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Nondifferentiability of the Steady-State
Function in Discrete Event Dynamic Systems

A. Shapiro and Y. Wardi

Abstract—This paper suggests that expected-value performance func-
tions in discrete-event dynamic systems can be nondifferentiable at dense
sets of points in the parameter space, when the sample performance
functions are convex and the distributions of events’ times contain atoms.
A general result is first proved for regenerative processes and then applied
to simple queueing examples where nondifferentiability at dense sets is
established.

. INTRODUCTION

Expected-value performance functions in discrete-event dynamic
systems (DEDS) like queueing networks often lack closed-form
expressions and hence are evaluated by Monte Carlo simulation. Esti-
mation of their gradients can be done by sample path techniques like
infinitesimal perturbation analysis [3], [4] or likelihood ratios/score
functions [10]. This assumes, of course, that the above gradients do
exist.

The question of whether gradients of such functions exist cannot
always be easily answered. After all, corners of graphs produced
by simulation can be attributed to the randomness involved. It is
well known in the literature on perturbation analysis that the sample
performance functions often are only piecewise differentiable, but
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their corners are not carried over to the steady state, where the
expected performance functions are smooth (see [13], and [3], [4]
and the references therein).

Until recently, no questions had been raised about the differen-
tiability of steady-state (expected-value) performance functions. In
fact, differentiability has been proved for various such functions
in queueing networks under the assumption that the distributions
of certain primitives like service times and interarrival times have
densities [15], [6]. If some of these distributions contain atoms, the
situation may be quite different. In that case, the expected-value
function can be nondifferentiable at a set of points which forms a
dense subset of the parameter space. This was first conjectured in
[16] and subsequently proved for a particular system in [2]. The
above system was quite simple and the expected-value function had
a closed-form expression, and therefore the analysis could not be
extended to more general networks. Nondifferentiability by graphical
means was exhibited in [ 14] for queueing networks and for continuous
flow models.

The main argument in [16] runs as follows. If some of the
primitive’s distributions contain atoms then, for every f# in a dense
subset of the parameter space, with some positive probability. the
sample performance functions have a corner, i.e.. different one-sided
derivatives. Moreover, these corners are carried over to the steady
state and therefore, the expected-value performance function, F'(#).
has an additive component that is not differentiable at 4. For F(-)
1o have a derivative at # it must have another additive component
that cancels the nondifferentiability. This, however. is not likely to
happen.

The above argument is clearly heuristic and does not comprise
a proof, and the paper [16] concludes with a general conjecture.
The present paper proves the conjecture for a class of DEDS under
the assumptions of convex (or, more generally, subdifferentiable)
sample performance functions and various properties concerning
regeneration. As in [16], a key condition is that, with some positive
probability, the sample performance functions over a regeneration
cycle are not differentiable at a particular point. Arguments from the
theory of convex analysis then show that the nondifferentiability is
carried over to the steady state. Finally, examples will demonstrate
that, although a particular sample performance function typically
is nondifferentiable only at a finite set of points, the expected-
value function will get the nondifferentiabilities from infinitely many
sample performance functions and, hence, can be nondifferentiable
at a dense set of points.

It will become apparent from the analysis that the phenomenon of
nondifferentiability can be quite general. The implications are, first,
that the question of “gradient estimation™ may have to be phrased
in terms of subgradients (cf. [14]). and second. that sample path
second-order optimization algorithms, based on approximations of
the Hessians, may have to be ruled out.

Section 11 presents the general nondifferentiability result, Section
III applies it to some examples, and Section 1V concludes the paper.

