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Overview
• Basis expansion
• Splines
• (Natural) cubic splines
• Smoothing splines
• Nonparametric logistic regression
• Multidimensional splines
• Wavelets
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Moving Beyond Linearity
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Let’s take a look at the following classification example:

Class purple:

Class cyan:

Observe it is not possible to separate the two classes of input (x1, x2) by 
a linear boundary; however they are separable by the circle 22
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Moving Beyond Linearity: Not So Fast!
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=A simple trick for the previous example 
still allows us to stay within the linear 
model. Let us make this transformation:

2
21

2
21

rXX

rXX

>+

<+

In the transformed input space (X1, X2) the

Class boundary is linear: 2
21 rXX =+

Class purple:

Class cyan:
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Linear Basis Expansions
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Original input space: X=(X1, …,Xp)

Transformed input space: h1(X), h2(X), …, hM(X)

Linear model in the transformed input space:

An example where the original space is transformed into a polynomial space:
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h(x)’s are called basis functions

This model is known as a linear basis expansion
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Example Basis Functions
• Original space: hm(X) = Xm, m=1, 2, …, p

• Polynomial expansions: hm(X) = (Xj)2 or XjXk

• Non-linear transformation: hm(X) = log(Xj), sqrt(Xj) , etc.

• Indicator region: hm(X) = I(Lm <= Xk <= Um)
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Linear Basis Expansion
Linear regression

True model:

Question: How to find ?

Answer: Apply linear regression to obtain:

x1 x2 x3 y
1 -3 6 12
… … … …

εβββ +++= 332211 xxxy

f̂

321
ˆ,ˆ,ˆ βββ
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Linear Basis Expansion (Cont.)
Nonlinear model

True model:

Question: How to find ?

Answer:  A) Introduce new variables

x1 x2 x3 y
1 -3 -1 12
… … … …

εββββ ++++= 2
143322211 sin3 xxexxxy x

f̂
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Linear Basis Expansion (Cont.)
Nonlinear model
B) Transform the data set

True model:

C) Apply linear regression and obtain:

u1 u2 u3 u4 y
-3 -1.1 -0.84 1 12
… … … …

εββββ ++++= 44332211 uuuuy

4321
ˆ,ˆ,ˆ,ˆ ββββ
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Linear Basis Expansion (Cont.)
Conclusion on linear basis expansion:
• Now we know how to fit any model of the type

• In other words, we model a linear basis expansion in X
• Example: If the model is known to be nonlinear, but the 

exact form is unknown, try to introduce interaction 
(problem: no. of variables grows exponentially)
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Piecewise Polynomials
Assume X is one-dimesional
• Def. Assume the domain of X=[a,b] is split into

intervals [a, ξ1], [ξ 1, ξ 2], ..., [ξ n, b]. Then f(X) is 
piecewise polynomial if f(X) is represented by 
separate polynomial in each interval. 

• Note The points ξ1,..., ξ n are called knots
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Piecewise Constant Model
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The basis functions are:

Note that the input X is 1D

The linear basis expansion model:

The estimated coefficients are respective mean 
of data within mth region:

mm Y=β̂
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Piecewise Linear Model
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The basis functions are:

The linear basis expansion model:

The coefficients in this case can be estimated by fitting straight lines 
in the respective regions – think of fitting three straight lines in the three
regions – there is no interdependency among these three lines
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Continuous Piecewise Linear Model
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The basis functions are:

where

This model imposes continuity in the fits between the regions
The same model can be obtained if we impose two continuity constraints
at the knot points along with the six basis functions on page 8 of  this lecture:
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So that the effective number of parameters is four = six – number of constraints
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Piecewise Polynomials (Cont.)
• Example. Continuous piecewise linear function
• Alternative A. Introduce linear functions on each

interval + restrictions.

• (4 free param.)

• Alternative B. Use basis incorporating
constraints(4 free param)

• Theorem. The given formulations are equivalent
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Piecewise Models
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Piecewise Cubic Models

• Why stop at piecewise 
linear models?

