
   
 

1 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Design Document 
The Rapid Rabbit 

Team #C01: Michael Landon, Bailey Rende, Emma Rae Stanley, Rhea Prem 

 
 

Date: December 6, 2022 
 

 

 
 
 

 
  



   
 

2 
 

Table of Contents 
Project Description ........................................................................................................................................ 4 

System Design ................................................................................................................................................ 4 

Sub-System Designs ....................................................................................................................................... 6 

Software Controller Sub-System ............................................................................................................... 6 

Audio Sub-System ...................................................................................................................................... 7 

Mechanical Sub-System ............................................................................................................................. 7 

Power Sub-System ..................................................................................................................................... 7 

Lights Sub-System ...................................................................................................................................... 8 

Constraints, Alternatives, and Trade-Offs ..................................................................................................... 8 

Electronic Design ........................................................................................................................................... 9 

Electronic Simulation ................................................................................................................................... 12 

Mechanical Design ....................................................................................................................................... 12 

Mechanical Simulation ................................................................................................................................ 20 

Software Design ........................................................................................................................................... 22 

Software Simulation .................................................................................................................................... 23 

Schedule ....................................................................................................................................................... 25 

Integration ................................................................................................................................................... 27 

Conclusion .................................................................................................................................................... 28 

 

 

 
 
 
 
 
 
 

  



   
 

3 
 

Revision Record 
 

Date Author Comments 

Sep, 15, 2022 Team Document Created (system design and hierarchical 
design) 

 Rhea Prem Initial draft of Project Description, System Design, 
Sub-system Design written 

 Michael Landon Revised System Diagram 

Sep. 18, 2022 Team Sub-system Input and Output Table made 

 Bailey Rende Revised System Diagram, wrote sections for audio, 
mechanical, and power sub-systems. 

 Rhea Prem Software Controller Sub-system written, and 
Diagram created 

Sep. 19, 2022 Rhea Prem Software design and schedule portion written 

Sep. 22, 2022 Bailey Rende Updated lights and power sub-system diagrams and 
section 

 Rhea Prem Updated software controller diagram 

Sep. 24, 2022 Rhea Prem Updated software state diagram & description, 
hierarchical design diagram, system design, 
integration, constraint/trade-off, and conclusion 
sections written. 

 Bailey Rende Updated Electrical and Mechanical Design 

Sep. 25, 2022 Rhea Prem Software Architecture Diagram and Text 

Oct. 18, 2022 Rhea Prem Software Simulation section added, updated 
Software Controller block diagram 

Oct. 22, 2022 Michael Landon Update system diagram 

Oct. 23, 2022 Michael Landon Electronic Simulation section added. Electronic 
Design picture updated. GPIO and Power PCB 
sections and figures added. Integration risks 

 Bailey Rende Update sub-system inputs and outputs table, add 
robot box design and laser cut prototypes to 
mechanical design, update audio and lights sub-
systems, update mechanical design section 

 Rhea Prem Update software simulation section 

 Emma Rae Add mechanical simulation  

Dec. 4, 2022 Rhea Prem Add conclusion 

 Bailey Rende Add final box design, rabbit attachment design, and 
final ear design to mechanical section 

Dec. 6, 2022 Bailey Rende Update Table of Contents, proofread entire 
document 

 
  



   
 

4 
 

Project Description 
Our team has designed an Alice and Wonderland inspired White Rabbit robot. In our design, the 
robot will receive lines from a “Director” (in this case, an established server), and, in response, 
the robot will start playing sounds through a speaker, 12 LED’s will illuminate in a clock face, 
and the rabbit’s ears will rise and lower.  

