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Problem 1. Find T,N and curvature for r(t) = 3 sin(t)̂i+ 3 cos(t)ĵ + 4tk̂.

Solution. The unit tangent vector is given by

T =
v⃗(t)

|v⃗(t)|

Here, we can calculate v⃗(t) by taking the derivative of r(t) with respect to t. This gives
us

v⃗(t) = ⟨3 cos t,−3 sin t, 4⟩

The magnitude of v⃗(t) is given by

|v⃗(t)| =
√
(3 cos t)2 + (−3 sin t)2 + 42 = 5

Then using our formula for T , we obtain

T =
v⃗(t)

|v⃗(t)|
= ⟨3

5
cos t,−3

5
sin t,

4

5
⟩

Next, we need to solve for the unit normal vector N . This is given by

N =
dT
dt

|dT
dt
|

First, we solve for the derivative of the unit tangent tangent vector. This gives us

dT

dt
= ⟨−3

5
sint,−3

5
cost, 0⟩

Next, the magnitude of the above vector is given by

|dT
dt

| =
√

(−3

5
sint)2 + (−3

5
cost)2 =

3

5

Then using our formula for N , we obtain

N =
dT
dt

|dT
dt
|
= ⟨− sin t,− cos t, 0⟩
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Finally, we solve for curvature, which is given by

k =
|dT
dt
|

|v⃗(t)|
Using values we obtained earlier, we obtain

k =
3

25

Problem 2. Write the acceleration in terms of its tangential and normal components for
r(t) = (t+ 1)̂i+ 2tĵ + t2k̂ at time t = 1.

Solution. We seek to find the tangential and normal components of acceleration, denoted aT
and aN .

To begin, we have that aT is given by the following, where d|v⃗|
dt

is the derivative of the
magnitude of the velocity vector.

aT =
d|v⃗|
dt

First, we find v⃗(t) by taking the derivative of the given position vector r(t). This gives
us

v⃗(t) = ⟨1, 2, 2t⟩

Next, we calculate the magnitude of v⃗(t). This gives us

|v⃗(t)| =
√

12 + 22 + (2t)2 =
√
5 + 4t2

Finally, we can take the derivative of |v⃗(t)| using chain rule, yielding

d|v⃗|
dt

=
1

2
(5 + 4t2)−

1
2 · (8t) = 4t√

5 + 4t2

Therefore, we have that

aT =
4t√

5 + 4t2

Next, to calculate aN , we can use the following formula relating the magnitude of accel-
eration to its tangential and normal components.

aN =
√

|⃗a(t)|2 − a2T

First, we need to calculate |⃗a(t)|. To obtain a⃗(t), we can take the derivative of v⃗(t), which
we calculated earlier. This gives us

a⃗(t) = ⟨0, 0, 2⟩
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The magnitude |⃗a(t)| is then equal to 2.
Then using our formula for aN , we obtain

aN =

√
22 − (4t)2

5 + 4t2
= 2

√
5

5 + 4t2

Next, we can write the acceleration in terms of its tangential and normal components as

a⃗(t) = aT T⃗ + aNN⃗ =
4t√

5 + 4t2
T⃗ + 2

√
5

5 + 4t2
N⃗

Finally, we can evaluate this equation at time t = 1 to obtain

a⃗(t) =
4

3
T⃗ +

2
√
5

3
N⃗

Problem 3. Find the following limit:

lim
(x,y)−→(0,0)

3x2 − y2 + 5

x2 + y2 + 2

Solution. When evaluating a limit at a point, the first thing we can try is simply plugging
in the point in question.

Here, we plug in the point (0, 0) into the limit. This yields

lim
(x,y)−→(0,0)

3x2 − y2 + 5

x2 + y2 + 2
=

3(0)2 − (0)2 + 5

(0)2 + (0)2 + 2
=

5

2

Since this evaluates to a real, defined value, this value is the result of our limit, and the
answer is 5

2
.

Problem 4. Find all second-order partial derivatives for w = x sin(x2y).

