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Project Description 

Outta Time is a robot thespian inspired by the white rabbit from Alice in Wonderland. It will recite lines, 

play audio, tilt the head, move an arm, and a path will light up when instructed by the director. It will 

operate from a standard 120V wall outlet and will be controlled by an ESP32 microcontroller. 

 

Figure 1. Preliminary graphic sketch of the robot thespian. 

 

Hierarchical Design 
From a top-level perspective the entire project encompasses 3 systems and 5 subsystems, all with 

individual components. The interactions between the subsystems and systems can be all summed up 

between Figure 2 and Table one below. 
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Figure 2. Project hierarchical diagram of systems, subsystems, and components 

 

Table 1: Subsystem interface table 

Interface Source Destination Description 

120V AC System Input Power 120V AC Input 

WiFi System Input Processing WiFi commands from Director to system 

5V DC Power Processing Converted 5V DC Power 

5V DC x2 Power Motion Power to two Servo motors 

5V DC x2 Power LED Power to two LED strips 

5V DC Power Audio Power to the audio amplifier 

3.3V DC x7 Processing User Interface Logic high for five pushbuttons and one 
potentiometer; power to the ADC 

PWM x2 Processing Motion PWM signals to control two servos 

I2S (3 lines) Processing Audio I2S communication to the audio amplifier 

SPI (4 lines) Processing User Interface SPI communication to the ADC 

SPI (4 lines) Processing Audio SPI communication to the SD card reader 

GPIO x5 User Interface Processing Digital reading of the five pushbuttons 

GPIO x2 Processing LED Digital communication to two LED strips 

GPIO x2 Processing User Interface Power to toggle two status LEDs 
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Subsystem Designs 
Table 2: Task Leads for each Subsystem 

Team Lead Jonathan Huang 

Audio Subsystem Lead Bo Han Zhu 

LED Subsystem Lead Bo Han Zhu 

User Interface Subsystem Lead Bo Han Zhu 

Motion Subsystem Lead Selene Jordan 

Power Subsystem Lead Jonathan Huang 

Software Lindsey Lubin 

 

Audio Subsystem 

Diagram 

 

Figure 3. Audio Subsystem 

 

Description 
The audio subsystem plays the “I’m Late!” song from Alice in Wonderland. The song is stored in a 

MicroSD card, which is read by a breakout board before being transmitted to the ESP32. The ESP32 

propagates this via I2S to the audio amplifier, which controls a speaker by outputting a voltage 

differential. The entire system is powered using 3.3V from the ESP32. 

Design Process 
The first step for audio was to determine what we wanted to play, as this would dictate the complexity 

of hardware and software needed. We chose to play a song in MP3 format from Alice in Wonderland 

that was about 10 seconds long. An external memory would be needed to hold such a large file. Second, 

to meet the 40-70 decibel range we selected, we found out that a simple speaker was not enough, and 

therefore needed to bring in an audio amplifier and a larger speaker. 

Simulation 
Two breadboard simulations were done for the Audio subsystem. The first simply verified that the ESP32 

and I2S audio amplifier could drive a simple speaker. The audio file for this simulation was not stored in 

memory – it was pulled from an online radio station via the ESP32. 
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Figure 4. The ESP32 and I2S audio amplifier drive a simple speaker. 

 

The second simulation involved the entire block diagram and the song we chose. A MicroSD card reader 

containing the MP3 song was connected via SPI to the ESP32. It was during this simulation that we 

realized that the simple speaker from the first simulation was too soft and could not meet the 40-70 dB 

requirement. Upon switching to a larger speaker, about 60 dB was consistently measured about a foot 

away. 

 

Figure 5. A larger speaker and MicroSD card reader are added to the first audio simulation. The simple 

speaker in the middle of the breadboard is disconnected and unused. 
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Motion Subsystem 

Diagram 

 

Figure 6. Motion Subsystem 

 

Description 
The motion subsystem will take 5V DC and receive 2 PWM signals that control the motor drivers. The 

motor drivers will then interpret the signals and power the motors appropriately to produce the desired 

motion for the rabbit's elbow and head.   

Design Process 
Our first motion design included the rabbit’s arm and two legs moving in order to mimic a running 

motion. After discussion, we decided that this would be too complicated and costly for our budget. 

