
Basis representation fundamentals

Having a basis representation for our signals of interest allows us
to do two very nice things:

• Take the signal apart, writing it as a discrete linear combi-
nation of “atoms”:

x(t) =
∑
γ∈Γ

α(γ)ψγ(t)

for some fixed set of basis signals {ψγ(t)}γ∈Γ. Here Γ is a
discrete index set (for example Z, N, Z × Z, N × Z etc.)
which will be different depending on the application.

Conceptually, we are breaking the signal up into manageable
“chunks” that are either easier to compute with or have some
semantic interpretation.

• Translate (linearly) the signal into into a discrete list of num-
bers in such a way that it can be reconstructed (i.e. the
translation is lossless). Linear transform = series of inner
products, so this mapping looks like:

x(t) −→


〈x(t), ψ1(t)〉
〈x(t), ψ2(t)〉

...
〈x(t), ψγ(t)〉

...


for some fixed set of signals {ψγ(t)}γ∈Γ.

Having a discrete representation of the signal has a number
of advantages, not the least of which is that they can be
inputs to and outputs from digital computers.
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Here are two very familiar examples:

1) Fourier series:
Let x(t) ∈ L2([0, 1]). Then we can build up x(t) using harmonic
complex sinusoids:

x(t) =
∑
k∈Z

α(k) e j2πkt

where

α(k) =

∫ 1

0

x(t) e−j2πkt dt

= 〈x(t), e j2πkt〉.

Fourier series has two nice properties:

1. The {α(k)} carry semantic information about which fre-
quencies are in the signal.

2. If x(t) is smooth, the magnitudes |α(k)| fall off quickly as k
increases. This energy compaction provides a kind of implicit
compression.

If x(t) is real, it might be sort of annoying that we are representing
it using a list of complex numbers. An equivalent decomposition
is

x(t) = α(0)ψ0,0(t) +
∑

m∈{0,1}

∞∑
k=1

α(m, k)ψm,k(t),

where α(m, k) = 〈x(t), ψm,k(t)〉 with

ψ0,k(t) =

{
1 k = 0√

2 cos(2πkt) k ≥ 1

ψ1,k(t) =
√

2 sin(2πkt).
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2) Sampling a bandlimited signal:
Suppose that x(t) is bandlimited to [−π/T, π/T ]:

x̂(ω) =

∫
x(t) e−jωt dt = 0 for |ω| > π/T.

Then the Shannon-Nyquist sampling theorem tells us that we can
reconstruct x(t) from point samples that are equally spaced by T :

x[n] = x(nT ),

x(t) =
∞∑

n=−∞
x[n]

sin(π(t− nT ))

π(t− nT )/T
.

We can re-interpret this as a basis decomposition

x(t) =
∞∑

n=∞
α(n)ψn(t)

with

ψn(t) =
√
T

sin(π(t− nT ))

π(t− nT )

α(n) =
√
T x(nT ).

If x(t) is bandlimited, then the α(n) are also inner products against
the ψn(t):

α(n) =
√
T x(nT )

=

√
T

2π

∫ π/T

−π/T
x̂(ω) ejωnT dω

=
1

2π
〈x̂(ω), ψ̂n(ω)〉,

where

ψ̂n(ω) =

{√
T e−jωnT |ω| ≤ π/T

0 |ω| > π/T.
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Then by the classical Parseval theorem for Fourier transforms:

α(n) = 〈x(t), ψn(t)〉,

where

ψn(t) =

√
T

2π

∫ π/T

−π/T
e−jωnTejωt dω

=

√
T

2π

∫ π/T

−π/T
e jω(t−nT ) dω

=
√
T · sin(π(t− nT )/T )

π(t− nT )
.

Thus we can interpret the Shannon-Nyquist sampling theorem as
an expansion of a bandlimited signal in an basis of shifted sinc
functions. We offer two additional notes about this result:

• Sampling a signal is a fundamental operation in applications.
Analog-to-digital converters (ADCs) are prevalent and rela-
tively cheap — ADCs operating at 10s of MHz cost on the
order of a few dollars/euros.

• The sinc representation for bandlimited signals is mathemat-
ically the same as the Fourier series for signals with finite
support, just with the roles of time and frequency reversed.
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Orthobasis expansions

Fourier series and the sampling theorem are both examples of
expansions in an orthonormal basis (“orthobasis expansion” for
short). The set of signals {ψγ}γ∈Γ is an orthobasis for a space H
if

1.