• Increase smoothness 
by higher order 
polynomials

• Bottom right panel: 
cubic spline
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Splines
• Def: A piecewise polynomial is called order-M spline if it 

has continuous derivatives up to order M-1 at the knots
• Alternative: An order-M spline is a function which can be 

represented by basis functions ( K = # of knots )

• Theorem. The definitions above are equivalent
• Def: Order-4 spline is called cubic spline (look at basis 

and compare the number of free parameters)
• Note. Cubic splines: knot-discontinuity is not visible
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Cubic Spline
• Fit cubic polynomial in each region: 3 types of constraints:

1. Zero order continuity (i.e., continuity of the curve) at knot points
2. First order continuity (i.e., has first derivative) at knot points
3. Second order continuity (i.e., has second derivative) at knot points

• The model fits a smooth curve to the data

Basis functions:
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A cubic spline can be represented as piecewise cubic 
polynomials in each region with zero, first, and second 
order continuities at knot points 

Cubic Spline: Number of Parameters
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Cubic Spline… (Cont.)
• Constraints for the first knot point:

1. Continuity:

2. 1st Derivative exists:

3. 2nd Derivative exists:

0)()()()( 12121
2

121
3

121 =−+−+−+− ddccbbaa ξξξ

0)()(2)(3 21121
2

121 =−+−+− ccbbaa ξξ

0)(2)(6 21121 =−+− bbaa ξ

• There are three more equations for the second knot points

Essentially this shows that effectively there are 6 parameters:
6 = (3 regions)(4 parameters per region) – (2 knots)(3 constraints per knot)
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• There is seldom any need to go beyond (i.e., 
toward higher order) a cubic spline curves

• One needs to select the number of knot points 
and their placement

• Knot placement can be done by the observation 
data fixing the number of basis functions

• Note that increasing number of basis functions 
decreases the square bias and increases the 
variance (why?)

• Variances near the two boundary knots are high 
(why?)

Cubic Spline… (Cont.)
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Problem with Splines
Problem with spline fitting – boundary effects
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Natural Cubic Splines
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• In order to reduce the variance of cubic spline near the 
boundary knots, natural cubic spline places some rigidity 
in the model – the function is linear beyond the two 
boundary knots (2nd and 3rd derivatives are zero)
• This frees up some degrees of freedom in the cubic 
spline (i.e., it is not as wild near the boundaries now)
• There are K basis functions for K knots:
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Example of Natural Spline Fitting

Bone mineral density (BMD) for males and females versus ages. The fits 
reinforce the evidence that the growth spurt for females precedes that for 
males by about 2 years. λ=0.00022 (chosen by cross validation)
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Computing Spline
• Points to ponder

– Number of knots
– Placement of the knots

• There are three techniques where knots are 
automatically decided
– Least Squares fitting
– Smoothing splines
– Logistic regression



27 Center of Signal and Image Processing
Georgia Institute of Technology

ECE7252 Spring 2008

• Do not even bother about the selection of knots – choose all 
training (unique) points as knots – maximum possible knots
• However, this choice make the spline over-parameterized: 
variance will increase
• To shrink the variance some coefficients are set to zero by a 
penalty term (we have seen this before in ridge regression): 
intuitively this means you are making spline model a bit rigid
• One way to achieve this rigidity is to penalize the second 
derivative – the spline will not move wildly now!

2( ) ''( )J f f t dt= ∫

Smoothing Spline

Penalty functional:
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1{( , )}N
i i ix y =

λ→∞
0λ→

We need to find the function f among all functions with two 
continuous derivatives that minimizes the ‘penalized’ RSS

2 2

1
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• Given N points in the training data:

RSS f y f x f t dtλ λ
=

= − +∑ ∫
λ is the smoothing parameter. The first term measures the 
closeness of fit or data fidelity, while the second penalizes 
curvature in the function (regularization) 

f(x) can be any function that interpolates the data
least squares fit

It can be shown that ( , )RSS f λ minimized by a natural cubic spline!

Smoothing Spline… (Cont.)
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The minimizer, a natural cubic spline, has knots at the 
unique xi, i=1…N. So we can write the minimizer as:  

1
( ) ( )

N

i i
i

f x N x θ
=

= ∑
where Ni(X) are basis functions. Note that this is a linear basis expansion.
So we can apply least square techniques to find out the parameters θi’s

( , ) ( ) ( )T T T
NRSS f y yλ θ θ λθ θ= − − + ΩN N

andwhere { } ''( ) ''( )N ij i jN t N t dtΩ = ∫)(}{ ijij xN=N

Ex.