1. Basic REsuLTS

Consider a function F: B™ — R. It is said that F is directionally
differentiable at a point # € R™ if the limit

s . Fl+td)— Flo
F(#. d)= lim e LS L

t—0+ t
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exists for every d € R™. Suppose that, in addition, the directional
derivative F'(#. d) is convex in d. In this case, we say that the
function I is subdifferentiable at # (such functions were called locally
convex in [5]). It follows then that there exists a convex, compact
set F(#) C R™ such that

max s d.
cedb(6)

F'(#,d) = (2.1)

We will be particularly interested in real-valued, convex functions
defined on a convex. open set ) C R™. Such a function £'(#) is
locally Lipschitz and subdifferentiable at every point € D, and the
corresponding convex compact set JF(#) is called the subdifferential
of F at # (see [8] for details). A larger class of subdifferentiable
functions is given by composite functions F(f#) = G(A(#)) of a
convex function & : R* — R and a differentiable mapping A: R™ —
R*. Note that a subdifferentiable function F is differentiable at a point
i if and only if F(#) = {=} is a singleton, Le., ?F(#) consists of
one clement =. In such case F'(#. d) is linear in d and = = VF(#).

Now suppose that F'(#) has the form

P‘(S]:E{f{ﬂ}}:ff{ﬁ'.u)[’ldu)
Ly}

where f(#) i1s a measurable random function (whose realization is
denoted by f(#. .} as in the above integral) defined on a probability
space (L2, F. PP). Let the domain of f be a convex open set D C R™
and suppose that, for every # € D, E{|f(#)|} < co. We now give
sufficient conditions for directional differentiability of F' at a point
#y € D (cf. [10]).

Assumption 2.1: There exists a positive-valued random variable
R = K{w) such that E{ K’} is finite and

[Fl#1. w) — f(Ba, w)| < K(w)||6) — 82]| (2.2)

for almost all =~ € € and for all #,, 6, € D.

Assumption 2.2: With probability one (w.p.1) the function f(#) is
directionally differentiable at #g.

Proposition 2.1: Suppose that either i) Assumptions 2.1 and 2.2
hold, or ii) the function f(#) is convex w.p.l. Then the expected-
value function F'(#) is directionally differentiable at #; € D and

F'(dy. d) = E{f'(bo. d)}. (2.3)

Proof: Under Assumptions 2.1 and 2.2, formula (2.3) follows
easily from the Lebesgue Dominated Convergence Theorem (see,
eg., (10, p. 307)). In the convex case, formula (2.3) is implied
by the Monotone Convergence Theorem. Indeed, consider 6y € D.
d € R™. and a monotone-decreasing sequence t, — 07, It follows
then from convexity of f{-. ). that the sequence v, = VP, (w) =
t, [f(80 + tud. o) — f(#,. )] is monotone decreasing for almost
every . € €1 and that v, — f'(#y. d) w.p.l. Therefore by the
Monotone Convergence Theorem

li_m_E{L-',.} = [E{ ]il_n f.'n} =E{f'(#o, d)}.

Since the expected-value function F(#) = E{f(#)} is then convex,
we have that the limit lim, ... E{v",} is finite and is equal to
F'(#q. d). This shows that, in the convex case, if E{[f(#)|} < ~
for all # € D, then the interchangeability formula (2.3) holds.
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Suppose now that, in addition to the assumptions of Proposition
2.1, the function f is subdifferentiable at the point #; w.p.l. Of
course, in the convex case, this subdifferentiability follows from
convexity of f. Then formula (2.3) implies that F'(#. d) is convex
in d and hence F is also subditferentiable at #y. Moreover

AF(8o) = E{0f(8:)} = fﬂf{ﬂn‘ w)P(dw) (2.4)
Q

where the integral of the multivalued mapping » — df(#y. w) in
(2.4) is a subset of R™ whose points are the integrals of integrable
selections of this multivalued mapping. For a detailed discussion of
interchangeability of the subdifferential and integral operators (for
convex functions) and relevant references see |5, chapter 8] and [9].

An important consequence of formula (2.4) is given in the follow-
ing corollary.

Corollary 2.1: Suppose that the assumptions of Proposition 2.1
hold and that f(#) is subdifferentiable at #; w.p.l. Then, F is
differentiable at the point fly if and only if the subdifferential & f(#y)
is a singleton w.p.l.

