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Learning and Empirical Risk Minimization

e The aim of any learning machine is to estimate
g(x) from a finite set of observations by
minimizing some kind of an error function,
e.qg., the empirical risk:

| » i
Ranp(ow. w0) = ~ X[z = gl w, o))
=1

+1if X, e o,
class labels: z, = ,
-1if X, € o,

2 ECE7252 Spring 2008 Center of Signal and Image Processing C SI P

Georgia Institute of Technology



Learning and Generalization

 The conventional empirical risk minimization
over training data does not imply good
generalization to novel test data

— There could be a number of different functions which
all give a good approximation to the training data set

— It is difficult to determine a function which best
captures the true underlying structure of the data
distribution
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Learning, Generalization and Selection

-
—-— -

Which solution is better?
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Strengths of SVMs

Good generalization in theory

Good generalization in practice
Work well with few training instances
Find globally best model

Efficient algorithms

Amenable to the kernel trick
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Linear Separators

« Training instances
X € R
y e{-1, 1}
w e R
beR
 Hyperplane
<w, x>+b=0
WX, + WXy ...+ WX, +b=0
e Decision function
f(x) = sign(<w, x>+ b)
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Intuitions
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Intuitions
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A “Good” Separator
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Noise In the Observations
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Ruling Out Some Separators
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Lots of Noise




Maximizing the Margin
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“Fat” Separators
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Overview of SVM

SVMs perform structural risk minimization to
achieve good generalization

The optimization criterion is the width of the
margin between the classes

Training Is equivalent to solving a quadratic
programming problem with linear constraints.

Primarily two-class classifiers but can be
extended to multiple classes
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Why Maximize Margin?

* Increasing margin reduces capacity

e Must restrict capacity to generalize
— m training instances
— 2™ ways to label them
— What if function class that can separate them all?
— Shatters the training instances

 VC Dimension is largest m such that function
class can shatter some set of m points
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The Math

* Training instances
X € Rn
yedf1, 1}

* Decision function
f(x) = sign(<w,x> + b)
w e R
be R

e Find w and b that

— Perfectly classify training instances
« Assuming linear separability

— Maximize margin
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The Math

* For perfect classification, we want
— Y (<w, x>+ b) 2 O for all i
— Why?

 To maximize the margin, we want
— w that minimizes |w|?
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Statistical Learning: Capacity & VC Dimension

e To guarantee an "upper bound on generalization
error”, the capacity of the learned functions must
be controlled

— Intuitively, functions with high capacity can represent
many dichotomies for a given data set.
 |n statistical learning, the Vapnik-Chervonenkis
(VC) dimension is one of the most popular
measures of capacity

— Remember Shannon channel capacity
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Structural Risk Minimization

A function that:
(1) minimizes the empirical risk
(2) has low VC dimension
will generalize well regardless of the dimensionality
of the Iinput space (structural risk minimization).

err. <err

true train

N \/VC(log(Zn/VC) +1)—log(S/4)
n
(not very tight bound ..)

with probability (7-0) (Vapnik, 1995, “Structural
Minimization Principle”)

22 ECE7252 Spring 2008 Center of Signal and Image Processing C SI P

Georgia Institute of Technology



Margin of separation & Optimal Hyperplane

« Vapnik has shown that maximizing the margin of
separation between the classes is equivalent to
minimizing the VC dimension

* The optimal hyperplane is the one giving the
largest margin of separation between the classes
 The empty area around the decision boundary

defined by the distance to the nearest training
patterns (i.e., support vectors)

 These are the most difficult patterns to classify
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Margin of Separation and Support Vectors
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Margin: Separable & Non-Separable Cases
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Linear SVM: the Separable Case

* Linear discriminant: g(X)=w'X+w,

Decide o, if g(x) > 0 and o, if g(x) <0

e Class labels:

Z, =

{—H if X, €,

—-1if X, € w,

e Normalized version:

2,2(X)>0 or z, (WX, +w,)>0, for k=1,2,...n
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Linear SVM: the Separable Case (Cont’'d)