Instead, we decided that we would limit ourselves to two motions; the rabbit’s head and arm. We also 

chose to simulate these motions with a standard servo motor capable of holding the necessary weight 

of the rabbit. The rabbit’s head will move with a range of 60 degrees and the rabbit’s arm will move 45 

degrees.  

Simulation 
The motion simulation utilized a standard servo motor and the ESP32. For this simulation we connected 

the servo motor to the ESP32. The power on the servo motor is connected to an external power supply 

of 5V. The ESP32 and motor are also connected to common ground. Once I secured these connections, I 

then uploaded a standard sweeping code onto the ESP32. This simulation confirmed the servo motor 

was compatible with the ESP32 and could perform the range of motion we need for our rabbit.  



 

 8 

 

Figure 7. The motion simulation of a standard servo motor and ESP32 connected to perform a sweeping 

motion.  

 

User Interface Subsystem 

Diagram 

 

Figure 8. User Interface Subsystem 

 

Description 
The user interface subsystem serves as the bridge between system diagnostics/control and the user. 

There are five pushbuttons: one is to test all subsystems, three are to test a specific subsystem, and one 

is to initiate wireless connection with the Director. There is a potentiometer that serves as volume 

control for the speaker and two LEDs that display the status of wireless connectivity and power on/off. 

The status LEDs draw power from the GPIO pins of the ESP32 (3.3V) whereas the pushbuttons and 

potentiometer are supplied by the ESP32 3.3V output. Pushbutton feedback is communicated to the 
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ESP32 via GPIO while the potentiometer’s analog reading is converted to digital by an ADC and then 

communicated to the ESP32 via SPI. 

Design Process 
We began the design with just three pushbuttons to test the Audio subsystem, Motion subsystem, and 

LED subsystem individually. However, as we had more software/electrical integration discussions, we 

began to realize that testing the system without wireless connectivity and toggling wireless connection 

were important functions, and so two more pushbuttons were added. 

Initially, there were no status LEDs in our design. But because whether having power and wireless 

connection was such a difference-maker to how the system operated, we realized that displaying this 

information to the user was crucial. Thus, we added status LEDs for both. 

When we designed based on using the Raspberry Pi Zero W, which had no on-board ADCs, we picked 

the MCP3008 to serve as an external ADC to handle the potentiometer output. However, after we 

switched to the ESP32, which had multiple on-board ADCs, this circuitry was no longer needed. Yet, we 

kept it in our design to fulfil the “one analog circuit” requirement. 

Simulation 
The pushbuttons, LEDs, and potentiometer control were first simulated in TinkerCad. An Arduino Uno 

digitally outputted signals to the LEDs. An optimal LED resistor value was chosen based on the Digikey 

LED Series Resistor Calculator (https://www.digikey.com/en/resources/conversion-

calculators/conversion-calculator-led-series-resistor). 

The Arduino Uno received pushbutton feedback as digital inputs and the potentiometer input as an 

analog input. TinkerCad only allowed us to use Arduino microcontrollers, but because the ESP32 

development environment is based on the Arduino IDE and compiler (with an additional board package), 

we were confident that the results would translate over. 

 

Figure 9. TinkerCad simulation with various user interface components. The potentiometer value is used to 

determine the frequency of a simple speaker, but it is also printed to the Arduino serial console. 

 

https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-led-series-resistor
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-led-series-resistor
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Because we had a fair amount of experience hooking resistors in series with LEDs and adding pull-ups to 

pushbuttons, we did not breadboard them. However, we did breadboard the ESP32, ADC, and 

potentiometer to ensure that the MCP3008 ADC could transmit 10-bit digital values via SPI. 

 

Figure 10. Variable Resistor serving as a potentiometer connected with the MCP3008 ADC and ESP32. 

 

Power Subsystem 

Diagram 

 

Figure 11. Power Subsystem 
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Description 
The power subsystem will take in the required 120V AC at 15A-20A from a standard US wall outlet and 

output 5V DC. It will first go through a 15W (5V DC, 3A) transformer, then a 3A fuse (for circuit 

protection), then finally a power switch before distributing power to the other subsystems. 

Design Process 
We first began starting with a 5V, 2A power supply as we understood initially that all the parts needed 

5V and that 10W should be able to supply all the power necessary for all components to function. In 

addition, we understood that it would be important to be able to protect our components from voltage 

and current surges, which is why we included a 2A fast-blow fuse as well. We also included a switch so 

that we could control when electricity would flow through our thespian. 

