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Moving Beyond Linearity

Let's take a look at the following classification example:

Class purple: )(12 + x22 <r? o o

Class : )(12 +X22 >r? °

Observe it is not possible to separate the two classes of input (x., x,) by
a linear boundary; however they are separable by the circle xf n X22 —r2
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Moving Beyond Linearity: Not So Fast!

A simple trick for the previous example X =2
. x n n 1

still allows us to stay within the linear

model. Let us make this transformation: X, =X

Class purple: X1 + X2 <r?

Class i X+ X, >r?

In the transformed input space (X,, X,) the

. . 2
Class boundary is linear: X, + X, =r
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Linear Basis Expansions

Original input space: X=(X,, ...,.X))
Transformed input space: h,(X), h,(X), ..., h),(X)

M
Linear model in the transformed input space: f(X)=> £ h.(X)
=1

This model is known as a linear basis expansion

An example where the original space is transformed into a polynomial space:
h(X)=X7, h(X)=v2XX,  h(X)=X;]

h(x)'s are called basis functions
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Example Basis Functions

* Original space: h_(X)=X_,m=1,2, ..., p
» Polynomial expansions: h.,(X) = (X)* or XX,
* Non-linear transformation: h (X) = log(X;), sqrt(X;) , etc.

* Indicator region: h_(X) = I(L,,<= X, <= U,,)
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Linear Basis Expansion

Linear regression

X1

Xo

X3

y

1

-3

6

12

True model; Y =B X, + B,X%, + BeX, + &

Fa N

Question: How to find f ?

Answer. Apply linear regression to obtain:,él, ,32, ,5’3
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Linear Basis Expansion (Cont.)

Nonlinear model

X1 | X2

X3

y

1 |-3

-1

12

Answer. A) Introduce new variables

True model:
Y = BX X, + /Bzxzex3 + [, sin Xy + 184)(12 +&
Question: How to find f ?
X
U, = XX,, U, =X,e7,

U, =SiN X, U, = X/
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Linear Basis Expansion (Cont.)

Nonlinear model
B) Transform the data set

g U Us Ug 1Y True model:

-3 |-1.1 [-0.84 |1 |12

y=puU, +BuU, +BuU; + U, +&

C) Apply linear regression and obtain: ,5’1, ,5’2, ,53, ,54
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Linear Basis Expansion (Cont.)

Conclusion on linear basis expansion:
 Now we know how to fit any model of the type

F(X)= 3 A, (X)

* |n other words, we model a linear basis expansion in X

« Example: If the model is known to be nonlinear, but the
exact form is unknown, try to introduce interaction
(problem: no. of variables grows exponentially)

f(X)=B X, +oct B X+ Bu X+ B X X, +...
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Piecewise Polynomials

Assume X is one-dimesional

Def. Assume the domain of X=[a,b] is split into

intervals [a, ¢.], [€ 4, € o], ..., [ ,, b]. Then f(X) is
piecewise polynomial if f{(X) is represented by

separate polynomial in each interval.

Note The points ¢,,..., ¢ , are called knots
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Piecewise Constant Model

The basis functions are:

h(X)=1(X<&), h)=IE<X<E),  hX)=1(<

Note that the input X'is 1D

The linear basis expansion model:

t(X)=A0(X)+ 4, (X)+£h,(X)

The estimated coefficients are respective mean
of data within m® region: ,gm =Y_
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Piecewise Linear Model

The basis functions are:  p (x)=1(x <¢&)

h,(X)=1(5 <X <&,)

h,(X)=1(5, < X)

h,(X)=1(X<&)X

hs(X)=1(5 < X <)X

he (X) =1(&, < X)X
The linear basis expansion model:

f (X)=Bh(X)+B,h,(X)+ Bh(X)+ 8,0, (X) + Bhs (X) + Sihg (X)

The coefficients in this case can be estimated by fitting straight lines
in the respective regions — think of fitting three straight lines in the three
regions — there is no interdependency among these three lines
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Continuous Piecewise Linear Model

hl(X) =1

hz(x) = X
h,(X)=(X-4&).
h4(X) =(X _52)+

The basis functions are:

X=&,1f X>¢&

X— =
where (X-&), {O, otherwise

This model imposes continuity in the fits between the regions

The same model can be obtained if we impose two continuity constraints
at the knot points along with the six basis functions on page 8 of this lecture:

f (951_) = f (§1+)’ e, B+ & B, =0+ 60
f (gz_) = f (§2+)’ e, 182 +§2:B5 :ﬂs +§2ﬂ6

So that the effective number of parameters is four = six — number of constraints
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Piecewise Polynomials (Cont.)

