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Deep Learning
Expectation vs Reality

Expectation vs Reality of Deep Learning

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning
Expectation vs Reality

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning
Requirements and Challenges

Novel data sources:

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …

Requirements: Deep Learning-enabled systems must predict correctly on novel data

Temel, Dogancan, et al. "Cure-tsd: Challenging unreal and real environments for traffic sign detection." IEEE 

Transactions on Intelligent Transportation Systems (2017). 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

Novel samples = Most Informative

• The first instance of training must occur with 
less informative samples

• Ex: For autonomous vehicles, less informative 
means

• Highway scenarios

• Parking

• No accidents

• No aberrant events

Benkert, R., Prabushankar, M., AlRegib, G., Pacharmi, A., & Corona, E. (2023). Gaussian Switch Sampling: 

A Second Order Approach to Active Learning. IEEE Transactions on Artificial Intelligence.

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning at Training
Overcoming Challenges at Training: Part 2

Subsequent training must not focus only on novel data

• The model performs well on the new 
scenarios, while forgetting the old 
scenarios

• Several techniques exist to overcome this 
trend

• However, they affect the overall performance 
in large-scale settings

• It is not always clear if and when to 
incorporate novel scenarios in training

Laborieux, Axel, et al. "Synaptic metaplasticity in binarized neural networks." Nature communications 12.1 

(2021): 2549.

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning at Training
Overcoming Challenges at Training

Novel data packs a 1-2 punch!

Novel data may not 

be available during 

training

Even if 

available, 

novel data 

does not 

easily fit into 

either the 

earlier or 

later stages 

of training

A = Deep Neural Networks

B = Novel data

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning at Inference
Overcoming Challenges at Inference

We must handle novel data at Inference!!

Novel data sources:

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …

Model Train At Inference

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



11 of 192

Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Part 5: Conclusions and Future Directions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



Robust Neural Networks

Part I: Inference in Neural Networks
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Neural Network Basics

• Robustness in Deep Learning

• Information at Inference

• Challenges at Inference

• Gradients at Inference

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Part 5: Conclusions and Future Directions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning
Overview

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning
Neurons

Artificial neurons consist of:

• A single output

• Multiple inputs

• Input weights

• A bias input

• An activation function

The underlying computation unit is the Neuron

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



16 of 192

Deep Learning
Artificial Neural Networks

Neurons are stacked and densely connected to construct ANNs

Typically, a neuron is part of a network organized in layers:

• An input layer (Layer 0)

• An output layer (Layer ă)

• Zero or more hidden (middle) layers (Layers 1&ă 2 1)

Cat

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

Cat

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning at Inference
What, Where, and When is Inference?

Ability of a system to predict correctly on novel data

Trained Model Cat

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Novel data sources:

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …
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Deep Learning at Inference
What, Where, and When is Inference?

Neural networks are feed-forward systems; output layer logits are used for inference

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Cat

All required information is passed to last layer

Outputs from last layer are termed Logits

Required information is learned at training; leads to inductive 
bias when encountering novel data at inference

Novel data sources:

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …
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Deep Learning at Inference
What, Where, and When is Inference?

Inference occurs at: (i) Testing, and (ii) Deployment

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Trained Model at 

Deployment
Cat

Trained Model at Testing

Cat, 

Cat, 

Cat

Novel data sources:

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …
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Deep Learning at Inference
Application: Classification

Network �(�) Predicted 

Class Probability

Dog

Cat

Horse

Bird

Given : One network, One image. Required: Class Prediction

ොþ = Ā ýþ = �ÿāÿ�ý� ොþĂ( ොþ) = Ā(Ā ý ) ොþ = Logits þ = Predicted ClassĂ( ොþ) = ProbabilitiesĀ ⋅ = Trained Network� = Training data

89%

9%

If ý * �, the data is not 
novel

ý

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning at Inference
Application: Robust Classification

Network �(�) Predicted 

Class Probability

Dog

Cat

Horse

Bird

Deep learning robustness: Correctly predict class even when data is novel

ොþ = Ā ý′ + Āþ = �ÿāÿ�ý� ොþĂ( ොþ) = Ā(Ā ý′ + Ā ) ොþ = Logits þ = Predicted ClassĂ( ොþ) = ProbabilitiesĀ ⋅ = Trained Network� = Training dataĀ = Noise

