

Distributed Energy Resource (DER) Analytics

Santiago Grijalva Georgia Institute of Technology sgrijalva@ece.gatech.edu

Acknowledgements

- Advanced Computational Electricity Systems (ACES) Laboratory
- Present and past research contributors
 - Umer Qureshi
 - Sadegh Vejdan
 - Karl Mason
 - Jeremiah Deboever
 - Jouni Pepannen
 - Xiaochen Zhang
 - Matt Reno

Electricity Grid Evolution

Traditional System:

- Bulk generation
- Central control
- Unidirectional power flow

Future System:

- More renewables and DERs
- Bi-directional power flow
- Decentralized control
- Increased sensing and communication
- Massive new data

Outline

- DERs and emerging DER data
- Applications:
 - 1. Detecting solar PV installations
 - Change point detection
 - Neural Network
 - 2. Revenue from energy storage
 - Clustering
 - Optimization
 - 3. Fast PV hosting capacity
 - Event-driven regression over nonlinear voltage manifolds

Outline

- DERs and emerging DER data
- Applications:
 - 1. Detecting solar PV installations
 - Change point detection
 - Neural Network
 - 2. Revenue from energy storage
 - Clustering
 - Optimization
 - 3. Fast PV hosting capacity
 - Event-driven regression over nonlinear voltage manifolds

Distributed Energy Resources (DER)

Solar PV

Energy Storage

Distributed Generation

Flexible Loads

Combined Heat and Power (CHP)

Electric Vehicles

DER Related Data Sources

• Data sources for DER analytics:

DER Related Data Sources

- Utilities, DER Providers, Public
- https://openei.org/wiki/Main_Page
- Net load, Appliances: Smart Meter Data Analytics
 - https://smda.github.io/smart-meter-data-portal/

#	Dataset Examples			
1	Almanac of Minutely Power Dataset (AMPds)			
2	Controlled On/Off Loads Library dataset (COOLL)			
3	Dutch Residential Energy Dataset (DRED)			
4	Electricity Consumption & Occupancy data set (ECO)			
5	GREEND Dataset			
6	Indian Dataset for Ambient Water and Energy (iAWE)			
7	REFIT Electrical Load Measurements dataset			
8	Smart Home Data Set			
9	Tracebase			
10	UK Domestic Appliance-Level Electricity (UK-DALE)			

Outline

- DERs and emerging DER data
- Applications:
 - 1. Detecting solar PV installations
 - Change point detection
 - Neural Network
 - 2. Revenue from energy storage
 - Clustering
 - Optimization
 - 3. Fast PV hosting capacity
 - Event-driven regression over nonlinear voltage manifolds

1. PV Detection

Solar Energy Integration

- Solar represented 29% of all U.S. capacity additions in 2018
- U.S. market installed 10.6 GW of solar PV capacity
- Distributed solar PV accounted for 41% of this capacity
- Solar capacity expected to exceed 100 GW by 2021

	DV				
	PV generation as a %				
	of in-state generation				
	All PV	Utility-Scale			
State	A V	PV Only			
California	15.2%	10.1%			
Hawaii	11.8%	2.0%			
Vermont	11.5%	6.2%			
Nevada	10.7%	9.7%			
Massachusetts	8.1%	3.3%			
Utah	6.2%	5.4%			
Arizona	5.5%	3.8%			
North Carolina	4.4%	4.3%			
New Mexico	3.9%	3.3%			
New Jersey	3.8%	1.6%			
Rest of U.S.	0.5%	0.3%			
TOTAL U.S.	1.8%	1.2%			

Source: EIA's Electric Power Monthly (February 2018)

By 2050, Solar will make up 21% of total installed capacity in the U.S.

PV Detection

Problem:

- PV systems may vary from the interconnection database.
- Keeping PV interconnection databases updated is a major challenge.

