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Abstract—The paper presents risk-neutral and risk-averse caching policies that can be deployed in a femtocell network with limited
storage capacity to reduce the time delay of servicing content requests. The caching policies use a forecasting algorithm to estimate
the cumulative distribution function of content requests based on the content features. Given the cumulative distribution function, a
mixed-integer linear program is used to compute where to cache content in the femtocell network. The caching policies account for the
uncertainty associated with estimating the content requests using the coherent Conditional Value-at-Risk (CVaR) measure. For a large
number of content, a risk-neutral caching policy is constructed that accounts for both the content features and routing protocol that only
requires the evaluation of a unimodular linear program. Using data from YouTube (comprising 25,000 videos) and the NS-3 simulator,
the caching policies reduce the delay of retrieving content in femtocell networks compared with industry standard caching policies.
Specifically, a 6% reduction in delay is achieved by accounting for the uncertainty, and a 60% reduction in delay is achieved if both the
uncertainty and femtocell routing protocol are accounted for compared to the risk-neutral caching policy that neglects the routing
protocol.
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1 INTRODUCTION

Caching content in femtocell networks is an attractive
method for alleviating network congestion resulting from
increased video on demand streaming. In future 5G mobile
network protocols, proactive caching will be an integral
component to reduce the network congestion and the delay
of delivering content to users. Proactive caching is integral
as a substantial portion of the network congestion results
from transferring popular video content to users. If the
video content is cached locally, then both network conges-
tion and the delay of delivering content to users is reduced.
To determine which content to cache requires a caching
policy that accounts for both future content requests, load
balancing, and the routing protocol to deliver content to
users that is used in the femtocell network. This paper
presents two risk-neutral and two risk-averse caching poli-
cies that account for the uncertainty of predicting the future
popularity of content, the content routing protocol, and load
balancing in the network.

Given the main source of traffic in femtocell networks
is video content, several methods have been proposed for
estimating video content requests. These methods fall into
two categories, namely, time-series or content feature based.
Time-series methods use the historical content requests
to predict the future content requests. Multivariate linear
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models [1], pure birth stochastic process [2], and ordinary
differential equations [3] have all been used for constructing
time-series methods for estimating content requests. A limi-
tation with time-series methods is that they can only be used
to predict the content requests of posted content. Content
feature based methods use the uploader, textual, and image
features of the content to predict the content requests. These
methods include multivariate linear regression [4], Markov
clustering [5], and extreme learning machines [6]. All these
methods provide point forecasts (expected value) for the
content requests. No estimate of the confidence interval,
prediction interval, or measure of the uncertainty associ-
ated with the predicted content requests is provided. In
this paper we construct a conformal prediction algorithm
for estimating the cumulative distribution function of the
content requests. The key idea of the conformal prediction
algorithm is to first group content, then for each group
assume that the resulting error between the point forecasts
and the actual content requests are generated from the same
cumulative distribution function. The estimated cumulative
distribution function provides a complete description of the
uncertainty associated with the estimated content requests.
Both the confidence interval and prediction interval of the
content requests can be constructed from the estimated
probability distribution. Note that density forecasting [7],
[8] in the time-domain is typically referred to as prequential
forecasting [9] in the economics literature.

Having estimated the future content requests, the aim
is to optimally cache the content throughout the femtocell
network to minimize the delay to transfer the requested
content to the users. This requires that content is cached
where it is likely to be requested, and to optimally transfer
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content throughout the network to serve user requests.
The methods in [10], [11], [12] account for user specific
downloading delay and wireless channel fading gain to
determine where to cache content and which user to connect
to which femtocell access point. These caching methods can
be considered as dynamic cache replacement methods as
they adapt the cache based on the users ability to connect
to different femtocell access points. However, a limitation
with the caching methods [10], [11], [12] is that they do
not account for the routing protocol used in the backhaul
network to retrieve content that is not cached in the fem-
tocell access points. In [13] cooperative caching is used to
account for the backhaul link bandwidth in the network
to cache content throughout the network. Once the content
is cached in the femtocell network, then content and load
aware routing methods are used to transfer the requested
content to users [14], [15], [16]. The aim of these routing
methods to ensure load balancing occurs throughout the
network to minimize the delay of transferring content to
users.

A common theme with the caching methods [10], [11],
[12], [13] is that they contain three distinct steps. First,
a point estimate of the content popularity is performed.
Second, the content is cached in the network to minimize
the delay of transferring content to users. Third, given
the cached content, a routing method is used to deliver
the content to the users. Notice that the routing method
does not affect how the content is cached in the network.
Additionally, the above methods are not risk-averse–that
is, the point estimate of the content requests is equivalent
to computing the expectation of the requests using the
forecasted content request density. An issue with using the
point estimate is that it does not provide a measure of the
uncertainty associated with estimating the future content
requests. As such, no probabilistic guarantees can be made
on the network operating characteristics (e.g. downloading
delay, bit-error-rate, energy consumption, cache miss ratio)
for a selected caching decision.

In this paper, instead of minimizing the expected down-
loading delay, we replace the additive expectation operator
with a more general subadditive risk operator to make
caching decisions to optimize network performance. Specif-
ically, we use the Conditional Value-at-Risk (CVaR) risk
operator to construct the caching policies in the femtocell
network1. There are two important properties of CVaR that
make it useful for performing caching decisions to reduce
delay. First, CVaR accounts for the minimal probability of a
substantial network delay for a caching decision where the
total delay probability distribution is asymmetric. Second,
CVaR is a coherent risk measure–that is, CVaR is mono-
tonic, subadditive, positive homogeneous, and translation
invariant. The monotonic property states that if the delay of
a caching decision D1 is always less than another caching
decision D2 almost surely, then the risk of selecting D1 is
always less than D2. Additionally, the subadditive property
guarantees that the risk of using two caching decisions D1

and D2 is always less than or equal to the risk associated
with using D1 and D2 separately. Since CVaR is a coherent

1. CVaR is one of the “big" developments for risk-averse decision
making in mathematical finance; see [17], [18], [19].

risk measure, the optimization of CVaR results in a convex
optimization problem. As we show, the optimization of
CVaR to confidently reduce the network delay while ac-
counting for the routing protocol results in a convex mixed-
integer linear program.

The paper is organized as follows. The system model of
the femtocell network is provided in Sec.2 where Table 1
provides a summary of the parameters used throughout
the paper. In Sec.3 dynamic cache replacement policies are
discussed. In Sec.4 we discuss four static caching policies,
two which are risk-neutral and two which are risk-averse.
Specifically, in Sec.4.1 and 4.2 we construct risk-neutral static
caching policies for the femtocell network. The term risk-
neutral is used to indicate that these methods use point
estimates of the content requests–that is, they do not ac-
count for the uncertainty associated with estimating the
future content requests. An useful outcome of Sec.4.2 is
that the static caching policy, which accounts for content
requests, cache size, bandwidth, load, and content routing,
only requires the solution to a unimodular linear program.
In Sec.4.4 and 4.5, risk-averse caching policies are con-
structed based on the risk-neutral caching policies in Sec.4.1
and 4.2. The main idea is that the uncertainty associated
with estimating content requests is accounted for using
the Conditional Value-at-Risk (CVaR) measure. In Sec.5 a
novel content request conformal prediction algorithm is con-
structed based on the extreme learning machine and CVaR
optimization. The performance of the risk-neutral and risk-
averse caching policies are evaluated using real-world data
from the YouTube social network in Sec.6. The results show
that a 6% reduction in the average delay can be achieved
if the uncertainty of the content requests is accounted for,
and a 60% reduction in average delay is achieved if both the
uncertainty and femtocell routing protocol are accounted for
compared to the risk-neutral caching policy that neglects
the routing protocol. Therefore, it is essential to account for
both the uncertainty of predicting the content requests and
routing when performing caching decisions.

2 SYSTEM MODEL

In this section we introduce the system model of the fem-
tocell network and users, and introduce the mathematical
notation that will be used throughout the paper to formulate
the risk-neutral and risk-averse caching policies.

We consider a heterogenous Long-Term Evolution (LTE)
wireless femtocell network [20], [21]. The network contains
wireless nodes (e.g. base stations, femtocell access points,
femtocell gateway) and a core network as illustrated in
Fig. 1. The nodes in the network are defined by the set
V = {1, . . . , V }. Each wireless node v ∈ V contains a
physical cache of size Sv which stores the cached content.
Additionally, the bandwidth between nodes is given by the
parameter bij ∈ R+ for i, j ∈ V . If the nodes i and j
have no direct communication link then their bandwidth
bij = 0. In the LTE network, the bandwidth between
nodes are typically heterogeneous and they are composed
of wired, fiber-optic, and wireless links [22]. For example,
the bandwidth between base stations and femtocell gateway
nodes to the core network are on the order of several GB/s
(fiber-optic). The link capacity of base stations and femtocell
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TABLE 1
Notation for Risk-Averse Caching

Parameters Definition
F (·) cumulative distribution function
F̂ (·) empirical cumulative distribution function
p(·) probability mass function
α confidence level
t time
LTE Network Parameters
V set of nodes {1, . . . , V }
Vd destination nodes with Vd ⊆ V
Sv cache size of node v ∈ V
C(t) cached content indicator matrix
cv(t) cached content indicator vector for node v ∈ V
nv(t) load at node v ∈ V
qv the request-queue-time at node v ∈ V
Aijf weight between nodes i, j ∈ V for f ∈ F
bij bandwidth between nodes i, j ∈ V
lij latency between nodes i, j ∈ V
δijdf shortest-path indicator for i, j, d ∈ V and f ∈ F
dvf (t) content retrieval delay at v ∈ Vd for f ∈ F
Content Parameters
F set of content {1, . . . , F}
D(t) dataset of content features and requests at time t
G content groups {1, . . . , G}
f content index f ∈ F
sf size of content f ∈ F
gvf (t) group association of content f ∈ F at v ∈ Vd
yvf (t) request count for content f ∈ F at v ∈ Vd
xf feature vector of content f ∈ F
ĝvf (t) estimated group association of content f ∈ F at v ∈ Vd
ŷvf (t) estimated request count for content f ∈ F at v ∈ Vd
µg mean vector of group g ∈ G
Σg covariance matrix of group g ∈ G
β neuron weights
θ neuron transfer function parameters
L number of neurons

access points to mobile users are typically on the order of
1-100 MB/s (wireless). And the link capacity of femtocell
access points to the femtocell gateways are on the order
of 100 MB/s (wired connection) [23]. The content server
stores all the content that can be requested by users. The
core network communicates with the content server over the
wide area network. Note that the content server is typically
comprised of a commercial content distribution network
(CDN) such as Akamai, Amazon CloudFront, Azure CDN
or dedicated telco CDN that is maintained by a wireless
network operator [24].