* The distance of a point x, from the separating
hyperplane should satisfy the constraint:

e To ensure uniqueness, impose: b||w||=1

e The above constraint becomes:

z,g(X,)=21 where b=——
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Linear SVM: the Separable Case (Cont’d)

maximize

Problem 1: Minimize 7 ||w||2

subjectto z;(W'xp +wg) =1, k=12...,n

z, (WX, +w,)>1, for k=1,2,...n

| quadratic
margin. programming
2 problem !
[w] :
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Linear SVM: Dual Formulation

Use Lagrange optimization:

1 L t
L(w,w,, 1) =5|| WP =Y A [z, (WX, +w,)—-1], 4, 20
k=1

Easier to solve the “dual” problem:

Problem 2: Maximize Z/l ——Zﬂ, 1,22 X' X,

[
subjectto D, zpAr =0, 4,20, k=1.2,..,n
k=1

e Decision function
f(x) = sign(Z; o; y; <x, X;> + b)
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Linear SVM: Solution

* The solution is given by:
w = Z z, A, X,
k=1

! ion!!
w, =z, —w'X, contribute to the solution!!

gx)=w ex+w :Z{zkﬂ%(xT X, )+ W,

only support vectors

e It can be shown that if x, Is not a support
vector, then A,=0
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What if Not Perfectly Linearly Separable?

e Cannot find w and b that satisfy
yi (<w,x>+b) = 1 for all i

* Introduce slack variables &
yi(<w,x>+b) =2 1-& forall i

« Minimize
w|¢ + CX g
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Linear SVM: the Non-Separable Case

 Allow misclassifications (i.e., soft margin
classifier) by introducing error variables v, :

zz(WX, +w) 21—y, k=12,..,n

1L,
Problem 3: Minimize 5 w||* +¢ X vy
k=1

subjectto z,(W'xp +wo) 21—y, k=1,2,...n

- The result 1s a hyperplane that minimizes the sum of errors y; while maximiz-
g the margin for the correctly classified data.
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Tradeoff between Margin & Misclassification

- The constant ¢ controls the tradeoff between margin and misclassification
errors (aims to prevent outliers from aftecting the optimal hyperplane).

F

O
0
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Linear SVM: Regularization

- We can reformulate "Problem 3" as maximizing the following problem (dual
problem):

o n ] n ;
Problem 4: Maximize ), A — > 2 ApAjzpz XXy
k=1 k.J
. n
subjectto ) zpAr=0and 0= Ay <c, k=1.2,...n
k=1

where the use of error variables ;. constraint the range of the Lagrange coeffi-
cients from O to c.
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SVM-Based Classification

SVM Performance Neasurement:
" Test data Predictions

ti-¥ @

X
® e

FP

O

..’.:

- FN

True positive ( TF)
True negative (TH)
False negative (FM)
False positive (FP)

TN
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What If Surface is Non-Linear?

0
O o o o O
0 0
0
0 0
o © o O
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Nonlinear SVM

- Extending the above concepts to the non-linear vase relies on preprocessing
the data to represent them in a much higher dumensionality space.

xp — Oxp)

- Using an appropriate nonlinear mapping @() to a sufficiently high dimensional
space, data from two classes can always be separated by a hyperplane.
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Nonlinear SVM (Cont’d)

'y

@1(5‘:)

_________________________________

v

Linearly Separable in Higher Dimension
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Nonlinear SVM (Cont’d)

- The decision function for the optimal hyperplane 1s given by

g(x) = gl Zp AR (D(x). D(xp)) + wo

- The decision rule i1s the same as before;
decide w, if g(x)>0 and w, if g(x)<0

- The disadvantage of this approach 1s that the mapping x; — ®(x;) might be
very computationally intensive to compute.
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SVM Using Nonlinear Kernels

K(x, x])

Nonlinear transform Kernel evaluation

Using kernel, low dimensional feature vectors will be mapped
to high dimensional (may be infinite dim) kernel feature space
where the data are likely to be linearly separable
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The Kernel Trick

“Given an algorithm which is formulated in
terms of a positive definite kernel K., one
can construct an alternative algorithm by

replacing K, with another positive definite
kernel K.’