Objective:

- Use data driven solutions to detect PV installations.
 - Change Point Detection
 - Convolution Neural Networks

Causes of Discrepancy:

- Not interconnected
- Project delayed
- Changed size
- Module/string failures
- Unauthorized installation

PV Detection using Change Point Method

Change point detection method

Initially no PV. Then try to detect whether there is a PV

PE divergence:

$$PE(P||P') := \frac{1}{2} \int p'(\mathbf{Y}) \left(\frac{p(\mathbf{Y})}{p'(\mathbf{Y})} - 1 \right)^2 d\mathbf{Y}$$

Measures the difference between two distributions

PV Detection using Change Point Method

Hypothesis Testing:

 H_0 : There is NO PV Installed H_1 : There is a PV Installed

Recast:

 H_0 : X and Y are not positively correlated H_1 : X and Y are positively correlated

Spearman's rank (r_s) is used instead of Person since \boldsymbol{X} and \boldsymbol{Y} are not normally distributed

Pearson's r	Spearman's rank coefficient			
r	r_{s}	p-value		
0.9205	0.8351	3.9414e-26		

Convolution Neural Network (CNN)

Data series may not have a change point

Approach

- Synthetic net load Data Generation
 - Uses AMI data
- Classification of daily net load profiles
- Decision Making for each customer

Generating Synthetic Net Load Data

- Load data sourced from Pecan Street data set.
- PV generation data sourced from the Umass Trace Repository*.
- Synthetic net load data generated by combining each data set using:

$$NetLoad_{n(l,s,p)} = Load_l - ScalingFactor_s \times PV_p$$

- Synthetic data set consisted of 50% customers with PV installed.
- "On-the-fly" synthetic data generation method to study sensitivities on the various simulation dimensions.

^{*} http://traces.cs.umass.edu/index.php/Smart/Smart

Classification Using CNN

- Input: daily net load profile.
- Output: probability of PV (1 = PV installed, 0 = no PV).
- Architecture: convolutional layer, max pooling, convolutional layer, max pooling, fully connected layer (100), fully connected layer (1).
- CNN trained for 200 epochs using RMSprop optimization.

Decision Making using Threshold

- Thresholding logic:
- Impact of threshold on TPR, TNR and total customer classification accuracy:

if
$$\sum_{day} PV _Detected_{day} > Threshold \times Ndays \Rightarrow Customer has PV$$
, otherwise does not.

Simulation

- Simulations analyzed the impact of training data parameters on the accuracy of CNN:
 - Number of customers
 - Temporal resolution
 - Level of mislabeled data
- Classifier was trained and tested 10 times for each simulation.
- New training and test data generated at each fold.
- Accuracies and average computational times are recorded.

Results: Number of Training Customers

Classification Accuracy vs Number of Training Customers

Simulation Parameters:

Folds	10
Epochs	200
Test Customers	1000
Resolution	1 min
Training Customers	Varying
Days per Customer	343
% Mislabeled	0.0

Computational Cost vs Number of Training Customers

Results: Temporal Resolution

Simulation Parameters:

Folds	10
Epochs	200
Test Customers	1000
Resolution	Varying
Training Customers	50
Days per Customer	343
% Mislabeled	0.0

Classification Accuracy vs Temporal Resolution

Computational Cost vs Temporal Resolution

Results: Mislabeled Training Customers

Simulation Parameters

Folds	10
Epochs	200
Test Customers	1000
Resolution	1 min
Training Customers	50
Days per Customer	343
% Mislabeled	Varying

Summary

- CNN classifier achieves +98% customer classification accuracy. The experiments conducted reveal the following insights about the data and simulation parameter requirements:
 - 50 training customers provides the best performance. More training customer requires more computational time but does not perform significantly better.
 - 1 minute resolution provides the best accuracy. The classifier's performance is robust to lower resolution data however.
 - The classifier maintains a reasonable accuracy even with 10% mislabeled training data (+85%).

Outline

- DERs and emerging DER data
- Applications:
 - 1. Detecting solar PV installations
 - Change point detection
 - Neural Network
 - 2. Revenue from energy storage
 - Clustering
 - Optimization
 - 3. Fast PV hosting capacity
 - Event-driven regression over nonlinear voltage manifolds

2. Energy Storage Revenue Analytics

Introduction

- Context:
 - Energy storage investors and industry stakeholders are interested in the mechanisms for storage services revenue.
 - Find the best measure of "favorable" price volatility to determine the expected revenue using temporal energy arbitrage.
- Two time scales:
 - Day-ahead (DA) market
 - Real-Time (RT) market
- Day-ahead energy market
 - Market clearance of offers and bids of producers and consumers.
 - Power dispatch with the lowest total cost of operation considering network and security constraints.

