicity; see

Section III-B for a discussion.

The convergence analysis is carried out borrowing techniques

from stochastic averaging theory [5], [6], two-timescale sys-

tems [6] and stability of differential inclusions. It is shown that

the limiting process representing the global behavior of the net-

work is a singularly perturbed coupled system of a differential

inclusion and an ODE. Intuitively, the activation mechanism

(fast timescale) views the diffusion LMS (slow timescale) as

quasi-static while the diffusion LMS views the activation mech-

anism as almost equilibrated; see Fig. 1(b).

4) Numerical Example: Finally, simulation results verify

theoretical findings and illustrate the performance of the
proposed scheme, in particular, the trade-off between the

performance metrics and energy savings.

Literature: The recent past has witnessed a growing in-

terest in employing game-theoretic methods for designing self-

configurable adaptive networks [10]. The literature on energy
saving schemes for sensor networks mostly focuses on how to

transmit information, rather than how to sense the environment;

see [11]. There are only few works (e.g., [12], [13]) that pro-

pose game-theoretic methods for energy-efficient data acquisi-
tion. However, none explicitly study direct interaction of such

energy saving schemeswith the parameter estimation algorithm.

This differentiates our work.

In the literature, energy conservation arguments and error

variance analysis are widely used to prove stability for diffu-

sion LMS and its generalizations; see [14] for an exposition.

This paper, for the first time, re-derives such stability results
using the well-known ODE approach. The game-theoretic

learning algorithm also differs from [8], [9] in that nodes

only observe neighbors’ actions. Nodes are, in fact, obliv-

ious to the existence of other nodes except neighbors in the

network, yet the global behavior converges to the polytope

of approximate correlated equilibria. In contrast to [8], [9]

which assume a static game model, the proposed learning

algorithm allows evolution of the game in the same timescale

as the regret-matching algorithm [15]. This is crucial since

the activation control game is parameterized by instantaneous

estimates of the nodes across the network.

Organization: The rest of this paper is organized as fol-

lows: Section II formulates the parameter estimation problem,

presents the diffusion LMS, and studies its asymptotic stability

via the ODE method. Section III then provides an overview of

the design principles for the energy-aware diffusion LMS. In

Section IV, we introduce the activation control game, present

and elaborate on the proposed energy-aware diffusion LMS al-

gorithm and define the global performance quantities. In Sec-
tion VI, we give a detailed convergence analysis for the pro-

posed algorithm. Finally, numerical examples are provided in

Section VII before the concluding remarks in Section VIII.

II. DIFFUSION LMS

This section describes parameter estimation via diffusion

least mean squares (LMS) and shows how one can refor-

mulate the diffusion LMS algorithm (1), proposed in [1],

as a stochastic approximation algorithm of the form (2).
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This new formulation enables employing the powerful

ordinary differential equation (ODE) method [6] to ana-

lyze stability. Section II-A describes the parameter estimation

problem in linear regression model. Section II-B describes the

standard diffusion LMS [1]. Section II-C then reformulates it as

a stochastic approximation algorithm of the form (2). This sets

the stage for Section II-D that proves asymptotic consistency

by means of the ODE method.

A. Centralized Parameter Estimation Problem

Consider a set of nodes spread over some

geographic region with the common objective to perform real-

time parameter estimation in the local regression model:

(3)

Here, is the unknown parameter, the sequence

of random vector of regressors locally accessible to

each node , the scalar local measurements and the

sequence of zero-mean local measurement noise uncorrelated

with . Such linear models are well-suited to approximate

input-output relations for many practical applications [16].

The centralized parameter estimation problem in the linear

least mean square (LMS) sense can then be formulated as

follows: Let

The network of nodes then seeks that solves

(4)

where and denote the expectation and Euclidean norm

operators, respectively. Define the correlation
and cross-correlation . Recall that de-

notes the transpose operator1 and note the second-order moment

is allowed to vary across nodes. It is well-known

that the optimal solution satisfies the orthogonality condition
, which can also be expressed by the

solution to the normal equations [16]

(5)

The goal is to develop a distributed stochastic approximation

algorithm for parameter estimation that ensures the sequence of

parameter estimates converge to (or track) the true param-

eter ( ). The diffusion LMS [1] is one such algorithm that

adopts a peer-to-peer diffusion protocol to implement coopera-

tion among individual nodes. This cooperation leads to savings

in communications and energy resources and enables the net-

work to respond in real-time to the temporal and spatial vari-

ations in the statistical profile of the data [1]. We thus focus
on diffusion LMS as a decentralized solution to approximate

in (5) in the rest of this paper.

1For complex-valued signals, is replaced with that denotes complex
conjugate-transpose.

B. Standard Diffusion LMS

It is instructive to start with the diffusion LMS algorithm pro-

posed in [1]. We then continue to reformulate it as a stochastic

approximation of the form (2). Before proceeding further, we

spell out the conditions imposed on the measurement model (3)

in [1]:

(C1) The sequence is temporally white and spatially

independent, i.e.,

(6)

where is positive-definite and is the Kronecker delta

function: if and 0 otherwise. The noise sequence

is further uncorrelated with the regression data for

all , i.e.,

(7)

The diffusion LMS is simply an LMS-type adaptive filter
with a cooperation strategy that adopts a peer-to-peer diffusion

protocol. Due to limited communication capabilities, each node

can only communicate with neighbors determined by the con-

nectivity graph of the network . Here, is an undi-

rected graph, where is the set of nodes and

if there exists a link between nodes and (8)

We assume the graph is simple, i.e., contains no self loops.

The open and closed neighborhoods for each node are then

defined by and ,

respectively. Accordingly, we define the degree of node as

, where denotes the cardinality operator.

Remark 2.1: For simplicity of presentation, we assume the

connectivity graph is fixed and strongly connected, i.e., there
exists a path between each pair of nodes. Intermittent link/node

failures can be captured by a random graph model where the

probability that two nodes are connected is simply the proba-

bility of successful transmission times the indicator function

that shows the two nodes are neighbors in the underlying fixed
graph. Motivated by wireless sensor network applications, the

link failures can be spatially correlated (due to the interference

among wireless communication channels), however, are in-

dependent over time. In this case, mean connectedness of the

random graph is sufficient, i.e., , where

and denotes the Laplacian of the random graph process ;

see [17] for details.

Nodes exchange estimates over the graph at each period.

