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4DYNAMO: Analyzing and
Optimizing Process Parameters
in 4D Printing for Dynamic 3D
Shape Morphing Accuracy
Additive manufacturing (AM), commonly referred to as 3D printing, has undergone signif-
icant advancements, particularly in the realm of stimuli-responsive 3D printable and pro-
grammable materials. This progress has led to the emergence of 4D printing, a fabrication
technique that integrates AM capabilities with intelligent materials, introducing dynamic
functionality as the fourth dimension. Among the stimuli-responsive materials, shape
memory polymers have gained prominence, notably for their crucial applications in
stress-absorbing components. However, the exact 3D shape morphing of 4D printed prod-
ucts is affected by both the 3D printing conditions as well as the stimuli activation. Hence it
has been hard to precisely control the 3D shape morphing accuracy. To model and optimize
the dynamic 3D evolution of the 4D printed parts, we conducted both simulation studies and
real-world experiments and introduced a novel machine-learning approach extending the
concept of normalizing flows. This method not only enables the process optimization of
the dynamic 3D profile evolution by optimizing the process conditions during 3D printing
and stimuli activation but also provides interpretability for the intermediate shape morph-
ing process. This research contributes to a deeper understanding of the nuanced interplay
between process parameters and the dynamic 3D transformation process in 4D printing.
[DOI: 10.1115/1.4066222]
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1 Introduction
In recent years, the development of structured materials capable

of dynamic 3D shape changes in response to their environment has
opened promising avenues for diverse applications, ranging from
foldable robots to foldable electronics. Despite the impressive dem-
onstrations of complex morphing motions, the fabrication and
precise control of such devices remain challenging. This paper
aims to bridge this gap by introducing a methodology for the opti-
mization of process parameters in 4D printing for dynamic 3D
shape morphing accuracy, termed 4DYNAMO. The focus is on
controlling the dynamic 3D morphing process. In terms of method-
ological development, we extend the concept of continuous normal-
izing flows (CNFs), a machine-learning technique that iteratively
transforms a simpler distribution into a more complex one. Conven-
tional normalizing flow models face limitations in incorporating 3D
point cloud data and process conditions and lack the ability to
control these process conditions for achieving a desired 3D shape

morphing behavior. Furthermore, the intermediate transformations
of 4DYNAMO serve not only as computational tools but also
provide interpretability regarding the speed and behavior of the
3D morphing process. This is crucial for applications like soft
robotics, where the 4D-printed component serves as grippers. If
the shape transformation occurs too rapidly, there is a risk of the
object sliding out of the actuator’s grip. Figure 1 shows how the
3D-printed part X0 undergoes a series of dynamic shape transforma-
tions during the stimuli activation, induced by different temporal
stimuli control (u1, . . . , uT ) such as heat or magnetic activation.
The intermediate shape transformation is measured via 3D scanning
(X1, . . . , XT ) during model training and predicted during the model
deployment. The shape morphing behavior is modeled via an incre-
mental flowmodel fi, which is invertible and can be used for process
optimization: by specifying a certain target shape XT , the optimal
control actions (u∗0, . . . , u

∗
T ) can be derived.

Note that any intermediate shape can also be controlled. Further-
more, we also control the 3D printing process u∗0, since the induced
material properties influence the 3D morphing process.
Our model employs unstructured 3D point cloud data to achieve

precise control over the entire 3D profile. This is particularly bene-
ficial for applications like soft grippers, where precise control of the
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entire actuator 3D surface is essential. In this paper, we investigate
the gripper design shown in Fig. 1 through a finite element simula-
tion study and validate our approach with case study experiments.
The process parameters utilized for process optimization include
printing speed, printing temperature, and stimuli activation
temperature.
The main contributions of this paper are as follows:

– We introduce a novel framework designed to optimize the
dynamic 3D shape morphing behavior in 4D printing. Our
approach focuses on the direct optimization of process settings
during 3D printing and stimuli activation, facilitating the real-
ization of the desired 3D accuracy.

– We leverage and extend the continuous normalizing flow
methodology [1], enhancing the efficiency and interpretability
of modeling and optimizing 3D morphing behavior. Unlike
previous methods that only capture intermediate features
such as images of bending angles, our approach directly
models the entire 3D shape using unstructured, 3D point
clouds.

– We validate our methodology through simulation studies
involving soft grippers and real-world case study experiments.
These efforts not only validate our approach but also serve as a
guiding example for designing and modeling diverse 4D print-
ing processes. Our framework is adaptable to various physical
dynamics or stimuli, provided they exhibit similar data
characteristics.

The remainder of the paper is organized as follows. Section 2
gives a brief literature review. Then the proposed 4DYNAMO
framework for real-time control of time-dependent 3D profiles is
introduced in Sec. 3. In Sec. 4, we conduct a simulation study for
a soft gripper application. In Sec. 5, we conducted a real-world
case study with 4D printed shape memory polymers. Finally, we
conclude the paper with a brief discussion and an outline of
future work in Sec. 5.

2 Literature Review
In this section, we will review two categories of research that are

closely related to the 4DYNAMO framework: the impact of process
conditions on 3D shape morphing in 4D printing, and the continu-
ous normalizing flow methodology.

2.1 Impact of 3D Printing Process Conditions on 3D Shape
Morphing in 4D Printing. A limited number of research articles
have investigated the impact of process conditions during both
3D printing and stimuli activation. An et al. [2] utilized the
bending angle as a simplified 2D indicator of 3D shape and discov-
ered that printing speed and extrusion width during 3D printing
have the most significant effects on the bending angle of thermo-
plastic polyurethane (TPU) and polylactic acid (PLA) filaments.
Barletta et al. [3] found that for single-material PLA components,
in addition to activation temperature, the shape height plays a sig-
nificant role in shape recovery. Bodaghi et al. [4] investigated the
impact of printing speed on the morphing process of PLA filaments

using both experiments and finite element simulation. Tezerjani
et al. [5] studied the impact of layer height, print speed, nozzle tem-
perature, and bed temperature on the height of a PLA disk. They
subsequently employed linear regression to select process parame-
ters leading to maximum disk height. Akbar et al. [6] conducted
thermomechanical testing of rhombus-shaped structures and corre-
lated recovery and fixity ratios with printing parameters layer
height, printing temperature, and speed using linear regression.
They found that amorphous polymers were highly affected by print-
ing temperature, while semi-crystalline polymers were heavily
influenced by the interaction of all three printing parameters consid-
ered. Ren et al. [7] discovered that for direct ink writing of polyure-
thane elastomer materials, the 3D morphing behavior can be
influenced by two additional stimuli during the 4D phase of the
process: water and heat. Hosseinzadeh et al. [8] utilized response
surface methodology to study the effect of fused filament fabrica-
tion (FFF) parameters such as layer height, print speed, and
nozzle diameter on torsional and flexural deformation of PLA
parts. They employed a linear regression model to maximize defor-
mation but did not consider dynamic stimuli activation. Nam and
Pei [9] developed some general guidelines for 4D printing after
they investigated how the print pattern, infill density, and recovery
temperature affect the shape recovery of 16 different filaments to
their original shape after a morphing process.
Existing studies on the finite element modeling of this transfor-

mation process cannot be directly applied, as numerical models
require approximations and simplifications. Several studies have
identified discrepancies between the shape morphing behavior sim-
ulated by finite element analysis (FEA) and the actual behavior
observed [10].
Compared to the existing literature, our proposed method has two

unique advantages:

(i) In contrast to methods that rely solely on parameters like
bending angles or other reduced measurements [7], our
approach directly studies the complete 3D shape and its
dynamic deformation. Moreover, we examine both stages
of the 4D printing process: the 3D printing phase and the
stimuli activation phase, recognizing their profound
dependencies.