However, after working on the power budget, we soon realized that all the components take up around 

10W. In addition, we did not scale this value by 1.5x to ensure for all worse case scenarios, making the 

power being drawn about 15W.  We wanted to keep the 5V, so we decided to change the current to 3A 

so that the power generated could satisfy the power drawn 

Simulation 
For our simulation of the power subsystem, we made a power budget to see how much power we 

needed to be drawn and how much power could be supplied. We found the values for each of the 

components using their datasheets online; we then summed all the power values up and multiplied 

them by 1.5 to get a worst-case power drawn and updated our power supplied to match that (5V, 3A). 

 

 

Figure 12. Power Subsystem 
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LED Subsystem 

Diagram 

 
Figure 13. LED Subsystem 

 

Description 
The LED subsystem consists of 2 LED strips of 23 RGB LEDs each that will illuminate the Rabbit’s “path”. 

The LED strips are powered by the external 5V power supply; they cannot draw from the MCU due to a 

high-power draw. The Arduino Neopixel library is used to control the strips via one GPIO pin per strip.  

Design Process 
We decided to use LED strips for lighting from the beginning – discrete LEDs would take up too many 

GPIO pins and timing each one would be very difficult. The only question was which communication 

protocol should we use for control. After considering both PWM and SPI options, we decided to go with 

the WS2812, which could be driven by a single GPIO. SPI would require more connections, and at that 

time, we still used the Raspberry Pi Zero W, which had a finite number of PWM pins. The strip itself had 

hardware to propagate the one digital signal down the strip and a readily available Arduino library for us 

to use. 

Simulation 
We began by using TinkerCad to ensure that the Arduino Neopixel library could indeed handle a WS2812 

LED strip with a single GPIO. Again, TinkerCad only allowed us to use Arduino microcontrollers, but 

because the ESP32 development environment is based on the Arduino IDE and compiler (with an 

additional board package), we were fairly confident that the results would translate over. 

 

Figure 14. TinkerCad simulation of an Arduino Uno driving two WS2812 LED strips with no additional 

hardware. 
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Indeed, our second simulation was to hook up the ESP32 with the WS2812 strip in a bench testing 

environment with external 5V. We were able to successfully light up the LED path using the same library. 

 

Figure 15. Bench testing of the WS2812 LED strip with the ESP32. 

 

Trade-Offs and Alternatives 
During design, we made two critical component decisions, which were the types of microcontroller and 

servo motors we used. 

We originally began design with the suggested Raspberry Pi Zero W. Code development was to be done 

in micropython in a built-in OS environment, and the Pi Zero provided the required I/O interfaces as well 

as a built-in WiFi module and API for communicating with the Director. It could even drive speaker 

output directly via Micro-USB. However, its cost, $60, would have caused us to exceed our $160 budget 

by roughly $10. 

Therefore, we pivoted to another microcontroller with built-in WiFi capabilities – the Adafruit ESP32 

Feather. This board was much cheaper at $20 and provided enough I/O interfaces to cover each 

subsystem. The drawback was that we could not drive the speaker directly and needed to edit the audio 

subsystem to include an additional I2S amplifier. Another side benefit to using the ESP32 was that 

development could be done in bare-metal or RTOS C-code, which was a programming language and 

development environment our team was more acquainted with. 

We originally planned on using a Tower Pro Micro Servo motor, however, after some testing we realized 

that the motor would not be able to hold the necessary weight. Instead, we decided to use the Tower 

Pro Standard Servo motor. This motor was significantly larger and able to hold the required weight, 

however, it was double the price of the mini servo motor at $12.  
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Software Design 
The software state diagram pictured in figure 14 includes 4 different states: wait (setup), test, decode, 

and perform. This software state flow diagram illustrates how our thespian will communicate with the 

director and translate the instructions into actions. The basis for these 4 states is to ensure a working 

demo as well as to ensure that we can debug and test while offline.  

 

  

Figure 16. Software State Flow Diagram that includes the setup, test, decode, and perform. 