Each node then fuses the local estimates by means

of a linear combiner:

(9)

Note that, since each node has a different neighborhood, the

fusion rule (9) helps fuse data across the network into node .
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The coefficients give rise to a stochastic matrix

satisfying

and
(10)

where . Each row of simply gives

the weights by which each node fuses the local estimates

. Therefore, it is referred to as the weight matrix.

The fused estimates are then promptly fed back into the local

LMS-type adaptive filter. More precisely, the diffusion LMS
requires each node to run a stochastic approximation algorithm

of the form

(11)

with local step-sizes . The estimate at each node is thus

a function of both its temporal data as well as the spatial data

across the neighbors. This enables the adaptive network to re-

spond in real-time to the temporal and spatial variations in the

statistical profile of the data [1]. It is well-known that, to ensure
mean-square stability, the step-size must be sufficiently small
and satisfy [1], [2], [14]. In view of (11),

however, making the step-size too small leads to performing

data assimilation and fusion of neighboring estimates on dif-

ferent timescales, where the former is run on the slow timescale

and the latter constitutes the fast timescale.

The local updates (11) together give rise to a global state-

space representation. Define

where denotes the identity matrix. Then, the linear

measurement model (3) can be written as

(12)

Further, let

The global diffusion LMS update can then be written in a more

compact state-space form

(13)

where

(14)

and denotes the Kronecker product. Further, is a stochastic

matrix as defined in (10).

C. Revised Diffusion LMS

Here, the objective is to reformulate the standard diffusion

LMS (11) as a classical stochastic approximation algorithm

with small step-size .

The advantage of this new formulation is threefold: (i) both

data assimilation and fusion takes place on the same timescale;

(ii) simpler derivation of the known results can be obtained

by employing the powerful ordinary differential equation

method [5], [6]; (iii) one can use weak convergence methods

[6, Chapter 8] to show how responsive the diffusion LMS is to

the time-variations of the true parameter. To proceed, we first
need to revise the diffusion protocol.

It is instructive to start by commenting on the diffusion pro-

tocol in the standard diffusion LMS, given by (9). Consider the

data fusion term in the global state-space model (13), i.e.,

(15)

and suppose seconds elapse between two successive itera-

tions. Then, the discrete-time iterates (15) can be conceived as

a discretization of the ODE

(16)

where , i.e., is the matrix logarithm of

normalized by . Here, can be large. Since

,

and for (17)

Having the same properties as the generator of a continuous-

time Markov chain, we refer to as the generator of the sto-

chastic matrix . Another way to look at the issue is based on a

Taylor expansion argument. To this end, taking Taylor expan-

sion and retaining the first two terms, we have
, where as .

Before proceeding, we note that, to differentiate between the

two diffusion LMS algorithms, we denote the step-size of the

revised diffusion LMS by . It is well-known that, to analyze

a stochastic approximation algorithm with a small step-size ,

an interpolated process in intervals of is studied to determine

the limiting process described by an ODE [6]. Inspired by this

idea and to ensure that the data fusion takes place at the same

timescale as the assimilation of measurements, we then re-dis-

cretize (16) with sampling period to obtain the new diffusion

protocol

(18)

where

(19)

In light of the above discussion, the local updates of the re-

vised diffusion LMS can be expressed as

(20)



GHAREHSHIRAN et al.: DISTRIBUTED ENERGY-AWARE DIFFUSION LEAST MEAN SQUARES 825

where the new weight matrix for the diffusion pro-

tocol is defined as

for (21)

and

Note that is dominated by the diagonal elements representing

the weights that nodes put on their own estimate. This is in

contrast with the weight matrix . This is essentially because

smaller step-sizes require smaller fusion weights to ensure fu-

sion and measurements are performed at the same timescale.

Remark 2.2: Thesmall step-sizediffusionLMSrecursion(20)

is essentially the same as the standard diffusion LMS, i.e.,

(22)

It thus incurs no additional computational cost. The formulation

in (20) is only needed for our convergence analysis using the

ODE method.

Accordingly, the global recursion for the revised diffusion

LMS can be written as

(23)

where

(24)

Using a small step-size allows us to relax the independency

assumptions (C1) on the sequence . Let denote the

-algebra generated by , and denote the con-

ditional expectation with respect to by . We impose the

following conditions on the sequence for the revised

diffusion LMS:

(C2) For all :

(i)

(25)

(ii) There exists a symmetric and positive-definite matrix
such that , and

(26)

The above condition allows us to work with correlated sig-

nals whose remote past and distant future are asymptotically in-

dependent. With suitable regularity conditions (such as uniform

integrability), a large class of processes can be consid-

ered. Examples of correlated processes that satisfy (C2) include:

1) Finite-state Markov chains: Assuming the Markov chain

has memory ,

(27)

where and is finite.

2) Moving average noise :

(28)

where are (Gaussian) white noise error terms.

3) Stationary autoregressive processes

(29)

if the roots of the polynomial

(30)

lie inside the unit circle.

Note further that, to obtain the desired result, the distributions

of the sequences and need not be known.

D. Convergence Analysis via Ordinary Differential Equation

Method

As is well known since the 1970s, the limiting behavior of a

stochastic approximation algorithm (such as the diffusion LMS

algorithm) is typically captured by a system of deterministic

ODEs—indeed, this is the basis of the widely used “ODE

Method” for convergence analysis of stochastic approximation

algorithms—see [6]. Here, we proceed with the convergence

analysis of the diffusion LMS (20) via the ODE method.

Define the tracking error . Substituting this in the

global diffusion LMS recursion (23) yields

(31)

In (31), we used ; see (21) and (24). We take the ODE

approach and define the piecewise constant continuous-time in-
terpolated process associated with as:

for (32)

Then, , the space of functions that

are defined in taking values in , and that are right

continuous and have left limits with the use of the Skorohod

topology (see [6, p. 228]). Such a topology allows we “wiggle

the space and time a bit”.

Before proceeding further, let us recall a definition. Weak
convergence is a generalization of convergence in distribution

to a function space. More precisely, let and be -valued

random vectors. We say converges weakly to ( )

if for any bounded and continuous function ,

as . We refer the interested reader to [6,

Chapter 7] for further details on weak convergence and related

matters. The following theorem provides us with the evolution

of the tracking error. It shows that evolves dynamically

so that its trajectories follows an ODE. Since the ODE is

asymptotically stable, the errors decay exponentially fast to 0

as time grows.
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Theorem 2.1: Consider the interpolated process , de-

fined in (32), associated with the diffusion LMS iterates (20).
The following assertions hold:

1) Under (C2), converges weakly to as such

that the limit is the solution to the ODE

(33)

where is a matrix,

and is defined in (24).
2) System (33) is globally asymptotically stable.

