Vanadium Dioxide-Based Reconfigurable Ka-Band Dual-Sense Linear-to-Circular Polarizer

Mark S. Lust, David L. West, Student Member, IEEE, Vanessa Smet, Member, IEEE, Thomas G. Williamson, and Nima Ghalichechian, Senior Member, IEEE

Abstract—In this article, we propose a reconfigurable dual-sense linear-to-circular polarization (LCP) converter in the form of a VO₂-based metasurface. VO₂ is a phase change material (PCM) that is useful for low-loss mmWave devices, being transparent in its insulating state and metallic when heated. The device operates in the satellite communications uplink portion of Ka-band (27.5–31 GHz). It consists of a four-layer meanderline metasurface with two overlapping configurations, rotated relatively by 90° in-plane, for right hand circular polarization (RHCP) and left hand circular polarization (LHCP) conversion. Each configuration is interrupted by rectangular VO₂ patches and double spiral NiCr micro-heaters along the meandered traces. When DC voltage is applied, the VO₂ of one trace changes from insulator to conductor, activating the configuration. The design is simulated to have \(\text{AR} \leq 0.99 \text{ dB} \) and \(\text{IL} \leq 2.59 \), for both RHCP and LHCP conversion. The measured results are demonstrated for LHCP conversion with \(\text{AR} \leq 2.1 \text{ dB} \) and \(\text{IL} \leq 4.0 \text{ dB} \). The LHCP conversion also has a 1-dB AR band from 30.2–32.4 GHz and 3-dB AR from 27–38 GHz (26% circular polarization bandwidth). This study demonstrates for the first time LCP conversion using a transmission-mode reconfigurable metasurface in Ka-band with dual-sense design, VO₂ PCM, and simple DC activation network.

Index Terms—metasurface, mmWave, phase change material, VO₂, reconfigurable, LCP

I. INTRODUCTION

As communication networks become more and more crowded with the growing population of Internet-connected devices, new avenues of signal diversity are sought to alleviate interference. Notably, the available communication frequency bands are being expanded with the advent and proliferation of 5G networks and the use of the Ka-band in satellite communications (satcom). These increase accessible bandwidth and number of active channels; however, there is opportunity for new dimensions of modulation and multiplexing in this paradigm. To improve robustness against signal interference and network interruptions, we can create diversity not only in the frequency domain but also in polarization.

Usage of circular polarization (CP) is desirable as opposed to linear polarization (LP), as it eliminates the risk of polarization mismatch loss due to misalignment [1]. This is especially useful in mobile networks, where handheld devices are positioned at any and every angle imaginable. Additionally, in satcom, where spacecraft are thousands or tens of thousands of miles away, any reduction in pointing or aligning requirements is highly beneficial.

Current literature on linear to circular polarization (LCP) converters is focused on implementing dual-sense-dual-sense...
measurement of a reconfigurable dual-sense LCP converter for signal processing and computation. Dedicated to scientific instrumentation and measurement, the limited energy absorbed by onboard photovoltaics to be an advantage in using a single aperture to communicate with various satellites that could have static RHCP or LHCP antennas. It is preferable to have any method of reconfiguration on the ground side, as static devices consume less power and can weigh less. Weight reduction in satellites dramatically reduces cost of launching into space, as it directly impacts the amount of thrust required. Lowering power consumption allows reconfigurable dual-sense LCP converters using PIN-diodes [10, 11]. The creation of reconfigurable CP-sense diversity within a single frequency LCP metasurfaces and antennas [1-3]. These provide static LCP conversion with each sense of CP assigned to its own frequency band. There are also switchable reflection-mode LCP conversion metasurfaces that produce either LP or CP with PIN-diodes [4] and varactor diodes [5], dual-sense reflection- and transmission-mode LCP converters with mechanical reconfiguration [6], liquid metal injection microfluidics [7, 8], liquid crystal [9], and transmission mode single-sense reconfigurable LCP converters using PIN-diodes [10, 11]. The advantage of PCMs over typical solid-state switches include quasi-passive behavior; the range of options of external stimuli such as Joule heating, voltage, current, strain, infrared light, or X-rays; and direct manipulation of device geometry. VO2 is a PCM with a reversible insulator-metal transition (IMT) at 68 °C, with contrast in electrical resistivity of 9.8×10^4 when grown on C-plane sapphire and 1.46×10^4 when grown on Si [31]. During the IMT, the crystal structure of the VO2 switches from monoclinic to tetragonal, and back again when cooled. This change is illustrated in Fig. 2 [31]. VO2 is especially appealing in mmWave systems for its low material losses compared to solid state semiconductor switches. It is also highly reliable for mmWave applications, as experimentally demonstrated in our recent conferences [12, 13].