When a mobile user connects to the LTE network, the
LTE network protocol established the communication link
between the mobile user and either a femtocell access point
or base station based on the minimal signal-to-noise ratio of
the wireless channel [25], [26]. The set of content that can be
requested by mobile users is denoted by F = {1, 2, · · · , F}.
The size of each content is denoted by sf ∈ R+ for f ∈ F .
When a femtocell access point or base station receives a
user request for content f ∈ F , the node that receives the
request will retrieves the content from the LTE network. The
set of nodes (femtocell access points and base stations) that
receive users’ requests is denoted by Vd where Vd ⊂ V .
The delay between when the user request was received
and when the content is delivered to the user is known as
the content retrieval delay. The content retrieval delay for
content f ∈ F requested at node v ∈ Vd at time t is denoted
by dvf (t). The content retrieval delay dvf (t) depends on
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Fig. 1. Schematic of a Long-Term Evolution (LTE) wireless network.
The LTE wireless network is composed of femtocell access points,
base stations, femtocell gateways, and a core network. The femtocell
access point, femtocell gateway, and base stations all contain physical
caches that can store content. Mobile users are connected to either
the base station or the femtocell access point through a low-bandwidth
connection. Femtocell access points are connected to the femtocell
gateway which is then connected to the core network. Note that the
base stations and femtocell gateway nodes do not communicate directly
with each other. The core network is connected to the content server
over the wide area network.

where the content is cached in the network, the load of each
node, bandwidth between nodes, network-layer protocol,
and link-layer protocol of the LTE network. The load nv(t)
of each wireless node v ∈ V is the total number of content
requests the wireless node is currently processing. If a user
requests content f ∈ F from the wireless node v ∈ Vd and
node v has the content cached, then the content retrieval
delay dvf (t) = sfqvnv(t) where qv is the request-queue-
time of node v and sf is size of the content f . The request-
queue-time qv of node v ∈ V provides the average time
to process a single packet/byte request. Note that if node
v does not contain the requested content, then it must
be retrieved by another node in the network or from the
content server.

The goal of the LTE network is to minimize the total con-
tent retrieval delay to serve all user requests in the network.
To achieve this objective, each node in Fig.1 contains a phys-
ical cache and a cache manager. The cache manager of each
node controls the content that is cached at the node [27].
The currently cached content at node v ∈ V is given by
the cached content indicator vector cv(t) ∈ [0, 1]F where
F is the total number of contents that users can request
in the LTE network. The cache of each node is composed
of a static segment and a dynamic segment. The content
in the static cache does not change for a time interval ∆T
and is associated with the slow-time scale caching decisions.
The content in the dynamic cache changes as a function of
the user requests and is associated with the fast-time scale.
The cache manager controls the cache replacement policy for
the static and dynamic caches to minimize content retrieval
delay dvf (t). Specifically, the cache manager at each node:

1) runs the cache replacement policy to minimize request
delays.
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2) forwards content requests to neighbouring nodes or the
content server if the content is not cached locally.

3) records the number of requests yvf (t) and feature vec-
tor xf for content f ∈ F at v ∈ V .

It is assumed that each node in the LTE network has
computational resources equivalent to a standard desktop
computer to allow the operation of the cache manager.
Given that the cache size Sv , only a small fraction of all
the content F can be cached locally (except for the content
server which contains all contents). If the content is not
cached locally, the content is retrieved from another node
that minimizes the content retrieval delay dvf (t).

To perform cache replacement of the static cache, the
cache manager records the request statistics yvf (t) and
feature vector xf for content f ∈ F at node v ∈ V . For video
content, the feature vector comprises information related to
the thumbnail and title of the video, as well as information
regarding the user that uploaded the video such as number
of subscribers. The complete set of content features and
requests at each node is contained in the dataset

D(T ) = {{xf , yvf (t), gvf (t)} : v ∈ V, f ∈ F , t ∈ [0, T ]}
(1)

where T is the total time the content F has been available
to users. The parameter gvf (t) in (1) is the group asso-
ciation of content f ∈ F at node v ∈ V . The possible
groups that content can be associated with is denoted by
G = {1, 2, . . . , G}. The cache manager uses the information
inD(T ) to estimate the future number of requests of content
for both new content and previously cached content that
users have requested.

Given the LTE network parameters (cache size, band-
width between nodes, network-layer protocol, and link-
layer protocol) and the content parameters (feature vector,
request count, group association), the aim is to design
caching policies to minimize the cumulative content re-
trieval delay

d(T ) =
Kt∑
k=1

V∑
v=1

F∑
f=1

dvf (tk) (2)

where Kt is the total number of content requests in the time
interval [0, T ], and tk ∈ [0, T ] denotes the time of each of the
k ∈ {0, 1, . . . ,Kt} content requests. To minimize the delay
requires a method to estimate the future content requests,
and a method to cache popular content based on the request
estimates and routing protocol to deliver content to users
in the LTE network. In this paper we construct a content
request density forecasting method, and both risk-neutral
and risk-averse cache replacement policies to minimize the
LTE network delay.

3 DYNAMIC CACHING POLICIES

The cache of each node in the LTE network, illustrated
in Fig. 1, is composed of a dynamic segment and a static
segment. This section discusses dynamic caching policies,
while Sec.4 discusses static caching policies. To give more
perspective, recall from Sec.2 that the content in the dynamic
segment changes as a function of the user requests, while the
content in the static segment changes on a time interval ∆T
that is significantly larger then the time-scale of individual

content requests. The content in the dynamic and static
segments of the cache are controlled by the dynamic caching
policy and static caching policy respectively. Here we briefly
discuss dynamic caching policies that can be used in the LTE
network. In Sec.4 we present static caching policies that are
used in combination with the dynamic caching policies pre-
sented in this section.

A schematic of the interaction of the dynamic and static
cache is illustrated in Fig. 2. There are three possible sce-
narios that can occur depending on where the requested
content is cached in the network. In the first scenario Fig. 2,
the content is transferred from the static cache to the user
and no change in the dynamic cache occurs. In the second
scenario in Fig. 2, the content is transferred from the dy-
namic cache to the user. Additionally, the content in the
dynamic cache will be adjusted according to the dynamic
cache replacement policy. In the third scenario in Fig. 2,
the content must first be transferred to the dynamic cache
from another node in the network, and then transferred to
the user. Additionally, the content in the dynamic cache
will be adjusted and evicted according to the dynamic
cache replacement policy. In all of the three scenarios, the
content in the static cache remains unchanged, and identical
content is not simultaneously available in both the static
and dynamic caching segments. The content in the static
cache is only updated at a time interval ∆T after it was
first initialized. The aim of the static caching segment is to
store content that is expected to have a large number of user
requests in the duration ∆T , while the dynamic cache stores
other content requested by users.

Dynamic CacheStatic Cache

Requested content

Network Nodes

A)

B)

C)

Fig. 2. Schematic of the interaction between the static and dynamic
caching policies. The left box and the middle box refer to the static and
dynamic cache of a single node while the right most box (network nodes)
refers to the storage of all other nodes in the network. Three possible
scenarios can be result from a content request at a node. Scenario (A)
refers to the situation when the requested content is available in the
static cache of the node. In this case, content in the static and dynamic
cache remain unchanged. B) refers to the case when the requested
content is available in the dynamic cache of the node. In this case, con-
tent in the dynamic cache are adjusted according to the dynamic cache
replacement policy and content in the static cache remains unchanged.
C) represents the situation when the requested content is unavailable in
the static or dynamic cache of the node. In this case, the content will be
retrieved from another network node and stored in the dynamic cache
of the node where the request was received. This will cause the least
frequently requested content in the node’s dynamic cache to be evicted
while the static cache remains unchanged.

Several dynamic caching policies exist which are
based on users’ real-time content requests including:
Least-Recently-Used (LRU), Segmented Least-Recently-
Used (SLRU) [28], Least-Frequently-Used, and Least-
Frequently-Used with Dynamic Ageing and Adaptive Re-
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placement Cache. The LRU cache replacement policy op-
erates by maintaining an ordered cache where recently
requested content will reside at the beginning of the cache
(known as most recently used position). As user requests
are processed by the node, the content in the dynamic
cache that are not requested by users are shifted towards
the end of the cache (least recently used position). If the
requested content is not currently available in the cache,
it will be retrieved from other nodes in the LTE network
and stored in the most recently used position. All other
content in the cache will be shifted towards the end of the
cache with the content in the least recently used position
being evicted from the cache. Variants of the LRU policy
commonly used include the SLRU. In the SLRU cache re-
placement policy, the entire cache is divided into different
segments with each segment associated with a priority or
popularity level. When requested content is unavailable in
the cache, the content will be retrieved and stored in the
most recently used position of the lowest priority segment
of the dynamic cache. Simultaneously, the content that is
in the least recently used position of the lowest priority
segment will be evicted from the cache. The main advantage
of the LRU and SLRU dynamic cache replacement policies
is that they do not require knowledge of the LTE network
architecture or where the content is stored throughout the
network. As such, these caching policies are straightforward
to implement and are widely used in commercial distribu-
tion networks such as Facebook [28].

4 RISK-NEUTRAL AND RISK-AVERSE STATIC
CACHING POLICIES

This section presents four static caching policies (two risk-
neutral and two risk-averse) and constitutes the main con-
tribution of the paper.