 

 
 

Figure 1: Initial Sketches of the Rapid Rabbit 
 

 
Table 1: Task Leads for Each Sub-System 

Task Leads 

Sub-system Lead 

Mechanical Emma Rae and Bailey 

Software Controller Rhea 

Lights Michael and Bailey 

Power Michael 

Audio Bailey (Team Leader) 

 

System Design 
The system design for the Rapid Rabbit includes 5 different sub-systems. The inputs of the 
system include 120V AC input power, an analog audio source, and user input. 
The outputs of this system include a USB speaker and the movement produced by the figurine 
driven by servo motors. The system consists of five sub-systems including the software 
controller, mechanical, power, lights, and audio. The software controls will consist of a 
Raspberry Pi 4 which controls the mechanical, lights, and audio sub-systems. The mechanical 
sub-system includes motors to control the motion of our robot. The audio sub-system includes a 
3W USB speaker with an auxiliary input. The power sub-system includes a 120VAC input and 
output of 5V DC. It consists of an AC-DC power supply, DC-DC buck converter, user input 
switch, and fuse.  
 
 
 



   
 

5 
 

 
Figure 2: System Diagram 

 
 Table 2: Sub-system Inputs and Outputs 

Interface Source Destination Description 

120V System Input Power 120V AC power input 

5V Power Software Controller  5V DC power 

Mechanical 5V DC power 

Lights 5V DC power 

USB Software Controller Audio Powers 3W speakers 

AUX Software Controller Audio Outputs audio to 3W speakers 

Wi-Fi System Input Software Controller Wi-Fi internet connection 

PWM Software Controller Mechanical PWM signal to control motors 

GPIO (out) Software Controller Lights 3.3V DC power for LEDs 

GPIO (in) System Input Software Controller Input from switches and buttons 

 



   
 

6 
 

Figure 3: Hierarchical Design Diagram 

Sub-System Designs  
Our design incorporates five sub-systems: software controller, mechanical, power, lights, and 
audio. The software controller will integrate all sub-systems by receiving input from the 
“director” and issuing output signals to other sub-systems. Audio will amplify sound in response 
to receiving a line, motion will execute the upwards and downwards movement of the ears, and 
power converts 120V AC to 5V DC for input to other sub-systems.  
 

Software Controller Sub-System 
The Software Controller sub-system will focus on the interaction between the Raspberry Pi 4 and 
other sub-systems. This sub-system takes in a 5V DC input and Wi-Fi inputs in order to connect 
to the Director and receive lines for the robot. The sub-system then outputs a PWM signal to 
control the motors in the mechanical sub-system, USB to output sounds to a speaker in the audio 
sub-system, and 3.3V DC GPIO signals to control the LEDs in the light's sub-system. 

 

 
Figure 4: Software Controller Sub-System 



   
 

7 
 

Audio Sub-System 
The audio sub-system will connect via USB and AUX to the software controller for power and 
audio respectively. It’ll then connect directly to 3 Watt speakers. This sub-system runs on 5 
Volts DC. 

 
Figure 5: Audio Sub-System 

Mechanical Sub-System 
The mechanical sub-system will take 5 Volts DC and receive two PWM signals to control the 
servo motors.  The servo motors will then interpret the signals and power the motors 
appropriately to produce the desired motion. 

 
Figure 6: Mechanical Sub-System 

Power Sub-System 
The power sub-system will take 120 Volts AC as an input and output 5 Volts DC.  It will route 
power through an AC-DC power supply, a DC-DC buck converter to drop from 9V to 5V, a user 
input switch, and a fuse before distributing it to the other systems. 
 

 
Figure 7: Power Sub-System 



   
 

8 
 

Lights Sub-System 
The lights sub-system will take 3.3 Volts DC GPIO, route each signal through a resistor, and 
connect it to a red component of the RGB LEDs. The lights sub-system will also take 5V DC, 
connect it to the collector of an NPN BJT, route it through a resistor, and connect it the blue and 
green LED components of the RGB LEDs. 3.3 Volts DC GPIO is also connected to the base of 
the NPN BJTs. All of the LEDs will then emit light. 

 
Figure 8: Lights Sub-System 

 

Constraints, Alternatives, and Trade-Offs 
One constraint we had was choosing between microcontrollers. We initially were going to use 
the Raspberry Pi Zero, but, after having complications, we had to access trade-offs between the 
Zero and other controllers.  
Microcontrollers: Raspberry Pi Zero vs. Raspberry Pi 4  

• The Raspberry Pi Zero is very small and thin, so it doesn’t take up a lot of space and is 

easily hidden. However, we had many problems with the microSD card not being read on 

our original Pi Zero. After days of trying to get the Pi Zero setup, we were unsuccessful. 