A. VO2 Phase Change Material

Phase change materials or PCMs are used in reconfigurable and “smart” devices, be it sensors [14-17], antennas [18, 19], switches [20-25], metasurfaces [26, 27], or power limiters [28-30]. The advantage of PCMs over typical solid-state switches include quasi-passive behavior; the range of options of external stimuli such as Joule heating, voltage, current, strain, infrared light, or X-rays; and direct manipulation of device geometry. VO2 is a PCM with a reversible insulator-metal transition (IMT) at 68 °C, with contrast in electrical resistivity of 9.8×10^4 when grown on C-plane sapphire and 1.46×10^4 when grown on Si with an annealed Al2O3 buffer layer [31]. During the IMT, the crystal structure of the VO2 switches from monoclinic to tetragonal, and back again when cooled. This change is illustrated in Fig. 2 [31]. VO2 is especially appealing in mmWave systems for its low material losses compared to solid state semiconductor switches. It is also highly reliable for mmWave applications, as experimentally demonstrated in our prior work, with no significant degradation after 100 million thermal cycles [32]. While it is frequently deposited on sapphire substrates with the highest resistivity contrast, it is generally of better interest in mmWave systems to integrate VO2 on Si substrates with the highest resistivity contrast, it is generally of better interest in mmWave systems to integrate VO2 on Si.

Fig. 2. VO2 phase change shown as electrical resistivity over temperature as grown on annealed Al2O3 [31].

Fig. 3. Reconfigurable Ka-band polarizer operation. Each configuration is excited by a single DC voltage that separately produces LHCP or RHCP. The images in the top right are both sides of the fabricated and assembled device, and on the left is the model of the unit cell simulated in HFSS. The bottom right shows a top-down view of the unit cell.

This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author’s version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TAP.2024.3356615

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 26,2024 at 22:13:24 UTC from IEEE Xplore. Restrictions apply.
substrates. The advantages provided by using Si substrate are the ability to perform bulk micromachining to locally modify metasurface substrate thickness and potential for future packaged systems with control circuitry integrated monolithically with the metasurface. We note that while VO₂ exhibits low losses and high contrast ratio at the mmWave band, it can also be used as a tunable medium at other bands such as medium infrared as shown by our prior work [33].

B. Reconfigurable LCP Converter Concept

For our device, we chose to pursue dual-sense LCP conversion with a single aperture over the same band. We chose the Ka-band, specifically the satcom uplink frequencies of 27.5–31 GHz, because it also contains the 28 GHz 5G range. The design principle for this device is based on the meanderline polarizer [34] with multiple cascaded layers [3, 35]. Original to our design is the addition of breaks in the meanderline traces connected with VO₂ PCM switches. The full design is duplicated and rotated 90° about the intersection point as first reported in our preliminary work in [36]. The device operation is illustrated in Fig. 3. The goal is to construct two superimposed meanderline polarizers that are isolated in DC and each transparent when the other is activated. To enable the overlapping design, we applied the concept of the meanderline trace to a hexagonal grid so that there is less interaction between the two configurations. The shift from rectangular to hexagonal meanderlines is depicted in Fig. 4.

The operating principle of the meanderline polarizer begins with a diagonal 45° LP wave excitement. This wave is broken down into vertical and horizontal components, which encounter shunt inductance along the traces and shunt capacitance across the traces, respectively. The layout causes a 90° difference in phase between the two components that then reunite as a CP wave [34]. In our case, the vertical and horizontal components stay the same, but when the alternate configuration is active, the vertical component encounters shunt capacitance across the traces, and the horizontal component interacts with shunt inductance along the traces. In the alternate configuration, the phase difference is −90°. The simple input switching scheme is enabled by using VO₂.