The static cache replacement policy controls the content
stored in the static cache of each node in the LTE network il-
lustrated in Fig.1. The content in the static cache remains the
same for a time interval ∆T that is significantly longer than
the characteristic time-scale of individual content requests
from users. The goal of the static caching policy is to cache
content that is predicted to have a large number of requests
in order to minimize the total content retrieval delay in the
time interval ∆T . Given the parameters of the LTE network
and the content dataset D, this section presents two risk-
neutral and two risk-averse static caching policies. The term
risk-neutral is used for any policy that uses point estimates
of the content requests and does not account for the uncer-
tainty associated with predicting the content requests. These
include the risk-neutral (RN) and risk-neutral and network-
aware (RNNA) caching policiespresented in Sec.4.1 and 4.2.
Risk-averse caching policies in contrast to the risk-neutral
policies, account for the uncertainty associated with esti-
mating the content requests yvf for content f at node v.
Here, the uncertainty associated with the content requests
is accounted for using the coherent CVaR risk measure with
a confidence level α ∈ [0, 1] (as discussed in Sec.4.3). These
include the risk-averse (RA) and risk-averse and network-
aware (RANA) caching policiespresented in Sec.4.4 and 4.5.
The RA and RANA policies can be viewed as generaliza-
tions of the RN and RNNA policies. Note that if we do

not consider risk (e.g. risk-neutral) then the confidence level
α = 0.

4.1 Risk-Neutral (RN) Static Caching Policy

Let us assume we have the predicted number of requests for
each content f ∈ F at node v ∈ V , which we denote by ŷvf .
Then, the content to be cached at each node can be selected
by solving the following binary integer program

C∗ ∈ arg min
cvf


F∑
f=1

V∑
v=1

ŷvf (1− cvf )


s.t.

F∑
f=1

sfcvf ≤ Sv for v ∈ V, (3)

where C∗ ∈ [0, 1]V×F and cvf ∈ [0, 1] indicates if the
content f ∈ F is cached at node v ∈ V . The inequality
constraint in (3) ensures that each node can cache files upto
its associated cache size. Although (3) is a binary integer
program which has complexity NP-complete, (3) can be
solved with complexity O(F log(F )) as each node merely
caches the maximum number of content that are predicted
to have the highest number of requests.

The RN caching policy (3) is used extensively in the
literature [27], [29], [30]. The key feature of the risk-neutral
caching policy is that it requires an accurate estimation of
yvf , namely, the number of requests for the content. The RN
policy does not account for any aspects of the LTE network
other than the cache size of each node. Additionally, (3) does
not account for the uncertainty associated with estimating
the number of content requests yvf . Therefore, although (3)
can be evaluated with low complexityO(F log(F )), the total
content retrieval delay is expected to be higher compared
with static caching policies that account for the LTE network
parameters, routing protocol, and the uncertainty associated
with predicted content requests.

4.2 Risk-Neutral and Network-Aware (RNNA) Static
Caching Policy

Here we construct RNNA static caching policy to opti-
mally cache content given the predicted content requests
ŷvf , the LTE network parameters (bandwidth, load at the
nodes, request-queue-time, and cache size of each node),
the network-layer protocol, and the link-layer protocol. The
RNNA caching policy accounts for both the LTE network
parameters and routing protocol, however neglects the un-
certainty associated with predicted content requests ŷvf .

The (RNNA) static caching policy is given by the follow-
ing binary integer program

C∗ ∈ arg min
C,k,δ,r


F∑
f=1

∑
d∈Vd

∑
i,j∈V

ŷdfAijfδijdf


s.t. csf ∈ [0, 1], ksdf ∈ [0, 1], δijdf ∈ [0, 1],

rsdf ∈ [0, 1], Tij ∈ Z+∑
i∈V

δsidf − δisdf = ksdf ,
∑
i∈V

δdidf − δiddf = −1,

1{bij = 0}+ δijdf ≤ 1 (4a)
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F∑
f=1

sfcsf ≤ Ss,
V∑
s=1

csf ≥ 1 (4b)

V∑
s=1

ksdf = 1,
V∑
s=1

rsdf = 1,

F∑
f=1

∑
d∈Vd

δijdf ≤ Tij (4c)

rsdf ≤ kfsd, rsdf ≤ csf , rsdf ≥ ksdf + csf − 1, (4d)
∀s ∈ V, ∀d ∈ Vd, ∀f ∈ F .

In (4), C∗ ∈ [0, 1]V×F indicates the content cached in the
static cache of all nodes, Vd ⊂ V are the destination nodes in
the LTE network, and Tij is a positive integer that indicates
the maximum number of content transfer paths allowed
between nodes i and j (e.g. congestion threshold). The
destination nodes Vd communicate directly with the users
and are comprised of the base stations and femtocell access
points illustrated in Fig. 1. Given the predicted content
requests ŷdf , the objective function in (4) represents the total
content retrieval delay over the time-interval [t, t + ∆T ].
Note that we have dropped the time-dependence from the
parameters in (4) to improve readability. The parameterAijf
in (4) is the edge weight of the LTE network for content
f ∈ F and is equal to

Aijf =

{
sf (lij + qjnj) if i 6= j

sfnj otherwise
(5)

where sf is the size of content f , lij is the latency between
nodes i ∈ V and j ∈ V , qj is the request-queue-time of node
j ∈ V . The latency lij (second per byte) between nodes is
a function of the bandwidth bij , the network topology, the
network-layer protocol, and the link-layer protocol used in
the LTE network. The parameter δijdf indicates if nodes
i, j ∈ V are used to transfer the content f ∈ F to the
destination node d ∈ Vd. ksdf indicates if source node s ∈ V
is used to retrieve content f ∈ F for the destination node
d ∈ Vd. The parameter rsdf = ksdfcsf indicates if the source
node s ∈ V , used by destination node d ∈ Vd to retrieve
content f , currently has the requested content cached.

The RNNA caching policy (4) optimally selects the cache
C∗ to minimize the total content retrieval delay while ac-
counting for the LTE network parameters and predicted
content requests. Additionally, RNNA accounts for the
shortest-path routing used to transfer content throughout
the network to serve user requests. The path constraints (4a)
ensures that the δijdf defines the shortest-path from source
node s ∈ V to destination node d ∈ Vd for transferring
content f ∈ F . The caching constraints (4b) ensure that the
files cached at each node do not exceed the nodes cache
size, and that atleast one instance of each content f ∈ F is
cached in the LTE network. The link congestion constraint
(4c) ensures that the number of content transferred over the
link between node i ∈ V and node j ∈ V satisfies the con-
gestion threshold Tij . The source constraints (4d) ensures
that only one source node s ∈ V is used to transfer content
f optimally to the destination node d ∈ Vd. Additionally,
the source constraints ensure that the source node s has the
content f to be transferred to the destination node d.

The binary integer program (4) to be solved for the
RNNA caching policy contains a total of (V + 2V 2 + V 3)F
binary variables, (3V + V 2)F equality constraints, and(

(1 + V + 2V 2 + V 3)F + V 2 + V
)

inequality constraints.
If each content has approximately equal size, then the
constraint matrix in (4) is a network matrix. As such, (4)
is a unimodular linear program and can be solved with
polynomial time complexity using interior-point numerical
methods [31]. Although YouTube content is not of equal size,
it can be broken into equal sized blocks. The reason is that
typically YouTube content is of duration between 30 seconds
to 5 minutes, with a user attention span of approximately
90 seconds [32]. Therefore, if each YouTube video is broken
into 30 second intervals, then the decision of where to cache
these video blocks throughout the network can be solved in
polynomial time using the optimization problem (4).

Though the RNNA caching policy (4) uses the LTE
network parameters, popularity of content, and content
transfer protocols, it does not account for the uncertainty
associated with estimating the request count yvf for content
f at node v. Therefore, we can not control how to account
for the risk associated with any given caching decision. Here
the risk can be viewed as a measure of the worst case content
retrieval delay that results from a given caching decision.

4.3 Conditional Value-at-Risk (CVaR) and Content Re-
trieval Delay Minimization
The two risk-averse caching policies RA and RANA both
use the coherent CVaR risk measure to account for the
uncertainty associated with predicting the content requests.
Here, we precisely define the CVaR risk measure and how it
accounts for the uncertainty associated with predicting the
content requests.

LetD be a random variable that denotes the total content
retrieval delay in a time-interval [t, t + ∆T ]. Realizations
of the total content retrieval delay are defined by d (2).
The ability to compare random outcomes of D based on
the confidence α ∈ [0, 1] is crucial for accounting for the
risk associated with the uncertainty of estimating yvf when
performing caching decisions.

How can we estimate the total content retrieval delay
D for a given confidence level α ∈ [0, 1] (where α = 1
is completely risk-averse, and α = 0 is risk-neutral)? One
possibility is to use the Value-at-Risk (VaR) risk measure

VaRα(D) = min{d ∈ R : FD(d) ≥ α} (6)

where FD(d) is the cumulative distribution function of D.
Classically, VaRα(D) was a popular method to estimate
risk, however, it has several limitations [17], [18]. First,
VaRα(D) is difficult to optimize as it is non-convex and is a
non-coherent measure of risk as it fails the sub-additive con-
dition. Second, VaRα(D) does not account for the properties
of the distribution FD(d) beyond the threshold VaRα(D).

To account for the uncertainty of estimating yvf for
computing D, we use the CVaR measure [17], [18] which
is a coherent risk measure. That is, CVaR satisfies the fol-
lowing properties: it is positive homogeneous, sub-additive,
monotonic, translation invariant with respect to first order
stochastic dominance, and monotonic with respect to second
order stochastic dominance. CVaR is the expected total
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delay given that we are in the α ∈ [0, 1] confidence interval
of the cumulative distribution FD(d). Formally, CVaR is
given by

CVaRα(D) = ED[D|D ≥ VaRα(D)]

=
1

1− α

1∫
α

VaRβ(D) dβ. (7)

where ED denotes the expectation with respect to the ran-
dom variable D that represents the content retrieval delay.
As seen from (7), CVaRα(D) can be interpreted as the con-
ditional expectation of D where the expectation is evaluated
on the α-confidence portion of the tail distribution FD(d).
If α = 0, then CVaRα(D) = E[D] is the expected value
of D, and if α → 1, then CVaRα(D) = max{D} gives the
maximum value of D.

Given the CVaR risk measure (7), to minimize the total
content retrieval delay in a time-interval [t, t+∆T ] for a con-
fidence level α requires solving the following optimization
problem

C∗ ∈ arg min
z∈Z

{CVaRα(D)}. (8)

where z are the decision variables that affect the total
content retrieval delay D, and Z are the associated con-
straints on the decision variables. C∗ in (8) is the associated
caching decision that minimizes the total content retrieval
delay with a confidence of α. If α = 0 in (8), then (8) is
equivalent to the risk-neutral caching policies discussed in
Sec.4.1 and Sec.4.2. Here, we are interested in risk-averse
caching policies for evaluating (8) where α ∈ (0, 1].

