ECE7252 Statistical Learning for Signal Processing

Matrix Algebra for Multivariate Gaussian

Chin-Hui Lee
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA
chl@ece.gatech.edu

Outline

- What is multivariate Gaussian?
- Parameterizations
- Mathematical Preparation
- Joint distributions, Marginalization and conditioning
- Maximum likelihood estimation

What is Multivariate Gaussian?

$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\}$$

Where x is a n^*1 vector, Σ is an n^*n , symmetric matrix

$$\Sigma^{-1} = \begin{pmatrix} \langle x_1 \rangle^2 & \langle x_1, x_2 \rangle & \cdots \\ \langle x_1, x_2 \rangle & \langle x_2 \rangle^2 & \vdots \\ \vdots & \cdots & \ddots \end{pmatrix}$$

Geometrical Interpretation

This is a ellipse with the coordinate x1 and x2

Thus we can easily image that when *n* increases the ellipse became higher dimension ellipsoids

Parameterization

Another type of parameterization, putting it into the form of exponential family:

$$\mu = E(x)$$

$$\sum = E(x - \mu)(x - \mu)^{T}$$

$$p(x \mid \eta, \Lambda) = \exp\{a + \eta^T x - \frac{1}{2} x^T \Lambda x\}$$

$$\Lambda = \Sigma^{-1}$$

$$\eta = \Sigma^{-1} \mu$$

$$a = \frac{1}{2} (n \log(2\pi) - \log|\Lambda| + \eta^T \Lambda \eta)$$

Mathematical Preparation

- In order to get the marginalization and conditioning of the partitioned multivariate Gaussian distribution, we need the theory of block diagonalization of a partitioned matrix
- In order to do maximum likelihood estimation, we need the knowledge of the traces of the covariance matrix

Partitioned Matrices

Consider a general partitioned matrix

$$M = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$$

To zero out the upper-right-hand and lower-left-hand corner of M, we can pre-multiply and post-multiply matrices in the following form

$$\begin{bmatrix} I & -FH \\ 0 & I \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} \begin{bmatrix} I & 0 \\ -H^{-1}G & I \end{bmatrix} = \begin{bmatrix} E - FH^{-1}G & 0 \\ 0 & H \end{bmatrix}$$

Partitioned Matrices (Continued)

• Define the Schur complement of Matrix M with respect to H, denote M/H as the term $E-FH^{-1}G$

Since

$$(XYZ)^{-1} = Z^{-1}Y^{-1}X^{-1} = W^{-1}$$

 $Y^{-1} = ZW^{-1}X$

$$\begin{bmatrix} E & F \\ G & H \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -H^{-1}G & I \end{bmatrix} \begin{bmatrix} (M/H)^{-1} & 0 \\ 0 & H^{-1} \end{bmatrix} \begin{bmatrix} I & -FH^{-1} \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} (M/H)^{-1} & -(M/H)^{-1}FH^{-1} \\ -H^{-1}G(M/H)^{-1} & H^{-1} + H^{-1}G(M/H)^{-1}FH^{-1} \end{bmatrix}$$

Partitioned Matrices

 Note that we could alternatively have decomposed the matrix m in terms of E and M/E, yielding the following for the inverse

$$\begin{bmatrix} I & 0 \\ -GE^{-1} & I \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} \begin{bmatrix} I & -E^{-1}F \\ 0 & I \end{bmatrix} = \begin{bmatrix} E & F \\ 0 & -GE^{-1}F - H \end{bmatrix} \begin{bmatrix} I & -E^{-1}F \\ 0 & I \end{bmatrix} = \begin{bmatrix} E & 0 \\ 0 & -GE^{-1}F - H \end{bmatrix}$$

$$\begin{bmatrix} E & F \\ G & H \end{bmatrix}^{-1} = \begin{bmatrix} I & -E^{-1}F \\ 0 & I \end{bmatrix} \begin{bmatrix} E^{-1} & 0 \\ 0 & (M/E)^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -GE^{-1} & I \end{bmatrix}$$

$$= \begin{bmatrix} E^{-1} & -E^{-1}F(M/E)^{-1} \\ 0 & (M/E)^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -GE^{-1} & I \end{bmatrix}$$

$$= \begin{bmatrix} E^{-1} + E^{-1}F(M/E)^{-1}GE^{-1} & -E^{-1}F(M/E)^{-1} \\ -(M/E)^{-1}GE^{-1} & (M/E)^{-1} \end{bmatrix}$$