Solution. First, we will calculate the first-order derivatives.
Using a combination of product rule and chain rule, we obtain

∂w

∂x
= (1) · (sin(x2y)) + (x) · (2xy cos(x2y)) = sin(x2y) + 2x2y cos(x2y)

Next, we use chain rule to obtain

∂w

∂y
= (x) · (x2 cos(x2y)) = x3 cos(x2y)

Next, we can take the derivatives of our first-order derivatives to find the second-order
derivatives.

wxx = (2xy) sin(x2y)+(4xy) cos(x2y)+(2x2y)(− sin(x2y)) = (2xy−2x2y) sin(x2y)+4xy cos(x2y)
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wxy = (x2) sin(x2y)+(2x2) cos(x2y)+(2x2y)(− sin(x2y)) = (x2−2x2y) sin(x2y)+2x2 cos(x2y)

wyx = (3x2)(cos(x2y)) + (x3)(−2xy sin(x2y)) = 3x2 cos(x2y)− 2x4y sin(x2y)

wyy = (x2)(−x3 sin(x2y)) = −x5 sin(x2y)

Problem 5. Evaluate dw
dt

for w = 2yex − ln z, x = ln(t2 + 1), y = arctan t, z = et at time
t = 1.

Solution. By the rule of chain rule for partial derivatives, we have that

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt

As a result, we just need to calculate all of the above derivatives. First, we find each of
the partial derivatives for w.

∂w

∂x
= 2yex

∂w

∂y
= 2ex

∂w

∂z
= −1

z

Next, we find the derivatives of each of x, y, z with respect to t.

dx

dt
= (2t) · 1

t2 + 1
=

2t

t2 + 1

dy

dt
=

1

t2 + 1

dz

dt
= et

Next, we will plug these values into our formula to calculate dw
dt
, yielding

dw

dt
= (2yex)

(
2t

t2 + 1

)
+ (2ex)

(
1

t2 + 1

)
+

(
−1

z

)
(et)

Finally, we write each of x, y, z in terms of t and simplify to obtain

dw

dt
= 2arctan teln(t

2+1) 2t

t2 + 1
+ 2eln(t

2+1) 1

t2 + 1
+−et

et
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dw

dt
=

4t(t2 + 1) arctan t+ 2(t2 + 1)

t2 + 1
− 1

dw

dt
= 4t arctan t+ 1

The final step is to plug t = 1 into the expression for our derivative. This yields

dw

dt
= 4(1) arctan 1 + 3 = π + 1

Problem 6. Find ∂z
∂x
, ∂z
∂y

for z3 − xy + yz + y3 − 2 = 0 at the point (1, 1, 1).

Solution. We have the following formula for ∂z
∂x
:

∂z

∂x
= −Fx

Fz

First, we will calculate each of the partial derivatives of the surface.

Fx = −y

Fy = −x+ z + 3y2

Fz = 3z2 + y

Using our formula, we obtain

∂z

∂x
=

y

3z2 + y

Similarly, we have that

∂z

∂y
= −Fy

Fz

=
x− z − 3y2

3z2 + y

Problem 7. Find the derivative of the function f(x, y) = 2xy− 3y2 at the point P = (5, 5)
in the direction of v = 4̂i+ 3ĵ.

Solution. This questions tasks us with finding the directional derivative of the function at a
point. To do this, we use the following formula for the directional derivative in direction u⃗:

Du⃗f(x, y) = ∇f · u⃗

The gradient ∇f is given by
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∇f = ⟨∂f
∂x

,
∂f

∂y
⟩

To calculate the gradient ∇f , we need to calculate the partial derivatives of f . Taking
the derivatives yields

∂f

∂x
= 2y

∂f

∂y
= 2x− 6y

This gives us the gradient as

∇f = ⟨2y, 2x− 6y⟩
To get the direction of v⃗, we calculate the unit vector in the direction of v⃗, given by

v̂ =
v⃗

|v⃗|

v̂ = ⟨4
5
,
3

5
⟩

Finally, we do our dot product to find the directional derivative.

Dv̂f(x, y) = ⟨2y, 2x− 6y⟩ · ⟨4
5
,
3

5
⟩ = 8y

5
+

6x− 18y

5

Dv̂f(x, y) =
6x− 10y

5

The final step is to plug in our point P to obtain the final answer. Plugging in (5, 5), we
get that

Dv̂f(5, 5) = −4

Problem 8. Find the tangent plane and normal line for 2z − x2 = 0 given the point P0 =
(2, 0, 2).