 

In addition, we have included the software architecture as shown in figure 15. Each class is designed for 
easy integration and easy testing. This means, that each of the classes can exist independently for easy 
testing, however, if necessary, when integrated, the classes can be run together easily. The core of the 
software architecture is the Main class, which setups and runs test sequences for each subsystem based 
on push button input. The connectToServer class oversees connecting to the director; there are Motion, 
Audio, and LED classes that are meant to perform the tasks of their respective subsystems. 
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Figure 17. Software Architecture detailing all functions for a class 

 

 

Figure 18. Software Framework outlining the functions shown in the software architecture 

 

 

 

Software Simulations 
For simulation purposes, we developed a program to run the above architecture. The main purpose was 

to implement several try blocks to help the user see where an error occurs if the thespian were to fail. 

We aimed to be all encompassing in the event of connection failure. Since the software directly the user 

interface (status buttons, testing sequences, etc.) a form of debugging was needed in the initial stages to 

ensure everything was working as it should. Figure 19 shows the results of the program if it was run 

successfully.  
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Figure 19. Successful run of program demonstrating button interaction 

 

We also had a slight setback as we switched from the Raspberry Pi 0 W to the ESP32, however, it was 

easier for us to code on the ESP32 as it will be in C/C++.  After the base program was run, we simulated 

connecting to the director via ESP32. Figure 19 shows the results of that simulation. We ran into issues 

using Ubuntu to run the programs as it lacked the updated libraries needed to do so. Running the 

director script in anaconda solved the issue. 

 

Figure 20. Successful connection to Director 

                           

Mechanical Design 

Our theme is Alice in Wonderland and the character on top of the box is The White Rabbit. Our 

mechanical design utilizes two servo motors to rotate the rabbit's head and arm. The rabbit’s holding a 

clock will be revealed from behind his body with a CCW motion. The rabbit’s head will then spin back 

and forth in a CW and then CCW motion to show he is worried about being late.  

To achieve these motions, the rabbit was designed to have three parts: the head, the body, and the 

watch. These three parts would be laser cut and then engraved to get the details of the rabbit. The head 

is in front of the body, the arm with the watch is behind the body, and the body is attached to the top of 

the box. Our two servo motors will be attached to the body at one end and then attached at their other 

end to the head. 
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Figure 21. Cardboard laser cut test of rabbit design. 

 

We went with a simple box design. On one side of the box there will be 4 test buttons and an LED to 

indicate if the system is on. On the front of the box, we will have an engraving with the GT logo and our 

team's name. The back of the box will be transparent by utilizing acrylic material. This will allow for our 

electrical connections to be visible. On the top of the box, we will place the rabbit as well as laser cut 

holes to fit LED strips. These LED strips will represent a path for the bunny to go down.  
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Figure 22. Illustrator .svg file for the base design, 20 cm x 20 cm x 10 cm 

 

 

Figure 23. Laser cut of box design without engravings 
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PCB 
Three PCBs created using EAGLE host the various subsystems: 

1. Main Board: Processor, Audio, Motion, LED 

2. User Interface Board: User Interface 

3. Power Board: Power 

Main Board 
The ESP32 microcontroller is located on the Main Board. Through terminal blocks, the board receives 5V 

from the Power Board and provides 5V and control signals to the two servos (Motion subsystem) and 

two LED strips (LED subsystem). A 9-pin terminal block sends 3.3V from the microcontroller’s voltage 

regulator to the User Interface Board with various analog/digital inputs and outputs. On the Main Board 

are the Audio subsystem’s SD card reader and I2S amplifier and an ADC to convert the analog volume 

signal from the User Interface Board. 

 

Figure 24. EAGLE schematic of the Main Board. The ESP32 in the middle directly connects to the I2S 

amplifier, SD card reader, and ADC. Terminal blocks on the top and bottom connect to other PCBs (User 

Interface Board, Power Board) or external components (servos, LED strips). 



 

 20 

 

Figure 25. EAGLE board for the Main Board. Notice the terminal connectors being on the edge of the 

board, with silkscreen text for each pin’s function. 

 

User Interface Board 
The User Interface Board hosts components for user inputs or outputs. A green and a blue status LED, 

respectively, show the power status and wireless connection status of the system. Four tactile 

pushbuttons allow the user to test various subsystems individually and another enables/disables 

wireless connection. A potentiometer provides analog input to the system to control the volume. This 

board receives 3.3V from and communicates using digital and analog signals with the Main Board. 
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Figure 26. EAGLE schematic of the User Interface Board. The terminal block on the bottom-left provides all 

connections. Pushbuttons have hardware pull-ups and are debounced in software. 