II. DESIGN AND SIMULATION

A. Electromagnetic Design

Modeling and simulation of the electromagnetic (EM) design was carried out using ANSYS HFSS. We performed simulations using Floquet ports and periodic boundaries for an infinite array. The unit cell, shown in Fig. 5, consists of a 100 μm thick Si substrate, 500 nm thick Ag meanderline lines, 100 nm thick VO₂ at Ag gaps, and 150 nm thick NiCr double spiral heaters on top of the VO₂; these are repeated as four layers, 600 μm apart from the top of one layer to the top of the next.

Fig. 4. The evolution of our design from (a) traditional meanderline, to (b) hexagonal grid meanderline, and to (c) rotated and overlaid hexagonal grid meanderlines.

Fig. 5. HFSS model (a) top view of unit cell with dimensions, (b) tri-metric view of unit cell showing four layers with dimensions, and (c) top view close-up of VO₂ switch with NiCr heater and dimensions. NiCr heater and gap are each 2 μm wide.
The vertical and horizontal traces are based on a hexagonal grid with 1.1 mm long segments such that they only intersect at one point and are identical save for the 90° rotation about their intersection point. With the need for rotational symmetry, the traces are somewhat sparse and cannot create 90° phase difference with one layer. Therefore, the initial design was made for one layer that causes ~22.5° phase shift, then increased to four layers, where the pitch between the layers and the Si thickness were optimized for the 90° phase difference target. The VO₂ patches along the vertical traces are assigned with the properties of its metallic state, and the VO₂ patches along the horizontal traces are assigned the properties of its dielectric state.

The switches consist of a rectangular patch of VO₂ with the double spiral NiCr heaters, set in the gaps with a chamfer design in the main meanderline traces. The chamfer detail was added to reduce continuity in the “OFF” state caused by capacitance in the gap. This allowed further isolation between the RF configurations. The size of the VO₂ patches was determined iteratively in a trade-off between smaller size to decrease resistance in the activated trace and larger to increase the gap and isolation in the deactivated trace. The VO₂ material boundary was limited to the NiCr heater area, as the intended active area of the switch.

The heaters were designed as double spirals to add an inductive RF choke function to the “OFF” state of the switches, giving greater EM isolation than a capacitive gap. Once the heater excites the VO₂, the turns of the double spirals are shorted together, causing the switch to act as a simple resistor. The difference in RF surface current flow between the switch states is shown in Fig. 6, with clear disruption by the double spirals and continuity over the activated VO₂.

The Floquet ports are excited with two modes, defined in HFSS as TE₀₀ and TM₀₀, which are plane waves with 90° rotation between the two. The port excitations are de-embedded to the top surface of the top layer and the bottom surface of the bottom layer. The reflection (S₁₁), transmission (S₂₁), and phase shift are compared between the vertical and horizontal modes.

\[\Delta \phi = \phi_V - \phi_H \]
\[A_e = 20 \log_{10} \left(1 + |S_{21V} - S_{21H}| \right) \]
\[\phi_e = 90 - |\Delta \phi| \]

Fig. 6. RF surface current distribution in the metasurface with (top) LHCP mode active and (bottom) RHCP mode active presented (left) over the full unit cell and (right) at the junction between the traces.

Fig. 7. Simulation results for unit cell design (a–c) transmission and reflection, (d) phase accumulated in each Floquet mode and difference thereof, (e) phase and amplitude error, and (f) figures of merit: insertion loss and axial ratio.
The reflection and transmission are shown for the two modes (hereafter referred to as the phase difference), the absolute value is taken of the difference between the respective unwrapped phase shifts. Low reflection is a good benchmark, but the chief figures of merit (FOM) of the polarizer, namely the insertion loss (IL) and axial ratio (AR), are determined from the comparative and total S21 and phase difference (Δφ). IL and AR are found in (4) and (5–6), respectively. Subscripts V and H refer to the vertical and horizontal wave components. Phase is calculated in degrees.

