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Talk of the town: Data Science
Harnessing the Data Revolution by exploiting Big Data

• Enable data driven discovery through machine learning
• From education to chemistry to biology to astronomy to 

physics to engineered systems like Internet of Things, and 
more

• Innovations grounded in an education-research-based 
framework

• Advanced cyberinfrastructure
• An example application: real-time sensing/computation of 

observational data from the atmosphere, land and water, enhancing our 
ability to:
• Detect tornadoes/hazardous weather with pinpoint accuracy
• Predict accurately storm tracks with real-time data assimilation
• Warn and respond using data of human activity and context
• Optimize weather-dependent logistics, transportation, etc.
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What is Data Science?

Van Diagram (one version):
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Is Everything Data Science?
- Steven Geringer, 2014: 
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AI-Centric Perspective
- Gregory Piatetsky-Shapiro, 2016:
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A Holistic View of Data Science 
(David Blei and Padhraic Smyth, PNAS 2017):

Data science is more than a combination of statistics and computer 
science - it requires training in how to weave statistical and 
computational techniques into a larger framework, problem by 
problem, and to address discipline-specific questions.

Requires:
• understanding the context of data
• appreciating the responsibilities involved in using private and public 

data 
• clear communication on  what a dataset can and cannot tell
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Practitioner’s Perspective on Data Science:

The practice of data science is not just a single step of 
analyzing a dataset. 

Rather, it cycles between data preprocessing, exploration, 
selection, transformation, analysis, interpretation, and 
communication.

A comprehensive treatment (from qualitative to technical):
Cohen M, Guetta D., Jiao K, Provost F. “Data-Driven Investment 
Strategies for Peer-to-Peer Lending: A Case Study for Teaching 
Data Science,” Big Data, Sept. 2018 

Practitioner’s definition: 
Data Science is the study of extracting value from data

Jeannette Wing, Columbia Univ.  
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Outline

Focus: Structured Learning on Temporal Networks 
v Complex systems perspective

Today: Three Predictive Analytics Topics 
v Examples from Zoran’s lab

Challenges:

1. Large dynamic spatiotemporal networks

2. Network embeddings for outage occurrence prediction

3. Structure-aware intrinsic representation learning of temporal 
networks for wind power prediction



Feb 19, 2019, at 6:45 PM, TUalert Weather Advisory <9ab1be24-0005-3000-80c0-
fceb55463ffe@notify2.mir3.com>:

Zoran Obradovic,
Because of the likelihood of severe weather, Temple’s U.S. campuses will be closed and 
classes are cancelled tomorrow, Wednesday, Feb. 20. Only essential employees should 
report as scheduled. Non-essential employees should not report. Medicine, Dentistry 
and Podiatry will issue information about clinic schedules. Details at temple.edu
TUalert Weather Advisory

Known : 75% of power outages are weather related 

Objective: A pro-active maintenance and operation of power system infrastructure upon 
evolving weather events based on outage probability estimates
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Data Science in Complex Systems - An Example: 
Learning to Predict Weather-Related Outages in Transmission 



Data: integration of Big Data sources related to weather impacts on electric transmission 
and distribution. 

Approach: A graphical model is used to predict y at all nodes given x and dependencies 
temporally observed

•exploits big data and physical network components together in time and space
•capable of predicting risk of a transmission line insulation breakdown in case of future lightning 
strikes (Dokic, et at HICS 2016)
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Learning to Predict Weather-Related Outages in Transmission 

Kezunovic, M., Obradovic, Z., Dokic, T., Roychoudhury, S. “Systematic Framework for Integration of Weather Data 
into Prediction Models for the Electric Grid Outage and Asset Management Applications,” HICSS 2018



CHALLENGE 1: Exploiting Structure

• The regression method should be able to take into consideration structure
represented as various linkage relations among the nodes (weighted connections)

• The connections are of different nature, each offering partial information, so that the
contributions should not be averaged and have valuable information lost

xi

yi

xi R
1(x
i)R

2(x
i)

R
k(x
i)

yi

xj
yj

𝑆"#
$ 𝑆"#

%

Goal: Prediction of a real valued N-dimensional response y = (y1, …, yN), given:
- explanatory variables x = (x1, …, xN)
- dependencies between the responses y, represented by a set of networks, each

describing one of multiple types of connections among the nodes.