Solution. To begin, the equation of a tangent plane to a surface is

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0

To use the above equation, we say that the function f is equal to the equation of the
surface (in this case, f(x, y, z) = 2z−x2. Then fx, fy, fz are the partial derivatives of f with
respect to each variable, and P = (x0, y0, z0).

First, we calculate the partial derivatives.

fx = −2x
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fy = 0

fz = 2

Next, we can evaluate these partial derivatives at our point P = (2, 0, 2).

fx(2, 0, 2) = −4

fy(2, 0, 2) = 0

fz(2, 0, 2) = 2

Finally, we can plug these values into our equation for the tangent plane, yielding

−4(x− 2) + 2(z − 2) = 0

Next, we need to find the normal line to this tangent plane. The equation of the normal
line is given by

r(t) = ⟨x0, y0, z0⟩+ t∇f(x0, y0, z0)

Since the gradient is given by ∇f = ⟨fx, fy, fz⟩, we have everything we need to plug into
this equation. Therefore, our equation for the normal line is

r(t) = ⟨2, 0, 2⟩+ t⟨−4, 0, 2⟩

Problem 9. Find all local maxima, minima, and saddle points for the function f(x, y) =
x2 + xy + y2 + 3x− 3y + 4.

Solution. To find the local maxima, minima, and saddle points for a function, we need to
find the critical points of the function. These occur where all of the partial derivatives are
equal to zero. Therefore, we first need to find the partial derivatives.

∂f

∂x
= 2x+ y + 3

∂f

∂y
= x+ 2y − 3

Next, we can set each of these expressions equal to zero and solve to find the critical
points.

2x+ y + 3 = 0

x+ 2y − 3 = 0
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Here, we solve the system with a matrix, but you can solve with any method.(
2 1 −3
1 2 3

)
(
1 0 −3
0 1 3

)
Thus x = −3 and y = 3, so we have one critical point, (−3, 3).
Next, we decide the type of point by calculating the partial derivative fxx and the ”Hes-

sian” fxxfyy − fxy.
We obtain that

fxx = 2

fxxfyy − fxy = (2)(2)− (1)2 = 3

We determine the type of critical point using the following chart, where the plus and
minus signs indicate the sign of each term:

fxx fxxfyy − (fxy)
2

min + +
max − +
saddle −

Since both of our terms are positive, we see that the point (−3, 3) is a local minimum.

Problem 10. Find absolute maxima and minima for the function f(x, y) = 2x2−4x+y2−
4y + 1 on the closed triangular plate bounded by the lines x = 0, y = 2, and y = 2x in the
first quadrant.

Solution. To find absolute maxima and minima for a function, we need to compare all of
the critical points and find the least and greatest values of f at each point. Points where
absolute maxima and minima can occur are local maxima and minima of the function in the
given region, as well as the edges or corners of the region.

First, we will look for critical points. This requires us to find points at which all partial
derivatives are equal to zero. We find our partial derivatives of f as

fx = 4x− 4

fy = 2y − 4

Setting these equal to zero, we find that this occurs only when x = 1 and y = 2, the
point (1, 2).

Looking at our triangle, we also see that the corners occur at points (0, 0), (0, 2), and
(1, 2).

8



Looking at all critical points and corners, we see that we need to compare (0, 0), (0, 2),
and (1, 2). To do this, we just evaluate f at each point. This gives us

f(0, 0) = 2(0)2 − 4(0) + (0)2 − 4(0) + 1 = 1

f(0, 2) = 2(0)2 − 4(0) + (2)2 − 4(2) + 1 = −3

f(1, 2) = 2(1)2 − 4(1) + (2)2 − 4(2) + 1 = −5

Thus (1, 2) is our absolute minimum with a value of −5, and (0, 0) is our absolute
maximum with a value of 1.

Problem 11. Find the maximum value of the function f(x, y) = 49 − x2 − y2 on the line
x+ 3y = 10.

Solution. This problem can be solved using Lagrange multipliers. Here, we consider f(x) to
be our function which we want to maximize, and our our constraint to be the line given in
the problem, which we will call g(x, y) = x+ 3y = 10.