(ii) In contrast to batch-to-batch compensation strategies [11],
our methodology not only allows for the control of a single
shape but also offers the capability to control multiple
shapes throughout the entire dynamic 3D shape morphing
process. This feature enhances interpretability and enables
applications like soft robotics.

2.2 Continuous Normalizing Flow Methodology. CNFs rep-
resent a generative modeling technique utilized to derive complex
distributions through successive, invertible transformations from
simpler distributions [1]. Flow-based models enable exact likeli-
hood evaluation and efficient sampling. While CNF has been
extended to incorporate conditional inputs [12], its predominant
application has been in image generation with limited use in infer-
ence tasks [13]. Moreover, only a few studies have explored the
potential of CNF for modeling 3D point clouds [14,15].

Fig. 1 Overview of the proposed 4DYNAMO framework demonstrated in the example of a soft gripper
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In our research, we extend CNF to facilitate inverse design for
process parameters and incorporate additional supervision for inter-
mediate transformation steps, a unique data characteristic in 4D
printing. By employing this modeling approach, we enhance the
interpretability of the 3D morphing process, which holds signifi-
cance for applications such as soft robotics. Furthermore, we
exploit the inverse property of iterative flow models to optimize
the printing process. This overcomes the need for a potentially sub-
optimal two-step procedure involving the derivation of a process
model followed by optimization, thus streamlining the process
and design optimization workflow.

3 4DYNAMO Methodology
In this section, we present 4DYNAMO as a methodology for

controlling dynamic 3D morphing behaviors within 4D printed
devices. Our model development is grounded in the concept of nor-
malizing flows (NFs) [1].
NFs are generative models with the same goal as diffusion

models: to approximate and sample from a probability distribution.
NFs have emerged as a competitive generative modeling method by
constructing an invertible and efficiently differentiable mapping
between a fixed (e.g., standard normal) distribution and the data dis-
tribution [1,16]. CNFs express this mapping through a neural ordi-
nary differential equation (ODE) [17]. While CNFs have faced
challenges in training and scaling to large datasets [18], our frame-
work demonstrates that incorporating additional supervision
signals and conditioning on manufacturing process parameters
significantly enhances their effectiveness for 4D printing modeling.
A key advantage of CNFs is their ability to facilitate process opti-

mization by leveraging their invertible properties to obtain optimal
process inputs for a desired target shape. This direct optimization is
a distinct benefit over other methods, which would require solving
an additional optimization problemwhere performance could be com-
promised due to the non-convex nature of the prediction function.
Diffusion models, on the other hand, approximate a stochastic

differential equation (SDE) that transforms a simple density to the
data distribution. Their success partly stems from a straightforward
regression training objective that does not necessitate simulating the
SDE during training. Recent research has shown that CNFs can also
be trained using a regression of the ODE’s drift [19], similar to the
training of diffusion models, through an objective called flow
matching.

Our proposed CNF architecture further stabilizes the training
process, specifically tailored to the engineering application of 4D
printing. This approach leverages additional supervision from the
intermediate shape transformations and the knowledge of the
process conditions that affect these transformations. This unique
integration ensures that our framework learns meaningful results
with fewer training samples and provides a robust solution for 4D
printing process optimization.
We begin by introducing the fundamentals of NF, followed by

the proposal of a process input-conditional 3D normalizing flow
model, and subsequently, the suggested control optimization
approach. The novel 4DYNAMO framework is depicted in
Fig. 2, and the subsequent paragraphs will introduce the notation
and clarify its meanings.

3.1 Background on Normalizing FlowMethodology. A nor-
malizing flow comprises a series of invertible mappings that trans-
form an initial distribution into a more complicated one. Formally,
let f1, . . . , fT denote a series of diffeomorphic transformations (i.e.,
invertible and differentiable) to be applied to a latent variable z0
with distribution P(z0). The output variable is obtained via
xT = fT ◦ fT−1 ◦ · · · ◦ f1(z0), and the probability density of the
output variable is expressed by the change of variables in the
formula

logP(xT ) = logP(z0) −
∑n
k=1

log det
∂fk
∂z0+k

∣∣∣∣ ∣∣∣∣ (1)

where z0 can be obtained from xT using the inverse flow:
z0 = f −11 ◦ · · · ◦ f −1T (xT ). Graphically, the flow model can be visual-
ized as a chain of successive transformations of z0, with the
observed data at the end of the chain, as shown in Fig. 3.
In practice, f1, . . . , fT are implemented as neural networks with

an architecture designed to facilitate the efficient computation of the

determinant of the Jacobian det
∂fk
∂x0+k

∣∣∣∣ ∣∣∣∣. The quantity of training

samples crucial for highlighting the neural network depends on
the complexity of the shapes in 4D printed devices. In instances
of relatively simple shapes, such as those in our case study, a few
hundred samples appear to be adequate. However, for more intricate
shapes, several thousand samples may be required. Additionally, we
employ pre-training on the PartNet dataset to initialize the varia-
tional autoencoder (VAE) architecture for dimensionality reduction,
which is a standard approach in the field [20,21].

3.2 Problem Setup and Dimensionality Reduction for 3D
Point Clouds. 3D points serve as the primary output from
sensing devices like laser scanners, making them a favored repre-
sentation for their concise and standardized format. Compared to

Fig. 2 Overview of the 4DYNAMO methodology

Fig. 3 Graphical illustration of normalizing flow concept
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voxel grids, they offer significantly higher resolution, enabling
more detailed capture of spatial data. In this paper, the dataset
includes a collection of 3D shapes represented by 3D point
clouds, along with an accompanying set of process inputs. More
formally, D = { {Xi,j}

T
j=1, {ui,j}

T
j=1 }

N
i=1, where i= 1, …, N denotes

the sample index of N 4D devices and j = 1, . . . , T denotes the
index for the number of shape changes. We assume Xi,j ∈ R3 ×Np

is a 3D point cloud with three coordinates (x, y, and z) and Np mea-
surement points. The process inputs ui,j ∈ Rd consists of a vector of
dimension d.
Given the high dimensionality of 3D point clouds, typically com-

prising thousands to millions of 3D measurement points in each
sample, dimensionality reduction and obtaining a probabilistic
embedding becomes necessary. We adopt a variational approach
to model 3D point clouds, addressing their unique characteristics
of unstructured organization, permutation- and rotation-invariance.
Our approach involves representing 3D point clouds as a two-level
hierarchy of distributions: the first level denotes the distribution of
shapes, while the second level represents the distribution of points
given a shape. This formulation allows for the representation of
diverse shapes with varying numbers of points through simply sam-
pling from the distribution.
The core idea lies in parametrizing the distribution of points

within a shape as an invertible parameterized transformation of
3D points from a prior distribution, typically a 3D Gaussian, condi-
tioned on the process inputs. Conceptually, this model allows
obtaining points for a given shape by initially sampling points
from a generic Gaussian prior, inputting the process parameters,
and then moving these points according to the parameterized trans-
formation to their new location within the target shape. This param-
eterization offers several advantages. The invertibility of these
transformations facilitates not only sampling but also estimating
probability densities. Estimating probability densities enables prin-
cipled model training using the variational inference framework,
maximizing a variational lower bound on the log-likelihood of a
training set of point clouds. This probabilistic framework for train-
ing circumvents the need for hand-crafting appropriate distance
metrics to measure differences between sets of points.
The VAE framework enables the learning of P(Xi,j) from a

dataset of observations by characterizing the data distribution
through a latent variable xi,j with a prior distribution Pψ j

