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Learning and Empirical Risk Minimization

• The aim of any learning machine is to estimate 
g(x) from a finite set of observations by 
minimizing some kind of an error  function, 
e.g., the empirical risk:
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Learning and Generalization

• The conventional empirical risk minimization 
over training data does not imply good 
generalization to novel test data
– There could be a number of different functions which 

all give a good approximation to the training data set
– It is difficult to determine a function which best 

captures the true underlying structure of the data 
distribution
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Learning, Generalization and Selection

Which solution is better?Which solution is better?
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Strengths of SVMs
• Good generalization in theory
• Good generalization in practice
• Work well with few training instances
• Find globally best model
• Efficient algorithms
• Amenable to the kernel trick
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Linear Separators
• Training instances

x ∈ ℜn

y ∈ {-1, 1}
w ∈ ℜn

b ∈ ℜ
• Hyperplane

<w, x> + b = 0
w1x1 + w2x2 … + wnxn + b = 0

• Decision function
f(x) = sign(<w, x> + b)
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Intuitions
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A “Good” Separator

X

X

O

O
O

O

O

OX

X

X

X

X

X
O

O



12 Center of Signal and Image Processing
Georgia Institute of Technology

ECE7252 Spring 2008

Noise in the Observations
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Ruling Out Some Separators
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Lots of Noise
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Maximizing the Margin
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“Fat” Separators
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Overview of SVM
• SVMs perform structural risk minimization to 

achieve good generalization
• The optimization criterion is the width of the 

margin between the classes
• Training is equivalent to solving a quadratic 

programming problem with linear constraints.
• Primarily two-class classifiers but can be 

extended to multiple classes
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Why Maximize Margin?
• Increasing margin reduces capacity
• Must restrict capacity to generalize 

– m training instances
– 2m ways to label them
– What if function class that can separate them all?
– Shatters the training instances

• VC Dimension is largest m such that function 
class can shatter some set of m points
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The Math
• Training instances

x ∈ ℜn

y ∈ {-1, 1}
• Decision function

f(x) = sign(<w,x> + b)
w ∈ ℜn

b ∈ ℜ
• Find w and b that 

– Perfectly classify training instances
• Assuming linear separability

– Maximize margin
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The Math
• For perfect classification, we want

– yi (<w,xi> + b) ≥ 0 for all i
– Why?

• To maximize the margin, we want
– w that minimizes |w|2
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Statistical Learning: Capacity & VC Dimension

• To guarantee an "upper bound on generalization 
error", the capacity of the learned functions must 
be controlled
– Intuitively, functions with high capacity can represent 

many dichotomies for a given data set.
• In statistical learning, the Vapnik-Chervonenkis

(VC) dimension is one of the most popular 
measures of capacity
– Remember Shannon channel capacity
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Structural Risk Minimization
• A function that: 

(1) minimizes the empirical risk 
(2) has low VC dimension

will generalize well regardless of the dimensionality 
of the input space (structural risk minimization).

with probability (1-δ) (Vapnik, 1995, “Structural  
Minimization Principle”)

(log(2 / ) 1) log( / 4)
true train

VC n VCerr err
n

δ+ −
≤ +

(not very tight bound ..)(not very tight bound ..)
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Margin of separation & Optimal Hyperplane

• Vapnik has shown that maximizing the margin of 
separation between the classes is equivalent to 
minimizing the VC dimension

• The optimal hyperplane is the one giving the 
largest margin of separation between the classes

• The empty area around the decision boundary 
defined by the distance to the nearest training 
patterns (i.e., support vectors)

• These are the most difficult patterns to classify
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Margin of Separation and Support Vectors
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Margin: Separable & Non-Separable Cases
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Linear SVM: the Separable Case
• Linear discriminant: 

• Class labels:

• Normalized version:
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Linear SVM: the Separable Case (Cont’d)

• The distance of a point xk from the separating 
hyperplane should satisfy the constraint:

• To ensure uniqueness, impose: b||w||=1 

• The above constraint becomes:
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maximizemaximize
margin:margin:

2
|| ||w

0( ) 1, 1, 2,...,t
k kz w for k n+ > =w x

quadraticquadratic
programmingprogramming
problem !problem !

Linear SVM: the Separable Case (Cont’d)
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Linear SVM: Dual Formulation
• Use Lagrange optimization:

• Easier to solve the “dual” problem:
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• Decision function
f(x) = sign(Σi αi yi <x, xi> + b)



30 Center of Signal and Image Processing
Georgia Institute of Technology

ECE7252 Spring 2008

Linear SVM: Solution
• The solution is given by:

• It can be shown that if xk is not a support 
vector, then  λk=0
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What if Not Perfectly Linearly Separable?