Smoothing Spline… (Cont.)
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Smoothing Splines (Cont.)
Solution to (SS):
• Theorem: Function f is a natural cubic spline with 

knots at unique values of xi (NOTE: N knots!)
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Properties of smoothing splines
• Fitted function:
• If we take a few basis functions  M<<N and 

compute Bξ at ξ

• Hξ is a linear projection operator
• Both symmetric, positive definite, different ranks
• Shrinking nature of Sλ:

( ) ySyNNNN λλ =Ω+=
− T

N
Tf 1ˆ

( ) yHyBBBB ξξξξξ ==
− TTf

1ˆ
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Smoothing Splines (Cont.)
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Properties of smoothing splines
• M=trace(Hξ) defines the dimension of the 

basis functions (degrees of freedom)
• By analogy, effective degrees of freedom for 

the smoother matrix Sλ is 
dfλ = trace(Sλ)

-> A way to select λ

Smoothing Splines (Cont.)
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Eigenvalue decomposition
• Rewriting in Reinsch form (show):
K is a penalty matrix
• The eigen-decomposition is (show):

• Note: dk and uk are respective eigenvalues and 
eigenvectors of K
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Smoothing Splines (Cont.)
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Eigenvalue decomposition – conclusions

• Smoothing spline decomposes vector  y with 
respect to basis of eigenvectors and shrinks 
respective contributions

• The eigenvectors ordered by ρ increase in 
complexity. The higher the complexity, the 
more the respective contribution is shrunk
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Smoothing Splines (Cont.)
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Eigenvalue decomposition – conclusions

INSERT FIG 5.7

Smoothing Splines (Cont.)
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Eigenvalue decomposition – conclusions
• Eigenvalues are reverse functions of λ. The 

higher λ, the higher penalization
• Smoother matrix is has banded nature -> 

local fitting method
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Smoothing Splines (Cont.)
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• How does one fit splines in practice?
• Reinsch form: 
• Theorem. If f is natural cubic spline with values at 

knots f and second derivative     at knots then 

where Q & R are band matrices, dependent on ξ only
• Theorem. 

( ) 1−+= KIS λλ

γRQT =f

TQQRK 1−=

γ

Smoothing Splines (Cont.)
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Reinsch algorithm (show…)
• Evaluate QTy
• Compute R+λQTQ and find Cholesky

decomposition (in linear time!)
• Solve matrix equation (in linear time!)
• Obtain f=y-λQγ

Smoothing Splines (Cont.)
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Fixing the degrees of freedom

• If we fix dfλ then we can find λ by solving the 
equation numerically

• It is not difficult to solve since the function is 
monotonic

• One could try two different dfλ and choose 
one based on F-tests, residual plots etc.
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Selection of Smoothing Parameters
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Nonparametric Logistic Regression

Logistic regression model

• Note: X is one-dimensional but “what is f(x)”?
• Linear -> ordinary logistic regression (Chapter 4)
• Enough smoothness -> nonparametric logistic 

regression (splines+others)
• Other choices are possible
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Nonparametric Logistic Regression (Cont.)

Problem formulation:
• Minimize penalized log-likelihood

• Good news: Solution is still a natural cubic spline
• Bad news: There is no analytic expression of that 

spline function
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How to proceed?
• Use Newton-Rapson to compute spline

numerically, i.e
Compute (analytically)
• Compute Newton direction using current 

parameter and derivative information
• Compute new values of parameters using 

old values and update formula
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Nonparametric Logistic Regression (Cont.)
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Multidimensional Splines
How to fit data smoothly in higher dimensions?
• Use basis of one dimensional functions and 

produce basis by tensor product

• Problem: Exponential INS FIG. 6.10
growth of basis with dim

( ) ( ) ( )
( ) ( )XgXg

XhXhXg

jkjk

kjjk

∑∑=

=

θ

,2211



44 Center of Signal and Image Processing
Georgia Institute of Technology

ECE7252 Spring 2008

Multidimensional Splines (Cont.)
How to fit data smoothly in higher dimensions?
Alternative: Formulate a new problem

• The solution is thin-plate splines
• The similar properties for λ=0
• The solution in 2 dimension is essentially sum of 

radial basis functions

( )( ) [ ]fJxfy
i
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T xxxxf ηαββ 0
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Wavelets
• The idea: to fit bumpy function by removing noise
• Application area: signal processing, compression
• How it works: The function is represented in the 

basis of bumpy functions. The small coefficients 
are filtered



46 Center of Signal and Image Processing
Georgia Institute of Technology

ECE7252 Spring 2008

Wavelets (Cont.)
Basis functions (Haar Wavelets, Symmlet-8 Wavelets)
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Wavelets (Cont.)
An Example:
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Summary
• Today’s Class

– Basis Expansion (Chapter 5)
• Next Classes

– Model Selection
• Quiz 2: April 2
• Reading Assignments

– HTF, Chapters 6 & 5
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