The evaluation of (8) for general α ∈ (0, 1] is non-trivial
as it requires an analytical expression for the cumulative
distribution function FD(d) which is unknown. Recall that
the random variable D representing the total content re-
trieval delay in the time-interval [t, t+ ∆T ] which depends
on the LTE network parameters, popularity of content,
content transfer protocols, and the uncertainty associated
with estimating the request count yvf for content f at node
v. Using Theorem 2 in [17], the optimization problem (8) can
be represented by

C∗ ∈ arg min
z∈Z,c∈R

{c+
1

1− αED[max{0, D − c}]} (9)

where the expectation is taken with respect to the random
variable D. Though the distribution FD(d) is unknown,
if the distribution of the content requests FYvf

(yvf ) at
node v ∈ V is known, then the objective function (9)
can be approximated using Monte-Carlo integration tech-
niques. That is, the expectation ED[·] in (9) is estimated
using K independent and identically distributed samples
of the content requests yvf generated from the distribution
FYvf

(yvf ). Additionally, the non-smooth operator max{·}
in the objective function (9) can be removed by introduced
auxiliary parameters ξk. The approximate solution to (9) can
be computed by solving:

C∗ ∈ arg min
z∈Z,c∈R

{c+
1

K(1− α)

K∑
ξ=1

ξk}

s.t. ξk ≥ D(z, ŷvfk)− c
ŷvfk ∼ FYvf

(yvf ) for v ∈ V, f ∈ F

ξk ≥ 0, for k ∈ {1, . . . ,K}. (10)

where ŷvfk represents the generated sample of the content
requests for content f at node v for sample k.

The optimization problem (10) provides the basis for
constructing the risk-averse static caching policies in this
paper.

4.4 Risk-Averse (RA) Static Caching Policy
Here we construct a risk-averse (RA) static caching
policy that accounts for the uncertainty associated with
predicting the content requests yvf for content f at node
v. The caching method RA is a generalization of the caching
method RN in Sec.4.1 that does not account for the uncer-
tainty associated with estimating the content requests.

Given the conditional density function FYvf
(yvf ) of con-

tent requests, the CVaR optimization problem (10), and us-
ing the constraints in the popularity based caching method
(3), the RA caching policy is defined by

c∗v ∈ arg min
cvf ,c

c+
1

K(1− α)

K∑
ξ=1

ξk


s.t. cvf ∈ [0, 1], c ∈ R,

ξk ≥
F∑
f=1

V∑
v=1

ŷvfk(1− cvf )− c, (11a)

ŷvfk ∼ FYvf
(yvf ), ηk ≥ 0,

F∑
f=1

sfcvf ≤ Sv, (11b)

v ∈ V, f ∈ F , k ∈ {1, . . . ,K},
where C∗ ∈ [0, 1]V×F . The parameter K in (11) is the
total number of the content requests generated from the
distributions FYvf

(yvf ) for v ∈ V and f ∈ F . Additionally,
the parameter c in (11) represents the estimated Value-at-
Risk (VaR) of the total content delay for a confidence α, and
α ∈ (0, 1] is the confidence level.

The RA caching policy (11) is a mixed integer linear
program that contains 2K + V inequality constraints, FV
binary variables, K + 1 real variables, and requires the gen-
eration of V FK samples from the distributions FYvf

(yvf ).
The complexity of (11) is NP-hard, however several nu-
merical methods exist which can be used to evaluate (11)
including: Branch-and-bound, cutting planes, branch-and-
cut, and branch-and-price [33], [34]. The selection of the
number of samples K to use is still an open research
problem. However, we found that a reasonable performance
is achieved using K = 10, 000 samples.

Though RA caching policy (11) accounts for the uncer-
tainty associated with predicting the number of requests, it
neglects the LTE network parameters (network bandwidth,
load at the nodes, request-queue-time, content cached at
other nodes), the network-layer protocol, and the link-layer
protocol of the LTE network.

4.5 Risk-Averse and Network-Aware (RANA) Caching
Policy
Here we construct RANA caching policy that accounts for
the uncertainty associated with predicting the number of
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requests, LTE network parameters (network bandwidth,
load at the nodes, request-queue-time, content cached at
other nodes), the network-layer protocol, and the link-layer
protocol of LTE network.

Given the conditional density function FYvf
(yvf ) of con-

tent requests, the CVaR optimization problem (10), and
using the constraints in (4), the RANA caching policy is
given by

C∗ ∈ arg min
C,k,δ,r,c

c+
1

K(1− α)

K∑
ξ=1

ξk


s.t. csf ∈ [0, 1], ksdf ∈ [0, 1], δijdf ∈ [0, 1],

rsdf ∈ [0, 1], Tij ∈ Z+, c ∈ R,

ξk ≥
F∑
f=1

∑
d∈Vd

∑
i,j∈V

ŷdfAijfδijdf − c,∑
i∈V

δsidf − δisdf = ksdf ,
∑
i∈V

δdidf − δiddf = −1,

1{bij = 0}+ δijdf ≤ 1
F∑
f=1

sfcsf ≤ Ss,
V∑
s=1

csf ≥ 1

V∑
s=1

ksdf = 1,
V∑
s=1

rsdf = 1,

F∑
f=1

∑
d∈Vd

δijdf ≤ Tij (12a)

rsdf ≤ kfsd, rsdf ≤ csf , rsdf ≥ ksdf + csf − 1,

∀s ∈ V, ∀d ∈ Vd, ∀f ∈ F , k ∈ {1, . . . ,K}.

A description of each of the constraints in (12) is provided
below (4). Note that the RANA caching policy (12) is equiv-
alent to the RNNA caching policy (4) if we do not account
for the uncertainty associated with predicting the number
of requests for content f ∈ F at node v ∈ V–that is, we set
α = 0 in (12).

The mixed integer linear program (12) contains a total of
(V + 2V 2 + V 3)F binary variables, (2K + 1) real variables,
(3V +V 2)F equality constraints, and

(
(1+V +2V 2+V 3)F+

V 2 + V + 2K + 1
)

inequality constraints. As discussed in
Sec.4.4, several numerical methods can be used to evaluate
C∗ in (12) for typical femtocell networks that contain up to
V = 10 wireless nodes and F = 1000 content.

Summary: In this section we constructed four static
caching policies, namely, RN in (3), RNNA in (4), RA in (11),
and RANA in (12). The RNNA caching policy accounts for
content requests, cache size, bandwidth, load, and content
routing, only requires the solution to a unimodular linear
program. The unique feature of the risk-averse caching
policies RA and RANA compared to RN and RNNA is
that they use a coherent risk measure to account for the
uncertainty associated with predicting the content requests.
The network operator can use confidence level α ∈ (0, 1]
in the RA and RANA methods to select the level of risk
when performing a caching decision. For example, setting
α = 1 leads to minimizing the maximum possible content
retrieval delay in the network for RA and RANA methods.

To evaluate the caching decision using RA or RANA re-
quires a conformal prediction of the content requests–that
is, an estimate of the cumulative distribution function of the
content requests. In Sec.5 we provide a conformal predic-
tion algorithm for constructing the cumulative distribution
function of the requests.

5 CONTENT REQUEST CUMULATIVE DISTRIBU-
TION FUNCTION FORECASTING

The risk-neutral and risk-averse static caching policies con-
structed in Sec.4 require a point estimate ŷvf or cumula-
tive distribution function estimate FYvf

(yvf ) of the request
count yvf for content f ∈ F at node v ∈ V . In this section
we construct a conformal prediction algorithm to estimate
FYvf

(yvf ) given the dataset D(T ) in (1). The key idea of
the conformal prediction algorithm is to use discriminant
analysis to perform coarse-grained prediction of the content
requests. Then a feed-forward neural network is used to per-
form fine-grained request estimation. For both the coarse-
grained and fine-grained request estimates, the prediction
interval of each is denoted by P (g|xf ) and FYf

(yf |g, xf )
respectively where g ∈ G represents the group association,
and Yf is the random variable representing the number of
requests for content f ∈ F . Using the total-law of prob-
ability the cumulative distribution function of the content
requests is

FYf
(yf |xf ) =

G∑
g=1

FYf
(yf |g, xf )P (g|xf ). (13)

for content f ∈ F . Below we present the coarse-grained and
fine-grained request prediction methods, and the density
forecasting algorithm to evaluate (13).

5.1 Content Group Association Classifier
Given the dataset D(T ) in (1), the goal is to construct a
classifier that can assign content f ∈ F to a particular
group g ∈ G and provide a confidence estimate of the
group association. That is, we desire a classifier which learns
the conditional probability mass function P (g|x) of group
association.

The elements of the content features xf are commonly
constrained to intervals on the real line. For example, for
YouTube videos, the number of subscribers to the user that
uploaded the video must be a positive number and the
minimum length of a video is 1 second (15 seconds if a
ads are present). Let us assume that the feature vector x
is a random variable which has a conditional probability
density function given by a doubly truncated multivariate
normal distribution

p(x|g) = N (µg, µ
−
g , µ

+
g ,Σg) (14)

∝ exp

(
−1

2
(x− µg)′Σ−1g (x− µg)

)
1{µ−g ≤ x ≤ µ+

g }.

In (14), µg is the mean vector of features in group g ∈ G, µ−g
is the minimum value of the content features in group g, µ+

g

is the maximum value of the content features in group g, and
Σg is the covariance matrix of the features in group g. If the
mean µg , lower and upper limits (µ−g and µ+

g ) on the feature
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vector, and covariance matrix Σg are known for each group
g ∈ G, and the prior probability of group association is P (g),
then the probability of content f ∈ F being associated with
group g ∈ G is

P (g|xf ) =
P (xf |g)P (g)∑G
r=1 P (xf |r)P (r)

. (15)

The prior probability P (g) of group association can either
be set to an uninformative prior (i.e. P (g) = 1/G), or to
the population average with P (g) = ng/F where ng is the
number of content in F that are associated with group g ∈
G.

Given the dataset D(T ) in (1), how can the parameters
µg, µ

+
g , µ

−
g ,Σg in (14) be estimated? If µ−g = −∞ and µ+

g =
+∞ (the feature vector x is unconstrained), then classical
discriminant analysis methods can be used to estimate µg
and Σg . These include Linear Discriminant Analysis, Factor-
Based Linear Discriminant Analysis, Maximum Uncertainty
Linear Discriminant Analysis, and Regularized Discrimi-
nant Analysis [35]. Typically, the content features x are
contained on an interval of the real line such that −∞ < µ−g
and µ+

g < +∞. Given µ−g and µ+
g , the estimate of the

mean µg and covariance Σg can be computed using Gibbs
sampling, maximum likelihood estimation, and generalized
method of moments [36]. Here use the maximum likelihood
estimation method to estimate µg and Σg using the Limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm with
box constraints to account for the limits of the feature vector
x.