3) Denote by any sequence of real numbers satisfying

as . Then, converges weakly

to as .

Proof: For a more rigorous statement of the theorem and

proof, see Appendix A.

The above theorem simply asserts that as , the interpo-

lated process of individual node’s parameter estimates

converges weakly to the true parameter across the network.

Therefore, the diffusion LMS algorithm is consistent. Statement

1) deals with the case that and is large, but remains

bounded, whereas Statement 3) illustrates the asymptotic prop-

erties as followed by . Roughly, it indicates that

as , , and , .

Remark 2.3: In case of a slowly time-varying true parameter

, it can be shown that, if evolves on the same timescale

as the adaptation rate of the diffusion LMS, i.e., the true pa-

rameter dynamics are matched to the diffusion LMS stochastic

approximation algorithm, weakly tracks its variations.

III. DESIGN PRINCIPLES FOR AN ENERGY-AWARE

DIFFUSION LMS

This section provides a qualitative overview of the design

principles deployed in devising an energy-aware diffusion

LMS. In Section III-A, we present a big picture of the design

process. Given the noncooperative game-theoretic frame-

work used, Section III-B comments on the significance of the
correlated equilibrium (as the solution to this game) and its

advantages over the well-known Nash equilibrium in adaptive

signal processing.

A. Overview of the Approach

Apart from scalability and stabilizing effect on the

network [1], deploying cooperative schemes such as the

diffusion protocol (9) can lead to energy savings by allowing

nodes to sleep while their neighbors are active. Taking into

account the spatial-temporal correlation among nodes’ mea-

surements, nodes can enter a sleep mode when the energy cost

of acquiring data outweighs its value. We take a decentralized

solution since it facilitates self-configuration of nodes as well
as network robustness and scalability. We equip nodes with

pre-configured (or configurable) utility functions and simple
adaptive filtering algorithms. The adaptive filters control local
functionality only, with minimal message passing, thereby

reducing intra-node communication and associated energy

costs. While individual nodes posses limited communication

and processing capability, it is their coordinated behavior that

leads to the manifestation of rational global behavior. The

proposed formulation conveys a design guideline: by carefully

specifying the utility functions, these networked nodes can be

made to exhibit many desired behaviors while individual nodes

perform simple local tasks.

Due to the interdependence of nodes behavior, a game-the-

oretic approach is a natural choice to model their interaction.

Each node repeatedly faces a non-cooperative game where the

actions are whether to “activate” or “sleep” and, accordingly,

receives a reward. When a node is active, it updates its esti-

mate and performs fusion of its own estimate with those re-

ceived from neighboring nodes, whereas inactive nodes do not

update their estimates. Individual nodes rewards’ depends not

only on the actions of other nodes but also on their estimates

of the true parameter. In this case, no pre-computed policy is

given; nodes learn their activation policies through repeated

play and exchanging information with neighbors. The nodes fur-

ther adapt their policies as the parameter estimates across the

network vary over time. The proposed activation mechanism is

a simple non-linear adaptive filtering algorithm based on the re-
cent economics literature on regret-based algorithms [18]. The

global activation behavior of nodes is proved to converge to the

set of approximate correlated equilibria (See Definition 5.1) of
the underlying activation control game if each node individually

follows the proposed activation mechanism.

Finally, we embed this activation mechanism into the diffu-

sion LMS algorithm such that the overall energy-aware diffu-

sion LMS forms a two-timescale stochastic approximation algo-

rithm: the fast timescale corresponds to the game-theoretic acti-

vation mechanism and the slow timescale is the diffusion LMS.

Intuitively, in such two timescale algorithms, the fast timescale

will see the slow component as quasi-static while the slow com-

ponent sees the fast one near equilibrium. In light of the above

discussion, the main theoretical finding is that, by each node in-
dividually following the proposed energy-aware diffusion LMS

algorithm: (i) the estimate at each node tracks the true evolution

of the parameter of interest; (ii) at each time, the global acti-

vation behavior across the network properly tracks the polytope

of approximate correlated equilibria of the underlying game; see

Fig. 1(b).

B. Correlated Equilibrium Vs. Nash Equilibrium

The notion of correlated equilibrium [7] is a generalization

(superset) of Nash equilibrium and describes a condition of

competitive optimality among nodes. It can most naturally be

viewed as imposing equilibrium conditions on the joint action

profile of nodes (rather than on individual actions as in Nash
equilibrium). An intuitive interpretation of correlated equilib-

rium is coordination in decision-making as described by the

following example: Suppose, at the beginning of each period,

each node receives a private recommendation exogenously

as whether to “activate” or “sleep”, where is

drawn from a distribution . (Such a joint distribution corre-

lates nodes’ actions, hence, the name correlated equilibrium.)

Although is known to all nodes, each node is only given

instructions for its own activation . A correlated equilibrium

results if every node realizes that the recommendation
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is a best-response to the random estimated activity of others,

provided that others, as well, follow their recommendations.

This implies coordinated activity of nodes once they reach the

correlated equilibria set.

The research so far in the signal processing community is

mostly focused on the well-known Nash equilibrium, despite

several advantages of correlated equilibrium as outlined below:

(i) Realistic: Correlated equilibrium is realistic in multi-agent

learning scenarios since the environment naturally correlates

agents’ actions. In contrast, Nash equilibrium assumes agents

act independently which is rarely true in adaptive learning; (ii)

Structural simplicity: The correlated equilibria set constitutes

a compact convex polyhedron, whereas the Nash equilibria are

isolated points at the extrema of this set [19]; (iii) Computa-

tional simplicity: Computing correlated equilibria only requires

solving a linear feasibility problem (linear programwith null ob-

jective function) that can be solved in polynomial time, whereas

computing Nash equilibrium requires finding fixed points; (The
activation mechanism in Algorithm 1 is simply an adaptive fil-
tering algorithm that solves this linear feasibility problem in a

distributed fashion;) (iv) Coordination capability: The defini-
tion of correlated equilibrium allows agents to coordinate their

actions while still retaining their autonomy. This coordination

leads to potentially higher payoffs than if agents take their ac-

tions independently (as required by Nash equilibrium) [7]. Fi-

nally, online adaptive procedures naturally converge to the cor-

related equilibria set, whereas the same is not true for Nash equi-

libria (the so-called law of conservation of coordination [20]).