〈ψγ, ψγ′〉 =

{
1 γ = γ ′

0 γ 6= γ ′
.

2. span{ψγ}γ∈Γ = H . That is, there is no x ∈ H such that
〈ψγ, x〉 = 0 for all γ ∈ Γ. (In infinite dimensions, this should
technically read the closure of the span).

If {ψγ}γ∈Γ is an orthobasis for H , then every x(t) ∈ H can be
written as

x(t) =
∑
γ∈Γ

〈x(t), ψγ(t)〉ψγ(t).

This is called the reproducing formula.

Orthobases are nice since they not only allow every signal to be
decomposed as a linear combination of elements, but we have a
simple and explicit way of computing the coefficients (the α(γ) =
〈x, ψγ〉) in this expansion.

Associated with an orthobasis {ψγ}γ∈Γ for a spaceH are two linear
operators. The first operator Ψ∗ : H → `2(Γ) maps the signal x(t)
in H to the sequence of expansion coefficients in `2(Γ) (of course,
if H is finite dimensional, it may be more appropriate to write the
range of this mapping as RN rather than `2(Γ)). The mapping Ψ
is called the analysis operator, and its action is given by

Ψ∗[x(t)] = {〈x(t), ψγ(t)〉}γ∈Γ = {α(γ)}γ∈Γ.
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The second operator Ψ : `2(Γ) → H takes a sequence of coeffi-
cients in `2(Γ) and uses them to build up a signal. The mapping
Ψ is called the synthesis operator, and its action is given by

Ψ[{α(γ)}γ∈Γ] =
∑
γ∈Γ

α(γ)ψγ(t).

Formally, Ψ and Ψ∗ are adjoint operators — in finite dimensions,
they can be represented as matrices where the basis functions ψγ(t)
are the columns of Ψ and rows of Ψ∗.
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The generalized Parseval theorem

The (generalized) Parseval theorem says that the mapping from
a signal x(t) to its basis coefficients preserves inner prod-
ucts (and hence energy). If x(t) is a continuous-time signal, then
the relation is between two different types of inner products, one
continuous and one discrete. Here is the precise statement:

Theorem. Let {ψγ}γ∈Γ be an orthobasis for a space H . Then
for any two signals x,∈ H

〈x, y〉H =
∑
γ∈Γ

α(γ)β(γ)∗

where

α(γ) = 〈x, ψγ〉H and β(γ) = 〈y, ψγ〉H.

Proof.

〈x, y〉H =

〈∑
γ

α(γ)ψγ,
∑
γ′

β(γ ′)ψγ′

〉
H

=
∑
γ

∑
γ′

α(γ)β(γ ′)∗〈ψγ, ψγ′〉H

=
∑
γ

α(γ)β(γ)∗,

since 〈ψγ, ψγ′〉H = 0 unless γ = γ ′, in which case 〈ψγ, ψγ′〉H = 1.

Of course, this also means that the energy in the original signal
is preserved in its coefficients. For example, if x(t) ∈ L2(R) is a
continuous-time signal and αγ = 〈x, ψγ〉, then

‖x(t)‖2
L2(R) =

∫
|x(t)|2 dt =

∫
x(t)x(t)∗dt =

∑
γ∈Γ

α(γ)α(γ)∗ =
∑
γ∈Γ

|α(γ)|2

= ‖α‖2
`2(Γ).
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Everything is discrete

An amazing consequence of the Parseval theorem is that every
space of signals for which we can find any orthobasis can be dis-
cretized. That the mapping from (continuous) signal space into
(discrete) coefficient space preserves inner products essentially means
that it preserves all of the geometrical relationships between the
signals (i.e. distances and angles). In some sense, this means
that all signal processing can be done by manipulating discrete
sequences of numbers.

For our primary continuous spaces of interest, L2(R) and L2([0, 1])
which are equipped with the standard inner product, there are
many orthobases from which to choose, and so many ways in which
we can “sample” the signal to make it discrete.

Here is an example of the power of the Parseval theorem. Suppose
that I have samples {x[n] = x(nT )}n of a bandlimited signal x(t).
Suppose one of the samples is perturbed by a known amount ε,
forming

x̃[n] =

{
x[n] + ε n = n0

x[n] otherwise
.