Structured Regression by Gaussian Conditional Random Fields (GCRF)

Glass, J., Ghalwash, M.,  Vukicevic, M., Obradovic, Z.,  “Extending the Modeling Capacity of  GCRF while Learning 
Faster,” Proc. Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix, AZ, February 2016.

PNI-GCRF:  Extends GCRF parameter spaces (both α and β) while preserving convexity to 
allow modeling positive and negative influences

Given the weighted graph and unstructured predictors Rk GCRF learns: 
• β: the importance of link weights Eij,
• α: the degree of belief towards unstructured predictors Rk

GCRF: Restricts both α and β to positive values to preserve convexity of the search space

Learning: Convex optimization to find association and interaction parameters α and β

Good SolutionBad

2 Related Work
The ability of GCRF to model structured data in discrimi-
native way while preserving convexity of the search space
and efficiency of learning led to many extensions of the
model and applications in high impact areas: Climate [?; ?;
?], Energy forecasting [?; ?], Healthcare [?; ?], Speech recog-
nition [?], Computer vision [?; ?], etc.

In recent years, increasing interest is showed for improving
GCRF efficiency of exact parameter estimations, by exploit-
ing graph sparsity. Sparse multiple-output regression method
that can jointly learn both the output structure and regression
coefficients with structured sparsity is proposed by [?]. In ad-
dition, a convex formulation for this problem is derived using
l1-regularized maximum-likelihood estimation [?]. Further
specialized second-order active set method is developed for
estimating sparse Gaussian CRF parameters [?] which lead
to high perfomance parameter optimization for influence of
structure and linear unstructured predictors.

Another line of research was developing models for ex-
act parameter estimation, based on structure defined by prior
knowledge and large number of possibly non-linear unstruc-
tured predictors. Original model proposed in [?] was ex-
tended in several ways. Neural GCRF [?] introduced de-
pendency of feature functions on original input attributes.
This allowed simultaneous learning of unstructured predic-
tors with structure (in previous work structured predictors
were learned independently, and influence of the structure
is then optimized based on unstructured predictions). Fur-
ther, Marginal GCRF [?] is developed in order to address
problem of inference of partially observed temporal graphs.
It is showed that strategy of marginalization of influence of
missing output data integrated in GCRF model significantly
outperforms traditional imputation strategies under different
misingness mechanisms. Additionally it allows efficient in-
ference with up to 80 percent of missing labels. Convenient
definition of GCRF also allowed development of the methods
for inference under high uncertainty [?; ?].

There are also efforts on development GCRF extensions
for learning on large fully connected graphs [?; ?; ?] but since
these methods provide approximations of optimal GCRF pa-
rameters, they are out of the scope of the paper.

Even though all of the reviewed methods showed excel-
lent results in many contexts, they have limited application
potential since they cannot exploit negative inter-correlation
between the nodes, nor to capture negative influence of un-
structured predictors. This can lead to over-smoothing of fi-
nal predictions and ultimately to limited accuracy. The reason
for this limitation is the need for preserving positive semi-
definiteness of precision matrix that ensures efficient opti-
mization. In GCRF this is insured by keeping feature param-
eters positive.

Additionally, predictive modeling on large graphs is heav-
ily dependent on graph sparsity. Sparseness is needed be-
cause of the high cost of inverse matrix computation during
the optimization of model parameters, and thus, only positive
links are modeled, while negative links are ignored. This way,
for many real-life graphs, sparseness is ensured, but negative
information is neglected.

Our contribution. Based on previous considerations, our
challenge is to incorporate information about both positive
and negative links as well as positive and negative influence
of unstructured predictors in GCRF while ensuring convexity
of the search space as well as the positive semi-definiteness
of the precision matrix.

3 GCRF for Regression on Evolving Graphs

In regression on evolving graphs, a vector of attributes x and
a real-valued response variable y are observed at previous
time steps at nodes of a graph while the objective is to predict
future value of y at all nodes given features x. The GCRF is a
discriminative model for regression on an attributed evolving
graph that models the conditional distribution P (y|x) over N
nodes for outputs y given the corresponding inputs x:
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where ↵ and � are parameters of the association A and the
interaction I potentials, respectively, and the normalization
term Z(x,↵,�) is an integral over y of the term in the expo-
nent. The association potential function is defined as [?]:
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where Rk(x) represents any function that maps x ! yi for
each node in the graph. We refer to this function as unstruc-
tured predictor (any regression model) that gives independent
predictions. The influence of each unstructured predictor Rk

on the final predicted value is modeled by GCRF by optimiz-
ing parameters ↵k, where K is the number of unstructured
predictors. The interaction potential function is defined as:
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The similarity between two nodes i and j is defined as Sl
ij .