5.2 Risk-Averse Feed-foward Neural Network for Pre-
dicting Content Requests

In this section we construct the risk sensitive extreme learn-
ing machine (RSELM) that combines the benefits of the ex-
treme learning machine with a risk-aware training method
to predict content requests. The RSELM is comprised of
a single-layer feed-foward neural network trained using a
stochastic optimization algorithm that dynamically adjusts
the number of neurons and weights to minimize the risk of
over fitting with a confidence level α ∈ (0, 1).

5.2.1 Classic Extreme Learning Machine

Given the dataset D(T ) in (1), the goal is to construct a
method to estimate the functional relationship between the
content features xf and the associated request count yf (t).
A single-layer feed-foward neural network can be used to
relate the content features xf to the requests yf (t). Denoting
ŷf (t) as the estimated request count given xf , the feed-
forward neural network is given by

yf (t) =
L∑
i=1

βihi(xf ; θi) = β′h(xf ) (16)

with β = [β1, β2, . . . , βL]′ are the weights of each neuron,
and h(xf ) = [h1(xf ; θ1), . . . , hL(xf ; θL)]′ the associated
transfer function of each neuron. Popular transfer functions
include the sigmoid, hyperbolic tangent, and Gaussian how-
ever any non-linear piecewise continuous function can be

utilized. The neuron weights βi and θi in (16) are computed
from the solution to

θ∗,β∗ ∈ arg min


F∑
f=1

(yf (t)− ŷf (t))2

 . (17)

For general transfer functions h(xf ), (17) is a non-convex
and non-linear optimization problem that is commonly
solved using stochastic gradient decent, ant-colony opti-
mization, and simulated anealling methods [37], [38], [39].
A draw-back with these numerical methods for solving (17)
is that they require a large number of computations to con-
verge to the global optimal solution of (17). However, using
random matrix theory, it has been shown that the parameter
values at the local minima of the objective function (17) yield
similar mean-square error compared to the global optimal
solution of (17) [40]. Therefore, the mean-square error of the
feed-forward neural network is not sensitive to the set of
local minima {θ∗,β∗} is used.

Could selecting the neuron weights θ randomly, and
then fitting the weights β via least-squares minimization
provide a reasonable approximation to the solution of (17)?
Since the mean-squared error of the feed-forward neural
network is not sensitive to which local minima of (17) are
used, it is reasonable to postulate that randomly selecting
θ and then fitting β will produce a reasonable solution.
This is the main idea behind the extreme learning machine
(ELM) proposed in [41]. For fixed number of neurons L,
the ELM selects the parameters θ and β in two steps. First,
the hidden layer parameters θ are randomly initialized.
Any continuous probability distribution can be used to
initialize the parameters θ. Second, β is selected to minimize
the mean-square error between the model output and the
measured output from the dataset D(T ) in (1). Formally,

θ∗ ∼ N (0, 1)

β∗ = H(X;θ∗)+Y (18)

where N (0, 1) is the multivariate normal distribution with
unit variance, H(X;θ∗) is the hidden-layer output matrix
with entries Hif (X;θ) = hi(xf ; θi) for i = 1, . . . , L and
f ∈ F , H+ denotes the Moore-Penrose generalized inverse
of H , and Y = [y1, . . . , yF ]′. Several efficient methods can
be used to compute β∗, for example Gaussian elimination.
The major benefit of using the ELM, (16) and (18), is that
the training only requires the random generation of the
parameters θ∗, and β∗ is computed as the solution of a set
of linear equations.

The ELM satisfies the universal approximation condi-
tion [42], can be implemented in parallel [43] which is
important for online implementation [44]. In addition ELM
can be trained sequentially for large datasets or as new
training data becomes available [45], [46], and can be ef-
ficiently implemented on field-programmable gate array
devices as well as complex programmable logic devices [47].
A limitation with the ELM is that it can not be used to
select the number of neurons L while minimizing the risk
of overfitting the dataset D(T ) in (1).

5.2.2 Regularized Extreme Learning Machine
Here we construct the regularized extreme learning machine
(RELM) which is a generalization of the ELM that minimizes
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the risk of overfitting with a confidence level α ∈ (0, 1]. For
example, given the datasetD(T ) in (1) and setting α = 1, the
RELM selects the parameters θ,β, L in (16) to minimize the
mean-square generalization error between the actual and
predicted content requests. The RELM is equivalent to the
ELM if we do not account for risk–that is, we set α = 0.

The RELM is trained by solving the following optimiza-
tion problem (we discuss the motivation below):

L∗ ∈ arg min
L∈Z+,c∈R

{c+
1

K(1− α)

K∑
k=1

zk}

s.t. zk ≥
1

(1− γ)F
||η(L)H(X̄k;θk)βk − Ȳk||22 − c

(19a)
Xk, X̄k, Ȳk, Yk ∼ FY(D(T ), γ) (19b)
θk ∼ N (0, 1), (19c)

βk = [η(L)H(Xk;θk)]+Yk (19d)
zk ≥ 0, L ≤ Lmax, for k ∈ {1, . . . ,K}. (19e)

In (19), N (0, 1) is the multivariate normal distribution,
FY(D, γ) is the Fisher-Yates random permutation which is
used to partition the data D(T ) into complementary subsets
of training data (Xk, Yk) and validation data (X̄k, Ȳk) where
γ ∈ (0, 1) denotes the percentage of data used for training,
and η(L) is a diagonal matrix with elements

ηii(L) =

{
1 if i ≤ L
0 otherwise.

(20)

The parameter Lmax is the maximum number of neurons
in the RELM, and K is the number of samples used to
estimate the cumulative distribution function of the mean-
square error of the feed-forward neural network.

The objective function in (19) represents the CVaR of
the mean-square generalization error of the ELMs with L
neurons for a confidence level α. The mean-square general-
ization error of each ELM is evaluated using

1

(1− γ)F
||η(L)H(X̄k;θk)βk − Ȳk||22

defined in constraint (19a). The constraint (19b) is used to
generate the training (Xk, Yk) and testing (X̄k, Ȳk) data for
each of the k ∈ {1, . . . ,K} ELMs. The constraint (19c) is
used to generate the neuron transfer function weights θk.
Given the transfer function weights θk and the training
data (Xk, Yk), constraint (19d) is used to construct the
neuron weights βk of each ELM. The final constraint (19e)
defines the maximum number of possible neurons Lmax and
the number of ELMs K generated to evaluate the CVaR
risk measure. The selection of Lmax and K are important
to restrict the computational resources used to train and
evaluate the RELM. The final result of the RELM (19) is
the optimal number of neurons L∗ of use for predicting the
content requests while minimizing the risk of overfitting the
training data with a confidence level α. Given L∗, the ELM
weights θ,β can be constructed using equation (18).

Discussion of (19): Solving the mixed integer nonlinear
program (19) is equivalent to optimally selecting the number
of neurons L to minimize the risk of over fitting the dataset
D(T ). The training method in (19) dynamically adjusts the
number of neurons L based on the available training data

in D(T ). Typically, as the number of observations in D(T )
increases, the number of neurons in the RSELM will also
increase. The solution to (19) can be computed in polyno-
mial time by solving (19) for L = 1, . . . , Lmax independently,
and then selecting the solution that minimizes the objective
function in (19).

5.3 Conformal Prediction Algorithm for Content Re-
quests

In this section we construct the conformal prediction al-
gorithm to estimate the cumulative distribution function
FYf

(yf |xf ) of the number of requests for content f ∈ F
given the content features xf .

A schematic of the conformal prediction algorithm is
provided in Fig.3. The algorithm is comprised of an offline
training stage, and an online stage to evaluate the requests
for new content. In the offline stage the dataset D(T ) in (1)
is used to train the group association classifier defined in
Sec.5.1, and the RELM defined in Sec.5.2. Then, using the
dataset

D̂(T ) = {{xf , gf (t), yf (t), ŷf (t)} : v ∈ V, f ∈ F , t ∈ [0, T ]},
(21)

the set of prediction errors {εi(g)}, where εi(g) =
ŷi(g, xf )− yf for each content i ∈ F associated with group
g ∈ G is constructed. The trained parameters from the
offline stage are then used in the online stage to estimate
the request count of the content. In the online stage, when
a new content with features xo is received, the group as-
sociation classifier is used to compute the group association
probabilities P (g|xo). Then the RELM is used to estimate the
number of requests ŷf (xo, g) for the content f . The group
association probabilities and predicted number of requests
from the RELM are then sent to the conformal prediction
block which outputs the conformal prediction FY (yo|xo).

Offline

Online

Group
Association RELM Prediction

Error

Group
Prediction

Request
Prediction

Conformal
Prediction F̂Y (yo|xo)

D(T )

xo

P (g|xf )

µg,Σg

D̂(T )

βg,θg, Lg {εi(g)}
P (g|xo) ŷo

Fig. 3. Schematic of the conformal prediction algorithm. D(T ) in (1)
is the training dataset, P (g|xf ) is the probability of group association,
D̂(T ) is the training dataset with the predicted content requests from the
RELM, {εi(g)} are the errors between the predicted and actual requests
for content in group g ∈ G, xo is a new content feature, and F̂Y (yo|xo)
is the empirical cdf function of the content given the content features xo.

Insight into the design of the conformal prediction algo-
rithm in Fig. 3 is gained by considering the content requests
yf for content f as a random variable. We assume that the
random variable yf satisfies

yf = ŷf (g, xf ) + εf (g) (22)

where ŷf (g, xf ) is the estimated number of requests from
the RELM trained using data from group g ∈ G, and
εf (g) is the random variable that accounts for the error
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in the predicted and actual number of requests. The error
εf (g) accounts for the errors associated with the parametric
structure of the RELM, the parameters of the RELM, and
the errors that may be contained in the feature vector
xf . The random variables εf (g) are assumed independent
and identically distributed. Then, given the dataset D̂, the
empirical cdf of the random variable yf is

F̂Y (yf |g, xf ) =
1

ng

ng∑
i=1

1 {εi(g) ≤ yf − ŷf (g, xf )} (23)

where ng is the total number of contents in group g ∈ G and
1{·} is the indicator function.