What is the effect on the reconstructed signal? That is, if

x̃(t) =
∑
n∈Z

x̃[n]
sin(π(t− nT )/T )

π(t− nT )/T

what is the energy in the error

‖x− x̃‖2
L2

=

∫
|x(t)− x̃(t)|2 dt ?
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Projections and the closest point problem

A fundamental problem is to find the closest point in a fixed sub-
space to a given signal. If we have an orthobasis for this subspace,
this problem is easy to solve.

Formally, let ψ1(t), . . . , ψN(t) be a finite set of orthogonal vectors
in H , and set

V = span{ψ1, . . . , ψN}.
Given a fixed signal x0(t) ∈ H , the solution x̃0(t) to

min
x∈V
‖x0(t)− x(t)‖2

2 (1)

is given by

x̃0(t) =
N∑
k=1

〈x0(t), ψk(t)〉ψk(t).

We will prove this statement a little later.

The result can be extended to infinite dimensional subspaces as
well. If {ψk(t)}k∈Z is a set of (not necessarily complete) orthogonal
signals in H , and we let V be the closure of the span of {ψk}k∈Z,
then the solution to (1) is simply

x̃0(t) =
∑
k∈Z

〈x0(t), ψk(t)〉ψk(t).

Example: Let x(t) ∈ L2(R) be an arbitrary continuous-time
signal. What is the closest bandlimited signal to x(t)?
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The solution of (1) is called the projection of x0 onto V . There is a
linear relationship between a point x0 ∈ H and the corresponding
closest point x̃0 ∈ V . If Ψ∗ is the (linear) mapping

Ψ∗[x0] = {〈x0, ψk〉}k,

and Ψ is the corresponding adjoint, then x̃0 can be compactly
written as

x̃0 = Ψ[Ψ∗[x0]].

We can define the linear operator PV that maps x0 to its closest
point as

PV = Ψ∗Ψ.

It is easy to check that Ψ∗[Ψ[{α(k)}k]] = {α(k)}k for any set of
coefficients {α(k)}k, and so

PVPV = PV.

It is also easy to see that PV is self-adjoint:

P ∗V = PV.
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Cosine transforms

The cosine-I transform is an alternative to Fourier series; it is an
expansion in an orthobasis for functions on [0, 1] (or any interval on
the real line) where the basis functions look like sinusoids. There
are two main differences that make it more attractive than Fourier
series for certain applications:

1. the basis functions and the expansion coefficients are real-
valued;

2. the basis functions have different symmetries.

Definition. The cosine-I basis functions for t ∈ [0, 1] are

ψk(t) =

{
1 k = 0√

2 cos(πkt) k > 0
. (2)

We can derive the cosine-I basis from the Fourier series in the
following manner. Let x(t) be a signal on the interval [0, 1]. Let
x̃(t) be its “reflection extension” on [−1, 1]. That is

x̃(t) =

{
x(−t) −1 ≤ t ≤ 0

x(t) 0 ≤ t ≤ 1

x(t) x̃(t)
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0
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−1 −0.5 0 0.5 1
0

0.1
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0.4

0.5
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We can use Fourier series to synthesis x̃(t):

x̃(t) =
∞∑

k=−∞

αk ejπkt.

Since x̃(t) is real, we will have α−k = αk, and so we can rewrite
this as

x̃(t) = a0 +
∞∑
k=1

ak cos(πkt) +
∞∑
k=1

bk sin(πkt),

where a0 = α0, ak = 2 Re {αk}, and bk = −2 Im {αk}. Since x̃(t)
is even and sin(πkt) is odd, 〈x̃(t), sin(πkt)〉 = 0 and so

bk = 0, for all k = 1, 2, 3, . . . ,

and so x̃(t) on [−1, 1] can be written as

x̃(t) = a0 +
∞∑
k=1

ak cos(πkt).

Since we can use this expansion to build up any symmetric func-
tion on [−1, 1], it means that the right hand side of the function
on [0, 1] is arbitrary, so any x(t) on [0, 1] can be written as

x(t) = a0 +
∞∑
k=1

ak cos(πkt).

All that remains to show that {ψk : k = 1, 2, . . .} is an orthobasis
is

〈ψk, ψ`〉 = 2

∫ 1

0

cos(πkt) cos(π`t)dt =

{
1 k = `

0 k 6= `
.

I will let you do this at home.
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One way to think about the cosine-I expansion is that we are
taking an oversampled Fourier series, with frequencies spaced
at multiples of π rather than 2π, but then only using the real part.