Example. Continuous piecewise linear function
Alternative A. Introduce linear functions on each

Interval + restrictions.|

3

(4 free param.)

Y, =X+ B
Y, =a,X+ f,
Y3 = azX+ [,

<KY1(§1) =Y, (51)

LY (652): ys(éz)

Continuous Piecewise Linear

Alternative B. Use basis incorporating
constraints(4 free param)

h(X)=1h,(X) =X, hy(X)=(X = &).. h,(X)=(X - &,),
Theorem. The given formulations are equivalent
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Piecewise Models

Piecewise Constant

Piecewise Linear
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Piecewise Cubic Models

Discontinuous Continuous
» Why stop at piecewise | .. | ]
linear models? g |V
 Increase smoothness .
by higher order & &2
Continuous First Derivative Continuous Second Derivative

polynomials

o
o
oo

» Bottom right panel:
cubic spline

(=]
E =]

 ———
&1 £o
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Splines

Def: A piecewise polynomial is called order-M spline if it
has continuous derivatives up to order M-1 at the knots

Alternative: An order-M spline is a function which can be
represented by basis functions ( K = # of knots )
h(X)=X1" j=1...M

J
hM+I(X):(X _Sgl)-l\:l_l’ l=1...K
Theorem. The definitions above are equivalent

Def: Order-4 spline is called cubic spline (look at basis
and compare the number of free parameters)

Note. Cubic splines: knot-discontinuity is not visible
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Cubic Spline

» Fit cubic polynomial in each region: 3 types of constraints:
1. Zero order continuity (i.e., continuity of the curve) at knot points
2. First order continuity (i.e., has first derivative) at knot points
3. Second order continuity (i.e., has second derivative) at knot points

« The model fits a smooth curve to the data

BaSiS functions: hl ( X ) = 1 Continuous Second Derivative
h,(X)= X | i
B B | |
h3(X):X2 f’jugc;: i aJOCf
n,(X) = X N P
h5(X):(X_'§1)?r i i
; 2

he(X) =(X -¢&,)3

2
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Cubic Spline: Number of Parameters

A cubic spline can be represented as piecewise cubic
polynomials in each region with zero, first, and second
order continuities at knot points

X +b X2 +¢,X +d,, X <&
f(X)=:a,X°+b,X*+c,X +d,, E <X <E,
8, X7 +by X+ ¢, X +d, E, <X
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Cubic Spline... (Cont.)

« Constraints for the first knot point:

1. Continuity: (@, —a,)&8 + (b, —b,)E2 + (¢, —¢,)é +(d, —d,) =0
2. 1st Derivative exists: 3(a, —a,)&” +2(b, —b,)& +(c, —¢,) =0

3. 2nd Derivative exists: 6(a, —a,)&, +2(b, —b,) =0

* There are three more equations for the second knot points

Essentially this shows that effectively there are 6 parameters:
6 = (3 regions)(4 parameters per region) — (2 knots)(3 constraints per knot)
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Cubic Spline... (Cont.)

There is seldom any need to go beyond (i.e.,
toward higher order) a cubic spline curves

One needs to select the number of knot points
and their placement

Knot placement can be done by the observation
data fixing the number of basis functions

Note that increasing number of basis functions
decreases the square bias and increases the
variance (why?)