(xi,j).
Additionally, it employs a decoder, Pηj (Xi,j|xi,j), which captures
the (ideally simpler) distribution of Xi,j given xi,j. During training,
it also learns an inference model (or encoder) Qϕj

(xi,j|Xi,j). The
joint training of the encoder and decoder aims to maximize
a lower bound on the log-likelihood of the observations, where
DKL(·||·) is the Kullback–Leibler (KL) divergence

logPηj (Xi,j) ≥ logPηj (Xi,j) − DKL(Qϕ(xi,j|Xi,j) ∥ Pηj (xi,j|Xi,j))

= EQϕj (xi,j|Xi,j)[logPη,j(Xi,j|xi,j)] − DKL(Qϕj
(xi,j|Xi,j) ∥ Pψ j

(xi,j)) (2)

This evidence lower bound (ELBO) can be interpreted as the
combination of the negative reconstruction error (the first term)
and a regularization term for the latent space (the second term).
However, the conventional VAE model proves inadequate for
learning a low-dimensional embedding of unstructured 3D point
clouds. Typically, there is no prior structure in the set of 3D coor-
dinates for complex shapes. Specifically, their data structure lacks
topological awareness, and the spatial relationships among points
are unknown, presenting considerable modeling challenges.
Because 3D point clouds are represented as sets, they must
adhere to permutation invariance. This means that altering the
order of points in the point cloud still reflects the same underlying
shape. Moreover, the distribution of points is irregular due to widely
used devices such as laser scanners, resulting in sparse and dense
point cloud regions influenced by acquisition conditions such as
illumination. Hence, we proposed to decompose the reconstruction
log-likelihood of a point cloud into the sum of the log-likelihoods of

each measurement point Xp
i,j in a point cloud Xi,j (p = 1, . . . , Np).

logPη,j(Xi,j|xi,j) =
∑

Xp
i,j∈Xi,j

logPη,j(X
p
i,j|xi,j) (3)

We note that treating points independently may lead to a loss of
spatial information, but it significantly increases computational effi-
ciency. Additionally, the probabilistic representation of the 3D
point clouds is advantageous. In the context of flow modeling,
the initial sampling is less critical, and samples can be drawn inde-
pendently. Predicting the 3D points for a given shape involves sam-
pling points from a generic Gaussian prior and then transforming
them according to a parameterized transformation to their positions
in the target shape. In this formulation, a given shape is the variable
that parameterizes this transformation. Nonetheless, this is a possi-
ble limitation of the model, which could be relaxed in future
research.
This allows us to obtain a low-dimensional embedding xi,j of the

point cloud Xi,j. Throughout the remainder of the paper, the lower-
case xi,j will denote the embedding obtained from the modified VAE
architecture.

3.3 Incorporation of Process Inputs and Intermediate 3D
Morphing Shapes. We propose to model P(xT ) using a conditional
extension of CNF. A point xi,T in the point cloud Xi, T is the result of
transforming some points xi,0 in the prior distribution P(xi,0) using a
CNF conditioned on the preceding control inputs {ui,j}

T−1
j=1 as well

as the preceding 3D point cloud embeddings {xi,j}
T−1
j=1 . To simplify

the notation, we denote the collection of control inputs and 3D point
cloud embeddings by yi,T = {{ui,j}

T−1
j=1 , {xi,j}

T−1
j=1 }.

xi,T = FθT (xi,0; yi,T ) ≜ xi,0 +
∫T
t0

fθ(xi,t , t, yi,t)dt, xi,0 ∼ P(xi,0) (4)

where fθT defines the continuous-time dynamics of the flow FθT con-
ditioned on yi,T . Note that the inverse of FθT is given by
F−1
θT
(xi,T , y−1i,T ) = xi,T +

�t0
T fθT (xi,0, t, y

−1
i,T )dt with y−1i,T denoting all

the control inputs and shapes applied after xi,T . Here,
y−1i,T = {{ui,j}

τ
j=T , {xi,j}τj=T}, where τ is the total number of transfor-

mation steps. If we are in the last step of the 3D morphing process
(i.e., T = τ), then y−1i,T reduces to y−1i,T = ui,T . The reconstruction like-
lihood becomes

logPη,j(xi,T |yi,T ) = logP(F−1
θT
(xi,T , yi,T )) −

∫T
t0

Tr
∂fθT
∂ xi,t

( )
dt (5)

where Tr(·) denotes the trace of a matrix. Note that
logP(F−1

θT
(xi,T , yi,T )) can be computed in closed form for a Gaussian

prior. Nevertheless, the Gaussian prior is an uninformative prior that
lacks the incorporation of prior knowledge regarding the shape
morphing process. In the absence of additional information, the
most reasonable assumption would be that the shape resembles
the previous shape rather than adhering solely to a Gaussian distri-
bution. In particular, it has shown that a Gaussian prior limits the
performance of VAEs and leads to incorrect latent representations
[22]. Therefore, we use another CNF to parameterize a learnable
prior that considers the preceding shape xi,T−1 . We rewrite the
KL divergence term in Eq. (2) as

DKL(Qϕj
(xi,T−1|xi,0)) ∥ Pψ ,j(xi,T−1)

= −EQϕj (xi,T−1,|xi,0)[logPψ ,j(xi,T−1)] − H[Qϕj
(xi,T−1|xi,0)] (6)

whereH denotes the entropy, and Pψ j
(xi,T−1) is the prior distribution

with learnable parameters ψ j, obtained by transforming a standard
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Gaussian P(wj,T ) = N(0, 1) using the following CNF:

(xi,T−1) = Gψ j
(wi,T−1) ≜ wi,T−1 +

∫T
t0

gψ j
(wi,t , t)dt, wi,T ∼ P(wi,T )

(7)

where gψ j
defines the continuous-time dynamics of the flow Gψ j

.
The inverse of Gψ j

is given by

G−1
ψ j

(xi,T ) = (xi,T−1) +
�t0
T g−1ψ j

(wi,T−1(t), t)dt. The log probability

of the prior distribution can be computed by

logGψ j
(xi,T , yi,T ) = logP(xi,T , yi,T ) −

∫T
t0

Tr
∂gψ j

∂wi(t)

( )
dt (8)

Combining the dimensionality reduction, prior flow, and tempo-
ral flow, the ELBO of a point xpi,T in point cloud Xi,T can finally be
written as