• There are supply constraints with the Raspberry Pi Zero, so we were not able to find 

another to test. However, the Raspberry Pi 4 is more easily accessible, so we moved to 

the Pi 4. 

• The Raspberry Pi 4 is a bit bulkier as it has 4x USB A ports, an ethernet port, and 2x 

micro HDMI ports, compared to the micro USB and mini HDMI the Pi Zero has. 

However, with the addition of a little more surface area for the Pi 4, we were able to 

eliminate additional connections in our design which converted micro-USB to USB A. 

Additionally, the Pi 4 has more GPIO pins, which will help us control all of our LEDs. 

Another trade-off analysis we performed was with servos. Initially, we selected the TowerPro 
SG90 servos. After further testing, we questioned whether we should switch to the larger, more 
powerful Hitec HS-422 servos.  
Motors: TowerPro SG90 servo vs. Hitec HS-422 servo 

• The TowerPro SG90 servo has a stall torque of 1.8kg/cm, weights 9g, operates at 5V, and 

has 180 degrees of motion 

• The Hitec HS-422 servo has a stall torque of 4.1kg/cm, weights 45.5g, operates at 5V, 

and has 180 degrees of motion 



   
 

9 
 

• While the Hitec servo has a much greater stall torque, this isn’t needed for our 

application. Additionally, the Hitec servo has a stall current draw of 800mA vs. 700mA 

for the TowerPro.  

• Despite the Hitec motor having a more durable gearing system, the TowerPro’s 

mechanism will suffice for our application. Considering it’s lighter, draws less current, 

and is smaller, it’ll be the servo of our choice. 

Electronic Design 

The electrical design consists primarily of supplying power to the components and a few 
connections to send signals to and from the Pi. The Pi can be supplied mode information through 
the control switches on its GPIO pulling low to ground. The Pi can also turn on and off the LEDs 
on the clock face by pulling high or low on the associated GPIO pins.  

 
Figure 9: Electrical Connections Sketch  

 
The majority of the LEDs are connected to a GPIO PCB. This PCB connects to the Pi 4 header 
and routs the GPIO pins to 12 RGB LEDs mounted on the board. All of the red LEDs are 
connected to individual GPIO pins, allowing for individual control. The green LEDs are all 
connected to a single NPN BJT, which is controlled by a single GPIO pin. The blue LEDs are 
connected the same way. This means that all 12 blue and/or green LEDs are controlled together, 
not individually. It also has a second header to allow tapping into the Pi pins for the servos and 
other elements as the ribbon cable will block access to these pins otherwise.  
 



   
 

10 
 

 

 Figure 10: GPIO PCB Schematic, Array of LEDs 

The GPIO board itself contains complex routing due to the number of connections needed. This 
can be seen in figure 11. 
 

 

 Figure 11: GPIO PCB Connections 

 



   
 

11 
 

  
Figure 12: GPIO PCB top (left) and bottom (right) view 

 
 

Thick traces are required to handle the possible current demand of the Pi 4 and the servos at 
maximum demand. Two bucks are required to eliminate the possibility of exceeding their ratings 
if the system is pulling maximum power. This is reflected in the power PCB schematic shown 
below. 
 

  

Figure 13: Power PCB Schematic  



   
 

12 
 

The power PCB itself is much easier to follow than the GPIO board due to it containing fewer 
components and not having a high density pin location such as the GPIO headers. It could have 
been manufactured as a single sided PCB, however it requires a ground plane to absorb and 
radiate the thermal generation of the buck converters. As such the reverse side is a single large 
ground plane. 

