Georgia
Tech|

CREATING THE NEXT

Design Document
Dormouse Project

Team #8C: David Gomez-Gomez, Dylan Jean-Baptiste, Adam Rappaport
Team Lead: David Gomez-Gomez

Date: December 6, 2022






Table of Contents

[ oY [<To a DT ol o] d o] o I T ST P PRSP 5
Y =] D =T F=4 o OO P PP PPPP PP PPPPPPPPN 6
(0] o1 =Yl oY =dd o T=T 2 U] o Yo ) PSR 7
Y0 o BV =T o T TSI P o LS RURRN 7

=T g ot | B0 B2y A=Y o o F PRSP 7

Y o Ao T I U o B2y =Y o APPSR 8

o RN T Y YUY oYY £ =Y o o R 9

Y] A TSR U1 o R V] =1 o [ RSP UR 9
Yo ] T LN D 1T =g USRS 10
=Tt o o ol 1T = o PSP 14
VLTl g F= o ok= 1IN =T = o S 16
FaLeT=d & Lo ] o T =T A oY= OO OO OO PPPP PP 19
(60T 3ol (V11 o o FO ST S PP P PR PRRPRRPRRPRO 19
Yol =T [ =TT TP O TRTOTPR PRI 19



Revision Record

Date Author Comments
Sep 6, 2022 Team Document Created (system design and hierarchical
design)

Sep 20, 2022 David Software Documentation added
Gomez-
Gomez

Sep 24, 2022 David Updated Software Documentation
Gomez-
Gomez

Sep 24, 2022 Dylan Jean- Updated Software State Machine
Baptiste

Oct 20, 2022 Dylan Jean- Updated Top-Level Design Diagram
Baptiste

Oct 20, 2022 David Updated Integration Section
Gomez-
Gomez

Oct 20, 2022 Adam Updated Motion Subsystem Diagram
Rappaport

Oct 23, 2022 David Updated Software Design Section
Gomez-
Gomez

Oct 23, 2022 Dylan Jean- Updated Electrical Subsystem Diagram
Baptiste

Oct 23, 2022 Adam Updated Power Subsystem Diagram
Rappaport

Oct 23, 2022 Adam Updated Team Schedule
Rappaport

Nov 10, 2022 Dylan Jean- Updated Electronic Design
Baptiste

Dec 1, 2022 David Finished Integration Section
Gomez-
Gomez

Dec 3, 2022 David Added Conclusion Section
Gomez-
Gomez

Dec 3, 2022 Adam Updated Team Schedule
Rappaport

Dec 6, 2022 Adam Updated Mechanical Design

Rappaport




Project Description

We have designed a teapot with the character Dormouse from Alice in Wonderland who will pop
out of a teapot whenever he receives instruction to do so from the director. The teapot will have
the ECE logo and LED lights that synchronize with the instructions received from the director.
Below the teapot will be a plate that features ‘on’ and ‘off” buttons as well as a speaker and a
switch for testing. Audio, lighting, and movement will be synchronized.

NG

on  feset AL;DI() i
Motor inside  uill Jof Tormovse-
inand oot b tie tea pot

Figure 1: Our initial sketch of Dormouse

Figure 2: Our finished Dormouse Project



System Design

The system's inputs include 120V AC input power and user input in the form of buttons and a
switch. The outputs of this system include a speaker and a motor used to have Dormouse enter
and exit the teapot. The system consists of four subsystems including software, power, motion,
and electrical. The electrical subsystem includes audio and lighting setup using PWM input and a
speaker, and LEDs, respectively. The software subsystem consists of a Raspberry Pi processor.
The motion subsystem will use a motor that controls a scissor lift which will raise Dormouse
when necessary. The power subsystem includes a 120V AC to 5V DC transformer, a user input

switch, and a fuse.