To use Lagrange multipliers, we solve the system of equations

∇f(x, y) = λ∇g(x, y)

∇g(x, y) = k

Note that in the above, k is the constant attached to the constraint, in this case 10.
First, we find our gradients of f and g. We find that

∇f = ⟨−2x,−2y⟩

∇g = ⟨‘1, 3⟩

So considering the x and y components of the vectors as separate equations, we get 3
equations in our system:

−2x = λ

−2y = 3λ

x+ 3y = 10

There are many ways to solve this system, but we will only show one way. One thing
to be careful about when solving these systems is that you can sometimes miss solutions
depending on what operations you use; especially zero solutions!

To begin, we can multiply the first equation on both sides by y, and the second equation
on both sides by x. This leaves us with

−2xy = λy
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−2xy = 3λx

x+ 3y = 10

Now, we can set the first two equations equal to each other, yielding

λy = 3λx

Thus y = 3x.
Now, we can plug this into the constraint equation, giving

x+ 9x = 10

Thus x = 1, and y = 3.
In this case, we have just one solution point, (1, 3).
Evaluating f at this point, we find that our maximum is

f(1, 3) = 39
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Problem 12. Write an iterated integral using (a) vertical cross-sections and (b) horizontal
cross sections for the region bounded by y =

√
x, y = 0, x = 9.

Solution. To begin, we should sketch the region in question. This appears as follows:

To do vertical cross-sections, we first integrate with respect to y, and then to x.
Imagine that we enter the area through the bottom (crossing the line y = 0), and then

leave through through the top (crossing the line y =
√
x). This defines our bounds for the

vertical-cross sections of the integral when we integrate with respect to y.
Next, we need to figure out our bounds for x (the bounds over which we integrate these

cross-sections). Referencing our drawing, we see that our area begins on the left at x = 0,
and ends on the right at x = 9. Thus 0 and 9 are our bounds on x.

Finally, we write this double integral for the area, integrating first with respect to y.

Area =

∫ 9

0

∫ √
x

0

dydx

Next, we will use horizontal cross-sections to write the iterated integral.
Entering the area from the left, we first cross the line y =

√
x, and then we exit through

the right, crossing the line x = 9. We need to restate the first bound so that it is in terms of
x, which gives us the first bound as x = y2. Thus our bounds for the horizontal cross-sections
are y2 and 9.

Next, we need to find the values for y over which we integrate these cross-sections. Notice
that our region is bounded below by y = 0, and above at the intersection of the lines x = y2

and x = 9, which occurs when y = 3. Thus our bounds on y are 0 and 3.
Finally, we can use these bounds to write our iterated integral in the following manner:∫ 3

0

∫ 9

y2
dxdy
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Problem 13. For the following integral, sketch the region implied by the bounds and eval-
uate the integral. ∫ 1

0

∫ y2

0

3y3exydxdy

Solution. The bounds on x imply that horizontal cross-sections stretch from x = 0 to x = y2;
in our drawing, we observe that this is the area bounded on the left by x = 0, and on the
right by y =

√
x (this line is rearranged to be in terms of y).

Next, we see that y ranges from 0 to 1. This implies that the region is bounded below
by y = 0, and above by y = 1.

This information allows us to sketch the region as below.

Next, we evaluate the integral.
We begin from ∫ 1

0

∫ y2

0

3y3exydxdy

Integrating with respect to x, we obtain 3y2exy. Evaluating from 0 to y2 gives∫ 1

0

(3y2ey
3 − 3y2)dy

We split this into two integrals as follows.
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∫ 1

0

3y2ey
3

dy −
∫ 1

0

3y2dy

The integral on the right becomes y3, which when evaluated is equal to 1.
For the integral on the left, we employ u-substitution. Let u = y3, and du = 3y2dy. We

adjust our bounds by plugging them into the equation for u, and observe that the integral is
bounded by u = 03 = 0 and u = 13 = 1. Then we have that the integral on the left is equal
to ∫ 1

0

eudu

This integral is equal to eu, which when evaluated is equal to e− 1. So we have that∫ 1

0

3y2ey
3

dy −
∫ 1

0

3y2dy = (e− 1)− (1) = e− 2

Therefore, our final answer is e− 2.