The simulated FOM results are AR≤0.99 dB and IL≤2.59 dB throughout the 27.5–31 GHz band. AR must be at most 3 dB to be considered circular polarization, so less than 1 dB is an excellent result. IL is typically considered in a 1-dB bandwidth for static LCP converters [1-3], but reconfigurability comes with a trade-off of larger losses [37]. This trade-off of higher losses considered, we decided to compensate with a stricter AR design goal of 1 dB. Lower AR implies a lower range for potential polarization mismatch loss. Given the unit cell’s rotational symmetry, the alternate configuration results are identical, only with swapped transmittance and reflectance profiles per mode and negative phase difference.

The reflection and transmission are shown for the two modes and the average in Fig. 7 (a–c); phase shift, phase error, and amplitude error are illustrated in Fig. 7(d–e); and FOM results are plotted in Fig. 7 (f).

B. Thermo-Electric Switch Design

The switch design having been largely based on the EM model, we verified the DC portion of its functionality with experimental standalone DC switch devices tested on a probe station before processing the full metasurface. When fabricated and measured on a DC probe station, the switches were confirmed to activate with a combination of Joule heating from the NiCr and field effect from the applied voltage. The Joule heating reduces the voltage required to activate VO2. Detailed switching behavior for a single switch, different sets of serial switches, and a full layer of the metasurface are depicted in Fig. 8. Measurements were taken using a Keithley source meter. In the full metasurface layer, we observed that the VO2 begins to transition at 35 V, then fully transitions as it hits the tool’s compliance limit of 105 mA after the sharp transition from 63 V to 65 V. When cooling, the current remains maxed out until it reduces to 57 V, then it begins to drop, showing a total resistance around 90 Ω, increasing around 50 V to 500 Ω. As the metasurface layers are all in parallel, this is representative of the expected voltage required for testing and ¼ the current. Flat areas of the curves show where the source meter was at its hardware current limit for the given voltage.

\[
IL = -20 \log_{10} \left(\frac{S_{21,V} + S_{21,H}}{2} \right)
\]

\[
\Delta = \sqrt{1 - \frac{4S_{21,V}^2S_{21,H}^2(\sin \Delta \phi)^2}{S_{21,V}^2 + S_{21,H}^2}}
\]

\[
AR = 20 \log_{10} \left(\frac{1 + \Delta}{1 - \Delta} \right)
\]

Fig. 7 I-V plots of (a) various sets of test switches in series and (b) one layer of the metasurface device as measured on a DC probe station.

III. DEVICE FABRICATION

A. Wafer-Level Processing

The fabrication process flow is shown in Fig. 9. Starting with a 300 μm thick 100 mm diameter high-resistivity float-zone (FZ) Si wafer, we deposited and annealed ALD alumina and sputtered VO2 as described in our previous work [31]. This process enables deposition of a VO2 film with a high contrast ratio on Si, which was previously only available for sapphire substrates. We then patterned and etched the VO2 with the RIE process detailed in Table I. Next, we performed e-beam evaporation and lift-off of 150 nm thick 80/20 NiCr alloy, followed by e-beam evaporation and lift-off of 500 nm thick Au
with a 5 nm thick seed layer and a 25 nm thick cap layer; for each of these, we used AZ nLOF 2070 negative photo resist with 2 µm thickness. Then, we deposited 100 nm thickness alumina using the same recipe as for the initial buffer layer. The first layer of Au connected the horizontal traces end-to-end. To connect the vertical traces, we deposited a 200 nm alumina isolation layer and etched it using the RIE-ICP recipe detailed in Table I. Then we performed e-beam evaporation and lift-off of a 500 nm Au layer, this time using AZ nLOF 2070, a thicker photoresist at 7 µm. Whereas the original ideal simulation used Ag as the main conductive material, we opted for Au after Ag-based prototypes exhibited DC shorts.