120 VAC
Power
5V DC
4
Software <« - -
Pushbuttons, Test Switch :
Motor Light Audic
Control Signal Control
Signal (PWI) v Signal
Motion Electrical

Figure 3: System Diagram

Table 1: Sub-system inputs and outputs

User Input




Input/Qutput Interface

120 VAC AC Voltage from standard wall outlet. Will be
stepped down by Power Subsystem

5V DC DC Voltage from power supply. Used to power
software subsystem.

Motor Control Signal | GPIO signal that will turn on motor. The signal
will also specify which direction motor will
spin

Light Signal (PWM) PWM signal that will power LEDs. This can be a
blinking effect or constant light.

Audio Control Signal | GPIO signal that will send specific audio to
speaker.

Operating the Robot

The robot should first be plugged into the wall and the test switch should be flipped up. Due to
the lack of a director, the robot will not work if the switch is down. Next the power switch can be
flipped up. The robot will need about 25 seconds to initialize. During this time the LEDs will be
on very dimly. Once the lights are completely off, the test buttons should be fully functional.

The robot very rarely encounters a bug where the buttons do not work, even after the conditions
above are met. To fix this issue, the robot’s power should be switched off and on again. Once 25
seconds pass, the robot should be fully functional.

Sub-System Designs

Our design incorporates four sub-systems: software, motion, power, and electrical. The electrical
will focus on the robot's audio and lighting portion, the motion will execute the figure's
movement, and the power will convert 120V AC to 5V DC. The software subsystem will
integrate all the sub-systems by controlling them via Python code.

Electrical Sub-System

The audio system will take 5 Volts DC and receive an analog signal from the processor in the
software system and then amplify it in the class D amplifier and then play it through the speaker.
The LED circuit will be powered by 5 Volts DC and will receive a digital signal to turn the
circuit on.



Fuse
(2.0A)

o 53 Gained . Musi
A_ud|o s Audio 2 i
Sigral. Class D Signal :

s ass .
—_—> 5 > —>
: Amplifier FpRaket .

Light * .
i 2 . Lg
Sngnal: 33V ;

> LED's —>

Figure 4: Electrical Subsystem

Motion Sub-System

The motion subsystem will contain a switch activated when it receives a digital signal from the
Software Subsystem. When powered, the switch will then send a 5V signal to a DC motor. This
motor will power a scissor lift, which will move Dormouse in and out of the teapot.



3.3V '—>
Standby ———— > H-bridge
Analog Inputs —'—)

Analog Outputs

Y

45V Scissor

A 4

DC Motor Lift

_____________________________________________________________

Figure 5: Motion Subsystem

Power Sub-System

The power subsystem will convert 120 Volts AC input and convert it to 5 Volts DC output. It
will then send power through a 20-Watt transformer, which then flows through a user input
toggle switch and an 8.0-Amp fuse before distributing it elsewhere to the other subsystems.

User Input
5V DC 5VDC
120V 20W N Toggle N 80A
AC Transformer g Switch g Fuse 5vDC

Figure 6: Power Subsystem

Software Sub-System

The software Sub-System primarily consists of a Raspberry Pi Zero as the main component. The
processor takes in 5 Volts DC and a test switch and start-up button. The switch determines if the
processor is in testing mode or regular mode and the startup button turns on Dormouse. The
digital outputs will be used to power motors and LEDS. The PWM output will be used for the
motors, and the 3.3 V will be used for any components that need to stay on.



50V

. 50V
: ————>» 33V
1

1
L+ »Multiple Digital Outs
/ Python3 Code .
Motion Test Button ~——» X

X ————» PWM Signals
Lighting Test Button = ———3»

X Raspberry Pi Zero

Figure 7: Software Subsystem

Start Up
Y
while True
— T l
JistenToDirector() if motionTestButton if audioTestButton == if IightiggTestButton
==True True ==True
v v 3 y :
e e e
if msg == "play1" if msg == "play2" move() J ( playAudio() J { lights() }
\ 4 Y
r r
sound = "dormouse1", sound = "dormouse2"
playAll() playAll()
\ 4 Y
r r
move() move()
playAudio() playAudio()
lights() lights()

Figure 8: Software Architecture

Software Design

Our current design begins by providing power to the system. From there, the system checks if the
test switch is on. If the switch is on, Dormouse will respond to various test buttons. One button

10



will play audio, the other will turn on the lights, and another will cause Dormouse to grow. If the
switch is off, then Dormouse will connect to the director. Once connected, he will wait for the
file needed for his performance. Once decoded, Dormouse will synchronize the commands with
movement, lighting, and audio. Once done, Dormouse will power off.