Variances near the two boundary knots are high
(why?)
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Problem with Splines

Problem with spline fitting — boundary effects

-~ Global Linear l
) ——— Global Cubic Polynomial

0.6
L

~  Cubic Spline - 2 knots
——  Natural Cubic Spline - 6 knots ‘

0.5

0.4

Pointwise Variances
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Natural Cubic Splines

* In order to reduce the variance of cubic spline near the
boundary knots, natural cubic spline places some rigidity
in the model — the function is linear beyond the two
boundary knots (29 and 3" derivatives are zero)

* This frees up some degrees of freedom in the cubic
spline (i.e., it is not as wild near the boundaries now)

* There are K basis functions for K knots:
N, (X)=1
N,(X) =X
Nk+2(X):dk(X)—dK_l(X)
dk(X) _ (X _gk)i _(X _gK)i
fK _gk
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Example of Natural Spline Fitting

0.20
|

— Male
—— Female

0.10

Relative Change in Spinal BMD
0.05

0.0

-0.05

Age

Bone mineral density (BMD) for males and females versus ages. The fits
reinforce the evidence that the growth spurt for females precedes that for
males by about 2 years. 1=0.00022 (chosen by cross validation)
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Computing Spline

* Points to ponder
— Number of knots
— Placement of the knots

* There are three techniques where knots are
automatically decided
— Least Squares fitting
— Smoothing splines
— Logistic regression
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Smoothing Spline

* Do not even bother about the selection of knots — choose all
training (unique) points as knots — maximum possible knots

* However, this choice make the spline over-parameterized:
variance will increase

 To shrink the variance some coefficients are set to zero by a
penalty term (we have seen this before in ridge regression):
intuitively this means you are making spline model a bit rigid

« One way to achieve this rigidity is to penalize the second
derivative — the spline will not move wildly now!

Penalty functional: J(f) = j f "(t)2 dt
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Smoothing Spline... (Cont.)

» Given N points in the training data: {(X;, Y, Hi

We need to find the function famong all functions with two
continuous derivatives that minimizes the ‘penalized’ RSS

RSS(f,1) = _ZN:{yi — f(x)} +zj f"(t)2dt

A is the smoothing parameter. The first term measures the
closeness of fit or data fidelity, while the second penalizes
curvature in the function (regularization)

A—0 f(x) can be any function that interpolates the data
A — o0 least squares fit

It can be shown that RSS(f, A) minimized by a natural cubic spline!
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Smoothing Spline... (Cont.)

The minimizer, a natural cubic spline, has knots at the
unique x;, I=71...N. So we can write the minimizer as:

F(0 =3 N, (08

where N(X) are basis functions. Note that this is a linear basis expansion.
So we can apply least square techniques to find out the parameters 8's

Ex.  RSS(f,A)=(y—-N&) (y—-N&)" +16'Q, 0
where {N}, =N (x) and{Q}; = j N, “(t)N | "(t)dt
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Smoothing Splines (Cont.)

Solution to (SS):

* Theorem: Function fis a natural cubic spline with
knots at unique values of x; (NOTE: N knots!)

)= z N (x)9, =(x) ©
RSS(O, /1)=(y N@)T(y N®)+/1®TQ ®
N, =N ( } jN

6=(N" N+/19N) NTy
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Smoothing Splines (Cont.)

Properties of smoothing splines

- Fitted function: f = N(NTN + AQ )_1NTy =S,y

 |If we take a few basis functions M<<N and
compute Bgat § .

T -looT
f :Béf(Béf Bf) B, y=H.y
* Hglis alinear projection operator
« Both symmetric, positive definite, different ranks

Shrinking nature of S,:
H.H.,=H,, S,5,<S,
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Smoothing Splines (Cont.)

Properties of smoothing splines

* M=trace(H;) defines the dimension of the
basis functions (degrees of freedom)

« By analogy, effective degrees of freedom for
the smoother matrix S, Is

df), = trace(S,)

-> A way to select A
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Smoothing Splines (Cont.)

Eigenvalue decomposition

« Rewriting in Reinsch form (show): S, = (I +/1K)‘1
K is a penalty matrix

* The eigen-decomposition is (show):

N
S, = Zpk (ﬂ*)ukul
k=1

1
1) =
Pk() 1+ d,

* Note: d, and u, are respective eigenvalues and
eigenvectors of K
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Smoothing Splines (Cont.)

Eigenvalue decomposition — conclusions
N
S,y = Zukpk (/1)<u1 ’Y>
k=1

« Smoothing spline decomposes vector y with
respect to basis of eigenvectors and shrinks
respective contributions

* The eigenvectors ordered by p increase in
complexity. The higher the complexity, the

more the respective contribution is shrunk
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Smoothing Splines (Cont.)