L4DYNAMO(x
p
i,T , xi,0, yi,T , ϕj, ψ j, θj, ηj)

= EQϕj (xi,0 ,yi,T |xi,T )[logPη,j(xi,0, yi,T ) + logPψ j
(Xi,j|xi,0, yi,T )]

+ H[Qϕj
(xi,0, yi,T |Xi,j)] (9)

In comparison to the original flow model shown in Fig. 3, the
4DYNAMO model in Fig. 4 showcases two notable differences.
First, it incorporates conditional process inputs rather than initializ-
ing the flow with a base distribution like a standard Gaussian.
Second, it employs intermediate transformations during the 3D
shape morphing stage to guide the successive transformations of
the flow model, which leads to a reduction in the required sample
size for training.
Our model is trained end-to-end by maximizing the ELBO of all

3D point clouds in the dataset using SGD

ϕ∗,ψ∗, θ∗, η∗=arg max
ϕ,ψ ,θ,η

∑
i

∑
Xp
i ∈Xi

L4DYNAMO(x
p
T , x0, yT ,ϕ,ψ , θ, η)

(10)

The tuning parameters in our model, including the weights of the
different terms in the loss function, are selected using the standard
procedure of cross-validation (CV) specific to each dataset.

3.4 Process Optimization for Enhanced 3D Morphing
Accuracy. Process reproducibility and process-aware design opti-
mization present a significant challenge for the widespread adapta-
tion of 4D printing. Our objective is to leverage the invertible
property to achieve optimal process settings directly. By doing
so, we can utilize the invertible nature of forward flow predictions,
eliminating the need for a potentially suboptimal two-step process.
Traditionally, this process involves first learning a process model
and then optimizing it. However, this approach often necessitates
additional constraints or may result in predictions outside the

training region of the process models, leading to suboptimal func-
tional approximations.
The ultimate goal of process optimization is to find control

parameters {ui,j}
T
j=1, which will lead the dynamic 3D morphing to

output a given target shape Xi,T . This is intrinsically a generative
problem in the context of machine learning, where the goal is to
generate ui,j from a proper distribution P(ui,j|Xi,T ). However, it is
important to highlight that we can optimize not only the control
inputs but also leverage the intermediate 3D shape transformations
to enhance the optimization of 3D morphing toward a desired final
shape. For instance, specific applications such as soft robotics
may necessitate a smooth, continuous evolution of the 3D shape.
In such scenarios, we might prefer to distribute the dynamic
3D changes more evenly throughout the process. Hence, we will
then control the intermediate shapes and perform optimization
on yi,T = {{ui,j}

T−1
j=1 , {Xi,j}

T−1
j=1 }. With the forward flow, we can

obtain and output Xi,T for a given set of control inputs yi,T ,
denotes as Fθ(yi,T ). In particular, we seek yi,T =
{{u∗i,j}

T−1
j=1 , {X

∗
i,j}

T−1
j=1 } to best fit for a specific output Xi,T by mini-

mizing y∗i,T = arg min
yi,T

‖Fθ(yi,T ) − Xi,T‖22. However, due to the

invertibility and differentiability of the normalizing flows, there is
an even more simple and elegant solution. We can directly obtain
the desired control inputs by applying the inverse flows

y∗i,T = F−1
θ (Xi,T ) = f −1θ1

◦ · · · ◦ f −1θT
(Xi,T ) (11)

Figure 5 illustrates how the target 3D shape Xi,T is the input to the
inverse flow and leads to optimal control and 3D inputs for the
shape morphing process.
We note that in general, there may exist multiple optimal solu-

tions due to the non-uniqueness of this inversion process.
However, by designing the flow functions fθj as implicit normaliz-
ing flows [23] it is possible to obtain a unique solution. The idea is
that in general, a normalizing flow is an explicit transformation of
the form z = f (x). By defining the mapping implicitly as the roots
of the equation F(z, x) = 0 the non-uniqueness can be mitigated.
For a detailed proof, interested readers are referred to Ref. [23].
We note that, in specific applications, there may be advantages to
not restrict the functional form of fθj and explore multiple solutions.
Subsequently, one can take additional physical or cost constraints
into account to determine the most suitable 3D morphing behavior
for a particular case.

3.5 Theoretical Analysis. An important consideration in the
design of the flow functions fθj pertains to whether process condi-
tions suggested by the inversion process outside of the training dis-
tribution will still yield desirable outcomes for process
optimization. Generally, it is anticipated that such circumstances
may not yield favorable results, with models being valid only
within the training region. Generally, quantifying this behavior pre-
cisely remains challenging. Through the variational principles
underlying our flow model, we can delineate the conditions under
which this holds and propose methods to mitigate unfavorable beha-
vior during process optimization.
Deep learning techniques have shown significant promise in

addressing ill-posed inverse problems in imaging [24]. Among
these techniques, NF-based methods stand out due to their unique
ability to generate diverse solutions for a given input. However, arti-
facts stemming from an exploding inverse in NFs have been
observed in the image generation domain [25]. In our initial

Fig. 4 Graphical illustration of 4DYNAMO flow concept Fig. 5 Process optimization and control procedure
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modeling experiments, we observed analogous behavior in certain
configurations of the 4DYNAMO model, where process inputs
outside the training range resulted in undesirable outcomes. This
observation prompted us to investigate this phenomenon deeper
and propose potential remedies.
For NFs to be effectively trainable, it is imperative that fθj not

only exhibit invertibility but also possess a computationally man-
ageable Jacobian determinant. While various deep learning archi-
tectures, including those featuring convolutions, max-pooling, and
ReLU layers, have proven successful, NFs cannot utilize them
due to their lack of invertibility. Conditional coupling layers, inte-
gral to the NF’s conditional nature, serve as the primary layer
choice in NF architectures. More formally, a conditional coupling
transformation is defined as f : S � S ⊆ RD is defined as

f (xi) =
g(xi; ϑi) i = d, . . . , D
xi i = 1, . . . , d − 1′

{
(12)

where ϑi = NN(x1:d−1, eθ(y)), NN is an arbitrary neural network, eθ
is an encoder for the conditional input y, and g(xi; ϑi):S′ � S′ ⊆ R
is an invertible function parameterized by a vector ϑi. The Jacobian
determinant of this transformation is readily obtained from the
derivative of g(·), expressed as

det
∂f
∂x

( )
=
∏D
i=d

∂g(xi; ϑi)
∂xi

(13)

The inverse of f (·) is given by

f −1(xi) =
g−1(xi; ϑi) i = d, . . . , D
xi i = 1, . . . , d − 1

{
(14)

Affine transformations are commonly utilized due to their com-
putational efficiency for their Jacobian and inverse as well as
their sufficient expressive power.