The full device unit cell substrate was 100 µm thick, so the next step was to use deep reactive ion etching (DRIE), also known as Bosch process, to etch 200 µm into the back of the substrate. First, we spin coated a film of S1813 photo resist and hard baked it to protect the front-side device layers. Afterward, we flipped the wafer and coated the back using AZ nLOF 2070 and patterned it having used the backside alignment feature of the mask aligner (Heidelberg MLA150). We used 369 cycles of the following process: 5 second deposition using 70 sccm C₄F₈, 1 sccm SF₆, 40 sccm Ar, 1 W RIE power, and 825 W ICP power at 15 mTorr; and 10 second etch using 5 sccm C₄F₈, 100 sccm SF₆, 40 sccm Ar, 9 W RIE power, 825 W ICP power at 15 mTorr. To keep the substrate from overheating and burning the photoresist, 5-minute rest periods were inserted every 50 cycles, and the wafer was stacked on a 100 mm Al₂O₃ wafer, 500 µm thick, to improve the seal on the chuck. The latter enhances the He cooling by increasing back pressure. We removed the photoresist using heated (80° C) NMP (1-methyl-2-pyrrolidone). Scanning electron micrographs of the finished device are shown in Fig. 1.

B. PCB Design and Assembly

To provide mechanical structure and accessible DC biasing, we used a packaging scheme with printed circuit boards (PCBs). The assembly is shown in Fig. 10. We bonded each metasurface chip to a PCB layer, and four assembled layers form the complete device. Because the metasurface was designed with the silicon layers separated by air gaps, we cut an aperture into the center of the PCB to expose the active area. Large DC pads provide the electrical connection between the PCB and the chip. The pads connect to plated vias in the corners, which form the DC input ports.

The PCB thickness is required to be 300 µm to achieve the desired layer pitch, and thicker copper is preferred to support higher DC currents. To achieve these characteristics, four PCBs per full device are fabricated using Rogers RO4003 with a thickness of 8 mil (203 µm) and 2-oz copper cladding. After plating the vias, the final copper thickness is 3 oz (105 µm). We etch the backside copper on the PCB such that the chips are separated by one copper and dielectric layers with a total thickness of 308 µm.

We chose silver epoxy (MG chemicals 9410-3ML) as the bonding material, as the low thickness of the chip-side metal

Fig. 9. Process flow for polarizer device. Starting with RIE patterning of VO₂, NiCr was then evaporated and lifted off, followed by evaporation and lift-off of Au, then ALD alumina. The alumina was then etched using RIE-ICP, and the final Au layer was deposited. Lastly, the back side was etched by 200 µm using DRIE.

Fig. 10. Assembly procedure of the polarizer. We bond each metasurface chip to a PCB, and we layer four PCBs to complete assembly of the device. Connector pins ensure alignment between the layers and provide external DC connection points.
precluded soldering. We used a pneumatic benchtop manual dispenser to deposit a controlled volume of silver epoxy onto the PCB landing pads, then we picked-and-placed each metasurface chip onto a PCB using a Finetech FINEPLACER Matrix flip-chip bonder with a placement accuracy of ±3 µm. We then cured the samples at 150°C for 7 minutes on a hot plate. To complete assembly, four samples were layered and aligned using connector pins, which were soldered by hand.

A limited amount of force had to be used when placing the metasurface chips due to the risk of shorting connections if the silver epoxy is over-compressed. As such, the silver epoxy’s final thickness increases the layer spacings by 120–230 µm (0.012–0.023 λ at 30 GHz). We measured the layer spacings by viewing the final devices from the side using a microscope.

IV. QUASI-OPTICAL MEASUREMENT SETUP

We employed a quasi-optical free space measurement setup to characterize the metasurface device. A diagram and an image of the test setup are shown Fig. 11. We used a pair of Ka-band spot-focusing lensed horn antennas (Eravant SAQ-333039-28-S1). Measurement analysis begins at 27 GHz due to uncertainties near the cutoff frequency. The dielectric lenses focus the fields into a Gaussian beam with a focal length of 100 mm. The antennas are positioned two focal lengths apart with the DUT placed at the focal point, where there is a concentrated field intensity and planar phase front. The field intensity is characterized by the 3-dB beamwaist diameter, which is 12.7 mm in the E-plane. The setup emulates a plane wave incident on an infinite periodic structure, allowing for direct comparison with the Floquet port simulations. We used a PNA to perform the RF measurements, and we used a DC power supply to activate the metasurface. We applied 50 V with a current limit of 350 mA to activate the DUT; upon activation, the current required to sustain LCP conversion dropped to 130 mA with a running power of 6.5 W.