Problem 14. For the following integral, change the region to polar coordinates and evaluate
the integral. ∫ 1

−1

∫ √
1−x2

0

dydx

Solution. We can approach this in a couple of different ways, either by sketching the region
and describing it in polar coordinates, or by just plugging in our substitutions x = r cos θ
and y = sin θ. Regardless of the approach you use, remember to add the Jacobian r into the
integral!

Here, we will approach the problem by sketching the region and describing it in polar
coordinates.

We see that our vertical cross-sections are bounded below by the line y = 0, and above
by the semi-circle of radius 1, y =

√
1− x2. Additionally, x is bounded by x = −1 and

x = 1, which are the same as the points where the semi-circle intersects with the x-axis. As
such, we can sketch our region as below.

In polar coordinates, we see that our region begins at r = 0 since the region is shaded in
the center, and ends at r = 1 since the circle has radius 1. For the bounds on θ, we see that
we begin from θ = 0 on the unit circle, and rotate around until θ = π.

Also remember that when we perform a change of coordinates, we need to multiply the
integrand by the Jacobian; for polar, this is equal to r.

Therefore, our final integral is ∫ π

0

∫ 1

0

rdrdθ

First, we integrate with respect to r, yielding r2

2
, which evaluates to 1

2
.
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We then have ∫ 1

0

1

2
dθ

This integrates to θ
2
, which evaluates to π

2
.

Therefore, our area is π
2
. Notice: this agrees with the formula for the area of a half-circle

with radius 1!

Problem 15. Integrate the function f(x, y, z) = 3− 4x over the region bounded above by
z = 4− xy, below by z = 0, and inside 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1.

Solution. From the question, we see that our bounds on z are 0 and 4−xy, that our bounds
for x are 0 and 2, and that our bounds for y are 0 and 1. As a result, we write our triple
integral as follows. ∫ 1

0

∫ 2

0

∫ 4−xy

0

(3− 4x)dzdxdy

Integrating first with respect to z, this becomes∫ 1

0

∫ 2

0

(12− 16x− 3xy + 4x2y)dxdy

Next, integrating with respect to x gives 12x − 8x2 − 3
2
x2y + 4

3
x3y, which evaluates to

24− 32− 6y + 32
3
y = 14

3
y − 8.

We now have ∫ 1

0

(
14

3
y − 8)dy

14



This integrates to 7
3
y2 − 8y, which evaluates to −17

3
.

Therefore, our result is −17
3
.

Problem 16. Use the change of coordinates x = u
v
, y = uv to evaluate the integral∫ ∫ (√

y
x
+
√
xy

)
dxdy over the region in the first quadrant bounded by xy = 1, xy = 9,

y = x, y = 4x.

Solution. Our first step will be to restate our bounds and integrand in the new coordinates.
Our integrand is

√
y
x
+
√
xy, so this becomes v+u. We also need to multiply the integrand

by the Jacobian, so we will calculate that now.
The formula for the Jacobian given a change of coordinates u = f(x, y), v = g(x, y) is

det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
Here, this is equal to

det

(
1
v

− u
v2

v u

)
=

u

v
+

u

v
=

2u

v

So our final integrand is equal to 2u
v
(v + u).

Next, we consider our bounds after the transformation. The bound xy = 1 becomes
u2 = 1, and xy = 9 becomes u2 = 9; since x and y are both positive in the first quadrant,
we can rewrite these as u = 1 and u = 3.

The bound y = x becomes v2 = 1, and the bound y = 4x becomes v2 = 4. Again, since
x and y are both positive, we have that v = 1 and v = 2.

As a result, our new region is a rectangle in the uv plane.
Finally, we evaluate the new integral. We have∫ 2

1

∫ 3

1

2u

v
(u+ v)dudv

First integrating with respect to u, we get 2u3

3v
+ u2

v2
, which evaluates to 2(27)

3v
+ (9)

v2
− 2(1)

3v
−

(1)
v2

= 52
3v

+ 8
v2
.

We now have ∫ 2

1

(
52

3v
+

8

v2
)dv

This integrates to 52 ln v
3

− 8
v
, which evaluates to 52 ln 2

3
+ 8.

Therefore, the final answer is 52 ln 2
3

+ 8.