The GCRF model ensures that the prediction of two similar
nodes are similar. This influence of the similarity (and hence
of the structure of the graph) is modeled through the interac-
tion potential and weighted by the parameter �l, where L is
the number of similarity functions (multi-modal graph).

The conditional probability model (1) can be rewritten as:
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GCRF canonical form. Modeling association (2) and in-
teraction (3) potentials as quadratic functions of y enables
GCRF to represent (4) as multivariate Gaussian distribu-
tion [?]:
P (y|x) = 1
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PNI-GCRF Application: Predicting Number of Hospital 
Admissions by Diseases in California 

Graphs: 108 monthly comorbidity graphs
• Nodes = 253 classes of diseases (CCS codes);
• Edges = correlations between number of admissions
Training: 80 months (Jan. 2003 – Aug. 2009)
Test: 28 months (Sept. 2009 – Dec. 2011)

PNI-GCRF Results:
• PNI-GCRF was more accurate than deep

learning model (see Figure)
• PNI-GCRF was also significantly better

than GCRF (more accurate in 24 of 27
months)

• Using PNI-GCRF we found diseases that
are negatively related to other diseases MSE for PNI-GCRF vs NN,

Data: HCUP SID California EHR database
• Size:  35,844,800 inpatient discharge records for 19,319,350 distinct patients
• Period: 108 months from January 2003 to December 2011
• Hospitals: total 474 hospitals



Structured Regression in Multi-Scale Networks (MSN-GCRF) 
Application: Predict monthly admissions for each disease for each hospital in California

Data: About 36 million hospitalization 
records over 9 years
Nested network representation: 
• Hospitals are nodes in a network
• Each node is a network of comorbidities 

at a single hospital
Problem: 
This graph is huge (about million nodes and 
trillion links ) while GCRF computational 
complexity is O(N3)
SOLUTION: Convex optimization on 
a Kronecker product of matrices 
(we derived a theorem to compute 
Laplacian of a Kronecker product 
efficiently)
Result: logarithmic  learning time 
and memory compared to naïve 
implementations. 

Glass, J., Obradovic, Z. “Structured Regression on Multi-Scale Networks,” IEEE Intelligent Systems, 2017

MSN-GCRF     FE-GCRF     FF-GCRF        GCRF
10 minutes 1.1 weeks 1 week 2 months

Baselines (less accurate):
Neural Network learning needs 7 hours
Vector Autoregression learning needs 6.9 days

Structured regression (more accurate):



• Graphical Models: 
– Commonly used to predict the response at each node in one or 

multiple upcoming time steps.
– Retrained at each step

• Challenges:
– Accumulating  error in multi-step ahead prediction
– Time for prediction is limited



Uncertainty Propagation in Long-term Structured 
Regression on Evolving Networks

Motivation: Long-term prediction of the state of networks (structured 
temporal regression), with application to disease-disease networks
How: Incremental multi-step-ahead prediction relying on previous 
predictions used as uncertain (noisy) inputs

Challenge: Account for accumulating error 

The idea: Take into account distribution of noisy input variable, x*

Objective: Long-term prediction of monthly admission rate for
Septicemia in California hospitals

Graph: Comorbidity disease network in monthly scale:

Nodes: 260 primary diagnoses (CCS codes)
Edges: learned by GCRF as relationships of hospitalization rates for 2 

CCS codes

Training: 60 months; Test: 48 remaining months

• GCRF is capable of properly propagating uncertainty when
model is making mistakes

• IGP predictions make huge mistakes, however uncertainty is
small which is wrong

One month (blue)
and 48 months (red) 
prediction of 
admission rate (MSE) 
on all diseases

Predictions (red) and 
uncertainty estimates (gray) 

of GCRF and Iterative 
Gaussian Process (IGP) for 
Septicemia admission rate

(orange)

Gligorijevic, Dj, Stojanovic, J., Obradovic, Z."Uncertainty Propagation in Long-term Structured Regression on Evolving Networks," Proc. Thirtieth AAAI 
Conference on Artificial Intelligence (AAAI-16), Phoenix, AZ, February 2016.