In light of the above discussion, the correlated equilibrium is

arguably the most natural attractive set for distributed, online

adaptive algorithms (such as the one considered here).

IV. GAME-THEORETIC ACTIVATION CONTROL

FOR DIFFUSION LMS

We have shown in Section II (Theorem 2.1) that the diffu-

sion LMS algorithm can be analyzed using the standard ODE

approach. Therefore the powerful machinery for analysis of

such stochastic approximation algorithms apply directly. For

example, under conditions given in [6, Chapter 7], weak con-

vergence can be proved for (correlated) Markovian noise. In

the remainder of the paper, we add a distributed game-theoretic

learning functionality for energy-aware activation of the diffu-

sion LMS. Section IV-A formulates the game-theoretic model

by which nodes make activation decisions. In Section IV-B,

we present the energy-aware diffusion LMS algorithm. Finally,

Section IV-C provides some intuition on the game-theoretic

activation control mechanism.

A. Activation Control Game

The objective is to combine the diffusion LMS with a

game-theoretic energy-aware activation mechanism which en-

ables nodes to conserve energy by sleeping in certain periods.

More precisely, each node runs local updates of the form:

(34)

where denotes the indicator function and

denotes the node’s action determined by

the game-theoretic learning functionality. Nodes in the sleep

mode do not take measurements, nor do they fuse data from

neighbors and update their estimates; see (34). Therefore, they

save energy in both sensing and transmitting their estimate to

neighbors. The key feature that characterizes our study as a

game is the interdependence of individual node’s behavior. The

usefulness of a node’s information, channel quality, required

packet transmission energy all depend on the activity of other

nodes in the network.

The problem of each node is to successively pick action

from the set to strategi-

cally optimize a utility function. This utility function captures

the trade-off between energy expenditure and the “value” of

node’s contribution. Let denote the space of

all possible joint action profiles of all nodes.

Following the common notation in game theory, can be rear-

ranged as . Let further denote the state-space

of and represent the set of non-

neighbors of node . The utility for each node is a bounded

function and is comprised of a local and

a global term:

(35)

where , and denote the joint action

profile of neighbors and non-neighbors , respectively.

The utility function for each node further depends on the in-

stantaneous parameter estimates . The local utility function

captures the trade-off between the value of the mea-

surements collected by node and the energy and costs asso-

ciated with it. We assume that each node is only capable of

low-power communication2. The neighbors of each node are

thus located within a pre-specified range. If too many of node
’s neighbors activate simultaneously, excessive energy is con-

sumed due to the spatial-temporal correlation of node measure-

ments. That is, the data collected by node is less valuable.

Additionally, the probability of successful transmission reduces

due to channel congestion. (Interchangeably, to keep success

rate fixed, the required packet transmission energy should in-
crease.) On the other hand, if too few of node ’s neighbors ac-

tivate, their fused estimates lack “innovation.” The local utility

of node is then given by: [see (36), shown at the bottom of the

next page], where

In (36), and are the pricing parameters related to the

‘reward’ associated with data collected by node ; is the

2The ZigBee/IEEE 802.15.4 standard is currently a leading choice for low-
power communication in wireless sensor networks. It employs a CSMA/CA
scheme formultiple access data transmission. In networks with tight energy con-
straints, the non-beacon-enabled (unslotted CSMA/CA) mode is more prefer-
able as the node receivers do not need to switch on periodically to synchronize
to the beacon.
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pricing parameter related to the energy costs associated with ac-

tivation and broadcasting measurements 3. In addi-

tion, denotes the probability of successful transmission4.

Higher activity of nodes neighboring node lowers its local

utility due to: (i) reducing success of transmission attempts, and

(ii) inefficient usage of energy resources (due to spatial-tem-
poral correlation of measurements). Nodes are thus motivated to

activate whenmajority of neighbors are in the sleepmode and/or

its estimate is far from the local aggregated estimate .

The global utility function concerns the connectivity

of the network and diffusion of estimates in a larger geographic

region (than each node’s neighborhood). Let denote the set

of nodes within radius from node excluding the neighbor-

hood . Define the number of active nodes in by

The global utility of node is then given by

,

.
(37)

In (37), and are the pricing parameters. Higher lowers

the global utility due to: (i) less importance of node ’s contribu-

tion to the diffusion of estimates across the network and keeping

connectivity in , and (ii) reducing the success of transmission

for other nodes in the neighborhood which affects global diffu-

sion of estimates. Node is thus motivated to activate when ma-

jority of the nodes in its geographic region are in the sleep

mode.

Each node realizes as a consequence of

receiving estimates from neighbors, therefore, is able

to evaluate its local utility at each period . Nodes, however, do

not observe the actions of non-neighbors; therefore, nodes do

not realize and are unable to evaluate global

utilities. To this end, some sort of centralization is required by

incorporating cluster heads that monitor activity of the nodes in

their locale and deliver global utilities to the nodes; see Remark

4.1. Hereafter, denotes the re-

alized global utility for node at period by choosing action

. Note that is a time-variant function due to the

time-varying actions of non-neighbors .

The contribution of each node to the local parameter estimate,

the success of transmissions within neighborhoods and the net-

work connectivity all depend on the activity of other nodes in

the network. Due to such interdependence, the activation control

3 and are given in [12, p. 6099] for the Chipcon CC2420 trans-
ceiver chipset which implements the CSMA/CA scheme.

4The probability of successful transmission is given by
, where denotes the maximum number of

back-offs; see [12, p. 6099] for details in the unslotted CSMA/CA scheme.

problem can be formulated as a noncooperative repeated game

with neighborhood structure

(38)

Here, is the set of players of the game,

(hereafter denoted by

) is the set of actions, denotes the payoff to each player

(defined in (35)–(37)), is the connectivity graph of the

network, and is the -tuple of nodes’

estimates, each obtained locally via the diffusion LMS

recursion.