We next consider the case where F'(#) is the expected-value (mean)
steady-state performance function of a DEDS and establish a condi-
tion under which nondifferentiabilities in the sample performance
functions are carried over to the steady state. Consider a DEDS
whose performance depends on a parameter ¢ € ©. with © being a
convex, open subset of R™. Let g, (#). n = 1, 2.+ -- . be the sample
performance functions. We assume that gy, (#) are real-valued and
convex functions of # and that, for any fixed # € ©, the processes
gn(f) and dg.(#) are regencrative with rcgencration cycles having
finite first-order moments. In the examples below, g,.(#) is the nth
delay (or waiting) time at a queue in a stable queueing network,
where both processes g.(#) and dg.(f) have the same regenerative
cycles. In that case the corresponding length 3 = 3(#) of the first
regenerative cycle represents the number of customers served in the
first busy period. .

Define fx(6):= N~' TN g.(6) and Fx(8):= E{fx(6)}. It
is well known in the theory of regenerative processes (e.g., [1], [17])
thatas N — oc. fx(f) converge poimwise (i.e., for any fixed # € ©)
w.p.l to the mean sieady-state F'(#). and that

lim Fx(8) = F(d). (2.5)
N—o

It follows from convexity of g,(#) that, the functions f(#). and
hence Fx(#) and the limiting function F(#), are also convex.
Moreover, by convexity, it follows from the pointwise convergence
(2.5) that

limsupF' (6. d) < F'(8. d)

Ne—

(2.6)

[8]. For two sets U, V" C R™ we use the notation I” C_, V" to mean
that {7 is contained, up to an additive constant, in 17 That is, there
exists @ € R™ such that a 4 [ C V. Inequality (2.6) implies that if,
for a given # € ©. there exists a convex, compact set S such that
S C, dFn(8) for all N. then § C, 8F(#). Therefore, if such a set
S exists with a positive probability then, by the interchangeability
formulas (2.3) and (2.4), F is not differentiable at #. This point is
next presented in a rigorous way.
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Condition 2.1: For a given fly € ©, there exists a convex, compact
set ', containing more than one point, and p > 0 such that

P{C C, Ogwifo). for some m < 3} =p 2.7

where 3 = 3(#y) is the length of the first regenerative cycle of the
set-valued process da,, (#y ).

This condition implies that, for some m < 3 = J{#y), g l-) is
nondifferentiable at #; with probability at least p > 0. Condition
2.1 can be easily verifiable, and as we will show in the following
proposition, it is sufficient for nondifferentiability of F(#) at the
point .

Proposition 2.2: Suppose that the functions 4, (f) are convex, that
for any # € © the processes g, (#) and dg.(#) are regenerative
with regenerative cycles having finite first-order moments and that
Condition 2.1 holds. Then the mean steady-state function F(#) is not
differentiable at the point #y.

Proof: Tondition 2.1 states that, with probability p > 0, C' C,
Jgm(fo) for some e < 3. Since the subdifferential of a sum of
convex functions is equal to the sum of the subdifferentials of these
functions, it follows from Condition 2.1 that

it
P{C‘C“ B[Zynwu J” >p.

n=1

Consider an integer & > 0 and denote by N (%) the integer which ter-
minates the kth regenerative cycle of the process dg,.(#q). Consider
also an integer ! greater than E{.#} (recall that E{ 3} is assumed
to be finite). By the Law of Large Numbers, N(k)/k — E{7}
in probability, and therefore, P{N(k) < kl} — 1 as kb — .
Set N(0):= 0 and for every j = 1.2,---., denote by A; the
event that, for some m € {N(j — 1)+ 1,---, N(j)}. the inclusion
C' C, g..(60) holds. By Condition 2.1 and the regenerative property
of the process Jg. (#o). we have that P{4,} = p and the events A,
J = 1.2.--+. are mutually independent.

For any positive integer r < k, let B, ; denote the event that A4;
happens at least r times in the first k trials (regenerative cycles), and
consider the probabilities g,.x:= P{B, }. Fix a positive number
¢ < p and take r:= [gk]. i.e.. r is the integer part of gk. We can
assume (by increasing & if necessary) that r > 0. By the Central
Limit Theorem for binomial distributions, and since ¢ < p, we have
that 4. x — 1 as & — ~x.