• Avoid repetitive training by: (1) employing  multiple graphical models to learn 
different relationships and (2) detecting  changes in a network once they 
occur and (3) adapting accordingly

Pavlovski, M., Zhou, F., Stojkovic, I., Kocarev, Lj., Obradovic, Z.  “Adaptive Skip-Train Structured Regression for Temporal Networks,” Proc. European Conf. 
Machine Learning and Principles and Practice of Knowledge Discovery in Databases, September 2017 



• Data: Infuenza A virus subtype H3N2 network observed over time (16 hours/steps)
• Nodes: 12,032 genes

– Features: expression values from 3 previous time steps
– Targets: expression values at the current time step

• Structure: similarities between gene expressions
• Task: Predict texpression values at the next time step

• 34-41% more accurate than alternatives
• 140 times faster than GCRF

Selected AST-SE states



• Fast SHCL method: decompose 
Precision Matrix into a product of 
two Cholesky Factors and impose L1 
penalty on the approximation

• Gene expressions data: 24,840 
variables from 163 septic subjects

• Graph learned by SCHL: ~170,000 
edges

• Manually curated sepsis co-
expression network: 7 connections 
among 7 sepsis related genes

• Sepsis co-expression network 
discovered by SCHL: 8 connections 
where 4 overlap with manual 
curation 

Learning Dependency Structure in a Network: Fast GMRF 
Learning of Sepsis Co-expression Network

19

SCHL QUIC BCDIC CSEPNL

Time [s] 5,038.6 10,011.0 15,929.1 26,665.7

NUS
AP1

CCN
B1

CCN
B2

CDK
N3

BIRC
5

PRC
1

KIF1
4

NUS
AP1

CCN
B1

CCN
B2

CDK
N3

BIRC
5

PRC
1

KIF1
4

MANUALY
CURATED

LEARNED
BY SCHL

SCHL - Much 
faster GMRF 
learning of 
dependency 
structure

Stojkovic, I., Jelisavcic, V., Milutinovic, V., Obradovic, Z. “Fast Sparse Gaussian Markov Random Fields Learning Based on Cholesky Factorization,” Proc. 26th

International Joint Conference on Artificial Intelligence (IJCAI),  Aug. 2017



CHALLENGE 2: Graph Representation Learning by 
Node Embedding

• Inapplicability of machine learning methods

- Nodes (examples) are dependent on each other

- Off-the-shelf ML methods require examples
to be represented by independent vectors

• High computational complexity

- Low parallelizability

- Nodes are coupled explicitly by 𝐸

Node classification

Link prediction

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://10/23/18 cs224w.stanford.edu 20

Limitation  of G=(V,E) representation  for exploiting structure in large networks:

• Relationships are represented explicitly using a set of edges
• Curse of dimensionality (large sparse matrix)

http://0.0.0.10/23/18%20cs224w.stanford.edu


Solution: Network Embedding

• Assign nodes to low dimensional representations that 
effectively preserve the network structure

• Relationships among the nodes are captured by the 
distances between their vectors in the embedded space

• Embedded representations can be learned for:
- nodes, edges, even an entire network

21



Node Embedding

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://10/23/18 cs224w.stanford.edu

22
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Node Embedding - The Main Idea

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://10/23/18 cs224w.stanford.edu
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Node Embedding - Example

• M

24



Node Embedding - Advantages

Dense, continuous, and low-dimensional representations of nodes

Therefore:
• Noise or redundant information can be reduced

• Intrinsic structure information can be preserved

• Nodes are not coupled anymore

• Main-stream parallel computing solutions for large-scale network analysis

25



• Modularity matrix of a graph 𝐺:

𝐵"# = 𝐴"# −
,-,.
%/

,

where
𝐴"# – (𝑖, 𝑗) entry in 𝐺’s adjacency matrix,
𝑑" – degree of node 𝑖,

𝑚 – total number of links.

• The top 𝐾 eigenvectors of 𝑩 are used to embed the nodes in 𝐺

Newman, Mark EJ. “Modularity and community structure in networks.” PNAS 2006.