Remark 4.1 (Decentralized Structure): Note that each node

only requires the cumulative activity of others in its geographic

region to evaluate its global utility. Adopting a ZigBee/IEEE

802.15.4 CSMA/CD protocol for broadcasting estimates across

neighbors, can be estimated by tracking the proportion of

successful clear channel assessment (CCA) attempts. The inter-

ested reader is referred to [12, Sec. II-C], for a discussion and

an algorithm for estimating node activity. This eliminates the

need for inclusion of cluster heads to deliver global utilities to

the nodes.

B. Energy-Aware Diffusion LMS

In light of the game-theoretic model for the activation con-

trol of diffusion LMSs, we proceed here to present the energy-

aware diffusion LMS algorithm. The proposed algorithm can

be simply described as a non-linear adaptive filter run in the
fast timescale (step-size , which governs node activation) cou-

pled with the diffusion LMS run by nodes in the slow timescale

(step-size , which carries out the parameter estima-

tion task).

Suppose each node has access to time realizations of

. Define and let denote the

indicator function. Each node runs the algorithm summarized

below independently:

Algorithm 1: Diffusion LMS with Energy-Aware Activation
Control:

Step 0) Initialization: Set the tunable parameter
and choose the adaptation rates such that

. Initialize , ,

for all nodes .

For , repeat:

Step 1) Node Activation: Select action : [see (39),

shown at the bottom of the next page]. In (39), denotes

the action picked in the last period, and is chosen such that

.

Step 2) Diffusion LMS:

,

.
(40)

,
(36)
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Step 3) Estimate Exchange: If : (i) Transmit to

neighbors and collect ; (ii) Form neighbors’ action

profile and such that

node receives node 's estimate ,

otherwise,
(41)

and

received estimate if ,

if .
(42)

If , go to Step 5.

Step 4) Data Fusion:

(43)

Step 5) Regret Update: For all :

Step 5.1: Local-Regret Update [see (44), at the bottom of the

page].

Step 5.2: Global-Regret Update [see (45), shown at the

bottom of the page]. In (45), denotes the realized

global payoff at time .

Step 6) Recursion: Set and go to Step 1.

Remark 4.2:

Although the dynamics of the -tuple of estimates , un-

derlying the activation control game, will be used in our

tracking analysis, the implementation of the game-theo-

retic activation mechanism does not require any explicit

knowledge of these dynamics.

Extensions:

1) A useful variant of the above algorithm can be developed

by allowing nodes to fuse (or even decide wether to fuse)

neighbors’ data while in sleep mode. More precisely, in

lieu of (40), each node runs local diffusion LMS updates

of the form:

(46)

This helps to diffuse data when nodes are power hungry in

measurements.

2) While the true parameter , connectivity graph and

weight matrix are assumed fixed in Section II, the con-
stant step-sizes and in Algorithm 1 make it responsive

to slowly time-varying , and . A typical method

for analyzing the tracking performance of an adaptive al-

gorithm is to postulate a hypermodel for the time variations

[5]. For exposition, suppose only evolves with time

according to a discrete-time Markov chain with finite state
space and transition matrix

(47)

where and is the generator of a con-

tinuous-time Markov chain satisfying: for ,

and , for all . The small

parameter specifies how slowly evolves with time.

Then, if the Markov chain evolves on the same timescale

as the adaptation rate of the diffusion LMS updates, i.e.,

, each node can properly track by employing

Algorithm 1. (Note that the dynamics of the hypermodel

does not explicitly enter the implementation of the al-

gorithm—it is only used in the tracking analysis.)

3) Nodes may face random communication delays in re-

ceiving estimates from neighbors. Let denote the

random delay node faces in receiving estimate from node

at time . Then, node has access to at time

, but not for , and if it does, it does not

realize that they are more recent. The results of [6, Chapter

12] ensure that the convergence analysis of Algorithm 1

in Section VI is still valid if delays are bounded or not

arbitrarily large in the sense that

almost surely.

C. Discussion of the Game-Theoretic Activation Mechanism

Each node generates two regret matrices and updates them

over time: (i) , that recordsweighted average local-regrets,

and (ii) , which is an unbiased estimator of the weighted

average global-regrets. Each element , , gives

the weighted time-averaged regret (in terms of gains and losses

in local utilities) had the node selected action every time it

took action in the past. Formally,

(48)

(39)

(44)

(45)
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However, since nodes do not observe the action profile of non-
neighbors , they are unable to perform the thought experi-

ment to evaluate global utilities for alternative actions as they

do in (48). We thus formulate an unbiased estimator of the

weighted time-averaged global-regrets based only on the re-

alized global utilities [9]. Each element ,

, is formulated as:

(49)

Nodes combine and to update their activation strategy for

the following period. Positive overall-regrets

imply the opportunity to achieve higher utilities by switching

from action to in future. The more positive the regret for not

choosing an action, the higher is the probability that the node

picks that action.

1) Computational Complexity: The computational burden

of the game-theoretic activation mechanism is negligible as

compared to the diffusion LMS ( calculations per iter-

ation)—it does not grow with the number of nodes, nor with

the dimension of the parameter estimation problem. At each

iteration, each node needs to update a row in , and a row

and column in . Two multiplications, two additions, two

comparisons and a table lookup (assuming random numbers

are stored in a table) then suffice to select the next action (see
(39)). Therefore, it is suitable for implementation in nodes with

limited computational capability.

2) Exploration Vs. Exploitation: At successive periods, with

probability , node chooses its consecutive action ac-

cording to . With the remaining probability , it

randomizes among all actions according to a uniform distri-

bution. The tunable “exploration” factor forces all actions to

be chosen with a minimum frequency and is essential as nodes

continuously learn their global utility functions. As will be dis-

cussed later, larger will lead to convergence of the nodes’

global activation behavior to a larger -distance of the correlated

equilibria set. Taking the minimum with in (39) also en-

sures .

3) Inertia: The normalization factor in (39) can be inter-

preted as an inertia parameter for switching actions [8]—higher

lowers the probability of switching actions. To avoid com-

puting repeatedly, one can fix , where

and denote the upper and lower bounds on node

’s utility function, respectively. This inertia is essential in the

convergence of the game-theoretic adaptive filter (44)–(45) in
Algorithm 1. The rate of convergence of the adaptive filtering
algorithm is closely related to —higher lowers the conver-

gence rate.