Optimization Approach:

- Objective: maximizing the revenue
- Decision variables: charging/discharging power, binary variables
- Input data: storage parameters and market prices
- Constraints: storage power and energy limits
- Assumptions:
 - Price-taker approach: negligible market power
 - Perfect foresight: future prices for the day- ahead horizon are known

$$\max \sum_{t=1}^{T} \pi_{t} \left(P_{t}^{dis} - P_{t}^{chg} \right) \Delta t$$

$$\mathbf{s.t.} \ \forall t \in \mathcal{T}$$

$$0 \leq u_{t}^{dis} + u_{t}^{chg} \leq 1$$

$$P_{\min}^{dis} . u_{t}^{dis} \leq P_{t}^{dis} \leq P_{\max}^{dis} . u_{t}^{dis}$$

$$P_{\min}^{chg} . u_{t}^{chg} \leq P_{t}^{chg} \leq P_{\max}^{chg} . u_{t}^{chg}$$

$$E_{t} = \eta_{s} E_{t-1} + \left(\eta_{chg} P_{t}^{chg} - P_{t}^{dis} / \eta_{dis} \right) \Delta t$$

$$E_{\min} \leq E_{t} \leq E_{\max}$$

$$E_{T} = E_{0}$$

Price Patterns

- Given a fixed size of the energy storage system, the arbitrage revenue is dependent on price data patterns and its statistics.
- PJM day-ahead energy market (2016)
 - Seasonal price patterns
 - Summer: one peak in the early evening
 - Winter: two daily peaks, morning and evening
 - Other markets show almost similar pattern
- Revenue quantification based on price data pattern
- Classification criterion:
 - Pearson correlation coefficient

$$PCC = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Clustering Algorithm

- K-means: classifies energy market prices into two groups
- Input: annual price data
- Outputs:
 - Two clusters for summer and winter daily prices
 - Two base prices for each cluster
- Used to find when each season starts (in terms of electricity prices) and how long it lasts.

Clustering Results

- Algorithm converges in 2 to 4 iterations.
- Summer and winter prices are clustered: (a), (b)
- The best base prices are found: (c)
- The starting day and duration of each cluster is determined: (d)

Regression Results

- Good linear fit
- Dispersion statistics: range, mean absolute deviation, standard deviation

	Season	Range	MAD	σ
β0	summer	-2.55	-2.98	-1.77
	winter	-4.16	-5.01	-5.08
β1	summer	0.92	3.67	2.96
	winter	1.21	5.77	4.53
R ²	summer	0.9868	0.9415	0.9619
	winter	0.9486	0.9253	0.9484

Real-Time (RT) Energy Market

- Price updates on a rolling basis (e.g. 5 min) and not known in advance
- Higher variability of RT prices with higher penetration of renewables
- Higher expected arbitrage opportunities in the RT market
- How do RT revenues compare with DA?

Statistical analysis

- PJM DA and RT price data
- Higher price mean in the day-ahead market
- Higher price variability in the realtime market → Higher expected arbitrage revenues

A. Maximum revenue with perfect foresight

- Similar mixed integer linear optimization model used for the day-ahead market
- Compare maximum RT arbitrage revenues with the day-ahead ones

Year	2013	2014	2015	2016	2017
Mean DA	37.15	49.16	35.61	30.01	30.21
Mean RT	36.57	48.40	33.43	27.27	28.97
Median DA	34.62	38.10	30.58	27.48	27.46
Median RT	32.25	34.48	26.62	24.03	25.28
Std DA	15.46	51.87	22.63	11.58	12.02
Std RT	20.69	65.43	27.91	14.64	17.75

Real-Time Energy Arbitrage Revenue

B. Price with forecasting errors

- Two models: back-casting and random normal errors.
- Proposed optimal dispatch algorithm: optimization based on shrinking horizon dynamic programming.