Example: Modularity-based Embedding

26



Another Example: DeepWalk-based Node Embedding

• Generalizes recent advancements in NLP and 
unsupervised feature learning (or deep learning) 
from sequences of words to graphs

• Uses local information obtained from truncated 
random walks
- treats walks as sentences

• Trivially parallelizable

• Application: multi-label network classification for 
social networks

Perozzi, et al. “DeepWalk: Online learning of social representations.” SIGKDD 2014. 27



Another Example: LINE-based Node Embedding

• Suitable for arbitrary types of information networks

• Optimizes a carefully designed objective function that preserves both 
local and global network structures

• Very efficient: millions of vertices and billions of edges in a few hours

Tang, et al. “LINE: Large-scale Information Network Embedding.” WWW 2015.

Visualization of a co-authorship network

Hubs are clustered tightly 
into the center area

LINE is not 
sensitive to hubs

28



Node2vec – based Node Embedding

• Scalable Feature Learning for Networks

• Learns embeddings that maximize the likelihood of preserving neighborhoods of nodes

• Utilizes a biased random walk procedure, which efficiently explores diverse neighborhoods

• Flexible notion of a node’s neighborhood

• Generalizes prior work!

Grover, Aditya, and Leskovec "node2vec: Scalable feature learning for networks," SIGKDD 2016.
29



Neighbourhood definition

Captures
structural equivalence

Captures
homophily

Node2vec Node Embedding 

Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." SIGKDD 2016. 30



Grover, Aditya, and Leskovec "node2vec: Scalable feature learning for networks," SIGKDD 2016.

• Node2vec outperforms alternative models for 
all fractions of labeled data.

31



What if a network evolves over time?
Dynamic Network Embedding

• Goal: Learn time-preserving embeddings that maximize

• Utilize temporal random walks to explore nodes’ neighborhoods:

Each node 𝑣 in a valid temporal walk sequence must temporally succeed 
(i.e. exist in time after) every node that precedes it in the sequence.

Nguyen, et al. “Continuous-time dynamic network embeddings,” WWW 2018.

32



Valid Temporal Random Walks

Nguyen, et al. “Continuous-time dynamic network embeddings.” WWW 2018.
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Collaborative Logistic Ensemble Classifier
+ utilized distance correlation to balance underfit/overfit [Pavlovski et al, IJCAI 

2018]
+ accounted for generalization performance
+ learned from spatial substructures
+ data: GIS, utility outage records, weather measurements and forecast

Example: Lightning as a cause of outages (PNW)

• No outages occurred ⇨ outage probabilities are smaller than 60% for all substations
• Outages occurred ⇨ the area around the outages has points with probability over 80%

34

APPLICATION: Real-time Outage Prediction Mapping

Probabilities of outages estimated by CLEC when: no outages occurred (left), and outages were caused by lightning  (right).

Dokic T, Pavlovski M, Gligorijevic Dj, Kezunovic M, Obradovic Z, HICSS 2019



Experimental Setup
• Training: data from 1999 to 2010
• Prediction horizon: 2010-2018 
• Substations were embedded into a 𝟓𝟎-dimenstional space based on their spatial proximity
• CLEC was run with 𝑀 = 30 components
• 𝜂 = 30% of the training data were sampled to construct the subset for each LR component

Discussion
• LR (spatial) obtained greater classification performance compared to LR 

⇨ supports the hypothesis that spatial information is truly relevant for this task

• CLEC outperforms its alternatives, yielding higher values for accuracy, AUC and F1
• Large lift in Bias

⇨ shows the benefit of using a subsampling-based ensemble scheme

35

Outage Occurrence Prediction

Prediction performance w.r.t. different evaluation metrics.



• CLEC consistently outperformed LR and LR (spatial)

~0.25-9.5% and ~0.33-6.2% more accurate

• Improvements in AUC and F1 in 3 out of 4 seasons

• CLEC ameliorates Bias across all seasons

• Largest improvements were achieved for the 
Winter season, while the smallest ones were 
recorded for the Summer season

⇨ Reflects the volatility of the climate conditions
in the Pacific Northwest region

36

Performance Variability Across Seasons

Prediction performance across different seasons.



CHALLENGE 3: 
Implicit Attributed Temporal Graph Representation Learning

37

Deterministic Graph: 
A social network

Implicit Graph:
A network of farms

Edges are deterministic in 
social network. E.g., 
friendship connection

Edges are implicit in the network of farms. 
They are decided by prior knowledge. E.g., 
similarity of associated attributes. 