Power On

Audio
Button

Play Audio

Light Activation

Mechanical
Movement

Robot
Performance

Test

Switch Off Test
v Switch Cn
v

Connect to
Director

Waiting on File

Motor
Button

Decode File

Figure 9: Software state machine with various states.

To simulate our software system, we ran the director and test robot code locally on the
same machine. Instead of having a physical test switch, we used a variable to simulate it. When
the variable was set to a value of one, the test robot would enter testing mode. When the variable
was set to a value of zero, then the robot would wait to connect to the director.

When the switch variable was enabled and the robot entered testing mode, the robot lets
the user know it is in testing mode via print statements. Next the user is asked to select a button.
To simulate the buttons, the user is asked to enter a numerical value. Entering “1” results in the
message “Sound is playing!” being shown on the screen. Entering “2” results in the message
“Dormouse is moving” being shown on the screen. Entering “3” results in the message “Lights
are on” being shown on the screen. Entering “4” simulates all three actions simultaneously. The
message “Sound is playing, Dormouse is moving, and lights are on!” being shown on the screen.

11



PS C:\Users\dagg9\OneDrive\Documents\schoolWork\ece3872\director\ECE-3872\Projects\Wond
erland> python .\demo_robot.py
Register with director...

Starting connection to ('127.0.0.1', 65432)

Sending b'\x00g{"byteorde: little", "content-type": "text/json", "co
ntent-encoding”: "utf-8", "content-length": 76}{"name": "DaringDormouse”, "message”: "R
egister”, "listenPort": 65433}' to 127.0.0.1

Closing connection to 127.6.0.1
Finished registration, booting up server to listen...

ek
Testing Mode

*ohkk

Select button (1 == Audio, 2 == Movement, 3 == Lights, 4 == all

Results:
Sound is playing!

Kkkkk
Testing Mode

Hkkx

Select button (1 == Audio, 2 == Movement, 3 == Lights, 4 == all:

Results:

Dormouse is moving

ke
Testing Mode

*okkk ok

Select button (1 == Audio, 2 == Movement, 3 == Lights, 4 == all:

Results:
Lights are on

ok

Testing Mode

Hee ek

Select button (1 == Audio, 2 == Movement, 3 == Lights, 4 == all

Results:
Sound is playing, Dormouse is moving, and lights are on!

Sk

Testing Mode
s

Select button (1 == Audio, 2 == Movement, 3 == Lights, 4 == all:

PS C:\Users\dagg9\OneDrive\Documents\schoolWork\ece3872\director\ECE-3872\Projects\Wond
erland> python .\director.py .\CSV_files\test.csv

Creating Registration and Key Process

Starting Registration and Key Process
HEAHBREERERMERESRERRARRARBRR AR BB BB RRERRARRAR SRR BR AR ARR AR ERY

Director Listening on ('127.0.0.1', 65432) for registration
LRttt ks s s s s E R T s R s E R e

Accepted connection from ('127.0.6.1', 57540)
Received request {'name': 'DaringDormouse', 'message': 'Register', 'listenPort': 65433}
from ('127.0.0.1', 65433)
Closing connection to 127.0.0.1

BRESRERBEREHRERRERERRBHRARRERBHRARBERBEREARERBHRER BN BUB R BB RSS
Added DaringDormouse from ('127.0.0.1', 65433)
There are now 1 robots registered

Robot Name: DaringDormouse IPv4: 127.0.0.1
Press Q key after all robots have registered
HEABBEBRARBURARRRARRRRREABRRURRRRURHAR R RARR AR ARRRRRAR AR AR R0

Figure 10: Software Simulation of Test Mode. Robot is on the left; Director is on the right.

