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The Problem

• Managing grids with distributed generation (DG) components 
requires real-time state information

• DG frequently “behind-the-meter”
• Observed net load reflects sum of DG and true, consumption load
• Can we use heterogenous data source (eg. GHI measurements, 

AMI, SCADA) to estimate behind-meter?
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Problem(s) formulaiton

• For solar forecasting, clouds are the most difficult problem
– Type of cloud, duration of cover, etc.

• What type of data can be used 
– Local weather stations

• Computation time
– Is computation time > forecast horizon?
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Flowchart for PSPI
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Reconstruction of GHI

• Before testing the forecasting capabilities of PSPI, PSPI must 
be able to reconstruct current GHI

• Reconstruction (and thus, forecast) uses simplified 
atmospheric radiation physics (Xie and Liu (2013))
– Combines GHI observations, modeled clear-sky variables, 

and general assumptions about the atmosphere
• Algorithm allows a physics-based representation of GHI 

without the need to run a entire NWP model
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Performance in all-sky conditions

Kumler et al. 2019
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Results

Kumler et al. 2019



NREL    |    10

1
2
3

A Physics-based Smart Persistence Model

Probabilistic Disaggregation at Feeder Level

Estimation by Integrating Physical with Statistical Models 



NREL    |    11

Problem(s) formulation

Normally the data available are at the feeder head
Apply “Bayesian Structural Time Series” to disaggregation 
problem:
• Perform disaggregation probabilistically
• Enables reasoning about uncertainty
• Straightforward, yet flexible, model class
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Data

• Pecan Street Austin dataset contains household-level power 
usage and PV generation data (1-min time resolution, 7 days 
in both Aug and Jan 2017)

• NSRDB contains GHI and temperature data (30-min time 
resolution, 1 year total)

• Sum household data to create synthetic feeder data, 
downsample to 30-min and match to NSRDB
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Data

Figure 1: AMI power consumption data for 5 houses in the Pecan Street dataset (January). 
Global Horizontal Incidence (GHI) overlaid (flipped and scaled) in red.
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Data

Figure 2: Synthetic feeder measurements of consumption data (summed AMI consumption) 
for the Pecan Street dataset. GHI again overlaid (flipped and scaled) in red.
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Bayesian Structural Time Series

• Formulate a synthetic state space model
• Model structure mimics classic time series model
• Fitting is performed by combining Kalman Filtering and 

Markov Chain Monte Carlo1

1. Scott and Varian. “Predicting the Present with Bayesian Structural Time Series,” June 28, 2013, 21.
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Model

Definitions:
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Model

State space model evolves as:
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Model

Can be brought into conventional Kalman Filtering format by setting:

Then the state space evolution can be rewritten:

Where:
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BSTS Output

Figure 3: Estimated PV generation occurring over 7 days (black) with 95% 
credible intervals (gray) against true generation (red)
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BSTS Output

Figure 4: Estimated true load over 7 days (black) with 95% credible intervals 
(gray) against true generation (red)
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Objective

• From definition of net load
𝑁𝐿# = 𝐿# − 𝑆#; 𝐿# ≥ 0, 𝑆# ≥ 0, ∀𝑡

• For each residential customer with solar PV installation- disaggregate net load measurement 𝑁𝐿#
at each time 𝑡 into-
– Load (𝐿#)
– Solar generation (𝑆#)

• Integrate a physical PV system performance model and a statistical load estimation model
• Following information are not available-

– Historical load and PV generation data
– Solar panel configuration and parameters (DC size, tilt, azimuth, loss of the PV array and 

nominal efficiency of the inverter)
– Exact location of each customer (city’s approximate longitude and latitude work as proxy)
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Overall 
Framework

Estimation of solar PV parameters 
and solar generation

Load Estimation

Stopping 
criteria

Post Disaggregation 
adjustment

Disaggregation Method
Net load time series data 
of a consumer

no

Disaggregated signals

Disaggregated signals

yes

Physical 
model

Statistical
model
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Estimation of solar generation 𝑆
– Estimation of solar PV parameters 𝜃0

• Perform a constrained numerical optimization
• Solar PV parameters 𝜃0

– DC size 𝑃234
– Tilt θ#
– Azimuth θ67
– Loss 𝑙
– Nominal efficiency η:;<

– Physical PV system performance model 𝑔
• Estimate solar generation 𝑆 = 𝑔 𝜽0

Estimation of Load 𝐿
– Statistical hidden Markov model regression

Technical methods
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§ Assume the following are available-
§ an estimate of solar generation, 𝑆
§ PV system performance model, 𝑔

§ Solve the constrained nonlinear numerical 
optimization problem for each customer

argmin
EF

G
#HI

J

𝑆# − 𝑔# 𝜽0
K

subject to 𝑆# ≥ 0, 𝜽0,<S: ≤ 𝜽0 ≤ 𝜽0,<6U

Estimation of Solar 
PV System
Parameters



PV System Performance 
Model

• Computes AC output power 𝑃63 (solar generation 𝑆) of the PV array when 𝜃0 is known
• Based on PV system performance collaborative (SANDIA)4 and PVWatts5(NREL)
• Calculation:

• 𝜂 → 𝐸𝑓𝑓𝑖𝑐𝑖𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑣𝑒𝑟𝑡𝑒r,		𝑃23 → 𝐷𝐶 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑉 𝑎𝑟𝑟𝑎𝑦

• 𝐸4, 𝑇4, 𝛾 are known values

𝑃63 = 𝑔 𝜽0 = 𝜂 𝜂:;<, 𝑃23 𝑃23

4Stein, J. S. (2012, June). The photovoltaic performance modeling collaborative (PVPMC). In 2012 38th IEEE Photovoltaic Specialists Conference (pp. 
003048-003052). IEEE.
5Dobos, A. P. (2014). PVWatts version 5 manual (No. NREL/TP-6A20-62641). National Renewable Energy Lab.(NREL), Golden, CO (United States).

𝑃23 = 𝑔r 𝑃234, 𝜃#, 𝜃67, 𝑙 = (1 − 𝑙)×
𝐸#u 𝜃#, 𝜃67

𝐸4
𝑃234 1 + 𝛾 𝑇3 𝜃#, 𝜃67 − 𝑇4



PV System Performance 
Model

• Calculate operating Cell Temperature 𝑇3 from Sandia cell temperature model using

• Sadia module temperature model

• Calculate plane of array and transmitted irradiance 𝐸wxy 𝑎𝑛𝑑 𝐸#u
– Solar irradiance data 𝐷𝑁𝐼,𝐷𝐻𝐼 𝑎𝑛𝑑 𝐺𝐻𝐼
– Solar PV installation geometry (PV array tilt and azimuth angle)
– Solar position data (Solar zenith and azimuth angle → can be calculated from solar position algorithms)

𝑇3 = 𝑇< +
𝐸wxy
𝐸4

𝛥𝑇

𝑇< = 𝐸wxy×𝑒6��×�0 + 𝑇6



Load Estimation

• No historical load data → Time series models not applicable 
• Linear regression models are common
• Explanatory variables:

28

Variables Symbols
Temperature (3rd degree polynomial) 𝑐, 𝑐K, 𝑐�

Hour of the day (3rd degree polynomial) ℎ, ℎK, ℎ�

Weighted moving average of last 24 
hours temperature

𝑐�<�

Day of the week
𝑑 = �1 𝑖𝑓 𝑤𝑒𝑒𝑘𝑒𝑛𝑑

0 𝑖𝑓 𝑤𝑒𝑒𝑘𝑑𝑎𝑦
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Load Estimation Load time series can exhibit quite different 
patterns depending on whether the 
consumer(s) is present at home or not

Figure 1: Load time series of a customer



Hidden Markov Model 
Regression

• This change in behavior can be modeled by a hidden Markov model regression6 (also 
called Markov switching regression model) given state 𝑠#

• 𝐿# → load of a consumer at time t
• 𝑋# → explanatory variables at time t
• 𝑠# = 𝑠I, 𝑠K indicates latent state at time 𝑡
• Probability of a change in regime is modeled by a first-order time-invariant two-state 

Markov chain

• Can be estimated by maximum likelihood (MS_Regress7 package of MATLAB used)

( ) ( )1 2 1| , , ,|t t t t t ijP s j s i s q P s j s i p- - -= = = … = = = =

𝐿# = 𝑿#J𝜷�� + 𝜀�� 𝜀��~𝑁 0, 𝜎��
K

G
�HI

K

𝑝S� = 1

6Fridman, M. (1994). Hidden markov model regression.
7Perlin, M. (2015). MS_Regress-the MATLAB package for Markov regime switching models. Available at SSRN 1714016.
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Disaggregation 
Algorithm



Numerical Study

• 15-minute interval data from Pecan Street Dataset8

– Has net load, load, and solar PV generation data
• Customers located in Austin, Texas
• Study period: 10/03/2015-10/30/2015 (28 days) 
• 197 consumers with PV installation available 
• Solar irradiance and temperature data obtained from National Solar Radiation Database
• Feasible ranges of solar PV system parameters θ0 specified
• 8 initial solar PV system technical sets selected

– Gradually increase 𝑃234 from 1KW to 8 KW
– θJ, θy�, η:;<, 𝑙 set at their most common values

• Compared result with consumer mixture model and SunDance model

8Holcomb, C. (2012). Pecan street INC.: A test-bed for NILM. In International Workshop on Non-Intrusive Load Monitoring, Pittsburgh, PA, USA.



NREL    |    33NREL    |    33

Result
Comparison of disaggregated load and solar 
PV generation with actual  values for a 
customer for 5 days from 10/14/2015-
10/19/2015
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