4) Better-Reply Adaptive Filter: The strategy in Step 1 of Al-

gorithm 1 reinforces all plausible actions with positive probabil-

ities. Hence, the behavior of nodes is more of a reflex-oriented
individual (better-reply strategy) than a sophisticated decision-

maker who takes the most plausible action (best-reply) given its

limited conception of the activation strategy of others [8].

V. GLOBAL NETWORK PERFORMANCE

This section deals with global performance analysis of the

energy-aware diffusion LMS proposed in Section IV-B.We start

by defining two global performance quantities in Section V-A
that capture the behavior of individual nodes across the network.

We then state the main theorem of this paper that reveals the

global performance of Algorithm 1 in Section V-B. The detailed

proofs are postponed until Section VI.

A. Global Behavior

The emergent global behavior of the network can be captured

by two inter-connected discrete-time processes:

1) Network-Wide Diffusion LMS Recursion: Define:

Following the same lines as (23), the global diffusion LMS

update associated with Algorithm 1 can be expressed in the

state-space form as

(50)

In light of (50), Algorithm 1 can be viewed as a synchronous dis-

tributed stochastic approximation algorithm [6], [21]: At each

time , some (but not necessarily all) elements of are up-

dated, each by different nodes spread across the network. The

common clock that synchronizes the system is implicit in the

game-theoretic activation mechanism employed by nodes. An

asynchronous implementation of Algorithm 1 is feasible, how-

ever, is out of the scope of this paper.

2) Global Activation Behavior: The collective activation be-

havior of nodes, , is defined as the discounted empirical fre-
quency of joint activation decisions of all nodes up to period .

Formally,

(51)

where denotes the -dimensional unit vector with the el-

ement corresponding to being equal to one. In (51), serves

as a forgetting factor to foster adaptivity to the evolution of the

local parameter estimates. That is, the effect of the old local pa-

rameter estimates on the activation strategy of nodes vanishes

as the nodes repeatedly take actions. It is more convenient to

rewrite as a stochastic approximation equation:

(52)

The global performance analysis of the network, captured by

(50) and (52), is nontrivial and quite challenging as the two

global recursions are closely coupled: The estimates affect

utility of nodes, hence, their choice of action ( in (52)). On

the other hand, nodes’ strategies are functions of (see (75)

in Section VI), which in turn enter in (50).

B. Main Result: From Individual to Global Behavior

Let us first define the set of correlated -equilibria ,

which this paper focuses on as the solution concept for the ac-

tivation control game:

Definition 5.1: Let denote a joint distribution on the joint

action space , where for all



GHAREHSHIRAN et al.: DISTRIBUTED ENERGY-AWARE DIFFUSION LEAST MEAN SQUARES 831

and . The set of correlated -equilibria,

denoted by , is the convex polytope [see (53), shown at the

bottom of the page] 5.

In (53), denotes the probability of node se-

lecting action and the rest . The above definition simply
states, when the “recommendation” puts positive prob-

ability on choosing action , node can gain at most by devi-

ating through choosing . Note that is a function

of hypermodel —it slowly evolves as the local parameter esti-

mates change over time.

We now characterize the global behavior emerging by each

node individually following Algorithm 1. Let . Define
the piecewise constant continuous-time interpolation processes

and associated with Algorithm 1:

for

for

The following theorem is the main result of the paper and as-

serts that, by following Algorithm 1: (i) the local estimates

converge to the true parameter across the network, (ii) The

global activation behavior tracks the time-varying polytope of

correlated -equilibria of the underlying activation con-

trol game as evolves with time.

Theorem 5.1: Consider the setting of Section IV-A and sup-

pose every node follows Algorithm 1. Then, for each ,

there exists such that if in Algorithm 1 (Step 1)

and ,

1) As , converges weakly to in the sense

that:

(54)

2) Under (C2), converges weakly, as , to that

is a solution to

(55)

where and

for some .

3) System (55) is globally asymptotically stable and

Proof: The proof is provided in detail in Section VI.

Remark 5.1: The exploration factor essentially determines

how close the regrets of each node can get to zero. Larger

5Nash equilibrium corresponds to the special case where agents act indepen-
dently. That is, is a product measure: .
Every Nash equilibrium is thus a correlated equilibrium. The set of correlated
equilibria is nonempty, closed and contains the convex hull of Nash equilibria.

enforces players to choose “non-promising” actions more fre-

quently. This in turn leads to the global activation behavior of

nodes converging to a larger -distance of the correlated equi-

libria set.

From the game-theoretic point of view, part 2) in Theorem

5.1 simply states that non-fully rational local behavior of indi-

vidual nodes (due to utilizing a better-reply rather than a best-

reply strategy) leads to sophisticated globally rational behavior,

where all nodes pick actions from a common joint distribution,

i.e., coordination in decision making among nodes.

VI. PROOF OF THEOREM 5.1: CONVERGENCE ANALYSIS OF

THE ENERGY-AWARE DIFFUSION LMS

This section is devoted to the proof of the global performance

analysis of Algorithm 1, summarized in Theorem 5.1. The proof

relies on the results of Section II-D which proves asymptotic

consistency of the small step-size diffusion LMS. For brevity

and to make it more comprehensible, we omit technical details

and present only an intuitive sketch of the proof below:

Step 1: Let denote the set of nodes that

choose to activate at period . One can unfold iteration of (50)

by replacing it with distinct iterations, where each involves

only one node updating its estimate. Relabeling iteration

indices by results in a new algorithm with the same behavior

as Algorithm 1. Since each node explores with probability at

each period, the stationary distribution places a probability of at

least on “activation” and

(56)

Equation (56) is essential in the proof of Theorem 5.1 and

simply asserts that all nodes take measurements and update

their estimates relatively often (however, in a competitively

optimal sense described by the set of correlated -equilibria).

For convenience, take . Note that an interval of length

in the timescale involves iterates, whereas, the same

number of iterations take in the timescale. To analyze the

asymptotics of the joint process , it is instructive to

first look at the singularly perturbed coupled system:

(57)

in the limit . In (57), denotes the tracking

error, and

where

(58)

(53)
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In addition, , where denotes the set of

all probability measures over the joint activation decisions of

nodes excluding node , represents the randomized ac-

tivation strategy of node (which will be defined later in the
proof). Each element in is the relative instantaneous

rate at which each node is being activated. More precisely,

, where denotes the em-

pirical frequency of node choosing to activate and the rest

at time . Thus, (58) is a consequence of (56).