To sum up the above arguments, we have the following. The event
B, . happens with probability ¢, 4. The latter event means that for

at least r different values of j = 1.---. k. C C, Jgm(8a) for some
m € {N(j— 1)+ L.---. N(j)}. This implies that for at least r
values of j = 1.---. k. the inclusion (' C, @IZ:E\J‘[; et Inlfo)]

holds. Therefore, with probability at least ¢, x. we have rC' C,
AL gu(bo)).

Next, recall that I > E{.7} and hence, P{N(k) < ki} — 1 as
k — . Therefore, there exists kg such that, for every k > kg

k1
P{ CC, B[Zy"(b'n)] } > qraef2.

n=t

Since, Fri(#) = (k)" 81, E{ga(6)}. it follows from the inter-
changeability formula (2.4) that

,l;q.-_;, (rfk1)C C, OF(tly).
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Now, as k — . ¢ox — 1. r/k — q. and (by (2.5)), Fii(#) —
F(#). Therefore, and by formula (2.6) and the discussion that follows
it, we get that

(21)"'qC C, 8F(f0).

Consequently, the subdifferential GF(#p) contains more than one
point, and hence, I is not differentiable at #;.

The next section applies the above result to examples of single
queues where, nondifferentiabilities at dense sets are established.

. EXAMPLES

Consider a first-in/first-out (FIFO} G/G/1 queue whose service and
interarrival times depend on a parameter # € ©. with the parameter
space © being an open subset of R™. For a fixed # € ©. let s,(#)
be the nth service time, and let 7,,(#) be the time between arrivals
of the (n — 1)th and the nth customers, n = 1. 2,--.. We assume
that the first customer arrives al an empty queue, that the functions
sy (#) and 7, (#) are continuously differentiable, that for a fixed # the
processes 7,(#) and s, (#) are stationary and ergodic, and that for
every # € © the queue is regenerative with the expected number of
customers served in one busy period (regenerative cycle) being finite.

Let g.(#) denote the nth sojourn time. We have then that the
sojourn time process has a unigue stationary and ergodic distribution
and that the long-run average functions

N

fyiep=N 'Zy..{ﬁ')

converge (pointwise) w.p.1 to the expected-value (mean) steady state
sojourn time F(#). A recursion relation between the sojourn times
is given by the Lindley equation [7]

Gn(8) = 8, (6) + [gn—1(8) — 1 (8)]+. (3.1)
If the functions s,(#) and 7.(#). n = 1.2..--, are convex and
concave, respectively, then it follows by induction from (3.1) that
the functions g, (#). and hence f(#) and F(#). are also convex (cf.
(11, [12p.

We next discuss two examples where the parameter ¢ is a scalar,
© is an open interval of the real line and the service times s, (#) are
convex, differentiable functions of # while the interarrival times T,
do not depend on #. Denote by I, (#) the integer [ such that the [th
customer starts the busy cycle to which the nth customer belongs. It
follows then that if dg,(#)/d# exists then (see [13])

dga(f) _ o= dsi(#)
S X

i=ln{t)

(3.2)

A similar formula holds for the one-sided derivatives. In the forth-
coming examples, ds;(8)/d6 > £(f). where £(6) is a positive valued
function of #. Consequently, by (3.1), g.(-) is not differentiable
at those points # where g, 1(#) = 7.. Morcover, at those points
the subdifferential dg,, (#) contains, up to an additive constant, the
interval [0. £(#)]. Denote by o, and d,(#) the wth arrival and
departure times, respectively. Clearly, the condition 7, = g, 1(#) is
equivalent to a,, = d,,_(#). Therefore Condition 2.1 holds at a point
#y if, with positive probability, the event a,, = d,,—(#y) happens in
the first busy period. This, in turn, will imply nondifferentiability of
the mean steady-state function F(#) at #,.
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Example 3.1; Consider a G/D/1 queue with s, (#) = #. Suppose
that the distributions of the interarrival times 7., have atoms at two
points b and ¢, with b < ¢. and let © = (b, ¢). We assume that
the queue is stable, and it has regenerative cycles with finite first
moments for every # € O.