Each chip is a square with a side length of 33.0 mm, and the active metasurface area has a side length of 26.4 mm. Fabrication limitations prevented ideal over-sizing of the metasurface relative to the Gaussian beamwaist. Ideally, the sample size would be at least four times the 3-dB beamwaist, such that the beam is truncated where the fields are >35 dB below peak [38]. In this case, the ideal sample size is 50.8 mm or larger. To mitigate beam truncation effects, as shown in Fig. 11, we placed absorber on the DUT fixture around the edges of the aperture, and the fixture was left in place during calibration.

For flexibility in the measurement setup, the test lensed horn antennas were supported by 3D-printed fixtures with stems that allowed them to be rotated in 45° increments. The DUT was also positioned at a 45° angle in its 3D-printed fixture. As a result, the device may be tested by creating circular polarization with a diagonally polarized incident wave, and the two components of the circularly polarized output wave may be...
captured by rotating the receiving horn antenna. Alternatively, both horn antennas may be placed with the same polarization to individually capture the vertical and horizontal components to synthesize circular polarization as in the simulation. To facilitate angular stability measurements, the DUT was mounted on a rotating stage. The antennas were mounted on linear translation stages for positional adjustments along the axis of propagation. To minimize reflections from the optical table, the entire setup was raised using posts. Additional absorbers were placed on the table surface below the DUT.

We used a free-space thru-reflect-line (TRL) calibration. The thru standard included the empty DUT fixture with the antennas placed two focal lengths apart. The reflect standard was a small copper plate inserted in the DUT fixture. The line standard comprised the empty fixture with the antennas moved apart by $\lambda/4$ at 30 GHz (2.5 mm) using the translation stages. We used time gating to eliminate undesired multipath effects due to repeated reflections between the antennas and DUT.

The procedure for transmission measurements at normal incidence is summarized in Fig. 12. We first calibrated the antennas in the vertical position. One antenna was then rotated at $\pm45^\circ$ to obtain the components of the circularly polarized output wave. The data was normalized to a thru measurement taken with the rotated receiving antenna. The normalization eliminates phase error incurred from misalignment of the antennas due to 3D printing tolerances. In addition, the 3 dB of loss that would be expected from rotating the polarization of the receiving antenna is eliminated. As such, the normalized result can be compared to the unit cell simulations.

Reflection data for each component and measurements of angular stability required a separate procedure, shown in Fig. 13. We placed both horns at the $+45^\circ$ position with their polarizations aligned and recalibrated. In this manner, the horizontal and vertical components are captured separately.

We used a free-space thru-reflect-line (TRL) calibration. The thru standard included the empty DUT fixture with the antennas placed two focal lengths apart. The reflect standard was a small copper plate inserted in the DUT fixture. The line standard comprised the empty fixture with the antennas moved apart by $\lambda/4$ at 30 GHz (2.5 mm) using the translation stages. We used time gating to eliminate undesired multipath effects due to repeated reflections between the antennas and DUT.

The procedure for transmission measurements at normal incidence is summarized in Fig. 12. We first calibrated the antennas in the vertical position. One antenna was then rotated at $\pm45^\circ$ to obtain the components of the circularly polarized output wave. The data was normalized to a thru measurement taken with the rotated receiving antenna. The normalization eliminates phase error incurred from misalignment of the antennas due to 3D printing tolerances. In addition, the 3 dB of loss that would be expected from rotating the polarization of the receiving antenna is eliminated. As such, the normalized result can be compared to the unit cell simulations.