Implicit Attributed Graph

• (𝑦", 𝒙") − node 𝑖 is composed of a target variable and a vector of attributes
• 𝑤"# - edge between node 𝑖 and node 𝑗, determined by prior knowledge

𝑦F

𝒙𝟏

𝒙𝟐𝒙𝟑

𝒙𝟒

𝑦%

𝑦K 𝑦$

𝑤 F
K

𝑤%F

𝑤
%K

𝑤 $
%

𝑋

𝒚

𝒙$
𝒙%
𝒙F
𝒙K

𝑦$ 𝑦% 𝑦F 𝑦K

Feature Space

Target Space

Matrix Representation
An example with 5 attributes in each node

1

23

4

Graph

Attributed Graph
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Adjacency matrix 𝑊
𝑊$$ 𝑊$% 𝑊$F 𝑊$K

𝑊%$ 𝑊%% 𝑊%F 𝑊%K

𝑊F$ 𝑊F% 𝑊FF 𝑊FK

𝑊K$ 𝑊K% 𝑊KF 𝑊KK



Temporal Graph Regression
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Goal: Predict target variables yi at future time step
Matrix view of the 
temporal graph

# snapshots: l
# nodes: p
# features in node: r



• Number of variables in the target space: 𝑶 𝒍 ∗ 𝒑
• Information contained in the target space is redundant
• Model complexity is positively correlated to the number of variables 

• Existing Solutions
• Reducing the variables in the target space
• Learning a more compact latent target space

Graph Representation Challenges
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PTST: Principal Target Space Transformation
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𝑦F𝑦% 𝑦K𝑦$

𝒚 The target space of a graph 

𝒚′

Linear compression via a matrix 𝑉

𝒚[ = 𝒚𝑉

𝑉

Intuition: find a linear transformation such that the original target space 
can be reconstructed from the latent target space

min
^

𝑌 − 𝑌𝑉𝑉` a
%
𝑠. 𝑡. 𝑉`𝑉 = 𝐼

F. Tai and Lin H.-T. “Multi-Label classification with principal label space transformation,” 
Neural Computation, 2012.

Latent target space



CPLST: Conditional Principle Target Space Transformation
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𝑦F𝑦% 𝑦K𝑦$

𝒚 The target space of a graph 

𝒚′

Linear compression via a matrix 𝑉

𝒚[ = 𝒚𝑉

𝑉

𝑋

𝒙$
𝒙%
𝒙F
𝒙K

The feature space of a graph

Latent target space

Latent target space is a predictive form 
of the feature space

𝑣𝑒𝑐 𝑋 𝑈

min
^

𝑣𝑒𝑐 𝑋 𝑈 − 𝑌𝑉 + 𝑌 − 𝑌𝑉𝑉` a
%
𝑠. 𝑡. 𝑉`𝑉 = 𝐼

Chen Y. and Lin H.-T. “Feature-aware Label Space Dimension Reduction for 
Multi-label Classification,” NIPS, 2012.



FaIE: Feature-aware Implicit target space Encoding
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𝑦F𝑦% 𝑦K𝑦$

𝒚 The target space of a graph 

𝒚′

The original target space can be reconstructed
from the latent target space 

𝑋

𝒙$
𝒙%
𝒙F
𝒙K

The feature space of a graph

Learning the Latent target space

Latent target space is predicted directly  
from of the feature space

Intuition: Learning a feature-aware latent target space directly

Lin Z. et al. “Multi-label Classification via Feature-aware Implicit Label Space 
Encoding,” ICML, 2014.



• Limitations of related works
• They do not model the representation of the feature space
• They do not account for the structure of a temporal graph

• SIR - Our Proposed Method
• Joint learning of feature space representation and target space 

representation

Our Recently Proposed Method: 
Structure-aware Intrinsic Representation (SIR) Learning
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Han, C., Cao, X.H., Stanojevic, M., Ghalwash, M., Obradovic, Z.  “Temporal Graph Regression vis Structure-
Aware Intrinsic Representation Learning,” Proc. 19th SIAM Int’l Conf. on Data Mining, May 2019.



SAGA: Structure-aware Graph Abstraction
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Module One (SAGA):

Graph Abstraction: 
summarize 𝑝 nodes into 𝑘
nodes, k < p by minimizing 
reconstruction error

min
ℬ,m

𝒳 − ℬ×$𝐴 a
%

𝒳: feature space tensor
ℬ: latent feature space tensor
𝐴: graph abstraction matrix



Structure-aware Graph Abstraction (Cont.)
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Temporal Smoothness: neighboring graphs on timeline are similar

min
p
q
"r$

st$

||𝐵" − 𝐵"v$||%%

Graph Structure Preservation: if two nodes are close then their abstractions 
should also be similar

min
w
𝑡𝑟(𝐴`𝐿𝐴)

𝐿 is the Laplacian matrix of the similarity matrix 𝑊.