ý′
53%

39%

Ifý′ + �, the data is 
novel

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Deep Learning at Inference
Application: Robust Classification

Network �(�) Predicted 

Class Probability

Dog

Cat

Horse

Bird

Deep learning robustness: Correctly predict class even when data is novel

ý′
53%

39%

To achieve robustness at Inference, we need the following:

• Information provided by the novel data as a function of training distribution
• Methodology to extract information from novel data

• Techniques that utilize the information from novel data 

Why is this Challenging?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

�(�)

Toy visualizations generated using functions

(and thousands of generated data points)

Real data visualizations generated using 

dimensionality reduction algorithms (Isomap)

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Challenges at Inference
Inference

However, at inference only the test data point is available, and the underlying structure of the 
manifold is unknown

�(�) �(�)
At TrainingAt Inference

Trained network knowledge is 

not easily accessible

At training, we have access to all 

training data. 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Information at Inference
Fisher Information

Network �(�)
Predicted 

Class Probability

Dog

Cat

Horse

Bird

�(�|ý)
Likelihood function

Colloquially, Fisher Information is the <surprise= in a system that observes an event

ā � = Ă�ÿ( ÿÿ� þ � ý )� = Statistic of distribution

ℓ(θ | x) = Likelihood function

Fisher Information

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-
fisher-information-2720c40867d8

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Information at Inference
Information at Inference

Network �(�)
Predicted 

Class Probability

Dog

Cat

Horse

Bird

�(�|ý)
Likelihood function

ā � = Ă�ÿ( ÿÿ� þ � ý )� = Statistic of distribution

ℓ(θ | x) = Likelihood function

Fisher Information

At inference, given a single image from a single 
class, we can extract information about other classes

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



29 of 192

Gradients infer information about the statistics of underlying manifolds

Information at Inference
Gradients as Fisher Information

�(�|ý)

Likelihood function instead of loss manifold

Using variance decomposition, ā � reduces to: ā � = �[ā�ā��] where�[⋅] = Expectationā� = ÿ�þ � ý , Gradients w.r.t. the sample

From before, ā � = Ă�ÿ( ��� þ � ý )

Kwon, Gukyeong, et al. "Backpropagated gradient representations for anomaly detection." Computer 
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, 
Part XXI 16. Springer International Publishing, 2020.

Hence, gradients draw information from the 
underlying distribution as learned by the 
network weights! 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Gradients infer information about the statistics of underlying manifolds

Information at Inference
Case Study: Gradients as Fisher Information in Explainability

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-
fisher-information-2720c40867d8

Network �(�) Dog

Cat

Horse

Bird

�(�|ý) ý In this case, the image and its 

prediction extracts nose, mouth 

and jowl features. 
Local information (specific to ý) is sufficient!

ý
Feature attribution via GradCAM

Hence, gradients draw information from the 
underlying distribution as learned by the 
network weights! 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Gradients at Inference
Local Information 

�(�)

Gradients provide local information around the vicinity of ý, even if ý is novel. This is 
because ý projects on the learned knowledgeý �(�)

Ideal

� �� � � provides local information up to a small 
distance � away from ý

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Gradients at Inference
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function �(�)

�(�)
ý

Negative of the gradient provides the descent 
direction towards the local minima, as measured 
by Ą(�)

Path 1?

Path 2?

Path 3?

Which direction should we 

optimize towards (knowing 

only the local information)?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Gradients at Inference
To Characterize the Novel Data at Inference

�(�)
At Inference

Representation 

Traversal using 

Interventions

�(�)

Trained network knowledge is 

not easily accessible

�(�) ýý′
Counterfactual 

and Contrastive 

Representations 

using Gradients

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Robust Neural Networks 

Part 2: Explainability at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Visual Explanations

• Gradient-based Explanations

• GradCAM

• CounterfactualCAM

• ContrastCAM

• Case Study: Introspective Learning

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Part 5: Conclusions and Future Directions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural Networks: 
Towards Relevant and Contextual Explanations

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

• Explanations are defined as a set of rationales used to understand the reasons behind a 
decision  

• If the decision is based on visual characteristics within the data, the decision-making 
reasons are visual explanations

Bullmastiff Why Bullmastiff?
What if Bullmastiff was not in 

the image?