g(xi; ϑi(y)) = ai(y)xi + bi(y) (15)

where ϑi = (ai, bi). Affine coupling transformations are suitable for
generation and inference tasks on high-dimensional data. However,
in most conditional NFs the affine coupling transformations are the
only components that depend on y. However, this can lead to a
problem known in the image generation literature as an exploding
inverse [25,26]. While it is widely understood that
out-of-distribution predictions, i.e., inputs beyond the distribution
of the training set, may lead to suboptimal performance, theoreti-
cally verifying this behavior can be challenging beyond empirical
validation alone. However, the probabilistic framework of normal-
izing flows enables us to quantify the error arising from the inver-
sion process as follows:
PROPOSITION 1. If fθ:X × Y � Z ⊆ RD represents a conditional

normalizing flow utilizing the conditional affine coupling transfor-
mation and training with a dataset drawn from the distribution
p(x|y), then there exist many instances in which
‖x, y‖∞ ≪ ‖ f −1θ ( f (x; y))‖∞.
This can be seen from an argument using the convexity of the

affine coupling layers, which aim to minimize the negative
log-likelihood −Ex,y∼px.y [log qx,y(x|y)]. For simplicity, we assume
that fθ consist of one conditional affine coupling layer and
x, y ∈ R2. Using the definition of the affine coupling layers for
d = D = 2, we obtain the following negative log-likelihood:

− Ex,y log qz( fθ(x; y)) + log det
∂fθ
∂x

(x; y)
∣∣∣∣ ∣∣∣∣[ ]

= Ex,y
‖ fθ(x; y)‖22

2σ2z
+ log det

1 0

∗ a1

[ ]∣∣∣∣ ∣∣∣∣[ ]
= Ex,y

x21 + (a1x1 + b1)
2

2σ2z
− log(a1)

[ ]
(16)

where ∗ denotes a placeholder for the value of the corresponding
partial derivative, and z is assumed to be Gaussian. We can see
that Eq. (16) is a convex function of (a1, b1), which is unbounded
from below. Hence there exists a degenerative case in which a1 �
∞ with b1 � −a1x1, which matches the degenerative behavior
observed in our initial experiments as well as in the literature
[27]. This analysis allows us to use a simple remedy for this
behavior.
PROPOSITION 2:. By adding an additional constraint to bound the

affine coupling layers in fθ, the degenerative case can be avoided.
This undesirable unboundedness of the negative log-likelihood

loss can be avoided by setting an upper bound on a1 by simply
solving

min
0<a1≤1,b1

x21 + (a1x1 + b1)
2

2σ2z
− log(a1) (17)

This approach has been utilized in some recent image-based flow
models [28,29] and preserves sufficient expressive power while
leading to the elimination of the degenerate case for the inversion
process. Hence, we adopt this procedure for our 3D point cloud-
based approach based on the theoretical analysis detailed above.

4 Retrofit Simulation Study—Soft Gripper
In the realm of 4D printing, inverse design via simulation is a crit-

ical research area [30]. However, current simulation methods are
computationally expensive [31], highlighting the need for an accu-
rate, differentiable, and fast-to-evaluate surrogate model for 4D
printing design, that considers the manufacturing conditions. To
address this gap, we conducted finite element simulations with
two primary goals:

(1) To showcase the versatility of 4DYNAMO, demonstrating
its capabilities not only as a data-driven model but also as
a high-fidelity surrogate model for the design process.

(2) To assess the robustness of our 4DYNAMO model under
varying levels of 3D acquisition noise. We intentionally
introduced noise into our 3D morphing simulations while
following the intended 3D surface design (ground truth),
allowing us to gauge the model’s performance degradation
with increasing noise levels. This validation ensures the
adaptability of our approach, even with less precise sensing
equipment.

For the finite element simulations, we utilized the steady-state
thermal and static structural analysis modules within ANSYS. The
gripper design (Fig. 6) comprises six fingers anchored to a base
for connection to a holding fixture, incorporating TPU (bottom
layer in Fig. 6) and solid PLA (top layer in Fig. 6), inspired by
prior soft gripper research [32–34]. Two different designs are uti-
lized to show the potential of 4DYNAMO to model diverse
designs and utilize it as a surrogate model for inverse design.
Design A consists of solid TPU material and PLA material with
rectangular grooves to provide bending forces. Design B includes
trapezoidal PLA grooves. The interactions between TPU and
PLA design are the most important factors for the bending behavior
of those structures [2]. Hence, these designs represent important
design considerations.
The behavior of 4D printed objects is influenced by various

factors, including 3D printing process conditions and stimuli activa-
tion. While heat stimuli activation can be directly modeled in FEA
software, the impact of 3D printing process conditions necessitates

Fig. 6 Design of the soft gripper used for the simulation studies
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adjustments in material properties. Thus, a literature review was
conducted to find the ranges for essential material properties for
PLA and TPU under varying printing conditions. The results are
summarized in Table 1.
A space-filling Latin hypercube design of experiments (DOE)

with N = 200 simulations was conducted based on the identified
process parameter ranges. Figure 7 shows four 3D morphing
steps in two exemplary simulations.
In each simulation run, we extracted standard triangle language

(STL) files representing the initial shape, five intermediate shape
transformations during stimuli activation, and the final shape from
ANSYS. These files were then converted into 3D point clouds using
PYTHON. To assess our framework’s robustness under real-world
acquisition conditions, we tested various levels of random noise.
Figure 8 illustrates this process, showcasing an exemplary STL
file exported from ANSYS, its conversion to a 3D point cloud, and
the addition of three Gaussian noise levels. The noise levels were
selected based on commonly used values reported in previous liter-
ature [43–45].
The Gaussian random noise is centered at each coordinate point

extracted from the STL model, with variance along each coordinate
direction set as a percentage of the range in that direction. We utilize
two common point cloud metrics [46] to assess prediction quality:
first, the Chamfer (CH) distance, which calculates the distance
between point clouds X1 and the predicted point cloud X2 as
follows:

dCH(X1, X2)

=max
1

|X1|
∑
x∈X1

min
y∈X2

‖x − y‖2,
1

|X2|
∑
y∈X2

min
x∈X1

‖y − x‖2
{ }

(18)

Second, the Earth mover distance (EMD) or Wasserstein distance
is utilized, which is defined as follows:

dEMD(X1, X2)

=min
1

|X1|
∑
x∈X1

min
y∈X2

‖x − y‖2,
1

|X2|
∑
y∈X2

min
x∈X1

‖y − x‖2
{ }

(19)

As a benchmark, we utilize an approach applicable to a 2D
abstraction, specifically the 2D bending angle. To the best of our
knowledge, no existing methods specifically address the process
optimization of the entire 3D shape morphing behavior in 4D print-
ing, measured by a 3D point cloud. To evaluate our process optimi-
zation performance, we have chosen a common ad-hoc approach for
the 2D bending angle. The target design is assumed to have the
same bending angle for each finger of the gripper. We first learn
a linear regression model with material conditions (xprint) and
stimuli activation temperature (xstimuli) as inputs, and the 2D
bending angle (yb) as the regression response. The varying material
conditions serve as a surrogate for the impact of different printing
conditions. This gives us a model of the form ŷb = f (xprint, xstimuli).
We then formulate the following optimization problem, which

can be readily solved using convex solvers due to the linearity of
the function. This problem aims to minimize the difference
between the predicted bending angle ŷb and the desired target
bending angle yTb , while staying within the upper and lower setting
values of the process parameters (εLprint, εLstimuli, ε

U
print, εUstimuli),

respectively.

min
xprint ,xstimuli

‖yTb − f (xprint, xstimuli)‖22
s.t. εLprint ≤ xprint ≤ εUprint; ε

L
stimuli ≤ xstimuli ≤ εUstimuli (20)