Dispatch Algorithm

- Let $\hat{\pi}_i$ be the price forecast for time-period i, which can be evaluated by either of the two error models.
- Optimal dispatch decisions are updated at the beginning of each time period i.
- State transition times are negligible.

1:
$$t = 0$$

2: while t < T do

3: Solve:

$$\max \left[\pi_{t} (P_{t}^{dis} - P_{t}^{chg}) + \sum_{i=t+1}^{T} \hat{\pi}_{i} (P_{i}^{dis} - P_{i}^{chg}) \right] \Delta t$$

$$0 \leq u_{t}^{dis} + u_{t}^{chg} \leq 1$$

$$P_{\min}^{dis} . u_{t}^{dis} \leq P_{t}^{dis} \leq P_{\max}^{dis} . u_{t}^{dis}$$

$$P_{\min}^{chg} . u_{t}^{chg} \leq P_{t}^{chg} \leq P_{\max}^{chg} . u_{t}^{chg}$$

$$E_{t} = \eta_{s} E_{t-1} + \left(\eta_{chg} P_{t}^{chg} - P_{t}^{dis} / \eta_{dis} \right) \Delta t$$

$$E_{\min} \leq E_{t} \leq E_{\max}$$

$$E_{T} = E_{0}$$

4: t = t + 1

5: end while

Simulation Results: Back-Casting (BC)

- Revenue (BC) = actual price \times dispatch optimized for the day before
- Figure: 100 × [Revenue (BC) / Revenue (perfect foresight)]

Simulation Results: Normal Errors (NE)

- Revenue (NE) = actual price × dispatch optimized for the simulated price
- Figure: 100 × [Revenue (NE) / Revenue (perfect foresight)]

Energy Storage Revenue Analytics

Conclusions

- Higher value of the real-time energy arbitrage versus day-ahead:
 - Statistical analysis of historical price data
 - Optimization models maximizing the revenue
- Revenue maximization under uncertainty
 - Optimal dispatch based on price forecast error
 - Sensitivities of critical energy storage parameters
- RT arbitrage as an additional revenue stream for energy storage
 - Considerable and reliable if proper optimal dispatch strategies are applied.

Outline

- DERs and emerging DER data
- Applications:
 - 1. Detecting solar PV installations
 - Change point detection
 - Neural Network
 - 2. Revenue from energy storage
 - Clustering
 - Optimization
 - 3. Fast PV hosting capacity
 - Event-driven regression over nonlinear voltage manifolds

PV Impacts on Distribution Systems

- Solar PV is an intermittent, non dispatchable resource
- Power output is dependent upon solar irradiance
- Negative impacts include:
- Voltage limit violations
 - Increased system losses
- Power quality

- Thermal overloading
- Excessive controller actions •
- Protection devices

Power exported back to grid

Traditional Interconnection Studies

- **1) Static screens:** E.g. PV rated power limited to 15% of peak load
 - Locational impacts ignored
 - Feeder specific conditions not considered
- 2) Scenario-based simulation: Evaluates key scenarios using power flow (e.g. max/min load, max/min PV power)
 - Voltage regulation capability ignored
 - Regulators
 - Capacitors
 - Smart inverters
 - Temporal impacts not captured

Pros: Simple, Fast, Utility Friendly Cons: Conservative estimates

Time Series Simulations

■ IEEE P1547.7 recommends:

Brute-force QSTS

- Chronological solution of steady-state power flows
- Discrete controls modeled (tap changers, switches)
- Recommended time step: 1 second to 1 hour
- One-year horizon
- Inputs:
 - Time series data (load and PV)
 - Distribution feeder model
 - Time-step, Time horizon

Temporal Impacts:

- 1) Regulator tap actions
- Capacitor bank operations
- 3) Duration of voltage/thermal limit violation
- 4) Total line losses
- 5) Total VAR feed-in
- 6) Total WATT curtailed