Problem 17. Evaluate the line integral
∫
C
(xy + y + z)ds along the curve r(t) = 2t̂i+ tĵ +

(2− 2t)k̂, for time 0 ≤ t ≤ 1.
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Solution. The formula for evaluating a line integral is as follows. Given functions such that
x = g(t), y = h(t), and z = p(t) on a ≤ t ≤ b, we have that∫

C

f(x, y, z)ds =

∫ b

a

f(g(t), h(t), p(t))|r′(t)|dt

First, we will find |r′(t)|. By taking the derivatives of each component, we see that

r′(t) = ⟨2, 1,−2⟩
The magnitude is then

|r′(t)| =
√
22 + 12 + (−2)2 = 3

So, plugging in our expressions for x, y, z in the curve, we rewrite our integral as∫ 1

0

((2t)(t) + (t) + (2− 2t))(3)dt = 3

∫ 1

0

(2t2 − t+ 2)dt

Next, we solve the integral.
Integrating, we see that we obtain

3(
2

3
t3 − 1

2
t2 + 2t)

∣∣∣1
0

Which evaluates to 13
2
.

Problem 18. Find the flow of the field F = −4xyî + 8yĵ + 2k̂ along the curve r(t) =
t̂i+ t2ĵ + k̂, for time 0 ≤ t ≤ 2.

Solution. To calculate the flow of a vector field along a path, we use the following formula:

Flow =

∫ b

a

F · r′(t)dt

First, we will calculate r′(t). This gives us

r′(t) = ⟨1, 2t, 0⟩
Next, we can rewrite F as a function of t using the x, y, and z components of r(t). This

gives us

F = ⟨−4(t)(t2), 8(t2), 2⟩ = ⟨−4t3, 8t2, 2⟩
Finally, we can take the dot product and take our integral. This gives us

Flow =

∫ 2

0

⟨−4t3, 8t2, 2⟩ · ⟨1, 2t, 0⟩dt

F low =

∫ 2

0

12t3dt
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Flow = 48

Problem 19. Find the circulation and flux of the field F = xî+ yĵ around r(t) = cos t̂i+
sin tĵ for tie 0 ≤ t ≤ 2π.

Solution. Given a vector field F = Mî + Nĵ and a path r(t) = xî + yĵ, the circulation of
the field around the path is given for time a ≤ t ≤ b by

Circulation =

∫ b

a

(M
dx

dt
+N

dy

dt
)dt

Note that in the above formula, dx
dt

is the derivative of the x component of r(t), and dy
dt

is the derivative of the y component of r(t).
First, we calculate the derivative of r(t) with respect to t. We obtain that

r′(t) = ⟨− sin t, cos t⟩
Currently, our vector field is stated in terms of x and y. At steps along the path r(t),

our x and y are given by the x and y components of the path vector. Thus we can write x
and y according to the x and y components of r(t). This gives that x = cos t and y = sin t,
so we have that the vector field in terms of t is given by

F = ⟨cos t, sin t⟩
Finally, we can plug our numbers into the formula for circulation to obtain the following

integral: ∫ 2π

0

(cos t(− sin t) + sin t cos t)dt

This is equivalent to ∫ 2π

0

0dt = 0

Thus the circulation is equal to zero.
(Thinking conceptually, notice that the vector field always points straight out from the

origin, perpendicular to the path of the circle whose center is the origin. Since the vector
field is always perpendicular to the path, there is no circulation along the path.)

Next, the flux is given by

Flux =

∫ b

a

M
dy

dt
−N

dx

dt

Again plugging into our formula, we obtain the following integral for flux:∫ 2π

0

(cos t cos t− sin t(− sin t))dt
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This is equivalent to ∫ 2π

0

(cos2 t+ sin2 t)dt

This simplifies to ∫ 2π

0

dt = 2π

Thus the flux is equal to 2π.
(Thinking conceptually, notice that our vector field is always perpendicular to our path.

As a result, we expect to see some flux across the path, so our answer makes sense!)

Problem 20. Find the potential function for the field F = ey+2z (̂i+ xĵ + 2xk̂).

Solution. The potential function of a vector field is a function such that the gradient of the
potential function is the vector field. In a sense, if taking the gradient of a function is like
taking the derivative of a function, then finding the potential function of a vector field is like
finding the integral of the vector field.