For the forward prediction of our model, Table 2 displays the
mean and standard deviation on the test set of the 4DYNAMO
model across both designs and different material conditions accord-
ing to the DOE derived from Table 1, utilizing tenfold
cross-validation.
The results indicate a strong agreement between our predictions

and the simulations, even when exposed to higher levels of simu-
lated random noise in the 3D point cloud representation, which
mimics low-fidelity 3D scanning acquisition. However, an increase
in error and variation of the predictions is evident, as expected with
higher noise levels. From the ablation study, we can clearly observe
the significant positive impact of adding more supervision signals in
the form of intermediate shape morphing scans during the training
stage of the model. Therefore, if the experimental efforts are justi-
fiable, it is recommended to 3D scan more intermediate shapes

Table 1 Ranges of the process parameters for the simulation studies

Process parameter Material Range Literature sources

Density PLA 1.20 − 1.25 g/cm3 [35,36]
Coefficient of thermal expansion PLA 6.32 × 10−5 –2.53 × 10−4 K−1 [36]
Tensile yield strength PLA 27.87–34.63 MPa [35]
Tensile ultimate strength PLA 28.41–35.86 MPa [35]
Compressive yield strength PLA 26.05–59.94 MPa [37]
Compressive ultimate strength PLA 17.17 MPa [38]
Density TPU 1.20–1.23 g/cm3 [39]
Coefficient of thermal expansion TPU 1.63 × 10−4 –2.08 × 10−4 K−1 [36]
Tensile yield strength TPU 21–36 MPa [40]
Tensile ultimate strength TPU 20–40 MPa [41]
Compressive yield strength TPU 5–10 MPa [42]
Compressive ultimate strength TPU 5–10 MPa [42]

Fig. 7 Exemplary simulation results
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rather than fewer. However, future research may be needed to deter-
mine when this improvement may saturate. As the sample size
increases, the effect of additional supervision signals becomes
less significant, indicating a tradeoff between increasing the
sample size and adding more intermediate shapes. This tradeoff
can be managed based on the experimental efforts required for col-
lecting more samples versus scanning more intermediate shapes.
For the sample size, we observe a very clear benefit when increasing
the sample size from 50 to 100. Even when increasing the sample
size to 200, we still see significant performance gains, and further
research could investigate the effect of even larger sample sizes.
As a general rule, we recommend assessing the qualitative predic-
tion performance: if the model accurately captures the dynamic
3D shape morphing behavior, it should be sufficient to enable effec-
tive process optimization. However, the prediction accuracy
directly impacts the optimization results, as the process optimiza-
tion relies on the inverse flow model. Therefore, higher prediction
accuracy leads to better process optimization results. However, it
is challenging to provide general guidelines for the number of

samples and intermediate shape transformations, as it is highly
problem dependent. For qualitative comparison, we present two
exemplary visualizations of 4DYNAMO forward predictions in
Fig. 9, demonstrating significant overlap with the ground truth
simulation shape.
Utilizing 4DYNAMO for process optimization consisted of

defining 20 distinct target shapes, which are the desired outcome
of the 3D morphing process. Then the inverse flows of
4DYNAMO are utilized to determine the optimal stimuli activation
temperature and corresponding material properties. To assess the
accuracy of the predictions, we directly compared the computer-
aided design (CAD) file representing the target shape with the
simulation result. The FEA simulation result is obtained using the
optimized process parameters derived from our 4DYNAMO
inverse model. As a comparison metric, we use the Euclidean dis-
tance, as it is commonly used to compute distances between two
CAD files. Table 3 presents the average and standard deviation
values between the target shape and the final morphing shape

Fig. 8 Conversion of simulation STL file to 3D point cloud and noise addition to 3D point cloud

Table 2 4DYNAMO forward predictions results

Model setting Metric Noise level Average Standard deviation

50 samples and 0 intermediate shapes CH 0.1 1.868 0.441
50 samples and 0 intermediate shapes EMD 0.1 0.314 0.094
50 samples and 2 intermediate shapes CH 0.1 1.687 0.349
50 samples and 2 intermediate shapes EMD 0.1 0.248 0.057
50 samples and 5 intermediate shapes CH 0.1 1.147 0.224
50 samples and 5 intermediate shapes EMD 0.1 0.194 0.035
100 samples and 0 intermediate shapes CH 0.1 1.341 0.342
100 samples and 0 intermediate shapes EMD 0.1 0.275 0.070
100 samples and 2 intermediate shapes CH 0.1 1.193 0.373
100 samples and 2 intermediate shapes EMD 0.1 0.249 0.063
100 samples and 5 intermediate shapes CH 0.1 1.095 0.132
100 samples and 5 intermediate shapes EMD 0.1 0.219 0.037
200 samples and 0 intermediate shapes CH 0.1 0.937 0.254
200 samples and 0 intermediate shapes EMD 0.1 0.191 0.035
200 samples and 2 intermediate shapes CH 0.1 0.892 0.128
200 samples and 2 intermediate shapes EMD 0.1 0.186 0.034
200 samples and 5 intermediate shapes CH 0.1 0.779 0.105
200 samples and 5 intermediate shapes EMD 0.1 0.173 0.016
200 samples and 5 intermediate shapes CH 0.2 1.054 0.138
200 samples and 5 intermediate shapes EMD 0.2 0.221 0.027
200 samples and 5 intermediate shapes CH 0.3 1.256 0.241
200 samples and 5 intermediate shapes EMD 0.3 0.262 0.049

Fig. 9 Exemplary visualization of 4DYNAMO forward prediction
results

Table 3 Process optimization results for 20 target shapes

Model Metric Average
Standard
deviation

Benchmark L2 Euclidian
distance

0.934 0.143

4DYNAMO
(Ours)

L2 Euclidian
distance

0.412 0.088

Note: Bold indicates best performing model.
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achieved with the optimal process settings identified through our
4DYNAMO inverse model. We also provide the results for the
benchmark approach described earlier in this section.
The benchmark method does not utilize the full 3D information,

including the final morphed shape and intermediate shapes. Conse-
quently, the predictions are less accurate, and the optimization is
performed in a separate two-stage process. This results in a signifi-
cantly larger deviation and variance from the intended CAD design.
On the other hand, for the 4DYNAMO results there is a substantial
overlap between the target and the achieved final morphing shape.
Figure 10 presents a qualitative comparison of two exemplary target
shapes alongside their corresponding 4DYNAMO-optimized final
3D morphing results as well as an example of the 2D bending
angle benchmark result for an example design.
This comprehensive simulation study confirms the effectiveness

of our methodology for two advanced designs, spanning various
process conditions and noise levels. The benchmark, which only
models the 2D bending behavior, fails to accurately capture the
3D shape morphing dynamics. Consequently, it cannot perform
effective process optimization, resulting in high variance and a
less accurate match to the desired final morphed shape. These
results emphasize the significant potential of the 4DYNAMO

model. Not only can it serve as a data-driven model rooted in real
experiments, but it also is suitable as an efficient surrogate model
for computationally intensive FEA simulations. This has the poten-
tial to streamline the design optimization process for 4D printed
devices.