Brute-force QSTS Challenges

- 1) Challenges:
 - Data Requirements: High resolution load (SCADA, AMI) and irradiance data
 - Computational Time: 10-120 hours for a realistic feeder
- 2) Number of Power Flow (PF) solutions required
 - A single PF flow takes fraction of a second, 31.5 million can take several days.
- 3) Switched-mode, nonlinear system of equations
 - Voltage regulation equipment → discrete system states
- 4) Chronological dependence between time steps
 - Regulators, capacitor banks, switches → hysteresis, deadbands
- 5) Multiple valid PF solutions for a given input
 - Machine learning approaches alone produce large errors

Existing Fast QSTS Methods

Power Flow Voltage Manifold

- For n-bus network, we have: $\operatorname{diag}(\tilde{V})(Y\tilde{V})^* = \tilde{S}$... (1)
- $\tilde{V} = \begin{bmatrix} v_1 \angle \theta_1 \\ v_2 \angle \theta_2 \\ \vdots \\ v_n \angle \theta_n \end{bmatrix} \quad \tilde{S} = \begin{bmatrix} p_1 + jq_1 \\ p_2 + jq_2 \\ \vdots \\ p_n + jq_n \end{bmatrix}$
- For QSTS, the time-series profiles $(x_l, x_{pv}) \in [0, 1]$ act as inputs,

$$ilde{S}_i = (p_i + jq_i)x_l \qquad \forall i \in \mathcal{L} \qquad \qquad \text{Set of all loads assigned} \qquad x_l \\ ilde{S}_j = (p_j + jq_j)x_{pv} \qquad \forall j \in \mathcal{K} \qquad \qquad \text{Set of all PVs assigned} \qquad x_{pv} \\ ag{2}$$

- (x_l, x_{pv}) are 'multipliers' scaling real and reactive power injections of loads and PV systems
- Let $u=(v,\theta,x_l,x_{pv})\in\mathbb{R}^{2n+2}$, then we define a power flow manifold $\mathcal M$ as, $\mathcal M:=\{u\mid \mathcal F(u)=\mathbf 0_{2n}\}\quad\dots\ (2)$

where $\mathcal{F}(u)$ is obtained by rewriting (1) in real and imaginary coordinates

 Without loss of generality, we can extend this notion to any number of time series profiles

650

630

Geometric Interpretation

Modified IEEE 13-bus test circuit:

646

645

Projections of the manifold

Model Formulation

- The voltage magnitude has a strong correlation with load and PV multipliers
- This correlation can be modeled by a linear approximant of the form:

$$v^{(j)} = \alpha_0 + \beta_1 x_1 + \ldots + \beta_p x_p \qquad \qquad \text{Equation of hyperplane}$$

p -profiles

- ullet eta_i is referred to as voltage sensitivity coefficient
- lacktriangle Various analytical methods to compute eta_i
 - Newton Raphson (inverse of Jacobian)
 - Gauss-Seidel method
 - Adjoint-network technique

Sensitivity Coefficients

- Perturb-and-observe technique:
 - Introduce small changes in injections
 - Solve the AC power flow problem.
 - Use regression to linearize manifold

Impact of Voltage Regulating Devices

- Maintain voltages +/- 5% of nominal
- Control logic consists of:
 - A 'control' signal (V at secondary winding)
 - 2) A user-specified voltage set point
 - Deadband and delays to avoid 'hunting'
- A change in tap position causes discrete jumps in the power flow manifold
- New sensitivity coefficients determined for each tap position
- Similar impact for capacitor banks.

Linear Sensitivity Model

- Let s_t denote the state of system controllers at time t then,
- The nodal voltage is estimated as $s_t = \mathcal{T}(u_1(t), ..., u_r(t))$
- The plane coefficients $u_r(t)$ are obtained using,

For each node
$$\begin{cases} v^{(j)}(t) = \mathcal{H}_{s_t}^{(j)} \mathbf{x}^\top(t) \\ \mathcal{H}_{s_t}^{(j)} \triangleq \left[\alpha_0, \beta_1, ..., \beta_p\right]_{s_t}^{(j)} \\ \mathbf{x}(t) \triangleq \left[1, x_1(t), ..., x_p(t)\right] \end{cases}$$

where,

$$\mathcal{T}: \mathbb{Z}^r_{\geq} o \mathbb{Z}_+$$
 is a hashing function

Regulator:
$$u_r(t) \in \{0, 1, ..., 32\}$$

Cap bank:
$$u_r(t) \in \{0, 1\}$$

$$\mathcal{H}_{s_t}^{(j)} = (\boldsymbol{X}^{ op} \boldsymbol{X})^{-1} \boldsymbol{X}^{ op} \boldsymbol{Y}^{(j)}$$
 Ordinary Least Squares Estimator (OLS)