Reflection data for each component and measurements of angular stability required a separate procedure, shown in Fig. 13. We placed both horns at the $+45^\circ$ position with their polarizations aligned and recalibrated. In this manner, the horizontal and vertical components are captured separately.
rotated the DUT by 90° in-plane to capture both components. To capture the angular stability, we took transmission measurements at different incident angles by rotating the DUT stage using the same calibration. Only transmission results can be measured because specular reflection at off-normal incidence cannot be captured with the measurement setup. In addition, there is blockage of the beam due to the DUT fixture, which affects the transmission, so the measurement results have been normalized to thru measurements for the corresponding area of the NiCr heaters. As such, we present measurement results for an alternate version of the device, as shown in Figs. 14 and 15. VO2 is only present for one set of meanderlines, and the bridges are not included. Additionally, the main conductor traces are Ag. To retain the effect of the “OFF” configuration on RF performance, the gaps in the Ag are narrow, and the NiCr heaters remain in place. This version is such that the presence of both RF configurations is represented, with one DC activation kept “OFF” to emulate thermal isolation. At room temperature, VO2 is virtually transparent to mmWave radiation, so its selective absence is representative of its deactivated state. This device achieves one sense of circular polarization, which is activated when the VO2 is heated. Along with the rotational symmetry, the concept is thus proven for the dual-sense LCP device in satisfaction of the mmWave design and implementation. The one remaining obstacle to dual-sense

V. MEASUREMENT RESULTS

We fabricated multiple versions of the metasurface. The versions of the device described in Section III were found to have thermal isolation issues between the VO2 switches of the different configurations. Specifically, without the heat sink of the probe station present, the heat was no longer isolated to the area of the NiCr heaters. As such, we present measurement results for an alternate version of the device, as shown in Figs. 14 and 15. VO2 is only present for one set of meanderlines, and the bridges are not included. Additionally, the main conductor traces are Ag. To retain the effect of the “OFF” configuration on RF performance, the gaps in the Ag are narrow, and the NiCr heaters remain in place. This version is such that the presence of both RF configurations is represented, with one DC activation kept “OFF” to emulate thermal isolation. At room temperature, VO2 is virtually transparent to mmWave radiation, so its selective absence is representative of its deactivated state. This device achieves one sense of circular polarization, which is activated when the VO2 is heated. Along with the rotational symmetry, the concept is thus proven for the dual-sense LCP device in satisfaction of the mmWave design and implementation. The one remaining obstacle to dual-sense

Fig. 16. Measurement results with comparisons to simulations (a–c) transmission and reflection, (d) phase difference between the Floquet modes, (e) phase and amplitude error, and (f) figures of merit: insertion loss and axial ratio.
differences in the fabricated device compared to the design, simulation. The simulation has been adjusted to account for results are shown for a normal incidence, with comparison to during the lift-off process for the heaters caused widening of the eliminating alignment concerns. We also note that undercutting meanderlines. These changes are summarized in Fig. 15.

Further iterations of thermal design are outside the scope of this demonstration is improved thermal isolation between modes. Further iterations of thermal design are outside the scope of this project. The VO₂ area is larger in the fabricated devices compared to the original simulation, which ensures good ohmic contact between the meanderline trace and the VO₂ as well as eliminating alignment concerns. We also note that undercutting during the lift-off process for the heaters caused widening of the NiCr traces, as shown in Fig 14.

In Fig. 16 (a)–(c), the measured transmission and reflection results are shown for a normal incidence, with comparison to the simulation. The simulation has been adjusted to account for differences in the fabricated device compared to the design, including the larger layer pitch, wider VO₂ area, wider NiCr traces, and the lack of bridges and VO₂ for one set of meanderlines. These changes are summarized in Fig. 15.

The measurement and simulation results have similar trends overall. The measured transmission magnitudes are lower than the simulation, and the difference in phase is closer to 90°. The discrepancies with the simulation can be attributed to angular misalignment of the layers in the fabricated device as well as beam truncation effects. If the layers are not parallel, the mutual coupling between them will be stronger in some areas of the array than others. Additionally, edge diffraction from beam truncation differs between the thru calibration standard and the device measurement due to the presence of additional silicon and PCB layers. These nonidealities are not captured in the Floquet port simulations.

In Fig. 16 (e)–(f), the measured figures of merit are shown. Measured AR≤2.1 dB in the satcom uplink band, 27.5–31 GHz and AR≤1 dB from a narrower band of 30.2–32.4 GHz. Measured IL≤4.0 dB in the satcom uplink band and IL≤4.06 dB within the 1-dB AR band. It is also worth noting that CP is achieved across the entire measured frequency band, with AR≤2.3 dB from 27–35 GHz (at least 26% CP bandwidth). Measured phase error (Δϕ) is between 3.7° and 7.4° in the measured band, while the simulation achieves phase error between 9.7° and 21.3°. As a result, measured AR is lower than simulation, with a minimum of 0.7 dB around 30 GHz. Whereas improvement in losses from simulation to measurement would be considered somewhat unusual, error in phase difference (Δϕ) can potentially be positive or negative. Therefore, this fortunate deviation from the simulation is both plausible and reasonable. Measured IL is 1.6–1.9 dB higher than simulation due to the decrease in transmission magnitude for both components.