» SVMs can use the kernel trick

41
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The Kernel Trick

 Compute dot products using a kernel function

K(X,X,)=®d(X).D(X,)

« Advantages of using a kernel
— No need to know ®() !
— The discriminant is given by:

g(X) = sz/le(Xan) TWo
k=1
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Kernels

 What does it mean to be a kernel?
K(x4,X,) =< ®(x,), P(x,) > for some O

 What does it take to be a kernel?
— The Gram matrix G,-j = K(x, x/)

— Positive definite matrix

« 2icicG;>0forc, cie I

— Positive definite kernel

» For all samples of size m, induces a positive definite
Gram matrix
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The Kernel Trick (Cont’d)

Polynomial kernel:  K(x,y)=(x . y) ¢

- The kernel trick implies that the computation remains feasible even 1if the fea-
ture space has very high dimensionality.

* It can be shown for the case of polynomial kernels that the data 1s
p+d-1

mapped to a space of dimension / :( ]
e

there p 1s the original

dimensionality.
* Suppose p=256 and d = 4, then #=183,181,376 !!

* A dot product m the high dimensional space would require O(/) compu-
tations while the kernel requires only O(p) computations.
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Polynomial Kernel

» Consider a polynomial kernel

K(x,y)=>1+x"y) =1+ 221 Xy, +2% 2 xyx;y; + ;xl-z y;

i=1 j=i+]

* Let K(x,y) = ¢'(x) @(y), then

O(X) =1 X2 .oy X 2, V2 Xp, ooy N2X V2 X, X, oy V2 XX
V2 X, Xay ooy V250X, N2 XX

= [1 @y(%), ..., @(X)]

wherep=1+m+m+ (m-1)+(m-2)+ ... +1=(m+2)(m+1)/2
Hence, using a kernel, a low dimensional pattern classification
problem (with dimension m) is solved in a higher dimensional
space (dimension p+7). But only ¢,(x) corresponding to support
vectors are used for pattern classification!
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Choice of Kernel Is Not Unique!

Example: consider x € R*, ®(x) =| V2x,x, |e R®, and K(x. ) = (x. y)?

(x.9)% = (rypy + x20,)°

2.2 2.2 2
O(x). D(y) = x7y1 + 2x1y1x2y2 + X3y = (X131 + x232)

- Note that neither the mapping @() nor the high dimensional space are unique.

Fo2 00
2 2 1
| (7= x2) oy
o i)
O(x)=—| 2x;x, |eR® or dx)=|"""|er?
(x7 +x3) 2
\ Y2 )
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Suiltable Kernel Functions

- Kernel functions which can be expressed as a dot product in some space sat-
15ty the Mercer’s condition (see Burges’ paper).

- The Mercer’s condition does not tell us how to construct @() or even what the
high dimensional space 1s.

- By using different kernel functions, SVM i1mplement a variety of learning
machines, some of which coincide with classical architectures (see below).

polynomial: K(x,xjp) = (x. xk)d

sigmoidal: K(x,xy) = tanh(vi(x. xp) + cj)
(corresponds to a two-layer sigmoidal neural network)

7
—|lx = x|
Gaussian: K(x, x) = exp( | > EkH )
o

. o k
(corresponds to a radial basis function (RBF) neural network)

Georgia Institute of Technology
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An Example

- Consider the XOR problem which 1s non-linearly separable:
(1.1) and (-1, -1) belong to o,

(1,-1) and (-1, 1) belong to w,

- £y
/ \
Y N
i L
® L I —
- Sy,
- = i
I
|:ll'.'l ,.::,‘ H
."'\-\_ .:-"'.-'-
ey 4
% ‘8
F /®
III f-\'\-\.‘l
I I !
nq Py c':_-, Py nq
! !
L
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Numerical Example: XOR Problem

*Training samples: A °
(-1-1;-1), (-1 1 +1),
(1 -1 +1), (1 1 -1)

0 A
X =[x, x,]". Use K(x,y) = (1 +x'y)? one has
o(X) =[1 X2 X2 V2X,, V2 X, V2XX,]T

111 =2 =2 2] 9 1 1
111 =2 2 -2 1 9 1
(I): X )= T:
111 2 2 _2| KOex)=0di=l
_111\/5 J2 \/5_ 11 1

\Op_.\y_ay_a

Note dim[p(x)] = 6 > dim[x] = 2! dim(K) = N, = # of support vectors.
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XOR Problem (Cont’d)

* Note that K(x;, x;) can be calculated directly without using @!