Design Matrix

Response Vector

(δ -variations in power injections) (points on the AC power flow manifold)

Design Matrix

 The design matrix X specifies query points on the manifold for the OLS estimator

Choose a δ_i that minimizes error in estimating states of system controllers

Residual Error Heat Map

Test case 1: IEEE 13-bus

- Three 1ϕ voltage regulators (with LDC)
- One 3ϕ controllable cap bank (600 kVAR)
- One 1ϕ cap bank fixed (100 kVAR)

- PV system: 3ϕ 2MW (40% of peak load)
- Time-series Inputs (1 year, 1-sec):
 - 1 Load profile from actual SCADA data
 - 1 PV profile based on irradiance data (Hawaii)

Test case 1: IEEE 13-bus, cont.

QSTS Metric	Brute-force	Fast QSTS (error)
Regulator tap actions:		_
VREG.1 (0.53% RMS Error VREG.2 (-0.42% -0.15%
VREG.2 ($C-\phi$)	8449	-0.52%
Capacitor switches: Cap 1 $(3-\phi)$	2504	-1.03%
Feeder phase voltage:		
Highest	1.0607 p.u.	<0.0001 p.u.
Lowest	0.9673 p.u.	0.0001 p.u.
Duration of ANSI violations:		
Over voltage	22.13 Hrs	-0.07 Hrs
Under voltage	11.47 Hrs	+0.75 Hrs
Per phase voltage (each bus):	total of 41 nodes	
Highest	0.0003 p.u. (mean error)	
Lowest	<0.0001 p.u. (mean error)	

	Brute-force	Fast QSTS	% Reduction
Total time taken	14.25 mins	13.3 secs	98.4%
Power flow solutions	31.5 million	1015	99.9%

Test case 2: utility feeder j1

- 18.1 km, 12 kV feeder with 4,242 nodes
- 1,300 residential, C&I industrial loads (6.3 MW)
- 12 controllable elements (9-VRs, 3-Cap banks)
- Secondary modeled (wye/delta transformers)
- 7 PV systems installed (centralized, distributed)
- Time-series Inputs (1 year, 1-sec):
 - 3 load profiles (residential, commercial, lumped loads)
 - 7 PV profiles (based on geographic location)

Test case 2: utility feeder j1, cont.

QSTS Metric	Brute-force	Fast QSTS (error)
Regulator tap actions:		
Sub LTC $(3-\phi)$	433	-0.46%
VReg 1 $(A-\phi)$	6194	+0.41%
VReg 2 (P	(051	0%
VReg 3 (0.55% R	MS Error	-0.31%
VReg 4 $(A-\phi)$	3070	+0.39%
VReg 5 (<i>B</i> -φ)	3041	-0.65%
VReg 6 (<i>C</i> -φ)	2468	+0.97%
VReg 7 $(A-\phi)$	4509	-0.08%
VReg 8 (<i>B</i> -φ)	3527	-0.05%
Capacitor switches:		
Cap 1 (3- ϕ)	60	+3.33%
Cap 2 (3- ϕ)	627	0%
Cap 3 (3- ϕ)	11	0%
Feeder phase voltage:		
Highest	1.0883 p.u.	< 0.0001 p.u.
Lowest	0.9365 p.u.	+0.0004 p.u.
Duration of ANSI violations:		
Over voltage	151.34 Hrs	-0.50 Hrs
Under voltage	14.09 Hrs	+1.18 Hrs
Per phase voltage (each bus):	total of 4242 nodes	
Highest	< 0.0001 p.u. (mean error)	
Lowest	0.0001 p.u. (mean error)	