 

Figure 14: Power PCB Model with Components  

 

Electronic Simulation 
Power demands of individual components were collected, budgeted, and the power PCB is 
designed with these demands in mind. The traces of the power PCB are designed to carry the 
possible 3A maximum that the Pi could draw and a second buck converter supplies power to the 
servos and other LEDs to keep the current lower and within trace ratings. 
The maximum calculated power draw of the system is 22.3W. With the 45W supply being used, 
there is significant room for error and losses without exceeding the limits of the supply or the 
project requirement of <60W. 

Mechanical Design 
The mechanical design features a box with the rabbit sitting on top. As seen in figure 15, the box 
is roughly be 12” in width, 5” in height, and 12” in length. The box is made of 1/8” wood that 
will be laser cut. The rabbit that is sitting on top will be a store-bought stuffed animal. The front 
of the box will include various switches, buttons, and LEDs as a user interface. It also includes a 
speaker grill and volume rocker. 



   
 

13 
 

 

 

Figure 15: Preliminary Front View Sketch of Robot Structure 

 

As seen in figure 16, the rear of the box has the power in barrel jack and an acrylic window. The 

window will allow for visibility inside and will have holes to allow for ventilation. The window 

will also be removable to allow for access inside. 

 

Figure 16: Preliminary Back View Sketch of Box that Robot Stands On 

 



   
 

14 
 

In addition to the rabbit being on the top of the box, a clock is also there. As seen in figure 17, 

the clock features 12 RGB LEDs, each one corresponding to an hour on the clock. The clock is 

roughly 5” in diameter and has an arbitrary time shown with an hour and minute hand. This sits 

roughly 1/2” in front of the rabbit. 

 

Figure 17: Top View Structural Design and Updated Front View 

 

As seen in figure 18, the mechanical design also features a pair of servos that individually move 
the rabbit’s ear up and down. The rabbit has firm ears, so the motor simply needs to pull the ear 
down and release it for an up and down motion. To do this, the servo has an attachment with 
fishing line tied around it. The fishing line goes through the top of the box and attaches to the 
back of each ear.  

 



   
 

15 
 

 

Figure 18: Preliminary Sketch of Motor Mechanism Design 

 
To easily laser cut prototypes and the final design, the robot base was created in Inkscape. The 
files created were SVGs, with red indicating laser cuts black indicating laser engraving. This can 
be seen in figure 19. Even with the rabbit atop, the dimensions are well within the design 
constraints. 



   
 

16 
 

 
Figure 19: SVG File of Robot Base Final Design 

 



   
 

17 
 

To test the initial robot base design, cardboard was laser cut. After, it was assembled using hot 
glue. The only cutouts were on the back, which were for airflow and the DC power jack. Overall, 
the design came out nice and will be used as a base design. 
 

 
Figure 20: Laser Cut Cardboard Prototype of Robot Base 

 
Next, cutouts, text, and images were added to the design. This includes a pocket watch, the GT 
logo, LED cutouts, speaker cutouts, cutouts for switches and buttons, and text of the project 
name, team, and team members. To test this design, wood was laser cut/engraved. Some of the 
text and cutouts got misaligned, and some cutouts were missing. Despite this, the overall design 
was great. 



   
 

18 
 

 
Figure 21: Laser Cut Wood Prototype of Robot Base 

 
To address the final issues, a final design was created and laser cut. The results show great 
functionally and aesthetics. This can be seen below in figure 22. 

 
Figure 22: Laser Cut Wood of Robot Base Final Design 



   
 

19 
 

To securly mount the rabbit to the box, two holes were cut on the top piece of the box. Then, two 
wooden dowels were put through the hole and glued in place. Finally, the rabbit’s feet were cut 
open to allow for the dowels to slide through. The design can be seen below in figure 23. 

 
Figure 23: Wooden Dowels to Secure Rabbit to Box 

 
To secure the servo motor inside of the box and to make sure that it does not come loose or get in 
the way of other components, a motor mount was designed. This motor mount can be seen below 
in figure 23. 
 

 

Figure 24: Motor Mount Designed in SolidWorks 

 
The TowerPro SG90 comes with several arms, which we’ve discovered are not large enough. 
Custom ones were designed to overcome this. 
 