e.g. K, = [1+[1 —1]{:1D2 9, K,,= [1+[1 —1]{_11D2=1

The corresponding Lagrange multiplier oo = (1/8)[1 1 1 1]% y =wTg(X) = — XX,

N
W = Zaidi(p(xi) = CDT[aldl a,d, - aNdN]T

= (DP0)+ S (D906) < (Dp(X,) + - (~Dp(x,) = {0 . _%}

X, X)) | (=1,-1) | (=1, +1) | (+1,-1) | (+1,+1)
Y == X%, -1 +1 +1 -1
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Example (Cont’d)

- Consider the following mapping (many other mappings could be used too):

/ 2 A
X1
'\:23'1
'\'|2I1I-:r
Y= (D(X) — N
., NZXE
I [ |
o g=0 = ' g
|
]
- —— ———— .
g=-1
.\
= [ [ [
-2 -1 0 1 2
\TI‘-

Georgia Institute of Technology
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Example (Cont’d)

- The above transformation maps x; to a 6-dimensional space:

(1 (1
\2 -2
NG \2
y1=P(x) = V| 3T blxs) = -2
1 1
L1 N
T 1
\2 -\2
2 -2
y2=D(xy) = | 4T blra) = V2
1 1
L1 N
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Example (Cont’d)

- We seek to maximize:

4 1 4
.ﬂk - = z ﬁkﬁ. Ik -(D(.II-)(D(I;C)
k=1 25y T
4
subjectto ), zpA; =0, A, 20.k=1,2,...4
k=1

- The solution turns out to be:

ftlzﬁz:i‘;:ﬁgr:

]
8

- Since all A # 0. all x; are support vectors !
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Example (Cont’d)

- We can now compute w:

N S B 7 B S /0
V2 V2 2 2 0
4 1 {2 1| =2 1| V2 1| =2 1|2
w= ) ;A4 P(x)=—| = |—--— — |+ = —|—-=] = |==
vEr AP =l sl n [Teloa sl v T2l o
1 1 1 1 0
1/ 1/ 1/ 1/ \ 0 /

- The solution for w, can be determined using any support vector, e.g., xy:

wd(x])+wo=2; or wog=2; —wx; =0
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Example (Cont’d)

i
] ] . __-___E:J‘____‘__

- The margin 5 1s computed as follows: 1 I

1 1: 0 —

b = — = -\HII2 - —_I |
o] I
7 5~ -

- The decision function 1s the following: S5 00 2

g2(x) = w d(x) + Wo = X1X7

where we decide w; if g(x) = 0 and w, 1f g(x) <0

55

ECE7252 Spring 2008 Center of Signal and Image Processing

Georgia Institute of Technology

CSIP



Comments on SVMs

e Global optimization method, no local optima
(l.e., based on exact optimization, not
approximate methods)

* The performance of SVMs depends on the
choice of the kernel and its parameters

— The best choice of kernel for a given problem
IS still a research problem
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Other Types of Kernels

type of SVM K(x,y) Comments

Polynomial (XTy + 1)P p: selected a priori
learning machine
; ; | N o2 .
Radial basis exp(_ ix=y] ) o2: selected a priori
function 20

Two-layer tanh(B_x"y +B,) | only some B, and B,
perceptron values are feasible.

What kernel is feasible? It must satisfy the "Mercer's theorem"!
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Mercer's Theorem

 Let K(X,y) be a continuous, symmetric kernel, defined on
asx,y <b. K(x,y) admits an eigen-function expansion

K(x.Y)=220,(:)9,(5)

with A, > O for each i. This expansion converges absolutely
and uniformly if and only if

[ K6y 00y (y)dxdy > 0

R 1)

for all y(x) such that: [~ (X)dX <o
b
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Comments on SVMs (cont’d)

 |ts complexity depends on the number of
support vectors, not on the dimensionality of
the transformed space

« Appear to avoid overfitting in high
dimensional spaces and generalize well using
a small training set

* The optimal design of multi-class SVM
classifiers Is a research topic
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Summary

Today’s Class
— SVM (Chapter 13)

Next Classes
— Kernel Methods (Chapter 6)

Exercises: make sure you know the topics discussed and
how to do all the exercises suggested in Chapter 12

Reading Assignments
— HTF, Chapters 6 & 12
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