	Brute-force	Fast QSTS	% Reduction
Total time taken	24.3 hours	14.8 minutes	98.98%
Power flow solutions	31.5 million	157,332	99.50%

Smart Inverter: Volt-VAR (VV) Mode

- Inverter varies its reactive power (VAR) feedin based on the PCC voltage
- Closed loop control
- VV control follows a reference curve:
 - A dead-band (R3)
 - Variable VAR feed-in (R2, R4)
 - Maximum VAR feed-in (R1, R5)
- Each region of the VV curve causes a 'knot' in the power flow manifold across the entire feeder
- The magnitude of impact is dictated by the size of the inverter and the circuit topology

Test case 3: Smart Inverter Utility feeder CO1

- 21.7 km, 12 kV distribution feeder with 5469 nodes
- 9 controllable elements (4-VRs, 5-Cap banks)
- 1,111 single phase loads, 317 three phase loads
- Secondary system modeled (wye and delta transformers)
- 2.71% voltage imbalance

- 144 PV systems (62% penetration)
- PV_{c1} , PV_{c2} in VV mode
- Time-series Inputs (1 year, 1-sec):
 - 2 load profiles
 - 4 PV profiles

Test case 3: Smart Inverter Utility feeder CO1, cont.

Brute-force	Fast QSTS (error)
AS Error	+0.07%
	+1.36%
4822	-0.45%
4704	+1.65%
360	-0.55%
30	-13.3%
24	-8.33%
526	-0.38%
752	-0.26%
1.0613 p.u.	-0.0001 p.u.
0.9067 p.u.	<0.0001 p.u.
223.07 Hrs	+11.08 Hrs
129.39 Hrs	-3.56 Hrs
	ſ
1220.9	-2.69%
3898.8	-1.46%
	1
10.76	-1.46%
7.923×10^4	+0.58%
total of 5469 nodes	
0.0005 p.u. (mean error)	
0.0002 p.u. (mean error)	
	360 30 24 526 752 1.0613 p.u. 0.9067 p.u. 223.07 Hrs 129.39 Hrs 1220.9 3898.8 10.76 7.923×10 ⁴ total of 54 0.0005 p.u.

	Brute-force	Fast QSTS	% Reduction
Total time taken	67.4 hours	29.8 minutes	99.26%
Power flow solutions	31.5 million	78,884	99.74%

Conclusions

- A fast QSTS algorithm is developed
- Leverages the concept of a power flow manifold and dynamic regression.
- On average, 150 times faster than brute-force QSTS
- All voltage and current related PV impacts accurately estimated
- Performance demonstrated on a variety of test cases
- Potential applications:
 - PV interconnection analysis tool
 - Probabilistic hosting capacity
 - Sensitivity-based hosting capacity
 - Optimal smart inverter settings

Summary

- Massive DERs and emerging DER data
- Applications:
 - 1. Reliable detection of solar PV installations
 - Change point detection
 - Neural Network
 - 2. Insight into mechanisms for energy storage revenue
 - 3. Scalable fast PV hosting capacity

Thanks!