Results for incident angle measurements are shown in Fig. 17 with comparison to the simulation. The simulated data shows reasonable stability of IL for higher incident angles below 31 GHz, with maximum variation of 0.2 dB. Above 31 GHz, there is a monotonic increase in IL with incident angle, with a maximum increase of 3.1 dB at 40°. The measured IL has less than 0.3 dB variation across the measured band up to 30°, but at 40°, IL is up to 0.5 dB higher compared to normal incidence. For both simulation and measurement, Δϕ decreases for steeper incident angles. As a result, the simulated model’s signed ϕ increases by up to 2.8°–11.6° at an incident angle of 40°. Below 32 GHz, this effect leads to a decrease in AR by up to 1.7 dB for higher incident angles. In the upper part of the band, asymmetry in transmission magnitudes dominates, causing an increase in AR by up to 3.9 dB with higher incident angles. On the other hand, the measured data for normal incidence already had Δϕ below 90°. Thus, the decreasing Δϕ results in an increase in ϕ of up to 2.8°–13.0° for an incident angle of 40°. Due to the increasing ϕ, the AR increases up to 0.5–1.8 dB at an incident angle of 40°.

Comparing measured “ON/OFF” performance for reconfigurability in Fig. 18, there is stark distinction between the two modes. When cold/deactivated, the metasurface passes LP with IL≤3.08 dB and Δϕ≤1.3°, resulting in AR≥39 dB (AR not shown) in the satcom uplink band. This comparison is shown in Fig. 18. This is in contrast to the LHCP converted wave that exhibits IL≤4.0 dB and AR≤2.1 dB. Thus, we have experimentally confirmed Ka-band LCP conversion using a VO₂-based reconfigurable metasurface.

VI. CONCLUSION
In this study, we designed a reconfigurable dual-sense LCP converter metasurface at Ka-band using VO₂ as the active material. The dual-sense design was based on two identical
overlapping meanderline unit cells, rotated 90° about an intersection point, where they are isolated in the DC domain and continuous in the RF domain. VO2 was chosen for its simplicity of activation and low material losses at frequencies in the mmWave spectrum, as opposed to semiconductor-based switches. In the design simulation, LHCP and RHCP modes had identical FOM of AR<0.99 dB and IL<2.59 dB in the 27.5–31 GHz uplink band. It was designed and simulated as the first transmission-mode dual-sense LCP conversion metasurface.

Measured results are presented as LP-LHCP conversion, using a device prototype retaining the structures of the RHCP configuration for their effect on RF performance, demonstrating that the only barrier to dual-sense experimental operation is improved thermal isolation. Nevertheless, this device is experimentally validated as the first PC-based reconfigurable LCP converter and the first reconfigurable LCP conversion metasurface at Ka-band. In the “OFF” state, the device passes LP waves at IL<3.08 dB and AR<39 dB in the satcom uplink band, and in the “ON” state, it transmits LHCP waves at IL<2.04 dB and AR<2.1 dB in the same band. The LHCP transmission mode contains a 1-dB AR band from 30.2–32.4 GHz, where IL<4.1 dB. The increase in IL from simulation to measurement is attributed largely to factors such as beam truncation, diffraction effects from the edges of the device, and the multiple metasurface layers deviating slightly from parallel to each other within the device package. These factors could not be accounted for in infinite-array simulation. The measured LCP conversion performance is stable (ΔAR<1.8 dB) within the target band at incident angles up to 40°, with increase in insertion loss ΔIL<0.5 dB.

ACKNOWLEDGMENT

The authors would like to thank the staff members of the Nanotech West Laboratory at The Ohio State University and the Institute for Electronics and Nanotechnology at Georgia Institute of Technology for their invaluable help and support in the microfabrication and packaging of our devices.

REFERENCES