When the switch variable was disabled and the robot ran as normal, the robot would
connect to the director. Once connected, the user presses the “Q” key to begin the performance.
The robot then waits for commands from the director, which are read from a CSV file. We tested
our simulation with two commands, “perform1” and “perform2.” When the command is given

and read, the robot prints the message “Performing...

2

Because we plan to use two different audio files, the robot printed one of two messages
based on the command given. If “perform1” is given, the message “Soundfile 1 is playing,
Dormouse is moving, and lights are on!” was printed. If “perform2” is given, the message
“Soundfile 2 is playing, Dormouse is moving, and lights are on!” was printed. Once the director
is finished giving commands, the message “Performance is over” is printed.

12



erland> python .\demo_robot.py
Register with director...

Starting connection te ('127.8.8.1', 65432)

Sending b'\x@@g{"byteorder "little", "content-type": "text/json

f-8", ntent-length": 7@}{"name": "DaringDormous
65433} ' to 127. 1

Closing connection to 127.0
Finished registration, booting up server to 1
Waiting for message
Robot Listening on (' 65433)
Accepted connection from ('127.0.0.1', 57522)
Received request {'action': 'execute ‘value':

Clos connection to 127.0.0.1
{'action': 'execute', 'value': ' performl'}

Performing

Soundfile 1 is playil Dormouse is moving, and lights are on!

Waiting for m

Robot Listening on

Accepted connection from ('127.0.8.1', 57523

Received request {'action': 'execute 'value
Closing connection to 127.0

{'action': 'execute', 'value': ' perform2'}

Performing

Soundfile 2 is playing, Dermouse is mowving, and ligh

Waiting for messag

Robot Listening on ('127.8.0.1', 654

Accepted connection from ('127.0.0.1', 5752u)

Received request {'action': 'execute', 'value':
Closing connection to 127.0.0.1

{'action': 'execute', 'value': 'break'}

'break'} from ('127.0.8.1', None)

Perfomance is over.

' performl'} from ('127.0.0.1 None)

' perform2'} from ('127.0.0.1', None)

Accepted connection from ('127.0.0.1', 57521)
Received request {'nam 'DaringDormouse', 'message': 'Regi
from ('127.0.0 , 65433)

Closing connection to 127.0.0.1

HHABHAARAUEH RO SAARU R R HG RS AR R AR SR AR
Added DaringDormouse from ('127.0.0.1', 65433)
There are now 1 robots registered
Robot Name: DaringDormouse IPvh: 127.0.0.1
Press Q key after all robots have registered
HERR R AR AR AR R R AR R R R R R R R R R RY

Robot Registration Completed

Proc finished

Listing all registered robots
( 8.1', 65433)}
Generating Robot Order List...
[{'robot_name': 'DaringDormouse', ‘'execution_time': 5.0
ot_name': 'DaringDormouse', 'execution_time': 5.0 ommand '

HERHSUOAELBRE RSN RS EE RER S R AR AR RS R RER AU R AR B U R A SRR E R B Y

Initiating connection with registered robot order
Initiating connection with DaringDormouse at addr 127.8.0.

Starting connection to ('127.0.0.1', 65433)

Sending b'\x88g{"byteorder" little"”, "content-type"
ntent-encoding": "utf-8", "content-length": 43}{"action": " cute
1"}' to 127. 1

osing connection to 127.8.0.1

performl'}, {'rob

perform2'}]

i

"te json", "co
"value": perform

Initiating connection with DaringDormouse at addr 127.0.0.1

65433)
content-type"
"execute",

Starting connection to

Sending b'\x08g{"byteorde
ntent-encoding”: "utf-8", "content-length
2"} to 127.0.0.1
Closing connection to 127.0.0.1
Starting connection to ('127 5433)
Sending b

"utf-8 "execute

ntent-encodil ontent-length": 39}

to 127.0.0.1

(Ek ng connection to 127.8.0.1
Finished

Figure 11: Software Simulation of Robot running normally. Robot is on the left; Director is on

the right.