References

- 1. J. Peppanen, M.J. Reno, M. Thakkar, S. Grijalva, R.G. Harley, "Leveraging AMI Data for Distribution System Model Calibration and Situational Awareness", *IEEE Transactions on Smart Grid*, Vol. 6, No. 4, pp. 2050-2059, Jan. 2015.
- 2. J. Peppanen, M. J. Reno, R. Broderick, and S. Grijalva, "Distribution System Model Calibration with Big Data from AMI and PV Inverters," *IEEE Transactions on Smart Grid*, Vol. 1, No. 99, pp 1-10, March 2016.
- 3. X. Zhang, S. Grijalva, "A Data Driven Approach for Detection and Estimation of Unauthorized Residential PV Installations", *IEEE Transactions on Smart Grid*, Vol. 1, No. 99, pp 1-10, April 2016.
- 4. J. Deboever, S. Grijalva, M. Reno, R. Broderick, "Fast Quasi-Static Time-Series (QSTS) for Yearlong PV Impact Studies using Vector Quantization", *Solar Energy Journal*, November, 2017.
- Y. Seyedi, H. Kulkarni, S. Grijalva, "Irregularity Detection in Output Power of Distributed Energy Resources Using PMU Data Analytics in Smart Grids", *IEEE Transactions on Industrial Informatics*, Vol. 4, pp. 2222-2232, April, 2019, DOI: 10.1109/TII.2018.2865765
- M.U. Qureshi, S. Grijalva, M.J. Reno, J. Deboever, X. Zhang and R.J. Broderick, "A Fast, Scalable Quasi-Static Time Series Analysis Method for PV Impact Studies using Linear Sensitivity Model", IEEE Transactions on Sustainable Energy, Vol 10, No. 1 Jan, 2019.
- 7. K. Mason, S. Grijalva, "A Review of Reinforcement Learning for Autonomous Building Energy Management", *Elsevier, Computers and Electrical Engineering*, Submitted, November, 2018.
- M. J. Reno, K. Coogan, S. Grijalva, R. J. Broderick, and J. E. Quiroz, "PV Interconnection Risk Analysis through Distribution System Impact Signatures and Feeder Zones," *IEEE PES General Meeting*, Washington DC, July 27-31, 2014.
- X. Zhang, S. Grijalva, and M. J. Reno, "A Time-Variant Load Model Based on Smart Meter Data Mining," *IEEE PES General Meeting*, Washington DC, July 27-31, 2014.
- X. Zhang, S. Grijalva, "An Advanced Data Driven Model for Residential Plug-in Hybrid Electric Vehicle Charging Demand," *IEEE PES 2015 General Meeting*, Denver, CO, July 26-30, 2015.

- 11. J. Peppanen, M. J. Reno, R. Broderick, and S. Grijalva, "Secondary Circuit Model Generation Using Limited PV Measurements and Parameter Estimation," *IEEE PES General Meeting*, Boston, MA, USA, July 17-21, 2016 (*).
- 12. J. Peppanen, X. Zhang, S. Grijalva, M. Reno, "Handling Bad or Missing Smart Meter Data through Advanced Data Imputation", *IEEE Innovative Smart Grid Technologies* (ISGT), Minneapolis, MN, September 6-9, 2016.
- X. Zhang, S. Grijalva, M. Reno, J. Deboever, R. Broderick, "A Fast, Quasi-Static Time Series (QSTS) Simulation Method for PV Impact Studies Using Voltage Sensitivities of Controllable Elements", IEEE PV Specialists Conference, Washington DC, June 25-30, 2017
- J. Deboever, S. Grijalva, M. Reno, X. Zhang, R. Broderick, "Scalability of the Vector Quantization Approach for Fast QSTS Simulation for PV Impact Studies", IEEE PV Specialists Conference, Washington DC, June 25-30, 2017.
- S. Vejdan, S. Grijalva, "The expected revenue of energy storage from energy arbitrage service based on realistic market data statistics," *Texas Power and Energy Conference*, College Station, TX, February 8-9, 2018. (*)
- S. Vejdan, S. Grijalva, "The value of real-time energy arbitrage with energy storage systems," *IEEE PES General Meeting*, Portland, OR, August 5-10, 2018.
- M.U. Qureshi, S. Grijalva, M.J. Reno, "Fast Quasi-Static Time Series Simulation Method for PV Smart Inverters with VAR Control using Linear Sensitivity Model", IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, HI, June 10-15, 2018.
- J. Deboever, S. Grijalva, J. Peppanen, M. Rylander, J. Smith, "Practical Data-Driven Methods to Improve the Accuracy and Detail of Hosting Capacity Analysis", IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, HI, June 10-15, 2018.
- 19. S. Vejdan, S. Grijalva, "Maximizing the Revenue of Energy Storage Participants in Day-Ahead and Real-Time Markets", *Clemson University Power System Conference*, Charleston, SC, September 4th-7th, 2018.
- D. Diaz, A. Kumar, J. Deboever, S. Grijalva, J. Peppanen, M. Rylander, J. Smith, "Scenario Selection for Hosting Capacity Analysis of Distribution Feeders with Voltage Regulation Equipment", *IEEE Innovative Smart Grid Technologies (ISGT)*, Washington, DC, February 17-20. 2019.