   
 

20 
 

 
Figure 25: TowerPro SG92R Servo with Custom Arm 

 

Mechanical Simulation 
One aspect of simulating the mechanical design was testing how the rabbit’s ear, thread, and 
servo motor interact together to make the ear move. Initially, the ears were not as stiff as they 
were assumed to be, so reinforcements had to be made. This was accomplished by making a 
shape that roughly matched the ear out of wire and then on the rabbit, sewing that piece of wire 
onto the back of the rabbit ear. This gave the rabbit ear more structure so that it could bend down 
and rise back up properly. The wire sewn into the back of the rabbit ear can be seen in figure 25 
below.  

 
Figure 26: Wire Sewn into Ear to Reinforce it 

 



   
 

21 
 

The next step in simulating the motion was moving the servo arm back and forth 180 degrees 
through code. For this test, thread was attached at the top of the ear and the end of the servo arm. 
This setup can be seen in figure 26 below.  

 
Figure 27: Thread Attached to Ear to Move Up and Down via Servo 

 
Figure 28: Final Ear Design with a Spring and Fishing Line 

 
All of this results in the knowledge that the ear can be moved up and down with the servo in this 
configuration. However, a longer servo arm will be required to get a bigger range of motion. 
Finally, fishing line will be used from now on for aesthetic purposes.  



   
 

22 
 

Software Design 
The software design for our system includes 8 states: start, testing mode, pre-recorded mode, 
connect to director, line received, wait, perform, and end. From the initial start state, there is a 
three-mode switch on the front of our root that will give input on what the next state is. We are 
basing our software architecture off these states. In testing mode, which is the middle position of 
our three-mode switch, we will have individual switches to test our motor, audio, and lights. The 
top position of the three-mode switch is pre-recorded mode. This will have a 
predetermined/preprogrammed set of movements and features to perform in case the robot fails 
to connect to the director. Finally, the bottom position of the three-mode switch will attempt to 
connect to the director and upon successful connection the robot will perform.  
 

 
Figure 29: Software State Machine with 11 States. 

 



   
 

23 
 

 
Figure 30: Software Architecture 

 
Above is a diagram of our software architecture. Main.py will be the primary loop for our 
program, it consists of functions such as setup(), which will setup gpio pin assignments and other 
initializations, mode_detection(), which will take in input from our mode selection switch and 
determine which mode to move into, check_connections(), which will see if the robot is 
connected to the director yet, wait(), which is the idle state as we wait for connection to the 
director, and decode_lines(), which will decode the lines the director sends. The other sub-
system files, Light.py, Audio.py, and Mechanical.py, have similar layouts to each other. There 
are test mode functions such as motor_test_mode(), prerecorded mode functions such as 
led_prerec(), and live mode functions such as play_sounds(). 
 

Software Simulation 
The first iteration of the software simulation we performed was connecting and receiving default 
messages from the director. Here is a link to a recorded version of the simulation.  
 
In this simulation, we are running the director script, or director.py, with a specified IP address to 
mimic the real director we will be connecting to on performance day. Next, we are running our 
robot’s script, or robot.py, and establishing connection to the director. If this is successfully 
done, we should see the robot registered in the director terminal and in our robot terminal we will 
receive the messages put in the director’s CSV file. 
 
 

https://www.youtube.com/watch?v=torviwMqg2c&ab_channel=RheaPr


   
 

24 
 

 
Figure 31: Image of Initial Successful Connection to the Director 

 
Above are the results from our software simulation. The leftmost terminal window is where we 
are running the director script while the rightmost is running our robot script. On the left 
window, we can see clear indications that we have connected successfully to the director. For 
example, we see “Robot Registration Completed”, “Initiating connection with registered robot 
order”, and “Sending b’\x00g...”. These are all print statements in director.py that signify 
successful connection to the director. If further proof is needed, in the right window, we can see 
more print statements that show successful connection and communication. For example, 
“Finished registration, booting up server to listen...”, “Accepted connection from 
{‘127.0.0.1’,34836}”, and “Main loop received {‘action’: ‘execute’, ‘value’: ‘msg from 
Robot1’} so will start to do task”. These are print statements in robot.py that signify successful 
connection to the director. In particular, the most important print statement we see is “Main loop 
received {‘action’: ‘execute’, ‘value’: ‘msg from Robot1’} so will start to do task”. This shows 
that the director read the CSV file, found the value we put in, and sent the value ‘msg from 
Robot1’ to our robot! 
 