To begin, we have from the definition of the potential function that fx = ey+2z, fy =
xey+2z, and fz = 2xey+2z. These are the corresponding partial derivatives of each variable
given as a vector field in the problem.

Next, we can integrate fx with respect to x to get our function f(x, y, z) as a sum of
some function and a function g(y, z). Let’s try this.

f(x, y, z) =

∫
fxdx

f(x, y, z) =

∫
ey+2zdx

Evaluating, we get

f(x, y, z) = xey+2z + g(y, z)

Just to check our work, notice that the partial derivative of f with respect to x is ey+2z,
which is what we should expect if F is the gradient of f . We have to add g(y, z) because
we treat y and z as constants when we differentiate with respect to x, so g(y, z) is like our
constant of integration when we integrate with respect to x.

From here, let’s differentiate the above equation with respect to y. This yields

fy = xey+2z + gy

Note that here, gy is the partial derivative of g with respect to y. Next, we can plug in
our expression for fy given in the problem to solve for gy. This yields

xey+2z = xey+2z + gy
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Thus gy = 0. Since the partial derivative of g with respect to y is zero, we know that g
does not contain y, and is therefore a function only of z. So g(y, z) = h(z) for some function
h, and we can rewrite an earlier equation as

f(x, y, z) = xey+2z + h(z)

Here, let’s take the derivative of the whole equation with respect to z. This yields

fz = 2xey+2z + hz

Next, we plug in the expression given in the problem for fz, giving

2xey+2z = 2xey+2z + hz

Thus hz = 0. This means that the function h(z) must be some constant C. Thus we
have that

f(x, y, z) = xey+2z + C

This is our final answer, but we could check our answer by calculating the gradient of f
and confirming that ∇f = F .

Problem 21. Use Green’s Theorem to find counterclockwise circulation and outward flux
for the field F = (y2 − x2)̂i+ (x2 + y2)ĵ and the curve C defined by y = 0, x = 3, y = x.

Solution. The circulation form of Green’s Theorem states that given a closed curve C bound-
ing a region D, we have that

Circulation =

∮
C

F⃗ · T̂ ds =
∫ ∫

D

(Nx −My)dA

Note that here, we have that F⃗ = ⟨M,N⟩.
We will use the rightmost side of this identity to solve the problem.
Our first step is to calculate Nx and My, the partial derivatives of N and M with respect

to x and y respectively. Here, we obtain the following:

Nx = 2x

My = 2y

Next, we define the bounds of our region using the given curve in the problem. Here, the
curve C bounds the triangle bounded by the lines y = 0, x = 3, y = x. This allows us to
define our bounds with vertical cross sections, observing that y ranges from 0 to x. Then we
can integrate over these cross sections on 0 ≤ x ≤ 3 to obtain our answer.

We write our integral as follows:∫ 3

0

∫ x

0

(2x− 2y)dydx
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Solving the inner integral, we find that this is equivalent to the following:∫ 3

0

(2x2 − x2)dx

∫ 3

0

x2dx

Solving, we obtain ∫ 3

0

x2dx = 9

Thus the circulation is equal to 9.
Next, we calculate the flux. The flux form of Green’s Theorem states that

Flux =

∮
C

F⃗ · N̂ds =

∫ ∫
D

(Mx +Ny)dA

First, we calculate Mx and Ny.

Mx = −2x

Ny = 2y

Using the same bounds as before, we write our flux integral as∫ 3

0

∫ x

0

(2y − 2x)dydx

Solving the inner integral, we obtain ∫ 3

0

−x2dx

Solving, we see that ∫ 3

0

−x2dx = −9

Thus the flux is equal to −9.

Problem 22. Use a parameterization to express the area of the surface S using a double
integral, where S is the portion of the cone z = 2

√
x2 + y2 between the planes z = 2 and

z = 6.
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Solution. The goal of parameterization of a surface is to express a surface using two param-
eters as a vector valued function r⃗(t) = ⟨x(u, v), y(u, v), z(u, v)⟩ where x, y, and z are three
functions of two bounded variables u and v.