 

 

Figure 27. EAGLE board for the User Interface Board. Notice that all user facing components (pushbuttons, 

LEDs, potentiometer) are on the top layer and the other components (terminal block, resistors) are on the 

bottom layer – cutouts from the side panel are needed only for user facing components. 
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Power Board 
The input to the Power Board is 5V 3A from a wall transformer. A 3A fuse on the power rail ensures that 

the system does not exceed that limit in case the wall transformer has a power surge. A switch toggle 

allows the user to turn off power. Outputs are connected to the Main Board, which further distributes 

5V throughout the system. 

 

Figure 28. EAGLE schematic of the Power Board. A Micro-USB female connector receives 5V from the wall 

transformer and a terminal block sends the fused 5V to the Main Board. 

 

 

Figure 29. EAGLE board for the Power Board. Unused data pins on the Micro-USB connector are purposely 

left floating. 

 

For the Power Board, we ended up needing to cut the trace connecting the GND line with the switch. 

This is because when the microcontroller had a cable plugged in (i.e. for firmware uploading or serial 

debugging), switching the Power Board “off” would short the 5V from the USB cable and GND. Hence, 

we left the “off” state as a floating value instead of GND.  
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Schedule 
Figure 22. describes what our schedule looks like. It is less granular than expected because our group 

decided to house all concrete action items within the team meeting notes (Figure 23.). Each concrete 

action item is related to the subsystem(s) that a particular team member is working on for the week 

along with a concrete due date that is influenced by our schedule. Every meeting, each team member 

will give status updates, and if a task is finished, we will go back to when the task was originally 

assigned, and strike through the task to indicate that it has been completed. 

 

Figure 30. Team Schedule. 
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Figure 31. Sample Action Items List for 10/10/2022. 
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Integration 

 

Figure 32. The front of the complete robot thespian. 

 

Figure 32 shows the front of the complete robot. To achieve this final product, we had to go through 

mechanical-electrical integration and software-electrical integration. For mechanical-electrical 

integration, we were able to mount the PCBs by drilling 1/8-inch holes through the wood. To hold the 

PCB in place, we used nuts and screws, with an additional nut standing in the way between the PCB and 

the wood serving as a standoff to reduce shock to electrical components. For the user interface board, 

we tested many wood cutouts to ensure the pushbuttons, potentiometer, and status LEDs would stick 

through the wood and be accessible to the user. 

One issue we ran into was during the mounting of the servos. The servos were held in place behind the 

thespian using wood. However, we attached everything before ensuring the servos could rotate. This 

was disastrous as the head servo did not have enough spacing – it could not move its load due to friction 

with the wood in-between. We tried to drill a larger hole through the wood in-between to minimize 

friction, but the drill got too far and permanently damaged the servo instead. 

For software-electrical integration, we were able to copy over many of the firmware scripts we used 

during simulation of individual subsystems and modify the pin definitions according to the EAGLE 

schematic. We created a thread for each function in FreeRTOS. One issue we ran into was overloading 

one core of the ESP32 and so we moved the audio subsystem (the most CPU-intensive operation that 

also required uninterrupted execution) to its second core. 
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Software High-Risk Components: 

• Multithreading using an RTOS library most of us never even heard of before (FreeRTOS) 

• Although the ESP32 had built-in wireless connectivity, connecting to the Director was not 

ensured due to MCU-specific implementations. Using this microcontroller also left us “stranded” 

as other groups could help each other out on this obstacle using the Pi. 

Hardware High-Risk Components: 

• LED strip soldering and mounting. The LED strips did not have soldermask on its pins and 

therefore we needed to find a way to allow the solder to stick. 

Mechanical High-Risk Components: 

• Servo mounting. We could not really use screws as the servos did not have housing for them and 

our setup caused too much friction between components. 

Repository Management: 

• We have a GitHub repository that stores both our simulation scripts and final firmware: 

o https://github.gatech.edu/llubin3/ECE3872-A05 

• We used Microsoft Teams/OneDrive for shared file management. 

Configuration Controls/Diagnostics: 

• Pushbuttons: 

o One pushbutton tests the overall system without wireless connection. 

o Three pushbuttons test the audio, LED, and motion subsystems respectively. 

o One pushbutton initiates wireless connection. 

• Status LEDS: 

o A blue LED indicates wireless connection status. 

o A green LED indicates power status. 

• Potentiometer: 

o Controls the volume output of the speaker. 

 

 

https://github.gatech.edu/llubin3/ECE3872-A05
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