In view of (57), is the slow component and is the

fast transient. Therefore, is quasi-static, i.e., remains almost

constant, while analyzing the behavior of . The weak con-

vergence argument shows that converge weakly

to as , such that the limit is a solution to

(59)

Technical details are tedious and omitted for brevity; see [6,

Chapter 8]. The second step in the convergence analysis is then

to prove asymptotic stability and characterize the set of global

attractors of:

(60)

Step 2: There exists a close connection between and the

pair process for each node following Algorithm 1:

record the global activation behavior of the net-

work translated based on each node’s utility function into re-

grets. In what follows, since it is more convenient to work with

, we study the limiting process for and ana-

lyze its asymptotic stability. We then formally translate the re-

sults to prove asymptotic stability of (60).

Before proceeding, a few definitions are in order. Define:

(61)

where is an invariant measure of when

(see (39)), satisfying

(62)

Let denote a probability measure over the joint

activation decisions of node ’s neighbors, namely, , and

define the expected payoff:

(63)

Here, with a slight abuse of notation, we denote by

the multi-linear extension of the local utility function to the set

of mixed (probabilistic) strategies. Associated with the game-

theoretic activation mechanism, define further the interpolated
pair process:

for

The following theorem shows that the limit system associated

with the stochastic approximation iterates is a system

of coupled differential inclusions that is Lyapunov stable and

characterizes its global attractors set.

Theorem 6.1: For a fixed ,

1) As , the interpolated pair process

converges weakly to that is a solution of the

differential inclusion:

(64)

where elements of and are given by: (65) and

(66) at the bottom of the page. In (66), is the

interpolated process of the global payoffs accrued from the

game.

2) Rearrange and as 4 1 vectors. For each

, there exists such that if , the limit

system (64) is globally asymptotically stable, and

(67)

where

(68)

and denotes the usual distance function.

3) As followed by , the limit points of

and coincide, i.e.,

(69)

4) if and only if

(70)

Proof: The proof for part 1) uses martingale averaging

techniques and is based on [6, Chapter 8]; see Appendix A in

[15] for detailed proof.

The proof for part 2) is based on [22]. Define the Lyapunov
function:

(71)

where denotes the Frobenius norm. Taking the time-

derivative of (71), we obtain (with some details omitted):

(72)

(65)

(66)
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where the constant depends on the range of utility function

; see Appendix B in [15] for omitted details. Then,

implies can be chosen small enough such that:

(73)

This implies that (64) is globally asymptotically stable for each

, and

(74)

Part 3) is similar to part 3) in Theorem 2.1. In part 1), we

consider small and large, however remains bounded,

whereas in part 3), we simply look at the asymptotics of the

limiting process (64) as ; see the proof of Theorem 2.1.

The proof for part 4) relies on the definition of local- and
global-regrets. In light of (48)–(49),

(75)

(In (75), we use the fact that is an unbiased estimator of the

true global-regret matrix as if node observed the activation

decisions of non-neighbors; see [15, Theorem4.2] for details.)

On any convergent subsequence , with slight

abuse of notation, let and

for . Then,

(76)

Finally, comparing (76) with Definition 5.1, we conclude that
converges to the -CE set if and only if, for all

,

(77)

This completes the proof.

The above theorem asserts that the fast dynamics (60) is glob-

ally asymptotically stable for each fixed and the set of cor-

related -equilibria constitutes the global attractors set.

Then, for sufficiently small values of , we expect to closely

track for .

Step 3: This in turn suggests looking at the non-au-

tonomous differential inclusion:

(78)

which captures the dynamics of the slow parameter when

the fast parameter is equilibrated at . The following

lemma proves asymptotic stability of (78) and characterizes its

global attractor.

Lemma 6.1: The non-autonomous differential inclusion (78)

is globally asymptotically stable and

(79)

Proof: The proof follows from that of Theorem 2.1. Since

is diagonal with all positive elements, is positive-defi-
nite. Since is symmetric and positive definite and is

symmetric and negative definite (following the same argument
as in proof of Theorem 2.1), [23]. Therefore,

(78) is globally asymptotically stable. Further,

, hence, is non-singular and is

the unique global attractor of (78) for any .

We then expect in (57) to approximately con-

verge to (i.e., converge to a small neighborhood of) the

point . This intuition indeed carries over to the

energy-aware diffusion LMS in Algorithm 1: the activation

mechanism views the diffusion LMS as quasi-static while the

diffusion LMS views the game-theoretic activation mechanism

as almost equilibrated.

VII. NUMERICAL STUDY

This section provides a numerical example to demonstrate the

performance of the proposed energy-aware diffusion LMS in a

small network of nodes. In Section VII-A. we answer the ques-

tion “why is it impossible to obtain an analytical rate of conver-

gence for the proposed two-timescale stochastic approximation

algorithm?”. We then elaborate on our semi-analytic approach

to illustrate global network performance in Section VII-B. Fi-

nally, the simulation setup and the numerical results are pre-

sented in Section VII-C.

A. Why is Derivation of Analytical Convergence Rate

Impossible?

It is well known that the asymptotic covariance of the limit

process provides information about the rate of convergence of

stochastic recursive algorithms; see [6, Chapter 10]. (The rate of

convergence refers to the asymptotic properties of the normal-

ized errors about the limit point .) For instance, in the standard

LMSwith constant step-size , the error is asymptotically

normally distributed with mean 0 and covariance , where

(80)

In (80), . If the noise is i.i.d., the covariance

can be computed as:

(81)

where and . The figures of merit such
as the asymptotic excess mean square error (EMSE) can then

be obtained as:

(82)

where denotes the trace operator.

This approach, however, does not apply to our analysis of the

energy-aware diffusion LMS since the limiting process for the

diffusion LMS is a differential inclusion rather than an ordinary
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differential equation—see (78). That is, for each initial condi-

tion, the sample path of errors belongs to a set and independent

runs of the algorithm leads to different sample paths. This pro-

hibits deriving an analytical rate of convergence (accordingly

analytical figure of merits) for Algorithm 1. It is, however, ob-
vious that the performance of Algorithm 1 is upper bounded by

the diffusion LMS without activation mechanism; see [1] for

related results. In what follows, we resort to Monte Carlo simu-

lations in order to illustrate and compare the rate of convergence

and performance of Algorithm 1.