FAL: Integrating Feature-aware target space Learning
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Module Two (FAL):

Maximum Predictability: maintain the 
predictability of the latent target space

min
z,{

||𝑌𝑉 − ℬ F 𝑈||a%

ℬ F is the mode-3 unfolding of tensor 
ℬ (vectorization of the frontal slices. i.e., ℬ F =
[𝐵$ : ,⋯ , 𝐵s(: )])

Maximum Variance Projection: find a 
projection such that the 
reconstruction error is minimized (PCA 
on target space)

𝑚𝑎𝑥^�^r� 𝑡𝑟(𝑉
`𝑌𝑌𝑉)

𝑈 𝑉



SIR: Joint Framework for 
Structure-aware Implicit Representation Learning 
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SIR = SAGA + FAL



SIR: Joint Learning Problem
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𝐴∗, ℬ∗, 𝑈∗, 𝑉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛m,ℬ,�,^�^r�𝑓

• Derivative-free block coordinate descent algorithm is proposed to solve 
this optimization problem

• All sub-problems have closed-form solution.  



• Objective: Providing hourly prediction of power generation at 7 wind 
farms in 24 hours
• Build an implicit graph with 24*7 = 168 nodes in each snapshot 

(p=168)

• 4 features are provided for each node
• zonal and meridional wind components, wind speed, and wind 

direction (r=4)

• Data: Hourly wind data for 1,080 days from 2009/07/01 00:00 am to 
2012/06/29 11:59 pm 

SIR Application: Wind Energy Prediction
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Illustration of the Graphs in Different Temporal Resolutions
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Graphical representation of the graph in one hour
• A full connected graph of 7 farms 
• Assigning all edges with unit weights

...

00:00 am 
– 00:59 am

01: 00 am 
– 01:59 am

10: 00 pm 
– 10:59 pm

11: 00 pm 
– 11:59 pm

Timeline of a day

Graphical representation of the graph in 24 hours
• A spatiotemporal graph of 168 nodes in each snapshot
• Assigning all edges with unit weights
• Blue temporal edges and black spatial edges

2019/05/01 2019/05/02 2019/05/03 2019/05/31

One 
spatio-

temporal 
graph

One 
spatio-

temporal 
graph

One 
spatio-

temporal 
graph

One 
spatio-

temporal 
graph

...
Graphical representation of the temporal graph
• Each square stands for a spatiotemporal 

graph presented above
• Graph representation evolves according the 

hypothesis temporal smoothness 



• Compare the embedding learned by our proposed method (SIR) 
to alternative embeddings (CPLST, FaIE and SAGA) and no embedding (Raw) 
• Raw is a baseline without any embedding learning
• CPLST and FaIE are previously introduced output representation learning methods
• SAGA is the feature representation learning module of our proposed method

• Evaluate the quality of embedding with two regressors (LASSO and SGCRF) for 
temporal graph regression using Mean Square Error (MSE). 
• LASSO is an unstructured regressor, and SGCRF is a structured regressor [Wytock 2013]

• Varied the training sizes from {20%, 40%, 60%, 80%, 100%} of training data and 
experimented on 8 windows for each training size.  
• Size of training data is 𝑙, i.e., the #snapshots in the temporal graph. 𝑙 = 300

Experimental Setting
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Wytock M. et al. “Sparse Gaussian Conditional Random Fields,” ICML, 2013.



Results
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Results using LASSO as regressor

Results using SGCRF as regressor

• SIR-based embedding was always better than alternatives (lower MSE 
across all experimental settings) 
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Covered Today: Introduction to Data Science for
Structured Learning on Temporal Networks 

Several Methods were presented to facilitate Predictive Analytics in:

1. Large dynamic spatiotemporal networks

2. Network embeddings for outage occurrence prediction

3. Structure-aware intrinsic representation learning of temporal 
networks for wind power prediction



Questions?
Zoran Obradovic

zoran.obradovic@temple.edu
www.dabi.temple.edu/~zoran

Questions?