Substituting (23) into (24) gives the conformal prediction
of the content f ∈ F . Formally, the empirical conditional
distribution function of the number of requests for content
f ∈ F is

F̂Y (yf |xf ) =
G∑
g=1

F̂Y (yf |g, xf )P (g|xf ) (24)

where P (g|xf ) is the conditional probability of content f
belonging to group g ∈ G from the discriminant analysis
classifier.

Summary: In this section we constructed a conformal
prediction algorithm, illustrated in Fig. 3, for content re-
quests. The conformal prediction algorithm is comprised
of an offline learning stage in which content request and
features are used to select the doubly-truncated multivariate
normal distribution parameters for group association esti-
mation, and train the RELM for constructing point estimates
of the content requests. For new content, the output of the
trained group classifier and RELM are used to construct the
conformal prediction of the content requests. This conformal
prediction is used with the risk-averse caching methods
in Sec.4.4 and 4.5 to optimally cache content in the LTE
network.

6 NUMERICAL EVALUATION OF THE CONFORMAL
PREDICTION ALGORITHM AND COHERENT RISK
MINIMIZATION CACHING POLICIES FOR YOUTUBE
CONTENT

In this section we evaluate the performance of the conformal
prediction algorithm and four static caching policies (RN,
RNNA, RA, RANA) presented in Sec.4 using real-world
YouTube datasets. The results show that a 6% reduction
in the average delay can be achieved if the uncertainty of
the content requests is accounted for, and a 60% reduction
in average delay is achieved if both the uncertainty and
femtocell routing protocol are accounted for compared to
the risk-neutral caching policy that neglects the routing
protocol. These results illustrate the importance of both
accounting for the risk associated with estimating content
requests and accounting for the routing protocol used to
transfer content throughout the network.

6.1 LTE Network Parameters and YouTube Dataset
To evaluate the performance of the static caching
policies (RN, RNNA, RA, RANA), and the conformal pre-
diction method illustrated in Fig.3, we construct an LTE

heterogeneous network and generate user content requests
based on real-world YouTube datasets.

LTE Network Parameters: The LTE network topology
used for evaluation is illustrated in Fig.4. The LTE network
is composed of a core network that is connected to base
station nodes, femtocell gateway nodes, and a server which
contains all the content F that can be requested by users.
The content server and the core network communicate via
the wide area network. The latency in the wide area network
is typically in the range of 10 ms to 100 ms depending on
the distance and the number of hops between the server
and the core network [48], [49]. The core network, base
station, and gateway nodes communicate with one another
via an intra-network communication link with link capacity
values in the range of 500 Mbps to 1 Gbps. Finally, the
femtocell access points are connected to the gateway nodes
via heterogeneous backhaul links with link capacity values
in the range of 100 Mbps to 500 Mbps.

In the LTE network illustrated in Fig.4, user requests are
only received by the femtocell access points and the base
station nodes. Each requested video content has a size of
sf = 200 MB. The femtocell access points, base station,
and gateway have a cache size of 500 GB (approximately
10% of the entire content library), and the core network
node has a cache size of 1 TB (approximately 20% of the
entire content library). For each node, 90% of the cache
storage is used for static caching, and the remaining is used
for dynamic caching. The dynamic cache segment of each
node is controlled using the Least-Recently-Used (LRU)
replacement method discussed in [50]. Given the cache
size, link capacity between the nodes, processing delay,
propagation delay, number of hops between nodes, packet
size, and the topology in the LTE network in Fig.4, the edge
weight parameter Aijf (5) between node i and node j is
evaluated using the ndnSIM 2.0 NS-3 base simulator [51].
ndnSIM allows a video content f to be addressable and
routable inside the network [52]. For the network-layer
protocol, ndnSIM’s NDN stack is used while point-to-point
communication is considered as the link layer protocol.
In ndnSIM, the femtocell access points and base station
are defined as the Consumer node. We implement a new
consumer application method for the Consumer node to gen-
erate content requests according to the YouTube datasets.
All the nodes having cache storage are considered as the
Producer node which can satisfy content requests generated
by the Consumer nodes. The ndnSIM Best Route is used to
forward content requests to neighbouring nodes until the
content is retrieved–this is equivalent to the shortest-path
routing algorithm. Finally, the ndnSIM Application-level trace
helper is used to compute the edge weight Aijf (5) between
node i and node j for content f . We set Tij = 16 in
equation (4c) and in equation (12a).

YouTube Dataset: The real-world YouTube dataset was
collected using the YouTube API between the years 2013 to
2015 and consists of 25, 000 YouTube videos. The dataset is
comprised of videos from 17 YouTube categories including
“Gaming” (44% of videos), “Entertainment” (40% of videos),
“Music” (5% of videos), and “Education” (2% of videos).
Note that gaming and entertainment are among the most
popular video categories on YouTube. The video requests
range from 102 to above 107. Therefore, to prevent the
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ELM algorithm from biasing it’s prediction to only the
videos with the highest requests, we apply a log transform
to the requests such that the range is in 2 to 7. All the
content features are scaled to satisfy x(m) ∈ [0, 1] for
m ∈ {1, . . . ,M}. We use 11, 747 video content to construct
the training dataset D = {{xf , gf , yf} : f ∈ F}. The
remaining videos are used to test the performance of the
conformal prediction algorithm. In total there are G = 3
groups in the dataset, where group g = 1 is associated with
videos with less than 100 requests, g = 2 with videos with
requests in the range of 100 to 30, 000 requests, and g = 3
videos that have more then 30, 000 requests. For testing the
performance of the discriminant analysis classifier, extreme
learning machines, and coherent risk-minimization algo-
rithms, we use the dataset D̂ which is comprised of 13, 253
videos. The number of requests for each video content is
identical at each of the femtocell access points and base
station.

As a preliminary step, the YouTube videos are clustered
based on their associated category. The content requests of
cluster c ∈ C at node v is:

yvc =
∑
f∈F c

yvf , (25)

where F c ⊆ F . Given the content requests per cluster, the
caching methods presented in this paper optimally cache
each category of content in the network. We use the top
10 most popular YouTube categories to compute the perfor-
mance metrics of the caching policies. To evaluate the delay
of the risk-averse caching policies a method is required to
generate user request that is consistent with the YouTube
dataset D̄.

Content Request vector: We discretize time into a total
ofKt time slots, where for each time-slot a content request is
received. We construct content popularity distribution using
dataset D̄ where P vf denotes the probability of content f
being requested at node v and P vf ∼ yvf . Let rv denote the
content request vector with elements rv(k) ∈ F that define
the content f being requested time k at node v. The content
request vector satisfies the condition

Kt∑
k=1

1{rv(k) = f} ∼ P vf ∀f ∈ F . (26)

To construct the content request vector we randomly gener-
ate a total of Kt = 20, 000 content requests in rv such that
(26) is satisfied. The estimated delay for a given caching de-
cision is computed by evaluating the total delay associated
with the content requests from the request vector rv at each
of the v nodes.

6.2 Conformal Prediction Algorithm for YouTube Con-
tent
In this section the performance of the conformal prediction
algorithm presented in Sec.5, and illustrated in Fig. 3, is
evaluated using real-world YouTube datasets. This includes
the performance of the discriminant analysis classifier, ex-
treme learning machines, and the conformal prediction for
video content requests.

From Fig. 3, the first step in the conformal prediction
algorithm is the offline stage in which the parameters of

BS

Communication 

Link

Core Network

FAP-1

FGW

Content Server

FAP-2

FAP-3

Fig. 4. Schematic of the network. There are three femtocell access
points (FAPs) in the network. These FAPs are connected with the
femtocell gateway (FGW) via heterogeneous communication links. FGW
and base station (BS) are connected with the core network. Each FAPs,
BS and SGW has a storage of 500 GB. Storage of the core network is
assumed to be 1 TB and the core network is connected to the content
server which can cache the entire library via wide area network (WAN).

the group association classifier (µg and Σg) are selected,
the extreme learning machines are trained for each group
(βg,θg, Lg), and the parameters εi(g) in (23) are estimated
using the training dataset D. The performance of the group
classifier is evaluated using the true positive rate (TPR)
and true negative rate (TNR), and the extreme learning
machines using CVaRα(ε2) for an α = 0.95. The results
are provided in Table 2 where the parameter ng is the total
number of content in each of the groups g ∈ G. As seen, the
group association classifier has a reasonable TPR and TNR
for classifying the group association of each video. Using
the RSELM in Sec.5.2, Table 2 illustrates that the selected
number of neurons Lg for the ELM associated with group
g ∈ G varies between the three groups, however the error
CVaRα(ε2) remains approximately equal. This illustrates
that the RSELM can dynamically adjust the number of neu-
rons necessary to effectively estimate the content requests
ŷf of new content while minimizing the risk of over-fitting
with a confidence level α = 0.95.

TABLE 2
Group Classification and Neuron Number Selection

Group ng TPR TNR CVaRα(ε2) Lg
1 2405 0.80 0.96 0.3302 37
2 10314 0.94 0.79 0.3046 59
3 534 0.74 0.99 0.3133 24

To construct the conformal prediction (24) requires an
estimate of the prediction errors εi(g) in (23). Alternatively,
we can construct an estimate of F̂Y (yf |g, xf ) using the
empirical cumulative distribution function F̂E|g(ε|g) of the
random variables ε. Fig.5 illustrates the computed group
empirical cumulative distribution function F̂E|g(ε|g) of the
error of the ELM associated with each group g ∈ G. Using
maximum likelihood estimation, we find that the empirical
cdf F̂E|g(ε|g) is approximately equal to the generalized ex-
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treme value distribution typically used in risk management,
finance, and economics. Given F̂E|g(ε|g), the conditional
distribution of content requests can be evaluated using

F̂Y (yf |g, xf ) = F̂E|g(yf − ŷf (xf , g)|g, xf ) (27)

where ŷf (xf , g) is the estimated content requests from the
ELM associated with group g ∈ G for content f .

g = 2 g = 3g = 1

E
m

pi
ri

ca
lC

D
F
F̂
E
|g
(ε
|g
)

Fig. 5. Empirical cumulative distribution function of the error ε(g) in (22)
for the groups g ∈ G. The gray dots indicate the empirical cumulative
distribution function F̂E|g(ε|g), and the black line indicates the fitted
generalized extreme value distribution.