B. Semi-Analytic Approach to Numerical Study

To demonstrate the performance of Algorithm 1, we conduct

a semi-analytic numerical study. In light of the proof of The-

orem 5.1, the limiting process for the diffusion LMS is a differ-

ential inclusion (78). This suggests that, at each time, the ele-

ments of depend on drawn from the set of correlated

-equilibria . On the other hand, weak convergence of

to is convergence to a set rather than a particular point

in that set. In fact, even if is held fixed, can gen-

erally move around in the polytope . Since the game-the-

oretic activation mechanism is run on the faster timescale, its

behavior in the slower timescale (diffusion LMS) can be mod-

eled by arbitrarily picking points from and constructing

accordingly.

In our simulations, we use Matlab’s function, which

draws samples from the uniform distribution over the interior

of a polytope defined by a system of linear inequalities .

(Theoretically, finding a correlated -equilibrium in a game

is equivalent to solving a linear feasibility problem of the

form ; see (53).) We then take the sample and

marginalize it on each node to obtain activation strategies.

Uniform distribution for sampling from is no loss of

generality since it assumes no prior on the interior points

of (which matches the essence of convergence to a

set). This reduces the complexity of our numerical study to a

one-level (rather than a two-level) stochastic simulation.

C. Numerical Example

Fig. 2 depicts the network topology we study in this example.

We define in (21) as

,

otherwise
(83)

This is the most natural choice that first comes into mind and is
enough for our demonstration purposes. One can however em-

ploy a smart adaptive weighting scheme to achieve better perfor-

mance [1]. Fig. 2 further illustrates the statistics of each node’s

regressors, generated by a Gaussian Markov source with local

correlation function of the form , where

is the correlation index. In our simulations, we assume nodes

are equipped with Chipcon CC2420 transceiver chipset which

implements CSMA/CA protocol for exchanging estimates with

neighbors. The reader is referred to [12, Appendix] for detailed

model description and expressions for ( )

Fig. 2. Network topology and nodes’ regressors statistics.

Fig. 3. Trade-off between energy expenditure and estimation accuracy after
1000 iterations.

and in (36). We further assume the noise is i.i.d. with

, and .

Define the network excess mean square error:

(84)

where denotes the EMSE for node . is

simply obtained by averaging across all

nodes in the network. Fig. 3 demonstrates the trade-off be-

tween energy expenditure in the network and the rate of con-

vergence of the diffusion LMS algorithm in terms of

after 1000 iterations. Nodes become more conservative by in-

creasing the energy consumption parameter and, accord-

ingly, activate less frequently due to receiving lower utilities;

see (36). This reduces the average proportion of active nodes

and increases due to recording fewer measurements

and less frequent fusion of neighboring estimates. Increasing

the pricing parameters , in (36), and , in (37), has the same

effect as can be observed in Fig. 3. The global performance

of Algorithm 1 is further compared with the standard diffu-

sion LMS [1] in Fig. 4. As the pricing parameters in (36)

(corresponding to the contribution of nodes in local parameter

estimation) and in (37) (corresponding to the contribu-

tion of nodes in local diffusion) increase, nodes activate more

frequently. As shown in Fig. 4, this improves the rate of con-

vergence of the energy-aware diffusion LMS algorithm across

the network.
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Fig. 4. Network excess mean square error .

VIII. CONCLUSION

We considered energy-aware parameter estimation via dif-

fusion LMS by equipping nodes with a game-theoretic activa-

tion mechanism. The small step-size diffusion LMSwas revised

such that data fusion takes place on the same timescale as the

assimilation of measurements. The revised diffusion LMS fur-

ther allowed us to employ the powerful ODE method [5], [6]

to analyze performance, which led to simpler derivation of the

known stability results for diffusion LMS. The energy-aware

activation control was formulated as a noncooperative repeated

game, where nodes repeatedly decide whether to activate based

on a utility function that captures the trade-off between energy

consumption and the value of the data provided by the node. Fi-

nally, the diffusion LMS was combined with a game-theoretic

adaptive filter that updates the activation strategy of nodes and
adapts it to the changes in the network. The convergence anal-

ysis revealed that the proposed energy-aware diffusion LMS is

asymptotically consistent, yet the global activation behavior at

each time tracks the set of approximate correlated equilibria of

the underlying activation control game. Simulation results were

further provided to confirm theoretical findings.

APPENDIX

PROOF OF THEOREM 2.1

Here, we present the results of Theorem 2.1 with more tech-

nical details followed by their proofs.

Theorem A.1: Consider the interpolated process , de-

fined in (32). The following assertions hold:
1) Under (C2), is tight in .

2) Replace (25)–(26) in (C2) by:

(i) ,

(ii) , in probability as

.

Assume further is independent of . Then, con-

verges weakly to as such that the limit is the

solution to the ODE (33).

3) The linear system (33) is globally asymptotically stable

and .

4) Denote by any sequence of real numbers satisfying

as . Then, converges weakly

to as .

Proof: To prove part 1), we apply the tightness criterion

[24, p.47]. It suffices that for any and such

that ,

, where denotes the -algebra generated by the

-dependent past data up to time . Using (C1), direct calcula-

tion leads to

(85)

The desired tightness follows by first taking and

then in (84). Tightness is equivalent to sequential

compactness on any complete separable metric space. Thus,

by virtue of the Prohorov’s theorem, we may extract a weakly

convergent subsequence. For notational simplicity, still denote

the subsequence by with limit .

The proof of part 2) uses stochastic averaging theory and fol-

lows from the standard argument in [6, Chapter 8] to charac-

terize the limit of the the convergent subsequence .

Details are tedious and omitted due to limited space. We merely

note that, in view of (21) and (24), . Looking at

the last term in the r.h.s. of (31), only survives in the limit

and the term is averaged out to .

To prove part 3), we use standard results on Lyapunov sta-

bility of linear systems. In view of (21) and (24), since

for all , the symmetric matrix is

weakly diagonally dominant, hence, is negative semi-definite
. On the other hand, . Therefore,

(negative-definite). The set of global attractors
of (33) is defined by . Since

, is nonsingular and

has the unique solution . Therefore,

.

To prove Part 4), we need to establish the limit as first
and then . The consequence is that the limit points of the

ODE and the small step-size diffusion LMS recursions coincide

as . However, in lieu of considering a two stage limit

by first letting and then , we look at

and require . The interested reader is referred to [6,

Chapter 8] for an extensive treatment.
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