5 Retrofit Case Study—Shape Memory Polymers
To investigate the 4DYNAMO framework outlined above, we

conducted real-world case study experiments utilizing FFF to
produce 4D printed devices made from PLA and TPU filaments.
These materials are commonly employed in 4D printing for self-
folding materials via immersion in a hot water bath [7]. Rectangular
shapes were printed using a multi-material switching upgrade kit
(MMU3) on a PRUSA i3 MK3 Printer to ensure smooth transition
between the two materials and ensure layer adherence. The experi-
mental setup is shown in Fig. 11 with one printed layer of TPU fil-
ament for a specific sample.
These shapes represent a single finger of the soft robotics gripper

from the simulation study, excluding the groove design. We varied
the process parameters crucial for 3D shaping morphing behavior,
as identified in the literature review in Sec. 2.1. The ranges for
these parameters are provided in Table 4. For the experiments, we
utilized a space-filling Latin hypercube design. The parts have the
same number of PLA and TPU layers, so the total number of
layers is 2 · u0,4.
Here we model T = 5 shape transformation steps to achieve the

final shape. The 4D shape morphing process was executed in five-
second intervals (repeated five times) within a scientific water bath
offering precise temperature regulation. After each five-second
increment, the parts were subjected to 3D scanning using a
high-precision laser scanner, capturing unstructured, 3D
point clouds, which were subsequently subsampled to a fixed size
of Np = 50, 000 measurement points. A total of 200 samples were
collected. In our qualitative analysis, we find that the width of the
component has a negligible impact on morphing behavior.
However, an increased actuator length, water temperature, and
printing speed are positively correlated with increased bending of
the parts. Conversely, an increase in layer height, the number of
PLA layers, and nozzle temperature tends to reduce bending. Addi-
tionally, increasing the number of layers, layer height, and nozzle
temperature tends to reduce bending behavior. Conversely,

Fig. 10 Exemplary visualization of process optimization results for 4DYNAMOmodel and bench-
mark comparison

Fig. 11 Experimental setup

Table 4 Process parameter settings for case study experiments

Process parameter Settings Value used for process optimization

Length of the part u0,1 20, 50, 75, 110 mm Discrete setting value
Width of the part u0,2 5, 15, 30, 50 mm Discrete setting value
Layer height u0,3 0.12, 0.20, 0.28, 0.36 mm Discrete setting value
Number of material layers u0,4 2, 3, 4, 5 Discrete setting value
Printing speed u0,5 20, 40, 60, 80 mm/s Discrete setting value
Printing nozzle temperature u0,6 200, 210, 220, 230 °C Discrete setting value
Activation temperature (hot water) uT , T = 1, . . . , 5 65, 70, 75, 80 °C Five setting values—one for each 5 s increment
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elevating the activation temperature and print speed tends to
enhance bending behavior.
To validate the experimental behavior of our procedure, we

utilize a 2D abstraction: the 2D bending angle, a parameter fre-
quently discussed in the literature concerning the impact of
process conditions on 4D printed shape memory polymers. We con-
ducted a linear regression on the 200 space-filling factorial design
experiments to determine the impacts of process parameters as
well as design parameters on the 2D bending behavior, as reported
in Table 5. When applicable, we reference related literature that val-
idates this behavior.
For the process parameters, we observe that the activation tem-

perature has the most significant positive impact on the bending
angle. In contrast, the printing speed exerts the most substantial
negative effect, resulting in a decreased bending angle, followed
by the printing temperature. For the design parameters, we find
that increasing the material thickness significantly reduces the
ability to achieve a large bending behavior. To further validate

this behavior, we conduct repeatability experiments, varying
one factor at a time, and print another 100 samples. For this pre-
liminary analysis, we only measure the 2D bending angle to
reduce data collection efforts, rather than measuring the 3D
point clouds. The results, depicting the impact of different
process conditions on the bending angle, are presented in
Fig. 12. These results demonstrate that the effects of varying
certain process conditions are repeatable, highlighting the impor-
tance of the process conditions for the final 3D shape accuracy.
However, we also observe that only controlling the bending
angle is not enough as the interaction of the process conditions,
design choices, and environmental uncertainties may lead to 3D
twisting and bending behavior that is not captured solely by the
2D bending angle.
The 200 samples, for which we conducted the Latin hypercube

DOE and collected 3D measurements, form the basis for training
our 4DYNAMO model. In Fig. 13, we present different intermedi-
ate shape morphing results of two exemplary samples to illustrate

Table 5 Impact of process parameters on 2D bending angle and comparison to literature

Model parameter Estimate Standard error Literature validation

Intercept −197.888 127.301 —
Length of the part u0,1 4.741 0.296 —
Width of the part u0,2 2.259 0.775 —
Layer height u0,3 42.899 1.730 Small positive effect [47]
Number of material layers u0,4 0.854 0.189 Small positive effect [47]
Printing speed u0,5 370.875 36.887 Positive effect [47]
Printing nozzle temperature u0,6 −4.040 0.497 Negative effect [3]
Activation temperature (hot water) uT 8.222 0.725 Positive effect [3]

Fig. 12 Impact of process conditions on 2D bending angle and process repeatability

Fig. 13 Exemplary 3D shape morphing behavior with intermediate 3D scanned shapes
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the supervision signal the 4DYNAMO model utilizes for training
and the dynamics of the process.
We train and test the 4DYNAMO model using a tenfold CV pro-

cedure. The evaluation of prediction accuracy involves computing
CD and EMD as reported in Table 6, which demonstrates the
strong predictive performance of the 4DYNAMO predictions on
the real experimental samples.
From the ablation study, we observe that incorporating additional

supervision signals in the form of intermediate shapes significantly
enhances prediction performance. However, this effect diminishes
as the sample size increases, highlighting a tradeoff between collect-
ing more samples and generating more intermediate shape activa-
tions. This tradeoff can be exploited based on the experimental
efforts required. Figure 14 presents a qualitative assessment show-
casing the strong alignment between three exemplary predictions
and the ground truth 3D profiles. The green ground truth measure-
ments closely match the blue 4DYNAMO predictions.
Following this, we used the best model, which was trained with

the full sample size and all five intermediate shapes as supervision
signals, to optimize the process for ten different target shapes. These
target shapes are characterized by bending a rectangular shape
without any twisting. The target shapes represent different desired
final morphed forms. Figure 14 provides three examples of these
target shapes in green. We note that the process inputs are normal-
ized before being used in the model, as they have different units and
magnitudes. In Table 7, we report the Euclidean distance between
the ground truth CAD design and the 3D scanned parts after print-
ing and activating them with the optimized process settings pre-
scribed by the inverse 4DYNAMO model. We observe a strong
agreement between the 4D printed devices with the target design.
However, the variance reflects the challenging alignment process
between an actual printed part, which may exhibit some level of
twisting, and the CAD model. The performance of the benchmark,
which can only control the 2D bending angle and therefore misses
some important dynamics of the shape morphing process, results in
a significantly larger deviation from the CAD model and a higher

variance. These inaccuracies in predictions propagate through the
process optimization, exacerbating the overall deviation.
Figure 15 presents qualitative results from three exemplary opti-

mization outcomes, underscoring the remarkable precision and
potential of 4DYNAMO compared to the benchmark in controlling
the dynamic 3D shape morphing behavior. By adjusting the control
variables during both 3D printing and 4D shape morphing (i.e.,
u0,1, .., u0,6, u2, . . . , u10), we achieve an impressive alignment
with the target shape, while the benchmark misses some of the
complex, nonlinear dynamics of the process since it uses a linear
model to predict a 2D abstraction, specifically the bending angle.
This extensive case study validates our proposed 4DYNAMO

framework and demonstrates its immense potential as a tool for
optimizing the dynamic 3D shape accuracy of 4D printed devices,
considering the process conditions during both 3D printing and
4D stimuli activation.