Eigenv

Eigenvalue decomposition — conclusions

0.2 0.0 0.2 0.4 0.8 0.8 1.0 1.2

L
QQQQQ

; / Zz | - K_
L W x
- \
T T T I |
10 15 20 25
NN AT T T 7

i
Order -50 0 50 100 -50 0 50 100
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Smoothing Splines (Cont.)

Eigenvalue decomposition — conclusions

* Eigenvalues are reverse functions of A. The
higher A, the higher penalization

 Smoother matrix is has banded nature ->
local fitting method e

N
df, =t =
, =trace(S,) Z; — /Id
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Smoothing Splines (Cont.)

« How does one fit splines in practice?
- Reinsch form: S, =(1+AK)™

* Theorem. If f is natural cubic spline with values at
knots f and second derivative 7 at knots then

Q'f =Ry
where Q & R are band matrices, dependent on ¢ only
 Theorem. T
K=QR"Q
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Smoothing Splines (Cont.)

Reinsch algorithm (show...)
« Evaluate Q'y

« Compute R+AQ’Q and find Cholesky
decomposition (in linear time!)

* Solve matrix equation (in linear time!)
« Obtain f=y-AQy
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Selection of Smoothing Parameters

Fixing the degrees of freedom
N
1

f. =t S, )=
df, =trace(S, ) kZ:;Hﬁdk

* |f we fix df, then we can find A by solving the
equation numerically

* |t is not difficult to solve since the function is
monotonic

* One could try two different df, and choose
one based on F-tests, residual plots etc.
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Nonparametric Logistic Regression

Logistic regression model | Pr(Y =1] X =x) _ f(X)
Pr(Y =0| X = x)

* Note: X is one-dimensional but "what is f(x)""?

Linear -> ordinary logistic regression (Chapter 4)

Enough smoothness -> nonparametric logistic
regression (splines+others)

* Other choices are possible
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Nonparametric Logistic Regression (Cont.)

Problem formulation:
* Minimize penalized log-likelihood

min | (f,4)=1,(f ,ﬂ)—%ﬂj{f"(t)}zdt

« Good news: Solution is still a natural cubic spline

« Bad news: There is no analytic expression of that
spline function

41 ECE7252 Spring 2008 Center of Signal and Image Processing C SI P

Georgia Institute of Technology



Nonparametric Logistic Regression (Cont.)

How to proceed?

 Use Newton-Rapson to compute spline
numerically, i.e

_ae) _, o1,(0) :
Compute VI, = = ,v. |, = 20007 (analytically)
« Compute Newton direction using current

parameter and derivative information

« Compute new values of parameters using
old values and update formula

®new _ ®old —(Vzlp)_1V|

P
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Multidimensional Splines

How to fit data smoothly in higher dimensions?

« Use basis of one dimensional functions and
produce basis by tens A |
g,k<x>:h1-<x (X, >, AN .
=3 0.q,(X - jr'[ AR AT AT

. Problem. Exponential

Ly

growth of basis with dim
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Multidimensional Splines (Cont.)

How to fit data smoothly in higher dimensions?
Alternative: Formulate a new problem

mlnz . ) +Ad[f]

* The solution is thin-plate splines
* The similar properties for A=0

* The solution in 2 dimension is essentially sum of
radial basis functions

f(x)=p, +,BTx+Zaj77(Hx—xjH)
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Wavelets

* The idea: to fit bumpy function by removing noise
* Application area: signal processing, compression

 How it works: The function is represented in the
basis of bumpy functions. The small coefficients
are filtered
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Wavelets (Cont.)

Basis functions (Haar Wavelets, Symmlet-8 Wavelets)

Haar Wavelets Symmlet-8 Wavelets

_ o
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Wavelets (Cont.)

An Example

h f“."
/ |
st P

Wavelet Transform - Original Signal

NMR Signal

Wavelet Transform - WaveShrunk Signal

Signal a S Sigmal
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Summary

Today’s Class
— Basis Expansion (Chapter 5)

Next Classes

— Model Selection
Quiz 2: April 2

Reading Assignments
— HTF, Chapters 6 & 5
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