Here are the first four cosine-I basis functions:

ψ0(t) ψ1(t) ψ2(t) ψ3(t)
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The Discrete Cosine Transform (DCT)

Just like there is a discrete Fourier transform, there is also a dis-
crete cosine transform:
Definition: The DCT basis functions for RN are

ψk[n] =


√

1
N

k = 0√
2
N

cos
(
πk
N

(
n + 1

2

))
k = 1, . . . , N − 1

, n = 0, 1, . . . , N−1.

(3)

The cosine-I transform has “even” symmetry at both endpoints.
There is a variation on this, called the cosine-IV transform, that
has even symmetry at one endpoint and odd symmetry at the
other:
Definition. The cosine-IV basis functions for t ∈ [0, 1] are

ψk(t) =
√

2 cos

((
k +

1

2

)
πt

)
, k = 0, 1, 2, . . . . (4)
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The cosine-I and DCT for 2D images

Just as for Fourier series and the discrete Fourier transform, we
can leverage the 1D cosine-I basis and the DCT into separable
bases for 2D images.

Definition. Let {ψk(t)}k≥0 be the cosine-I basis in (2). Set

ψ2D
k1,k2

(s, t) = ψk1(s)ψk2(t).

Then {ψ2D
k1,k2

(s, t)}k1,k2∈N is an orthonormal basis for L2([0, 1]2)

This is just a particular instance of a general fact. It is straight-
forward to argue (you can do so at home) that if {ψγ(t)}γ∈Γ is
an orthonormal basis for L2([0, 1]), then {ψγ1(s)ψγ2(t)}γ1,γ2∈Γ is an
orthonormal basis for L2([0, 1]2).

The DCT extends to 2D in the same way.

Definition. Let {ψk[n]}0≤k≤N−1 be the DCT basis in (3). Set

ψ2D
j,k [m,n] = ψj[m]ψk[n].

Then {ψ2D
j,k [m,n]}0≤j,k≤N−1 is an orthonormal basis for RN × RN .
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The 64 DCT basis functions for N = 8 are shown below:

j
→

k →
ψj,k[m,n] for j, k = 0, . . . , 7

2D DCT coefficients are indexed by two integers, and so are nat-
urally arranged on a grid as well:

α0,0 α0,1 · · · α0,N−1

α1,0 α1,1 · · · α1,N−1
... ... ... ...

αN−1,0 αN−1,1 · · · αN−1,N−1
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The DCT in image and video compression

The DCT is basis of the popular JPEG image compression stan-
dard. The central idea is that while energy in a picture is dis-
tributed more or less evenly throughout, in the DCT transform
domain it tends to be concentrated at low frequencies.

JPEG compression work roughly as follows:

1. Divide the image into 8× 8 blocks of pixels

2. Take a DCT within each block

3. Quantize the coefficients — the rough effect of this is to keep
the larger coefficients and remove the samller ones

4. Bitstream (losslessly) encode the result.

There are some details we are leaving out here, probably the most
important of which is how the three different color bands are dealt
with, but the above outlines the essential ideas.

The basic idea is that while the energy within an 8 × 8 block of
pixels tends to be more or less evenly distributed, the DCT con-
centrates this energy onto a relatively small number of transform
coefficients. Moreover, the significant coefficients tend to be at
the same place in the transform domain (low spatial frequencies).

849 850 851 852 853 854 855 856

297

298

299

300

301
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303

304
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

8× 8 block 2D DCT coeffs ordering
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To get a rough feel for how closely this model matches reality,
let’s look at a simple example. Here we have an original image
2048× 2048, and a zoom into a 256× 256 piece of the image:

original

900 950 1000 1050 1100

250

300

350

400

450

Here is the same piece after using 1 of the 64 coefficients per block
(1/64 ≈ 1.6%), 3/64 ≈ 4.6% of the coefficients, and 10/64 ≈
15/62%:

1.6%

900 950 1000 1050 1100

250

300
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400

450

4.6%

900 950 1000 1050 1100

250

300

350

400

450

14.6%

900 950 1000 1050 1100

250

300

350

400

450

1/64 3/64 10/64

So the “low frequency” heuristic appears to be a good one.