6 Conclusion
In this paper, we introduced a novel machine-learning framework

tailored for precise control of 3D shape morphing in 4D printed
devices. Through extensive simulation studies and real-world
experiments, we showcased the framework’s significant practical
potential. Moreover, our approach offers interpretability regarding

Table 6 4DYNAMO tenfold cross-validation testing results for different model settings

Model setting Metric Average Standard deviation

50 samples and 0 intermediate shapes CD 1.965 0.58
50 samples and 0 intermediate shapes EMD 1.617 0.43
50 samples and 2 intermediate shapes CD 1.744 0.45
50 samples and 2 intermediate shapes EMD 0.147 0.03
50 samples and 5 intermediate shapes CD 1.566 0.30
50 samples and 5 intermediate shapes EMD 0.122 0.02
100 samples and 0 intermediate shapes CD 1.682 0.36
100 samples and 0 intermediate shapes EMD 0.146 0.03
100 samples and 2 intermediate shapes CD 1.378 0.25
100 samples and 2 intermediate shapes EMD 0.128 0.02
100 samples and 5 intermediate shapes CD 0.938 0.13
100 samples and 5 intermediate shapes EMD 0.079 0.01
200 samples and 0 intermediate shapes CD 1.086 0.19
200 samples and 0 intermediate shapes EMD 0.084 0.01
200 samples and 2 intermediate shapes CD 0.919 0.12
200 samples and 2 intermediate shapes EMD 0.075 0.01
200 samples and 5 intermediate shapes CD 0.896 0.08
200 samples and 5 intermediate shapes EMD 0.0706 0.01

Fig. 14 Qualitative prediction results for three exemplary test
shapes

Table 7 4DYNAMO process optimization results for 10 target
shapes

Model Metric Average
Standard
deviation

Benchmark L2 Euclidian
distance

1.924 0.632

4DYNAMO
(ours)

L2 Euclidian
distance

1.119 0.456

Note: Bold indicates best performing model.

Fig. 15 Qualitative process optimization results for benchmark
and 4DYNAMO approach
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intermediate transformations and enables precise control over these
steps, including associated process conditions. We foresee exciting
opportunities for diverse manufacturing processes and the develop-
ment of impactful new products.
Future research directions should explore more intricate shapes

and incorporate uncertainty quantification while considering addi-
tional design and engineering constraints. For example, those
encountered in soft robotics gripping of deformable objects neces-
sitate specific speed and force distributions at each dynamic 3D
morphing step. Furthermore, exploring transfer learning methodol-
ogies could be crucial for quickly extending the method to new
designs. Additionally, creating a diverse training set of shapes
would enhance the method’s generalization capabilities.
Another crucial future direction could involve extending the pro-

posed framework from process optimization to real-time dynamic
control, compensating for process variability encountered during
the 3D printing process and during the stimuli activation phase.
Currently, cycle time is not a concern for offline process optimiza-
tion, but it becomes critical for online control.
Furthermore, the calibration of simulation studies to match real

4D printed parts requires an in-depth examination of material prop-
erties under various printing conditions. Presently, material proper-
ties are sourced from multiple studies, potentially leading to
inconsistencies, and parts are assumed to possess solid material,
overlooking the line-by-line, layer-by-layer deposition characteris-
tic of 3D printing techniques like fused filament fabrication.
An important area for future research is the uncertainty quantifi-

cation of the proposed framework. Our method naturally enables
uncertainty quantification through the probabilistic representation
of the 3D point clouds. However, assessing and reducing uncer-
tainty involves multiple factors such as controlling the 3D printing
process and stimuli activation, as well as improving the accuracy of
sensing devices. The interactions among these factors and their
underlying causes warrant detailed investigation. For instance,
uncertainties may originate from measurement inaccuracies alone,
or process uncertainties might be compounded by measurement
errors. Another important factor is the uncertainty about the input
materials to the process. Future research should investigate how
this could be mitigated by enhancing the consistency of the raw
materials, quantifying the range of material properties’ uncertainty
and their interactions with 3D printing, and determining to what
extent 3D printing and stimuli activation can compensate for mate-
rial uncertainty.
Despite these areas of improvement, we view this work as an

essential initial step in demonstrating the influence of process set-
tings on dynamic 3D shape morphing and the potential of advanced
machine-learning models to optimize these processes toward a
desired target shape with high 3D accuracy.
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Nomenclature
i = sample index
j = temporal index (i.e., 3D morphing steps)
D = dataset

H = entropy
N = total number of samples
S = domain of flow model
T = number of 3D morphing steps
eθ = encoder for conditional input y
fθi = forward temporal flow function parameterized

by θi
zi,j = latent variable
xT = low-dimensional embedding of the 3D point cloud

measurement at shape morphing step T
xi,j = low-dimensional embedding of the 3D point cloud

of sample i in shape morphing step j
xi,0 = low-dimensional embedding of the prior

distribution drawn from prior distribution P(xi,0)
u0 = process inputs during 3D printing
u∗0 = optimal process inputs during 3D printing to

achieve final target shape
u1 = process inputs during 4D stimuli activation
u∗1 = optimal process inputs during 4D stimuli

activation to achieve final target shape
ui,j = process input of sample i in shape morphing step j
yi,T = concatenation of preceding 3D shapes and process

inputs up to shape morphing step T for sample i
z0 = initial embedding of the normalizing flow model,

i.e., initialized with random Gaussian distribution
Fθi = discrete time temporal flow function parameterized

by θi
Np = number of 3D measurement points in the 3D point

clouds
Pψ j

= prior distribution at shape morphing step j
Pηj = decoder of the 3D Point cloud at shape morphing

step j
Qϕj

= encoder of the 3D Point cloud at shape morphing
step j

DKL = Kullback–Leibler divergence
X0 = part after 3D printing, before stimuli activation
Xi,j = 3D point cloud of sample i in shape morphing

step j
g(·) = affine transformation function

L4DYNAMO = 4DYNAMO loss function
ϑi = parameter of the flow model

AM = additive manufacturing
CAD = computer-aided design
CH = chamfer distance

CNF = continuous normalizing flow
DOE = design of experiments

ELBO = evidence lower bound
EMD = Earth mover distance
FEA = finite element analysis
FFF = fused filament fabrication
KL = Kullback–Leibler divergence
NF = normalizing flow
NN = neural network
PLA = polylactic acid

ReLU = rectified linear unit
SGD = stochastic gradient descent
SMP = shape memory polymer
STL = standard triangle language
TPU = thermoplastic polyurethane
VAE = variational autoencoder

4DYNAMO = analyzing and optimizing process parameters in
4D printing for dynamic 3D shape morphing
Accuracy
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