As a follow-up to this original simulation, we also performed a second simulation as an 
extension of our first. In this simulation, we are not only ensuring that the connection between 
our robot and the director is sound but also receiving multiple values from the director. 
 

 
Figure 32: Second Iteration of Software Simulation with Successful Initiation of Audio Test 

 
Here the Pi is receiving a value which tells it to start the audio sequence. 
 



   
 

25 
 

 
Figure 33: Successful Receival of Lights Test Command from Director 

 
Next, the Pi receives a value to start the lights sequence. 
 

 
Figure 34: Successful Receival of Motor Test Command from Director 

 
And finally, the Pi receives a value to start the motor sequence and then break. 

Schedule 
 
The schedule for completion of the project is shown in Table 3. Below in Table 3 is a list of task 
leads in charge of each sub-system. 

 
  



   
 

26 
 

Table 3: Schedule to Complete Rapid Rabbit  

 

Name: Team C01

Project: The Rapid Rabbit

Task 1 2 3 4 5 6 7 8 9 10 11 12 13

Brainstorm Emma

Design Top Level Block Diagram Michael

Design Software Block Diagram Rhea

Proposal

Audio Design

Find micro USB speaker, layout framework Bailey Bailey

Determine volume knob integration Bailey Bailey

Lighting Design

Rough draft/ideas Michael Michael

Test different RGB LEDs Michael Michael

Design circuit Michael

Mechanical Design

Motor capability research Emma Emma

Sketch rough draft of component interactions Emma Emma

Preliminary design to hold motors Emma Emma

Design electronics box/base to laser cut Bailey Bailey Bailey

Find rabbit stuffed animal Bailey

Software Controller Design

Function Hierarchy Design Rhea

Initial CSV File Rhea 

Power Design

Power circuit design Michael Michael Michael

PDR

Audio Design Revision

Simulate audio by file playback on USB speaker Bailey

Lighting Design Revision

Lighting simulation software for clock display Michael

Lights PCB model and order Bailey Bailey

Mechanical Design Revision

Battery mount design and printing Emma

Component interaction simulation with cardboard and servos Emma

Reinforcing rabbit ears Emma

3D Printing servo arm extenders Emma

Laser cut cardboard and assemble prototype design Bailey

Revise electronics box/base design Bailey Bailey

Software Controller Design Revision

Simulate inputs and outputs to other subsystems Rhea

Connect to director Rhea

Power Design Revision

Determine power budget Michael Michael

Make revisions to specs if needed Michael

Power PCB modeling and order Michael Michael

CDR

Audio Build

Install speakers and volume knob in housing Bailey

Connect speaker to Pi and save final sound files Bailey

Lighting Build

Lights PCB soldering Bailey

Perform preliminary lights PCB tests and install Bailey Bailey

Mechanical Build

Laser cut wood and assemble design Bailey Bailey

Attach UI buttons/switches to housing Bailey

Motor mount build Emma Emma

Attached servo arm to rabbit ear with fishing line Emma

Attach motor/motor mount to box Emma Emma

Software Controller Build

Create lights.py, motor.py, and audio.py Rhea Rhea

Preliminary test code for each subsystem Rhea Rhea

Integration of more subsystems with code Rhea

Power Build

Power PCB soldering Michael Michael

Audio Test

Play sounds and adjust volume levels Bailey

Lighting Test

Confirm lighting effects run via lights test button Michael Michael

Mechanical Test

Confirm housing meets design requirements Bailey Bailey

Check that all UI operates as expected Bailey

Confirm there is a secure connection between motor and ear Emma

Confirm that rabbit ear moves up and down with motor Emma

Confirm motor mounting does not move during operation Emma

Software Controller Test

Run and test individual motor, lights, audio.py Rhea

Connection to on campus director, editing CSV file Rhea Rhea

Integrate .py files with hardware components (buttons, PCB, etc.) Rhea Rhea

Power Test

Power system with all lights on and motors running Michael

System Integration

Emma

System Test

Bailey

Final Inspection and Demonstration

Milestones Emma Mechanical

Tasks & Task Leads Rhea Software Controller

Bailey Audio Mechanical

Michael Lighting Power

Week Number



   
 