JPEG does not just “keep or kill” coefficients in this manner, it
quantizes them using a fixed quantization mask. Here is a common
example:
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The quantization simply maps αj,k → α̃j,k using

α̃j,k = Qj,k · round

(
αj,k
Qj,k

)
You can see that the coefficients at low frequencies (upper left) are
being treated much more gently than those at higher frequencies
(lower right).

The decoder simply reconstructs each 8 × 8 block xb using the
synthesis formula

x̃b[m,n] =
7∑

k=0

7∑
`=0

α̃k,` φk,`[m,n]

By the Parseval theorem, we know exactly what the effect of quan-
tizing each coefficient is going to be on the total error, as

‖xb − x̃b‖2
2 = ‖α− α̃‖2

2 =
7∑

k=0

7∑
`=0

|αk,` − α̃k,`|2.
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Video compression

The DCT also plays a fundamental role in video compression (e.g.
MPEG, H.264, etc.), but in a slightly different way. Video codecs
are complicated, but here is essentially what they do:

1. Estimate, describe, and quantize the motion in between
frames.

2. Use the motion estimate to “predict” the next frame.

3. Use the (block-based) DCT to code the residual.

Here is an example video frame, along with the differences between
this frame and the next two frames (in false color):

xt0 xt1 − xt0 xt2 − xt0
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The only activity is where the car is moving from left to right.
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The Lapped Orthogonal Transform

The Lapped Orthogonal Transform is a time-frequency decompo-
sition which is also an orthobasis. It has been used extensively in
audio CODECS.

The essential idea is to divide up the real line into intervals with
endpoints

. . . , a−2, a−1, a0, a1, a2, a3, . . .

And then inside each of these intervals take a windowed cosine
transform.

In its most general form, the collection of LOT orthobasis functions
is {

gn(t)φ̃

(
t− an

an+1 − an

)}
where gn(t) is a window that is “flat” in the middle, monotonic on
its ends:

Notes by J. Romberg – January 8, 2012 – 16:47

and obeys ∑
n

|gn(t)|2 = 1 for all t

The φ̃ above must be symmetric around an and anti-symmetric
around an+1 — just like a cosine-IV function.
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Plots of the LOT basis functions, single window, first 16 frequen-
cies:

LOT of a modulated pulse:
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pulse zoom grid of LOT coefficients
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Non-orthogonal bases in RN

When x ∈ RN , basis representations fall squarely into the realm
of linear algebra. Let ψ0, ψ1, . . . , ψN−1 be a set of N linearly
independent vectors in RN . Since the ψk are linearly independent,
then every x ∈ RN produces a unique sequence of inner products
against the {ψk}. That is, we can recover x from the sequence of
inner products 

α0

α1
...

αN−1

 =


〈x, ψ0〉
〈x, ψ1〉

...
〈x, ψN−1〉

 .
Stacking up the (transposed) ψk as rows in an N ×N matrix Ψ∗,

Ψ∗ =


—– ψ∗0 —–
—– ψ∗1 —–

... ... ...
—– ψ∗N−1 —–

 ,
we have the straightforward relationships

α = Ψ∗x, and x = Ψ∗−1α.

(In this case we know that Ψ∗ is invertible since it is square and
its rows are linearly independent.) Let ψ̃0, ψ̃1, . . . , ψ̃N−1 be the
columns of Ψ∗−1:

Ψ∗−1 =

 | | · · · |
ψ̃0 ψ̃1 · · · ψ̃N−1

| | · · · |

 .
Then the straightforward relation

x = Ψ∗−1Ψ∗x,
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can be rewritten as the reproducing formula

x[n] =
N−1∑
k=0

〈x, ψk〉ψ̃k[n].

For the non-orthogonal case, we are using different families of basis
functions for the analysis and the synthesis. The analysis operator
that maps x to the α(k) = 〈x, ψk〉 is the N × N matrix Ψ∗.
The synthesis operator, which uses the vector α to build up x, is
the N × N matrix Ψ∗−1 which we could conveniently re-label as
Ψ∗−1 = Ψ̃∗. When the ψk are orthonormal, we have Ψ = Ψ∗−1,
and so Ψ̃∗ = Ψ∗, meaning that the analysis and synthesis basis
functions are the same (ψ̃k = ψk). In the orthonormal case, the
analysis operator is Ψ∗ and the synthesis operator is Ψ, matching
our previous notation.

