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What is Multivariate Gaussian?

Where x Is a n*1 vector, > Is an n*n, symmetric matrix
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Geometrical Interpretation

e This is a ellipse with the coordinate x1 and x2

Thus we can easily

Image that when n
7 increases the ellipse

- 4 - X,
@%// became higher

L dimension ellipsoids

I
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Parameterization

Another type of parameterization, putting it
Into the form of exponential family:

Y =E(x-pu)(x—p)'

1
A= (nlog(27)—log| A|+7' An)
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Mathematical Preparation

* |In order to get the marginalization and
conditioning of the partitioned multivariate
Gaussian distribution, we need the theory of
block diagonalization of a partitioned matrix

* |n order to do maximum likelihood estimation,
we need the knowledge of the traces of the
covariance matrix
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Partitioned Matrices

« Consider a general partitioned matrix

o o

M =

G H

To zero out the upper-right-hand and lower-left-

hand corner of M, we can pre-multiply and
post-multiply matrices in the following form

b Ve e HT R
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Partitioned Matrices (Continued)

* Define the Schur complement of Matrix M with
respectto H, denote M/H as the term |[SS=txe

Since

SSlE FI' [ 1 offm/H)y* o |1 -FH™
G H| |-H'G | 0 H{o I

(M /H)™ (M /H)™FH*
"HIGM/H)? H'+H'GM/H)'FH™"
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Partitioned Matrices

* Note that we could alternatively have decomposed the matrix
m in terms of E and M/E, yielding the following for the inverse

il by 3 o ceenlo o s

{ ; | —-E'F ||E! 0 { |
H | 0 (M /E)?*|| -GE !

| ETY —ElF(M/E)l{ | o}
1o (M /E)? ~GE' |

5 E*'+E'F(M /E)'GE™* —-E'F(M /E)™
-(M /E)'GE ! (M /E)
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Partitioned Matrices (Continued)

e Thus we get

(E-FH'G)'=E'+E'F(H-GE'F)'GE™

(E-FH'G)'FH*=E'F(H-GE'F)™

* At the same time we get the conclusion

IM] = [M/H[[H
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Theory of Traces

e Deflne

It has the following properties:
trfABC] = tr[CAB] = tr[BCA]

X AX =tr[x' Ax]=tr[xx' A]
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Theory of Traces (continued)

o) o) )
—tr[AB] = — ab, =b. —tr[BA]=B'
sa. [AB] 58, ZK:Z O =i IR TIBA]

J

O\ AX = itr[xxT Al=[xx"] =xx'

oA oA
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Theory of Traces (continued)

We want to show that 5;5A og| A= AT

o) 1 0O
S 00| AE——| A
5a,.j A§aij
_ 1 -
Recall LGt

| Al

o) ~

This is equivalent to prove El Al=A

Noting that
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Joint Distributions, Marginalization & Conditioning

We partition the n by 1 vector x into p by 1 and
gbyl, whichn=p+gq

Fﬂ le}
201 2o

1( X —44 : P 212}1[)(1_:%)}
—tb) (20 2| \ X%~ kb
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Marginalization and Conditioning

[

M 0} (Z/Z,)" 0
_Z; Z21 | 0 Z:22

I _212 222_l X —H
0 | XK=

1 1 T 1 1
= eXp{—E(Xl — =202 (X —15)) (2 25) (X = =20 2. (% _ﬂz))}

1 Tv -1
_exp {E (X, —15,) 2.5, (% _ﬂz)}
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Normalization Factor

1 1

Q)P S )R E I, (1 X, Y

1 1
_ ((Zﬂ)plz(l Z/222 |)1/2 ]E(Z”)qlz(l Z22 |)l/2 j
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Marginalization and Conditioning

Thus

1

1 Ty -1
W}exp{g(xz — ) 2, (Xz_:uz)}

p(xz) :(

PO [ %) =(;
(20" (212 )

o {308~ Ty 06 ~10)] () 5145, 0616
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Marginalization and Conditioning (Cont)

Marginalization

Conditioning

ﬂcuz =1 +2, 222_1()(2 — 1)
Zcuz — Z‘411 _212 Zzz_l 221
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In Another Form

Marginalization

772m =1, -\, 1_1

Azm — Azz _A21A1_11 A12

Conditioning
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Maximum Likelihood Estimation

Likelihood function expression:

4 21 D) = log X1 — > (X~ X ~2)

Taking derivative with respect to |

Setting to zero
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Estimating X

We need to take the derivative with respect to >
\ 1 _
(2] D)=—5Iog|2|—52(x—uf > (x— )

= log| £ -2 trl(x- )" X (x- )]

N 1 1 T -1
=5|09|Z‘ |—§Ztr[(X—ﬂ)(X—ﬂ) 2]
According to the property of traces

= DN (X, )X, )

Syt 2
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Estimating > (Continued)

Thus the maximum likelihood estimator Is

i|\/||_ :%Z(Xn — 1)(X, _/U)T

The maximum likelihood estimator of canonical
parameters are
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