

Towards High Fidelity Modeling of DER Integration to Distribution Grids

PRESENTED BY

Matthew Lave

Smart Grid Edge Analytics Workshop Atlanta, GA June 5, 2019 SAND2019-6176 C

Sandia National Laboratories is a multimission Laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeyvell International Nuc.; for the U.S. Department of Energy's National Nuclear Security Administration under contract DE+NA0003525.

High-fidelity – a reproduction faithful to the original

For DER integration, we mean "accurately modeled," including:

- 1) Granular Distribution Grid Modeling
- Phase identification

- Topology identification and parameter estimation
- 2) Detailed Locational Impact Analysis
- Locational hosting capacity
- Synthetic Cloud Fields
- 3) Long-term Timeseries Analysis
- Daily/seasonal variability in generation and impact to grid operationsRapid QSTS

Granular Distribution Grid Modeling

- Phase identification
- Topology identification and parameter estimation

Phase Identification

4

Use Machine Learning on voltage profiles from AMI meters to cluster by phase.

Concept

Method Predicted Phase Assigned by Spectral Clustering Phase A Phase B Phase C Phase Customer 1 ... Customer 2 -... Customer n Window Window Window Window AB 2 1 3 k 4

ħ

L. Blakely, M. J. Reno and W. Feng, "**Spectral Clustering for Customer Phase Identification Using AMI Voltage Timeseries**," 2019 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 2019, pp. 1-7. doi: 10.1109/PECI.2019.8698780

URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8698780 &isnumber=8698776

Phase Identification

May confirm utility model:

Utility Model

Phase Identification: Phase B

Utility Model	Phase Identification	Street View
Phase B 🗸	Phase B 🗸	Phase B 🗸

5

Phase Identification

6

Or may correct model:

Phase Identification: Phase B

Utility Model

Utility Model	Phase Identification	Street View
Phase C ×	Phase B 🗸	Phase B 🗸

7

Use AMI voltage and power measurements to derive secondary system topology and impedances.

$V_1 - V_2 = I_{R1}R_1 + I_{X1}X_1 + I_{R2}R_2 + I_{X2}X_2 + \epsilon$

Linear regression to find R1, R2, X1, X2 values which best fit the V1-V2 fluctuations

M. Lave, M. J. Reno and J. Peppanen, "**Distribution** System Parameter and Topology Estimation Applied to Resolve Low-Voltage Circuits on Three Real Distribution Feeders," in *IEEE Transactions on Sustainable Energy*. doi: 10.1109/TSTE.2019.2917679 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar number=8718261&isnumber=5433168

Topology and Parameter Estimation

Topology and parameter estimation (DSPE) matched well with the (good) utility secondary model.

Parameter/Topology Est.

8

Comparison

Utility Secondary Model

Topology and Parameter Estimation

Topology and parameter estimation (DSPE) matched well with the (good) utility secondary model, even for complicated topologies.

Parameter/Topology Est.

9

Comparison

Utility Secondary Model

Topology and Parameter Estimation

For bad or nonexistent utility secondary models (common), topology and parameter estimation can be used to develop a high-fidelity secondary model.

11 Result of Granular Modeling

Detailed and verified utility secondary model.

Detailed Locational Impact Analysis

- Locational hosting capacity
- Synthetic Cloud Fields

Locational Hosting Capacity

5

3

2

Concept –add more and more PV at a single node until it causes a problem – voltage, line loading, or transformer loading. The largest amount of PV that does not cause a problem is the locational hosting capacity.

2004

13

e to over-voltage violation

Reno, Matthew J., et al. **Novel Methods to Determine Feeder Locational PV Hosting Capacity and PV Impact Signatures**. No. SAND2017-4954. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2017. URL: https://www.osti.gov/biblio/1367426

Google Earth

17,913530° lon -64,988257° elev -14688 ft eve alt 15016 ft 🔿

PV hosting capacity [MW]

Data SIO, NOAA, U.S. Navy, NGA, GE Image © 2019 CNES / Airbus Image © 2019 TerraMetrics

Locational Hosting Capacity

14

Can also apply to electric vehicles – for EVs, line loading, transformer loading, or under voltage may be more common (EVs are essentially additional loads).

Locational Hosting Capacity

15

Can be applied to facilitate interconnection requests across a feeder.

5 4 substation PV hosting capacity [MW] 3 2 Google Earth Image © 2019 DigitalGlobe Data SIO, NOAA, U.S. Navy, NGA, GEBCO 6323 ft Image © 2019 CNES / Airbus Image @ 2019 TerraMetrics

Synthetic Cloud Fields

16

Modeling many PV interconnections on a feeder is difficult: usually only 1 (or no) solar irradiance measurement available near a feeder.

Challenge

Impact

Lave, Matthew Samuel, Matthew J. Reno, and Robert Joseph Broderick. **Creation and Value of Synthetic High-Frequency Solar Simulations for Distribution System QSTS Simulations.** No. SAND2017-5646C.

URL: https://www.osti.gov/servlets/purl/1458093

Synthetic Cloud Fields

17

Ē

Synthetic PV used as input to OpenDSS to find voltage profile.

18

Ē

Synthetic PV used as input to OpenDSS to find voltage profile.

Long-Term Timeseries Analysis

- Daily/seasonal variability in generation and impact to grid operations
- Rapid QSTS

Many DERs have variable output that is not controlled by the grid operator.

Variability in Generation and Impact to Distribution Grid

21

Timeseries analysis shows temporal impacts (e.g., voltage regulator tap change operations), and allows for full consideration of daily/seasonal trends.

Lave, Matthew, Matthew J. Reno, and Robert J. Broderick. "Characterizing local high-frequency solar variability and its impact to distribution studies." Solar Energy 118 (2015): 327-337. URL:

https://www.sciencedirect.com/science/art cle/pii/S0038092X15002881 Rapid QSTS

22

Speed up Quasi-Static Time Series (QSTS) analysis to enable running 1-year distribution grid simulations on a desktop computer.

Rapid QSTS

23

Speed up Quasi-Static Time Series (QSTS) analysis to enable running 1-year distribution grid simulations on a desktop computer.

	Extreme Voltages	Thermal Loading	Regulators Tap Changes	Capacitor Switching	Time outside ANSI	Losses	Computation Time ¹
Snapshot	Good	Good	-	-	-	-	<1 sec
Hourly Timeseries	Great	Great	-	-	Good	Great	5 sec
1 day QSTS	Poor	Poor	Decent	Decent	Poor	Poor	5 minutes
1 year QSTS	Great	Great	Great	Great	Great	Great	36 hours
New Rapid QSTS Algorithms	Great	Great	Great	Great	Great	Great	30 sec

- Historic methods (snapshot, no secondary, limited measurements) are insufficient.
- AMI data and other grid edge sensing provide opportunities for deriving and validating system models.
- Developments in modeling methods are simultaneously enabling more accurate distribution grid modeling and faster simulations.
- Upcoming: "QSTS hosting capacity" will simultaneously consider locational and temporal impacts of DER integration.