Partitioned Matrices (Continued)

Thus we get

$$(E-FH^{-1}G)^{-1}=E^{-1}+E^{-1}F(H-GE^{-1}F)^{-1}GE^{-1}$$

$$(E - FH^{-1}G)^{-1}FH^{-1} = E^{-1}F(H - GE^{-1}F)^{-1}$$

At the same time we get the conclusion

$$|M| = |M/H||H|$$

Theory of Traces

Define

$$tr[A] \square \sum_{i} a_{ii} = \sum_{i} \lambda_{i}$$

It has the following properties:

$$tr[ABC] = tr[CAB] = tr[BCA]$$

$$x^{T}Ax = tr[x^{T}Ax] = tr[xx^{T}A]$$

Theory of Traces (continued)

$$\frac{\delta}{\delta a_{ij}} tr[AB] = \frac{\delta}{\delta a_{ij}} \sum_{k} \sum_{l} a_{kl} b_{lk} = b_{ji} \quad \text{so} \quad \frac{\delta}{\delta A} tr[BA] = B^{T}$$

$$\frac{\delta}{\delta A} tr[BA] = B^T$$

$$\frac{\delta}{\delta A} x^T A x = \frac{\delta}{\delta A} tr[x x^T A] = [x x^T]^T = x x^T$$

Theory of Traces (continued)

We want to show that

$$\left| \frac{\delta}{\delta A} \log |A| = A^{-T}$$

$$\frac{\delta}{\delta a_{ij}} \log |A| = \frac{1}{A} \frac{\delta}{\delta a_{ij}} |A|$$

Recall

$$A^{-1} = \frac{1}{|A|} \tilde{A}$$

This is equivalent to prove

$$\frac{\delta}{\delta a_{ij}} |A| = \tilde{A}$$

Noting that

$$|A| = \sum_{j} (-1)^{i+j} a_{ij} M_{ij}$$

Joint Distributions, Marginalization & Conditioning

We partition the n by 1 vector x into p by 1 and q by 1, which n = p + q

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{(p+q)/2} |\Sigma|^{1/2}} \exp\{-\frac{1}{2} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}^T \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}^{-1} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}\}$$

Marginalization and Conditioning

$$\begin{split} & \exp\{-\frac{1}{2} \begin{pmatrix} x_{1} - \mu_{1} \\ x_{2} - \mu_{2} \end{pmatrix}^{T} \begin{bmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{bmatrix}^{-1} \begin{pmatrix} x_{1} - \mu_{1} \\ x_{2} - \mu_{2} \end{pmatrix} \} \\ & = \exp\{\frac{1}{2} \begin{pmatrix} x_{1} - \mu_{1} \\ x_{2} - \mu_{2} \end{pmatrix}^{T} \begin{bmatrix} I & 0 \\ -\sum_{22}^{-1} \sum_{21} & I \end{bmatrix} \begin{bmatrix} (\sum/\sum_{22})^{-1} & 0 \\ 0 & \sum_{22} \end{bmatrix} \\ \begin{bmatrix} I & -\sum_{12} \sum_{22}^{-1} \\ 0 & I \end{bmatrix} \begin{pmatrix} x_{1} - \mu_{1} \\ x_{2} - \mu_{2} \end{pmatrix} \} \\ & = \exp\{-\frac{1}{2} (x_{1} - \mu_{1} - \sum_{12} \sum_{22}^{-1} (x_{2} - \mu_{2}))^{T} (\sum/\sum_{22})^{-1} (x_{1} - \mu_{1} - \sum_{12} \sum_{22}^{-1} (x_{2} - \mu_{2})) \} \\ & \exp\{\frac{1}{2} (x_{2} - \mu_{2})^{T} \sum_{22}^{-1} (x_{2} - \mu_{2}) \} \end{split}$$