For non-orthogonal {ψk}k, the Parseval theorem does not hold.
However, we can put bounds on the energy of the expansion coef-
ficients in relation to the energy of the signal x. In particular,

σ2
1‖x‖2

2 ≤
N−1∑
k=0

|〈ψk, x〉|2 ≤ σ2
N‖x‖2

2

m
σ2

1‖x‖2
2 ≤ ‖α‖2

2 ≤ σ2
N‖x‖2

2,

where σ1 is the smallest singular value of the analysis operator
matrix Ψ and σN is its largest singular value.

To extend these ideas to infinite dimensions, we need to use the
language of linear operators in place of matrices (which introduces
a few interesting complications). Before doing this, we will take a
first look at overcomplete expansions.

24

Notes by J. Romberg



Overcomplete frames in RN

A sequence of vector ψ0, ψ1, . . . , ψM in RN are a frame if there is
no x ∈ RN , x 6= 0 that is orthogonal to all of the ψk. This means
that the sequence of inner products

α0

α1
...

αM−1

 =


〈x, ψ0〉
〈x, ψ1〉

...
〈x, ψM−1〉

 .
will be unique for every different x. The difference between a basis
and a frame is that we allow M ≥ N , and so the number of inner
product coefficients in α can exceed the number of entries in x.
If we again stack up the (transposed) ψk as rows in an M × N
matrix Ψ∗,

Ψ∗ =


—– ψ∗0 —–
—– ψ∗1 —–

... ... ...
—– ψ∗M−1 —–

 ,
this means that Ψ∗ is overdetermined and has no null space (and
hence has full column-rank). Of course, Ψ∗ does not have an in-
verse, so we must take a little more caution with the reproducing
formula.

Since the M × N matrix Ψ∗ has full column rank, we know that
the N×N matrix ΨΨ∗ is invertible. The reproducing formula can
then comes from

x = (ΨΨ∗)−1ΨΨ∗x.

Now define the synthesis basis vectors ψ̃k as the columns of the
pseudo-inverse (ΨΨ∗)−1Ψ:

ψ̃k = (ΨΨ∗)−1ψk.
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Then the reproducing formula is almost identical as the above
(except now we are using M ≥ N vectors to build up x):

x[n] =
M−1∑
k=0

〈x, ψk〉ψ̃k[n].

We have the same relationship as above between the energy in the
coefficients α = Ψ∗x and the signal x:

σ2
1‖x‖2

2 ≤
M−1∑
k=0

|〈ψk, x〉|2 ≤ σ2
N‖x‖2

2

m
σ2

1‖x‖2
2 ≤ ‖α‖2

2 ≤ σ2
N‖x‖2

2,

where now σ1 is the smallest singular value of the analysis oper-
ator matrix Ψ∗ and σN is its largest singular value (i.e. σ2

N is the
largest eigenvalue of the symmetric positive-definite matrix ΨΨ∗).
If the rows of Ψ∗ are orthogonal and all have the same energy A,
then ΨΨ∗ = A · Identity and we have a Parseval relation

〈Ψ∗x,Ψ∗y〉 = 〈x,ΨΨ∗y〉 = A〈x, y〉

and so
M−1∑
k=0

|〈x, ψk〉|2 = ‖Ψ∗x‖2
2 = A‖x‖2

2.

Moral: A frame can be overcomplete and still obey a
Parseval relation.
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Example: Mercedes-Benz frame in R2

Let’s start with the simplest possible example of a tight frame for
H = R2:

ψ1 =

[
0
1

]
, ψ2 =

[√
3/2
−1/2

]
, ψ3 =

[
−
√

3/2
−1/2

]
.

Sketch it here:

The associated frame operator is the 3× 2 matrix

Ψ∗ =

 0 1√
3/2 −1/2

−
√

3/2 −1/2

 .
Thus

ΨΨ∗ =

and so

≤ ‖Ψ∗x‖2
2 ≤

and
A = B =
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Example: Unions of orthobases in RN Suppose our se-
quence {ψγ} is a union of sequences, each of which is an orthoba-
sis:

{ψ1
γ1
}γ1∈Γ1

∪ {ψ2
γ2
}γ2∈Γ2

∪ · · · ∪ {ψLγL}γL∈ΓK

Then

‖Ψx‖2
2 =

∑
γ1∈Γ1

|〈x, ψ1
γ1
〉|2 +

∑
γ2∈Γ2

|〈x, ψ2
γ2
〉|2 + · · · +

∑
γL∈ΓL

|〈x, ψLγL〉|
2

= L‖x‖2
2
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