13

content-type":

perform

"text/json", "co
lue"




Electronic Design

Our electric design is centered around a Raspberry 2 W, a custom-built printed circuit board, and

two breakout boards that are attached to the printed circuit board. The figure below shows a
high-level block diagram of the system.

sV DC
Power Supply
Power
Switch
h 4
Fuse (2.0A) | Mode
Switch
h 4
Raspberry - Audio
- )
v v Pi Button
Fuse (3.0A) Fuse (0.5A)
|| wotor
Button
H-Bridge P o Class D
IMotor Driver b - Audio Amp LEDs
Lights
'L ¢ — Button
IMaotor Speaker

Figure 12: High-Level System Block Diagram of Electronic Design

After testing each subsystem circuit on a breadboard, we created a schematic using Eagle.

The schematic allows for pinout to be assigned in and for proper components to be selected in our
design.

14



]

(J_)OOJ)(L(JJOOOOOO(JJJ)OOOOO(E

QOOQTQOTQTOTTQQOOT?T

.

E e
T 7

Figure 13: Initial Schematic created with Eagle. Includes switches, buttons, connectors for
Audio amp, H-bridge driver and Raspberry Pi, speakers, power switch, and motor.

Once PCB layout was created and received, we began soldering components. Midway through the
process we discovered an unintended connection between the power pin and input pin of the H-
Bridge Driver breakout board. We made multiple attempts to solve the problem, but ultimately
had to scrap a board and restart soldering. To prevent this problem from repeating, we changed the
through-hole ports to connectors pins, that way we could remove components easily.

15



100SPI1TIBIMIQE

88 E

_{j

HO0SP1TIEIMLO

N
e

f

’ SparkFun
Audiu{ﬁmp

FPWR TEA2005D1  VGL

o ECE3872 ©
TEAM CO8

CPARRIVIAIDI0-ARF-HORNEIF

Figure 14: Printed Circuit Board created in Eagle.

Mechanical Design

Our mechanical design consists primarily of a scissor lift and teapot, both of which were 3D
printed with Polylactic Acid (PLA). The scissor lift requires a total of six rods (circular
cylinders) to connect two three-hole arm bars

5.00

Figure 15: Arm bar design

16



Figure 16: Teapot design

After printing and testing the fit of a variety of rod diameters in the armbar holes, we constructed
the final product scissor lift.

Figure 16: Arm bars and rods for scissor lift

17



Figure 17: Teapot base and lid

This design works by opening (collapsing) and closing (extending) the lift with alternating
rotation of the DC motor. We secured the armbar base closest to the motor and attached two
pieces of string, one for each side of the motor shaft, to the opposite base. As the motor begins to
rotate, the string gets taut, and the scissor lift raises Dormouse until the motor PWM signal
changes. At this point the shafts rotate in the opposite direction to unwind the string, which
allows for the weight of dormouse and the teapot lid to lower the lift.

Figure 18: Scissor lift attached to 4.5 V DC motor

18



Integration Testing

Each subsystem needs to work alongside one another. To ensure they work properly, we did
a few simulations.

We tested each subsystem individually before combing them. By doing everything
separately, we ensured that minor mistakes can be found easily and be fixed. Had we just combined
everything and began testing then, it would be difficult to find errors. This method was also more
convenient for the team, as we all had busy schedules and were not required to be available at the
same time.

We began by testing circuits on TinkerCAD. We tested circuits for our lights, speaker, and
audio to ensure they would work. Once we knew they worked, we tested the same three circuits on a
breadboard. All circuits were tested separately.

At the same time this was being tested, test software was being written. Since we were not
ready to connect the circuits at the time, we instead printed descriptive statements.

Once we were confident with each subsystem, we tested them all on a breadboard
successfully. Our next step was to add the mechanical aspects and test everything on the PCB
(Printed Circuit Board).