27 
 

Integration 
Our system is heavily dependent on each sub-system communicating with each other properly to 
ensure the success of the entire robot. Thus, we are compiling a testing and simulation schedule 
that covers all sub-systems so we can mitigate any mistakes. We are each completing sub-
systems and doing intermediate testing to make sure they are working properly so when they are 
integrated into the overall system it will be as smooth as possible. Breaking down the system in 
this manner allows us to make sure each sub-system design and simulation is robust. 

 
Software High-Risk Parts: 

• The Raspberry Pi holds a lot of weight in our overall system because it interacts with 

every other sub-system. If the Pi fails to communicate with our other sub-systems, our 

robot will be practically useless. 

o To make sure the Pi is as reliable as possible, we are going to heavily test the code 

and interactions between the Pi and other sub-systems. This involves two parts: 

individually testing the code to remove any bugs and then integrating with each 

sub-system one by one.  

o So far, we have done preliminary tests with the Pi interacting with different LEDs 

and push buttons to make sure initial code works properly. 

Hardware High-Risk Parts: 

• The buck converters remain untested as they are surface mount components with 

particularly small pads.  

o While we are within the rated specifications are using it in accordance with 

configurations in its data sheet, we have not been able to verify how much heat 

they generate under load.  

• Build time crunch 

o Waiting for PCBs to arrive: If problems occur during build, there is little time to 

correct. 

▪ The GPIO PCB has nearly 40 surface mount resistors alone, which will be 

time consuming to solder 

Mechanical High-Risk Parts: 

• The servo jerks in the beginning of its movement, which causes the thread to be pulled 

very harshly. If this continuously happens, it could result in the thread snapping. 

• The servo arm length is another area of concern because we want to ensure it has enough 

range of motion to fully pull the ear down. The arms included with the servos are rather 

small, so larger ones are being 3D printed. 

• The robot base design is made of very thin wood, which can easily break if not handled 

with care. 

Repository Management: 

• We have a GitHub that includes systems files such as software code. 
o https://github.gatech.edu/rprem3/Project_Wonderland_C01  

• Other files are shared in our central Microsoft Teams SharePoint folder 

https://github.gatech.edu/rprem3/Project_Wonderland_C01


   
 

28 
 

 

Conclusion 
In the span of 12 weeks, our team was able to design and build The Rapid Rabbit. We broke 
down our overall design into 5 different sub-systems each led by one of our team members. By 
doing so, we were able to split the work evenly and test individual aspects of the design before 
integrating them all together. We were faced with many bumps along the road including getting 
our Pi connected to Wi-Fi and the Director, manipulating the stuffed animal so that movement 
was more noticeable, and PCB design. If given this project again, there are some changes our 
team would implement. We would have tried to have our schedule more thorough and follow it 
more strictly. This would have helped alleviate some portions of crunch time and have more 
concrete goals to implement. We also would have tried to meet in the lab more often to 
collaborate while working on subsystems. This would have helped us get input from each other 
and catch everyone up on progress throughout the week, rather than solely during our meetings. 
Overall, we were able to overcome these struggles and produce a clean and functioning robot 
that we are all proud of. 
 
 


	Date: December 6, 2022
	Project Description
	System Design
	Sub-System Designs
	Software Controller Sub-System
	Audio Sub-System
	Mechanical Sub-System
	Power Sub-System
	Lights Sub-System

	Constraints, Alternatives, and Trade-Offs
	Electronic Design
	Electronic Simulation
	Mechanical Design
	Mechanical Simulation
	Software Design
	Software Simulation
	Schedule
	Integration
	Conclusion