Normalization Factor

$$\frac{1}{(2\pi)^{(p+q)/2} |\Sigma|^{1/2}} = \frac{1}{(2\pi)^{(p+q)/2} (|\Sigma/\Sigma_{22}||\Sigma_{22}|)^{1/2}} \\
= \left(\frac{1}{(2\pi)^{p/2} (|\Sigma/\Sigma_{22}|)^{1/2}}\right) \left(\frac{1}{(2\pi)^{q/2} (|\Sigma_{22}|)^{1/2}}\right)$$

Marginalization and Conditioning

Thus

$$p(x_2) = \left(\frac{1}{(2\pi)^{q/2}(|\Sigma_{22}|)^{1/2}}\right) \exp\left\{\frac{1}{2}(x_2 - \mu_2)^T \sum_{22}^{-1}(x_2 - \mu_2)\right\}$$

$$p(x_1 | x_2) = \left(\frac{1}{(2\pi)^{p/2} (|\Sigma/\Sigma_{22}|)^{1/2}}\right)$$

$$\exp\left\{-\frac{1}{2}(x_1 - \mu_1 - \Sigma_{12} \Sigma_{22}^{-1}(x_2 - \mu_2))^T (\Sigma/\Sigma_{22})^{-1}(x_1 - \mu_1 - \Sigma_{12} \Sigma_{22}^{-1}(x_2 - \mu_2))\right\}$$

Marginalization and Conditioning (Cont)

Marginalization

$$\mu_2^m = \mu_2$$

$$\sum_2^m = \sum_{22}$$

Conditioning

$$\mu^{c}_{1|2} = \mu_{1} + \sum_{12} \sum_{22}^{-1} (x_{2} - \mu_{2})$$

$$\sum_{1|2}^{c} = \sum_{11} - \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{21}^{-1} \sum_{21} \sum_{21}^{-1} \sum_{21} \sum_{21}^{-1} \sum_{21} \sum_{21}^{-1} \sum_{21} \sum_{21}^{-1} \sum_{21} \sum_{21}^{-1} \sum_{21$$

In Another Form

Marginalization

$$\eta_{2}^{m} = \eta_{2} - \Lambda_{21} \Lambda_{11}^{-1} \eta_{1}$$

$$\Lambda_{2}^{m} = \Lambda_{22} - \Lambda_{21} \Lambda_{11}^{-1} \Lambda_{12}$$

Conditioning

$$\eta^{c}_{1|2} = \eta_{1} - \Lambda_{12} x_{2}$$

$$\Lambda^{c}_{1|2} = \Lambda_{11}$$

Maximum Likelihood Estimation

Likelihood function expression:

$$l(\mu, \Sigma | D) = -\frac{N}{2} \log |\Sigma| - \frac{1}{2} \sum_{i=1}^{N} (x_i - \mu)^T \sum_{i=1}^{N} ($$

Taking derivative with respect to µ

$$\frac{\delta l}{\delta \mu} = \sum_{i=1}^{N} (x_i - \mu)^T \sum^{-1}$$

Setting to zero

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Estimating Σ

We need to take the derivative with respect to Σ

$$l(\Sigma | D) = -\frac{N}{2} \log |\Sigma| - \frac{1}{2} \sum_{n} (x - \mu)^{T} \Sigma^{-1} (x - \mu)$$

$$= \frac{N}{2} \log |\Sigma^{-1}| - \frac{1}{2} \sum_{n} tr[(x - \mu)^{T} \Sigma^{-1} (x - \mu)]$$

$$= \frac{N}{2} \log |\Sigma^{-1}| - \frac{1}{2} \sum_{n} tr[(x - \mu)(x - \mu)^{T} \Sigma^{-1}]$$

According to the property of traces

$$\frac{\delta l}{\delta \Sigma^{-1}} = \frac{N}{2} \Sigma - \frac{1}{2} \sum_{n} (x_n - \mu)(x_n - \mu)^T$$

Estimating Σ (Continued)

Thus the maximum likelihood estimator is

$$\hat{\Sigma}_{ML} = \frac{1}{N} \sum_{n} (x_n - \mu)(x_n - \mu)^T$$

The maximum likelihood estimator of canonical parameters are

$$\hat{\Lambda} = \hat{\Sigma}_{ML}^{-1}$$

$$\hat{\eta} = \hat{\Sigma}_{ML}^{-1} \hat{\mu}_{ML}$$