Given the parameters of the group association classifier,
ELMs, and F̂Y (yf |g, xf ) from the offline stage of the confor-
mal prediction algorithm, we now evaluate the performance
of the online portion of the conformal prediction algorithm
for new content. The group association probability P (g|xf )
and results of the conformal prediction algorithm for new
content are provided in Fig.6. The content index is ordered
such that the least requested content is f = 1, and the most
requested content is f = 13, 253 based on the results of the
conformal prediction. As Fig.6(a) illustrates, the group asso-
ciation probability P (g|xf ) from the discriminant analysis
classifier provides a reasonable accuracy for the probability
of group association. From Fig.6(b), there are approximately
1, 225 contents (indicated in black) that have predicted
number of requests from the ELMs that are outside the 90%
confidence interval. Equivalently, approximately 9.2% of the
content requests reside outside the 90% confidence interval
computed from the conformal prediction algorithm. To de-
termine if the cumulative distribution function F̂Y (yf |xf ) is
consistent with observed content requests data, we use the
quantile-quantile plot. The quantile-quantile plot in Fig. 7
is evaluated using the confidence interval of F̂Y (yf |xf ).
As seen from Fig. 7, the empirical cumulative distribution
F̂Y (yf |xf ) is in excellent agreement with the observed data.
Therefore, F̂Y (yf |xf ) provides a reasonable approximation
for the actual content request distribution FY (yf |xf ).

The above results indicate that the conformal prediction
algorithm presented in Sec.5, and illustrated in Fig. 3, can
be used to estimate the cumulative distribution function

FY (yf |xf ) of YouTube content requests. The estimated cu-
mulative distribution function F̂Y (yf |xf ) can then be used
in the risk-averse caching policies (RA and RANA) to opti-
mally cache content in the femtocell network. Additionally,
the trained ELMs can be used for point predictions of the
content requests for the risk-neutral caching policies (RN
and RNNA).

(a) Group association probability P (g|xf ). Gray dots indicate the
probability of association with group g = 1, black dogts with g = 2,
and light-gray dots with g = 3.

(b) Conformal prediction of the number of content requests. The
expected number of requests is the solid black line, gray region is
the 90% interval where the requests are expected to reside, and the
black dots are the real number of requests in D̄.

Fig. 6. Performance of the conformal prediction algorithm that was
schematically illustrated in Fig. 3, for YouTube content requests. Group
g = 1 is associated with all videos that are predicted to have less than
100 requests, g = 2 with requests in the range of 100 to 30, 000, and
group g = 3 with more then 30, 000 requests. The 90% confidence
interval is evaluated using the empirical cumulative distribution function
F̂Yf

(yf |xf ) of content requests defined in (24). As seen, the computed
group association, point content requests, and conformal predictions
are in excellent agreement with the YouTube datasets. The training and
evaluation datasets are discussed in Sec.6.1.

6.3 Selection of the Confidence Level α for Maximum
Content Retrieval Delay Guarantees

The risk-averse caching policies (RA and RANA) account
for the uncertainty of the predicted content requests using
the CVaR risk measure for a given confidence level α. From
(7), for a confidence level α, CVaR is the expected content
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Fig. 7. Quantile-quantile plot for the empirical cumulative distribution
function F̂Y (yf |xf ) and the YouTube content requests. The linear black
line indicated perfect agreement between the data and distribution, and
the grey dots indicate the quantiles computed from the YouTube data.

retrieval delay time given that the delay is greater than
or equal to the VaR at α. The selection of the parameter
α ∈ [0, 1] is determined by the network operator. In this
section we evaluate the cumulative distribution function
FD(d) to evaluate the probability that the delay D is less
than the threshold d using the RNNA and RANA caching
policies for a given confidence level α. Given FD(d), the
network operator can confidently select the confidence level
α to guarantee that the delay does not exceed the given
threshold dth.

Fig. 8 provides the cumulative distribution function
FD(d) for the content retrieval delay for confidence levels
α = 0.9 and α = 0.99 using the RANA caching policy, and
the RNNA caching policy. From Fig. 8, the RANA caching
policy (12) provides better performance compared to the
RNNA caching policy (4) for all delay threshold values d.
This results as the RANA caching policy accounts for the
uncertainty associated with estimating the content requests.
For example, if we are interested in the probability the
delay is less than the threshold d = 50 seconds, the RNNA
policy is approximately 50%, while the RANA policies are
approximately 98%. A substantial improvement in perfor-
mance is obtained by accounting for the prediction error
associated with the caching decisions. The associated delay
of between the RANA caching policies with α = 0.99 and
α = 0.9 are approximately equal except in the delay range
of 46 seconds to 49 seconds. In this region the selection of
α is important. For example, if d = 48 seconds, then the
probability the delay is 50% for RANA with α = 0.99, and
60% RANA with α = 0.9. Therefore, if the network operator
wants to minimize the probability of the delay exceeding the
threshold dth = 48 seconds, an α = 0.9 should be selected.
The reason that a larger value of α does not guarantee
minimizing FD(d), for a specific d, is that as α → 1, the
maximum delay is being minimized in (12).

6.4 Performance of the Risk-Neutral and Risk-Aware
Caching Policies
In this section, we illustrate the performance of the four
caching policies (RN and RNNA) in Secs.4.1, 4.2, and (RA
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Fig. 8. Cumulative distribution function of the content retrieval delay
FD(d) using the RNNA and RANA caching policies for a confidence
level α = 0.9, 0.99. The blue circles denote the RNNA caching policy (4),
red diamond shape indicate the RANA caching policy (12) with α = 0.9,
and black squares for the RANA caching policy with α = 0.99. As
the value of FD(d) = P (D ≤ d) increases, the probability the delay
exceeds d decreases.

and RANA) in Secs.4.4, 4.5. Additionally, we compare the
performance of these four caching policies with the caching
policy presented in [13]. The caching policy in [13] accounts
for the content requests, and LTE network parameters (cache
size, bandwidth, latency among nodes), however it does not
account for the routing protocol used in the network or the
uncertainty associated with the estimated content requests.
We refer to the caching policy in [13] as the risk-neutral
without routing (RNWR) caching policy.

The metric of performance we use to compare these
five caching policies is the cumulative distribution function
FD(d) for the content retrieval delay. To estimate FD(d), we
set K = 10, 000 and α = 0.9, and generate 20, 000 samples
of the total content retrieval delay D. Fig. 9 illustrates
empirical FD(d) from the five caching policies. The results
in Fig. 9 illustrate that the RA caching policy (11) has a
lower delay than the RN caching policy (3) for all possible
values of d. That is, the delay that results from the RN
caching policy illustrates a first-order stochastic dominance
compared with the delay that results from the RA caching
policy. Additionally, the delay that results from all the
caching policies illustrate a first-order stochastic dominance
compared with the RANA caching policy. The delay of the
RN and RA policies are approximately twice as large as
compared with the RNWR policy which accounts for the
LTE network parameters but not the routing protocol used
in the network. Therefore, including network parameters
can substantially reduce the delay that results when per-
forming a caching decision. Comparing the results for the
RNWR, RNNA, and RANA, both the RNNA and RANA
caching policies significantly reduce the content retrieval
delay in the network compared with the RNWR caching
policy by approximately 25%. This results as the RNNA and
RANA policies both reduce the congestion of transferring
content throughout the network as they account for the net-
work routing protocol used. Finally, the RANA policy pro-
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vides the lowest content retrieval delay compared with the
other four policies as it accounts for the uncertainty of
content requests, LTE network parameters, and the routing
protocol used to transfer content throughout the network.
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Fig. 9. The cumulative distribution function FD(d) of the content retrieval
delay for the RN, RNNA, RA, RANA, RNWR caching policies. To evalu-
ate FD(d) for the RA and RANA caching policies, we set K = 10, 000
and α = 0.9 in (11) and (12). A total of 20, 000 samples are generated
for the content retrieval delay to construct the empirical cdf FD(d).
The results illustrate that the delay of the RN, RNNA, RA, and RNWR
policies all first-order stochastically dominate the delay associated with
the RANA caching policy.

7 CONCLUSION

In this paper we designed risk-neutral and risk-averse
caching policies for femtocell networks that contain fem-
tocell access points which have limited storage capacity
and low bandwidth backhaul links. The risk-averse caching
policies employed the coherent Conditional Value-at-Risk
(CVaR) measure to account for the uncertainty of estimating
the content requests to perform the caching decisions. The
CVaR risk measure is evaluated using information from
the conformal prediction algorithm which constructs the
cumulative distribution function of the content requests
based on the content features. Using real-world datasets
from YouTube and the NS-3 simulator, we demonstrate how
the caching policies reduce the delay of retrieving content
in femtocell networks compared with industry standard
caching policies. The results show that a 6% reduction in
the average delay can be achieved if the uncertainty of
the content requests is accounted for, and a 60% reduction
in average delay is achieved if both the uncertainty and
femtocell routing protocol are accounted for compared to
the risk-neutral caching that neglects the routing protocol.

REFERENCES

[1] H. Pinto, J. Almeida, and M. Gonçalves, “Using early view pat-
terns to predict the popularity of YouTube videos,” in Proceedings of
the sixth ACM international conference on Web search and data mining,
pp. 365–374, 2013.

[2] Z. Tan, Y. Wang, Y. Zhang, and J. Zhou, “A novel time series ap-
proach for predicting the long-term popularity of online videos,”
IEEE Transactions on Broadcasting, vol. 62, no. 2, pp. 436–445, 2016.

[3] J. Wu, Y. Zhou, M. Chiu, and Z. Zhu, “Modeling dynamics of
online video popularity,” IEEE Transactions on Multimedia, vol. 18,
no. 9, pp. 1882–1895, 2016.

[4] C. Li, J. Liu, and S. Ouyang, “Characterizing and predicting the
popularity of online videos,” IEEE Access, vol. 4, pp. 1630–1641,
2016.

[5] R. Zhou, S. Khemmarat, L. Gao, J. Wan, J. Zhang, Y. Yin, and
J. Yu, “Boosting video popularity through keyword suggestion
and recommendation systems,” Neurocomputing, vol. 205, pp. 529–
541, 2016.