Proposition 3.1: Suppose that any finite sequence of interarrival
times Ti.- - Taot=1.2,--«.withr, =borr, =c,i=1,-+--,n,
can happen in any busy period with some positive probability. Then
for every pair of positive integers & and m. the mean steady-state
function F'(-) is not differentiable at the point

(k= 1)b+me

= —
k=1+m

(3.3)

Proof: Fix k and m and let # be given as in (3.3). By Proposition
2.2 and the above discussion, it suffices to show that

P{dn-l{elzﬂu} >0 (34}

where n = k+m. Let A denote the event that 7, = b, i = 2.--- . k.
and 7, = . i = k+1.--+.k+m. We have that P{ A} > 0. We show
now that if w € A. then d,_(#) = «a,. This will establish (3.4).
Suppose, without loss of generality, that @ = 0. By assumption,
as = boo-oap = (k— 1)bh. After arrival of the first k customers,
the interarrival times change to r. and hence, agyy = (k — 1)b +
tororligpem = (k= 1)+ me. In particular, a, = (k= 1)b+ mce
(since n = k + m). Now consider the departure times. The first
customer arrives at an empty queue and hence, d,(#) = #. The
first & customers have increasing waiting times (because # > b) and
hence, d,(f)=if.i=1,--- k. Next,mi=c.i=k+41.---.k4+m,
therefore, and since f# < ¢, the waiting times of successive customers
(starting from the (& + 1)th customer) are monotone-decreasing until
the queue becomes empty. By (3.3), for every j = 1,-+--.m — 1,
ey, = (k= 1)b+ je < (k=14 j)f = dy—14+,(#), and hence,
dyi,(8) = (k + j)f. In particular, for j = m = 1, di—y4.m(0) =
(k=14 m)8. By (3.3). and the fact that n = k + m, we have that

dy_y(8)=dy_y40(8) = (k= 1}b+ me.

On the other hand, we have seen that a, = (k = 1)b+ mc.

We thus have seen that, for every w € A, d,,—(#) = a,. and since
P{A} > 0, formula (3.4) is established. This completes the proof.

Let us make the following remarks. The set of points # in the form
(3.3) taken over all possible integers & > (0 and m > 0, is dense in the
interval © = (h. ). The assumption that s,,(#) = # naturally can be
relaxed: service times with atoms at # often will suffice. Interarrival
times with two atoms, as above, can often happen to a queue in a
network whose inputs include two queues with different atoms in
their service times.

The presence of two atoms in the interarrival times distribution
was crucial for the occurrence of the nondifferentiabilities at a dense
set. We now present an example where the interarrival times have
only one atom, and yet, the mean delay is nondifferentiable at a
dense set. What makes it happen here is a second input stream
whose interarrivals are supported on the half-line R*. This example
was discussed in [16], where the nondifferentiability of F'(#) was
conjectured.

Example 3.2: Consider the network shown in Fig. 1. Both queues
are FIFO and have infinite buffers, and the two input processes from
5y and S, are Poisson and mutually independent. Let (}; have
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Fig. 1. Queueing network with twe queues in tandem and two sources,

deterministic server with service times of b seconds, and therefore
the interarrival times to (J» from (J; have an atom at b. The input
process to (s consists of the arrivals from (J; and the independent
source Sy, and hence, the interarrival times to ()2 have an atom at
b. Suppose that the service times at (J» are deterministic and their
value is #. the parameter of variation. Let # < b. It was shown in
[16] that, if /b is rational then Condition 2.1 is satisfied with regard
to (J2. In fact, it was shown that, starting with an empty network,
there exists an integer n such that

P{d, ((8)=a,} >0 (3.5)

d,—1(8) is the (n — 1)th departure from (J2 and «,, is the nth arrival
10 Q2. and » depends on the ratio #/b. As a result, the expected-
value sojourn time at (Jz. denoted by F'(#). is not differentiable at
every point # such that #/b is rational.