Here, notice that the surface S is a cone, and that we are given z as a function of x
and y. We will attempt this parameterization by converting our coordinates to cylindrical
coordinates, expressing each of x, y, and z as a function of r and θ. Since we are given z as
a function of x and y, we should be able to express every variable this way.

First, let x = r cos θ and y = r sin θ. Next, we can substitute for x and y in our equation
for z to solve for the function of z. This gives us the following:

z = 2
√

(r cos θ)2 + (r sin θ)2

z = 2r
√

cos2 θ sin2 θ

z = 2r

Finally, we need to define the bounds on r and θ. Since the cone forms a full circle around
the origin, we know 0 ≤ θ ≤ 2π.

Next, since we are given in the problem that 2 ≤ z ≤ 6 and we have that r = z
2
, we see

that 1 ≤ r ≤ 3.
Therefore, our parameterization of the surface S is given by

r⃗(t) = ⟨r cos theta, r sin theta, 2r⟩; 1 ≤ r ≤ 3, 0 ≤ θ ≤ 2π

The final step is to use this parameterization to express the area of the surface as a double
integral. Given a parameterization r⃗(u, v) of a surface S, we can express the area of S as
follows: ∫ ∫

D

||r⃗u × r⃗v||dA

Note that this is a special case of the following formula (when calculating area, we let
f(x, y, z) = 1): ∫ ∫

S

f(x, y, z)dS =

∫ ∫
D

f(r⃗(u, v))||r⃗u × r⃗v||dA

First, observe that

r⃗r = ⟨cos θ, sin θ, 2⟩

r⃗θ = ⟨−r sin θ, r cos theta, 0⟩

Taking the cross product, we get that

r⃗r × r⃗θ = ⟨−2r cos θ,−2r sin θ, r

Finally, taking the magnitude, we obtain
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||r⃗r × r⃗θ|| =
√
5r

Then plugging into our formula, we obtain the surface area as the following double
integral: ∫ 3

1

∫ 2π

0

√
5rdθdr

Problem 23. Evaluate the double integral
∫ ∫

2ydS over S, the surface given by the portion
of the surface y2 + z2 = 4 between the planes x = 0 and x = 3− z.

Solution. Our first step will be to find a parameterization of the surface S.
Notice that our surface is bounded by the cylinder centered on the x axis of radius 2, as

well as by bounds on x. We will express our parameterization using a version of cylindrical
coordinates where y = r sin theta, z = r cos theta, and x = x. In this case, we know that
r = 2 since our circle has radius 2, so our parameterization is in terms of θ and x.

We obtain our parameterization as the following:

r⃗(t) = ⟨x, 2 sin θ, 2 cos θ⟩; 0 ≤ x ≤ 3− 2 cos θ, 0 ≤ θ ≤ 2π

Next, we calculate r⃗x and r⃗θ.

r⃗x = ⟨1, 0, 0⟩

r⃗θ = ⟨0, 2 cos θ,−2 sin θ⟩

Next, we find r⃗x × r⃗θ.

r⃗x × r⃗θ = ⟨0, 2 sin θ, 2 cos θ

Finally, we find ||r⃗x × r⃗θ||.

||r⃗x × r⃗θ|| = 2(sin2 θ + cos2 θ) = 2

Next, we use the following formula to convert our double integral into one which uses
our parameterization:∫ ∫

S

f(x, y, z)dS =

∫ ∫
D

f(r⃗(u, v))||r⃗u × r⃗v||dA

Using the right side of the equation, we write our integral as the following:∫ 2π

0

∫ 3−2 cos θ

0

2(2 sin θ)(2)dxdθ

∫ 2π

0

∫ 3−2 cos θ

0

8 sin θdxdθ
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Finally, we can evaluate the integral. Performing the inner integral, we obtain∫ 2π

0

8 sin θ(3− 2 cos θ)dθ

Next, we can use u substitution to evaluate the integral. Letting u = 3 − 2 cos θ, we
obtain that du = 2 sin thetady. This allows us to rewrite the integral as∫ 1

1

4udu = 0

Then since the integral bound is from 1 to 1, we see that the final result is 0.
Therefore, the result of the double integral is 0.

Hi to all students, TAS employees, and volunteers! We hope that this solution sheet is a
valuable resource to you all! Thank you for support, and good luck!

Best, Alex and John. ♡
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