[6] W. Hoiles, A. Aprem, and V. Krishnamurthy, “Engagement and
popularity dynamics of YouTube videos and sensitivity to meta-
data,” IEEE Transactions on Knowledge & Data Engineering, no. 7,
pp. 1426–1437, 2017.

[7] A. Tay and K. Wallis, “Density forecasting: a survey,” Journal of
forecasting, vol. 19, no. 4, p. 235, 2000.

[8] D. Hamilton, Time series analysis. Princeton university press, 1994,
vol. 2.

[9] L. Fang and D. Bessler, “Stock returns and interest rates in china:
the prequential approach,” Applied Economics, pp. 1–14, 2017.

[10] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through dis-
tributed caching helpers,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 8402–8413, 2013.

[11] B. Bharath, K. Nagananda, and H. V. Poor, “A learning-based
approach to caching in heterogenous small cell networks,” IEEE
Transactions on Communications, vol. 64, no. 4, pp. 1674–1686, 2016.

[12] J. Song, H. Song, and W. Choi, “Optimal content placement for
wireless femto-caching network,” IEEE Transactions on Wireless
Communications, vol. 16, no. 7, pp. 4433–4444, 2017.

[13] S. Tanzil, W. Hoiles, and V. Krishnamurthy, “Adaptive scheme for
caching youtube content in a cellular network: Machine learning
approach,” IEEE Access, vol. 5, pp. 5870–5881, 2017.

[14] J. He and W. Song, “Optimizing video request routing in mobile
networks with built-in content caching,” IEEE Transactions on
Mobile Computing, vol. 15, no. 7, pp. 1714–1727, 2016.

[15] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal
request routing and content caching in heterogeneous cache net-
works,” IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp.
1635–1648, 2016.

[16] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas, “Video
delivery over heterogeneous cellular networks: Optimizing cost
and performance,” "in Proceedings of the IEEE INFOCOM, pp.
1078–1086, 2014.

[17] T. Rockafellar and S. Uryasev, “Optimization of conditional value-
at-risk,” Journal of risk, vol. 2, pp. 21–42, 2000.

[18] ——, “Conditional value-at-risk for general loss distributions,”
Journal of banking & finance, vol. 26, no. 7, pp. 1443–1471, 2002.

[19] P. Krokhmal, J. Palmquist, and S. Uryasev, “Portfolio optimization
with conditional value-at-risk objective and constraints,” Journal of
risk, vol. 4, pp. 43–68, 2002.

[20] M. A. Khan, H. Tembine, and A. V. Vasilakos, “Game dynamics
and cost of learning in heterogeneous 4g networks,” IEEE Journal
on Selected Areas in Communications, vol. 30, no. 1, pp. 198–213,
2012.

[21] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and N. Venkata-
subramanian, “Mobile cloud computing: A survey, state of art and
future directions,” Mobile Networks and Applications, vol. 19, no. 2,
pp. 133–143, 2014.

[22] G. Zhang, T. Q. Quek, M. Kountouris, A. Huang, and H. Shan,
“Fundamentals of heterogeneous backhaul design–analysis and
optimization,” IEEE Transactions on Communications, vol. 64, no. 2,
pp. 876–889, 2016.

[23] C.-Y. Wang, C.-H. Ko, H.-Y. Wei, and A. V. Vasilakos, “A voting-
based femtocell downlink cell-breathing control mechanism,”
IEEE/ACM Transactions on Networking (TON), vol. 24, no. 1, pp.
85–98, 2016.

[24] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V.
Vasilakos, “On optimal and fair service allocation in mobile cloud
computing,” IEEE Transactions on Cloud Computing, 2015.

[25] D. L. Perez, X. Chu, A. V. Vasilakos, and H. Claussen, “Power
minimization based resource allocation for interference mitigation
in ofdma femtocell networks,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 2, pp. 333–344, 2014.

[26] D. Lin, Y. Tang, Y. Yao, and A. V. Vasilakos, “User-priority-based
power control over the d2d assisted internet of vehicles for mobile



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2855160, IEEE
Transactions on Cloud Computing

16

health,” IEEE Internet of Things Journal, vol. 4, no. 3, pp. 824–831,
2017.

[27] S. Muller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 16, no. 2, pp. 1024–1036, 2017.

[28] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and
H. C. Li, “An analysis of Facebook photo caching,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pp. 167–181, 2013.

[29] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through dis-
tributed caching helpers,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 8402–8413, 2013.

[30] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The
role of proactive caching in 5g wireless networks,” IEEE Commu-
nications Magazine, vol. 52, no. 8, pp. 82–89, 2014.

[31] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[32] M. Zeni, D. Miorandi, and F. De Pellegrini, “YOUStatAnalyzer: a
tool for analysing the dynamics of youtube content popularity,”
in Proceedings of the 7th International Conference on Performance
Evaluation Methodologies and Tools, pp. 286–289, 2013.

[33] G. L. Nemhauser and L. A. Wolsey, “Integer programming and
combinatorial optimization,” Wiley, 1988.

[34] D. L. Perez, X. Chu, A. V. Vasilakos, and H. Claussen, “On
distributed and coordinated resource allocation for interference
mitigation in self-organizing lte networks,” IEEE/ACM Transac-
tions on Networking, vol. 21, no. 4, pp. 1145–1158, 2013.

[35] D. Silva, “Two-group classification with high-dimensional corre-
lated data: A factor model approach,” Computational Statistics &
Data Analysis, vol. 55, no. 11, pp. 2975–2990, 2011.

[36] W. Griffiths, “A Gibbs’ sampler for the parameters of a truncated
multivariate normal distribution,” Contemporary issues in economics
and econometrics: Theory and application, pp. 75–91, 2004.

[37] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the im-
portance of initialization and momentum in deep learning,” in
Proceedings of the International Conference on Machine Learning, pp.
1139–1147, 2013.

[38] R. Rere, M. Fanany, and A. Arymurthy, “Simulated annealing
algorithm for deep learning,” Procedia Computer Science, vol. 72,
pp. 137–144, 2015.

[39] M. Mavrovouniotis and S. Yang, “Training neural networks with
ant colony optimization algorithms for pattern classification,” Soft
Computing, vol. 19, no. 6, pp. 1511–1522, 2015.

[40] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and
Y. LeCun, “The loss surfaces of multilayer networks,” Artificial
Intelligence and Statistics, pp. 192–204, 2015.

[41] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–
501, 2006.

[42] G. Huang and L. Chen, “Enhanced random search based incre-
mental extreme learning machine,” Neurocomputing, vol. 71, no. 16,
pp. 3460–3468, 2008.

[43] Q. He, T. Shang, F. Zhuang, and Z. Shi, “Parallel extreme learning
machine for regression based on mapreduce,” Neurocomputing,
vol. 102, pp. 52–58, 2013.

[44] A. V. Vasilakos, Y. Tang, Y. Yao et al., “Neural networks for
computer-aided diagnosis in medicine: A review,” Neurocomput-
ing, vol. 216, pp. 700–708, 2016.

[45] J. Zhao, Z. Wang, and D. Park, “Online sequential extreme learning
machine with forgetting mechanism,” Neurocomputing, vol. 87, pp.
79–89, 2012.

[46] Y. Ye, S. Squartini, and F. Piazza, “Online sequential extreme learn-
ing machine in nonstationary environments,” Neurocomputing, vol.
116, pp. 94–101, 2013.

[47] A. Basu, S. Shuo, H. Zhou, M. Lim, and G. Huang, “Silicon
spiking neurons for hardware implementation of extreme learning
machines,” Neurocomputing, vol. 102, pp. 125–134, 2013.

[48] M. Chen, E. Zadok, A. O. Vasudevan, and K. Wang, “Seminas:
A secure middleware for wide-area network-attached storage,”
in Proceedings of the 9th ACM International on Systems and Storage
Conference, pp. 1–13, 2016.

[49] S. Abolfazli, Z. Sanaei, M. Alizadeh, A. Gani, and F. Xia, “An
experimental analysis on cloud-based mobile augmentation in mo-
bile cloud computing,” IEEE Transactions on Consumer Electronics,
vol. 60, no. 1, pp. 146–154, 2014.

[50] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. Ra-
makrishnan, “Optimal content placement for a large-scale vod
system,” IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp.
2114–2127, 2016.

[51] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM
2: An updated NDN simulator for NS-3,” NDN, Technical Report
NDN-0028, Revision 2, November 2016.

[52] A. V. Vasilakos, Z. Li, G. Simon, and W. You, “Information cen-
tric network: Research challenges and opportunities,” Journal of
Network and Computer Applications, vol. 52, pp. 1–10, 2015.

William Hoiles received his M.A.Sc. degree
in 2012 from the Department of Engineer-
ing Science, Simon Fraser University, Burn-
aby, Canada, and Ph.D. from Electrical and
Computer Engineering, University of British
Columbia, Vancouver, Canada, in 2015. He was
a postdoctoral researcher in Electrical Engineer-
ing at the University of California, Los Angeles in
2016, and is currently a postdoctoral lecturer in
Electrical and Computer Engineering at the Uni-
versity of British Columbia. His current research

interests are social sensors and the bioelectronic interface.

S M Shahrear Tanzil received the B.Sc. de-
gree in electrical and electronics engineering
from Bangladesh University of Engineering and
Technology (BUET), Bangladesh, in 2011 and
the M.A.Sc. degree from the University of British
Columbia (UBC), Canada, in 2013. He is cur-
rently working towards the Ph.D. degree at UBC
and is a member of the Statistical Signal Pro-
cessing Laboratory. His research interests in-
clude wireless networks, mobile cloud comput-
ing, and game theory.

Vikram Krishnamurthy (S’90–M’91–SM’99–
F’05) received the Ph.D. degree from the Aus-
tralian National University, Canberra, Australia,
in 1992. He is currently a professor at the
Department of Electrical and Computer Engi-
neering, Cornell University. From 2002-2016 he
was a Professor and Canada Research Chair
at the University of British Columbia, Canada.
His research interests include statistical sig-
nal processing, computational game theory, and
stochastic control in social networks. He served

as Distinguished Lecturer for the IEEE Signal Processing Society and
Editor-in-Chief of the IEEE Journal on Selected Topics in Signal Pro-
cessing. In 2013, he was awarded an Honorary Doctorate from KTH
(Royal Institute of Technology), Sweden. He is author of the book
Partially Observed Markov Decision Processes published by Cambridge
University Press in 2016.