The details of the proof of formula (3.5) can be found in [16]
but, to illustrate the main point, we present here a particular case.
Let # = (2/5)b. We now define an event 4 having a positive
probability such that, for every » € A, bs(#) = «s. The event
A is defined by the arrival schedule of the first six customers to (2
in such a way that, the first customer arrives at an empty queue, and
the second-to-fifth customers arrive when the queue is nonempty.
Consequently, for i = 2.---.3. d,(#) = d(6)+ (i — 1}4. In
particular, d5(#) = d,(#) 4 46. and it is at this time that the sixth
customer arrives.

The event A is defined as follows. The first customer to ¢J» comes
from (), at time 4+ b (a is its arrival time to (J,. and b is its service
time there); two additional customers arrive to ()2 from (2, at times
a+2b and o + 3b. respectively. We denote these three customers by
'y, j =1, 2, 3, where the subscript means that it is the jth customer
arriving to ()2 from (). Next, three customers arrive to ()2 from
S, at some times 7,, j =1, 2, 3, where 7y € (a + b, a +b+#).
mE(n.a+b+28).and 5 € (n+2b. o+ 264 0).

Now it is clear that P{A} > 0 because of the facts that the
interarrival times from S, have a density supported on Rt and the
interarrival times from (), have an atom at h. We next show that, if
w € A then d5(#) = as.

Fix w € A. The first arrival to (), is 'y, and its arrival time is
i) = & + b. The next two arrivals come from (2, at times a2 = 7
and ay = 72. respectively. Since # = 0.4b. 71 € (o + b, o+ 1.40)
and 72 € (71, o + 1.8b). The fourth arrival is ("},. and its arrival
time is a4 = a + 2b. The fifth arrival comes from S, at time
a5 = 73 € (v + 2b. a + 2.4b). Finally, the sixth arrival is Cy3.
and it comes at time a; = n + 3h. Next, since the service time at
(2 is #. the second-to-fifth customers arrive at a nonempty queue.
Consequently, the departure times are given by d{#) = ay + #.
and d;(#) = d,_(#)+ #. i = 2..--.5. In particular, Jd5(#) =
dy(#)+ 46 = ay, +56. Since # = 0.4b and 2, = n + b, we have that
ds(#) = ay + 2b = o + 3b. But, we have seen that ag = a + 3b.
and hence, b;(#) = ag.

We remark that, as in the previous example, the assumptions made
can be greatly relaxed. Generally, the arrival processes from S, and
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S> only need densities supported on R™. the service times at ¢},
have to have an atom at a point b, and the service times at ()2 have
to have an atom at a point ¢(#) such that de(#)/d# > 0 for every #.

IV, CONCLUSIONS

This paper established the nondifferentiability of certain steady-
state functions in gueueing networks where the sample performance
functions are convex or, more generally, subdifferentiable. The anal-
ysis was carried out in three stages, yielding the following results: i)
nondifferentiabilities of the sample performance functions can occur
at dense sets in the parameter space, ii) these nondifferentiabilities
are retained in the expected-value functions over finite horizons (by
the interchangeability formula (2.4)), and iii) they are carried over to
the steady state (via formula (2.5)).

Two case-study examples were discussed: the first is of a single
queue whose interarrival times have two atoms, and the second
consists of a two-queue serial network with two sources. These
examples are quite simple and generic in the sense that they often
comprise subsets of larger networks. Yet, they clearly exhibit the co-
occurrence of two events in the sample path with positive probability
at dense sets of points, which constitutes the crucial condition for
nondifferentiability.

REFERENCES

[1] S. Asmussen, Applied Probability and Queues. New York: Wiley,
1987,

[2] X. R. Cao, W. B. Gong, and Y. Wardi, “lll-conditioned performance

functions of queueing systems,” in Proc. 315t Conf. Dec. Contr., Tucson,

AZ, 1992,

P. Glasserman, Gradient Estimation Via Perturbation Analvsis.  Boston,

MA: Kluwer, 1991,

[4] Y. C. Ho and X. R. Cao, Perturbation Analysis of Discrete Event

Dynamic Systems. Boston, MA: Kluwer, 1991.
[5] A. D. [offe and V. M. Tihomirov, Theory of Extremal Problems.
Amsterdam: North-Holland, 1979.