Unfortunately, our PCB had plenty of issues that needed to be fixed first. Because of this
setback, our integration testing was delayed by about a week. However, once these issues were fixed
everything worked flawlessly.

Conclusion

Throughout this class, we finished with a successful project that met the necessary base
requirements. The suggested method of using subsystems worked great for our team. The software
subsystem ended up being the simplest one to set up, with any issues being quickly resolved. The
electric subsystem was more difficult, as our PCB had plenty of issues. The team became familiar
with debugging PCBs (printed circuit boards) by the time the project was finished. The mechanical
subsystem also proved to have its challenges, but those were able to be resolved quickly.

If we were tasked with this project again, we would make quite a few changes. Our lighting
was extremely limited. The lights were only one color and they all had to be turned on at the same
time, limiting potential patterns. Instead of using LEDs lined in parallel, we could instead use
Neopixels. Neopixels allow for RGB color, and each light can be set independently of each other.

Additionally, we would use a different movement system. The scissor lift design did work for
our design but proved to be difficult to set up. Had we used a different system, we could have saved
time and effort and placed more focus on other areas of our design. These changes are expensive, but
our final budget would have allowed it.

Overall, we believe that we were successful with the project. We finished with a working
robot, and we learned plenty of skills including soldering, circuit debugging, laser cutting, CAD,
and PCB design. For most of us, this was the first time we were able to really utilize the
resources available in the Hive. We met all the base requirements, and we are very proud of the
work that has been done on the project.

Schedule

19



The project's completion schedule is shown in Table 2 where the task lead is indicated on each
task.

Week Number
Task

Brainstorm Dylan _ |Dylan

Design Top Level Block Diagram Dylan _ |Dylan
Sketch Design David _ |pavid

Design Software Block Diagram David _ |David
Electrical Goals Adam  |Adam

Mechanical Goals Dylan __ |Dylan
Software Goals David David
Audio Goals Adam Adam
Visual Goals David David
Establish Requirements Adam Adam

Complete Proposal Adam Adam
Proposal
Software Architecture David David
Software Design David __|David

Electrical Circuit Design Adam Adam
Electrical Circuit Simulation Adam Adam

Mechanical Drawings Dylan __|Dylan

Lighting Design Dylan __ |Dylan

Motion Design Dylan _ |Dylan
Power Design Adam _ |Adam

Audio Design Dylan __ |Dylan

Finalize Visual Design Adam  |Adam

Audio Circuit Design Adam___|Adam
Software Simulation David David
Complete PDR Dylan __ |Dylan

Software mechanical code build David David
Software lighting code build David  |pavid
Software audio code build David David
Electrical Component Selection Adam  |Adam  |Adam
Electrical PCB Modeling Dylan __ |Dylan
Order of Electrical board Dylan

Mechanical Modeling with Visual look Dylan _ [Dylan _ [Dylan
Electrical Circuit Simulation Adam Adam
Audio Simulation Dylan __ |Dylan
Create Testing Reguirement Documents Dylan Dylan Dylan
Prepare BOM Dylan _ |Dylan _ |Dylan
Prepare CDR David David

Software Build David David

Electrical Build Adam __|adam
Power Build Adam_|Adam
Mechanical Build Dylan__|Dylan
Software audio test David David David
Software electrical test David David David

Software mechanical test David David David
Lighting Test Adam [Adam
Motion/Mechanical Test Dylan Dylan Dylan Dylan
Power Test Adam Adam
Software Debug David David David David
Electrical PCB testing Adam [Adam
Audio Test Adam  [adam  |Adam

System Integration Dylan Dylan
System Test David David David
Prepare Final Presentation | Adam [Adam |Adam

Compile final documentation David David David David

Final Inspection and Demonstration

Table 2: Schedule to complete Dormouse



21



	Date: December 6, 2022
	Project Description
	System Design
	Operating the Robot
	Sub-System Designs
	Electrical Sub-System
	Motion Sub-System
	Power Sub-System
	Software Sub-System

	Software Design
	Electronic Design
	Mechanical Design
	Integration Testing
	Conclusion
	Schedule