• Cannot find w and b that satisfy
yi (<w,xi> + b) ≥ 1 for all i

• Introduce slack variables ξi
yi (<w,xi> + b) ≥ 1 - ξi for all i

• Minimize
|w|2 + C Σ ξi
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Linear SVM: the Non-Separable Case

• Allow misclassifications (i.e., soft margin 
classifier) by introducing error variables ψk : 

0( ) 1 , 1,2,...,t
k k kz w w k nψ+ ≥ − =x
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Tradeoff between Margin & Misclassification
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Linear SVM: Regularization
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SVM-Based Classification
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What if Surface is Non-Linear?
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Nonlinear SVM
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Nonlinear SVM (Cont’d)



39 Center of Signal and Image Processing
Georgia Institute of Technology

ECE7252 Spring 2008

Nonlinear SVM (Cont’d)
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SVM Using Nonlinear Kernels

Using kernel, low dimensional feature vectors will be mapped 
to high dimensional (may be infinite dim) kernel feature space 
where the data are likely to be linearly separable
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The Kernel Trick

“Given an algorithm which is formulated in 
terms of a positive definite kernel K1, one 
can construct an alternative algorithm by 
replacing K1 with another positive definite 
kernel K2”

SVMs can use the kernel trick
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The Kernel Trick
• Compute dot products using a kernel function

• Advantages of using a kernel
– No need to know Φ() !!
– The discriminant is given by:
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Kernels
• What does it mean to be a kernel?

K(x1,x2) = < Φ(x1), Φ(x2) > for some Φ

• What does it take to be a kernel?
– The Gram matrix Gij = K(xi, xj)
– Positive definite matrix

• Σij ci cj Gij ≥ 0 for ci, cj ∈ ℜ

– Positive definite kernel
• For all samples of size m, induces a positive definite 

Gram matrix
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The Kernel Trick (Cont’d)

Polynomial kernelPolynomial kernel:    :    K(x,yK(x,y)=(x . y) )=(x . y) dd
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Polynomial Kernel
• Consider a polynomial kernel
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• Let K(x,y) = ϕT(x) ϕ(y), then

ϕ(x) = [1  x1
2, …, xm

2, √2 x1, …, √2xm, √2 x1 x2, …, √2 x1xm,
√2 x2 x3, …, √2 x2xm, …,√2 xm−1xm]
= [1 ϕ1(x), …, ϕp(x)]

where p = 1 +m + m + (m−1) + (m−2) + … + 1 = (m+2)(m+1)/2
Hence, using a kernel, a low dimensional pattern classification
problem (with dimension m) is solved in a higher dimensional 
space (dimension p+1).  But only φj(x) corresponding to support 
vectors are used for pattern classification!
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Choice of Kernel Is Not Unique!
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Suitable Kernel Functions
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An Example
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Numerical Example: XOR Problem
•Training samples: 

(−1 −1; −1), (−1   1  +1), 
(1  −1  +1),  (1    1  −1)

x = [x1, x2]T.  Use K(x,y) = (1 + xTy)2 one has
ϕ(x) = [1   x1

2 x2
2 √2 x1, √2 x2, √2 x1x2]T
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Note dim[ϕ(x)] = 6 > dim[x] = 2! dim(K) = Ns = # of support vectors.
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XOR Problem (Cont’d)
• Note that K(xi, xj) can be calculated directly without using Φ!
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The corresponding Lagrange multiplier α = (1/8)[1  1  1  1]T. y = wTϕ(x) = − x1x2
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Example (Cont’d)



52 Center of Signal and Image Processing
Georgia Institute of Technology

ECE7252 Spring 2008

Example (Cont’d)
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Example (Cont’d)
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Example (Cont’d)



55 Center of Signal and Image Processing
Georgia Institute of Technology

ECE7252 Spring 2008

Example (Cont’d)
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Comments on SVMs

• Global optimization method, no local optima
(i.e.,  based on exact  optimization, not 
approximate methods)

• The performance of SVMs depends on the
choice of the kernel and its parameters
– The best choice of kernel for a given problem 

is still a research problem
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Other Types of Kernels

type of SVM K(x,y) Comments 

Polynomial 
learning machine 

(xTy + 1)p p: selected a priori 

Radial basis 
function 

σ2: selected a priori

Two-layer 
perceptron

tanh(βoxTy + β1) only some βo and β1
values are feasible. 

What kernel is feasible? It must satisfy the "Mercer's theorem"!
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Mercer's Theorem
• Let K(x,y) be a continuous, symmetric kernel, defined on 
a≤x,y ≤ b. K(x,y) admits an eigen-function expansion
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Comments on SVMs (cont’d)
• Its complexity depends on the number of 

support vectors, not on the dimensionality of 
the transformed space

• Appear to avoid overfitting in high 
dimensional spaces and generalize well using 
a small training set

• The optimal design of multi-class SVM
classifiers is a research topic
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Summary
• Today’s Class

– SVM (Chapter 13)
• Next Classes

– Kernel Methods (Chapter 6)
• Exercises: make sure you know the topics discussed and 

how to do all the exercises suggested in Chapter 12
• Reading Assignments

– HTF, Chapters 6 & 12
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