[6] J. Q. Hu, “Convexity of sample path performance and strong consistency

of infinitesimal perturbation analysis estimates,” [EEE Trans. Automat.

Conrr., vol. 37, pp. 258-262, 1992,

D. V. Lindley, “The theory of queues with single server,” in Proc. Camb.

Phil. Soc., vol. 48, 1952, pp. 277-289.

R. T. Rockafellar, Convex Analvsis. Princeton, NJ: Princeton Univ.

Press, 1970.

R. T. Rockafellar and R. J. B. Wets, “On the interchange of subdifferen-

tiation and conditional expectation for convex functionals,” Stochastics,

vol. 7, pp. 173-182, 1982

[10] R. Y. Rubinstein and A. Shapiro, Discrete Event Svstems: Sensitivity

Analysis and Stochastic Optimization by the Score Function Method.

New York: Wiley, 1993,

M. Shaked and J. G. Shantikumar, “Stochastic convexity and its appli-

cations,” Adv. Appl. Prob.,, vol. 20, pp. 427-466, 1988.

[12] J. G. Shantikumar and D. D. Yao, “Second-order stochastic properties

in queueing systems,” in Proc. JEEE, vol. 77, pp. 162-170, 1989.

R. Suri, “Perturbation analysis: The state of the art and research issues

explained via the GUG/1 queue.” in Proc. IEEE, vol. 77, pp. 114137,

1989,

[14] R. Suri and B. R. Fu, “Using continuous flow models to enable rapid
analysis and optimization of discrete production lines—A progress
report,” in Proc. 19th Annual NSF Grantees Conf. Design Manufact.
Svit. Res., Charlotte, NC, 1993,

[15] Y. Wardi and J. Q. Hu, "Strong ¢ 1 v of infinitesimal perturbation
analysis for tandem queuveing networks,” J. Discrete Event Dynamic
Svst.: Theory and Appl. vol. 1, pp. 37-59, 1991.

[16] Y. Wardi, M. W. McKinnon, and R. Schuckle, *On perturbation analysis
of queueing networks with finitely supported service time distributions,”
IEEE Trans. Automat. Contr., vol. 36, pp. 863-867, 1991,

[3

7

8

9

[11

[13

[171 R. W. Wolff, Stochastic Modeling and the Theory of Queues. Engle-
wood Cliffs, NJ: Prentice-Hall, 1989.

A Reduced-Order Model about Structural Wave Control
Based upon the Concept of Degree of Controllability

Quan Wang and Dajun Wang

Abstract—After introducing the concept and criteria of controllability
and degree of controllability about structural wave control in this paper,
we put forward a new approach of structural reduced order, which is
similar to the constrained substructural method in dynamics, and is also
the extension of the method of aggregation raised by Aoki in the 1960s [1].
Furthermore, this approach has the characteristic of clear in the meaning
of physics and is casy to be realized.

I. INTRODUCTION

The study on the controllability of system has matured since
Kalman first put forward the concept in 1960. In the field of structural
control, sets of strict theories and criteria have been established to
determine the controllability of structure being expressed by either
lumped or distributed parameters system. At present, more and more
attention [2]-[6] are put on the study of wave control with the trend
of space structure designed to larger size arising more flexibility.

As the basic characteristics of structure response, wave and vi-
bration are quite different in qualities from the point of view of
dynamics, it is based on this consideration that we define in this paper
the controllability of structural wave domain control and the degree
of controllability measuring it. Then the criterion of controllability is
obtained concerning the above two definitions.

It is well known that the problem of reducing the order of the
structural model is very important to the design of a control system,
that is to say, a systematic method for approximate analysis and
synthesis of controls of large-scale system should be present and
sufficient information of the original system can be saved, so that the
analysis and simulation of the large-scale system are derived with
the simple model.

There are about two sons of the conventional approaches about
the reduced-order system.

1) Open-loop reduced order, which means the order of the math-
ematical model of the original system is directly reduced, and
the usual design of system is obtained on the basis of the
reduced-order model.

2) Closed-loop reduced order, that is, the order of the controller
which is derived on the basis of the original system is directly
reduced.
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