Why Bullmastiff, rather than a 

Boxer?

Observed 

Correlations
Observed Counterfactual Observed 

Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explanations
Visual Explanations

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explanations
Role of Explanations – context and relevance 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Gradients provide a one-shot means of perturbing the input that changes the output; They 
provide pixel-level importance scores

Vanilla Gradients Deconvolution Gradients Guided Backpropagation

Input

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

However, localization remains an issue

Explanations
Gradient-based Explanations

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN 
to assign importance values to each activation for a particular decision of interest.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

image

Grad-CAM (up-sampled to original image dimension)

Gradient and Activation-based Explanations
GradCAM

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

Grad-CAM generalizes to any task:

• Image classification

• Image captioning

• Visual question answering

• etc.

Rectified Conv 

Feature Maps

+

Backprop 

till conv

Grad-CAM

Gradient and Activation-based Explanations
GradCAM

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

GradCAM provides answers to 8Why P?9 questions. But different stakeholders require relevant 
and contextual explanations

Bullmastiff Why Bullmastiff?
What if Bullmastiff was not in 

the image?

Why Bullmastiff, rather than a 

Boxer?

Observed 

Correlations
Observed Counterfactual Observed 

Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Gradient and Activation-based Explanations
Explanatory Paradigms

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

In GradCAM, global average pool the negative of gradients to obtain Āý for each kernel ý

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-
based localization." Proceedings of the IEEE international conference on computer vision. 2017.

�þ����

Āýý
What if Bullmastiff was not in 

the image?

Negating the gradients effectively removes these regions from analysis

Gradient and Activation-based Explanations
CounterfactualCAM: What if this region were absent in the image?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to 
last conv layer

Backpropagating the loss highlights the differences between classes P and Q. 

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Contrast-CAM 

�þ(ÿ,Ā)���
Āýý

Why Bullmastiff, rather than a 

Boxer?

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2
Contrastive 

Explanation 2

Contrastive 

Explanation 1

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2
Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2
Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2
Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Not Human 

Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2
Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Not Human 

Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2
Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Not Human 

Interpretable

Only traffic sign with a straight

bottom-left edge – enough to 

say `Not STOP Sign9

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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A Callback…
Information at Inference

Network �(�)
Predicted 

Class Probability

Dog

Cat

Horse

Bird

�(�|ý)
Likelihood function

ā � = Ă�ÿ( ÿÿ� þ � ý )� = Statistic of distribution

ℓ(θ | x) = Likelihood function

Fisher Information

At inference, given a single image from a single 
class, we can extract information about other classes

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



56 of 192

Information at Inference
Case Study: Explainability� is the set of all features learned by a trained network

Beak

Neck

Legs

Feathers

Water

Grass

Teeth

.

.

Features �Network �(�) Why Spoonbill?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Information at Inference
Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo

Beak

Neck

Legs

Feathers

Water

Grass

Teeth

.

.

Features �Network �(�) Why Spoonbill?Why Spoonbill, rather 
than Flamingo?

All the requisite Information is stored within �(�)
Goal: To extract and utilize this information – Introspective Learning

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-Stage 
Approach for Inference in Neural Networks

Mohit Prabhushankar, PhD
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

How would humans resolve this challenge? 

We Introspect!

• Why am I being shown this slide?

• Why images of muffins rather than 

pastries?

• What if the dog was a bullmastiff?

Robustness in Neural Networks
Why Robustness?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

Spoonbillොþ
Visual Sensing

Feed-Forward 

Sensing

Sense pink feathers, 
straight beak

Why Spoonbill, rather than Flamingo?ý does not have an S-shaped neck

Why Spoonbill, rather than Crane?ý does not have white feathers

Why Spoonbill, rather than Pig?ý′Ā leg and neck shapes are 

different

Reflection

Spoonbillþ

Introspection

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Introspection
What is Introspection?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted 

questions.   

What are the possible targeted questions?

Introspection
Introspection in Neural Networks

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

What are the possible targeted questions?

Bullmastiff Why Bullmastiff?
What if Bullmastiff was not in 

the image?

Why Bullmastiff, rather than a 

Boxer?

Observed 

Correlations
Observed Counterfactual Observed 

Contrastive

Introspection
Introspection in Neural Networks

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Technical Definition : Given a network  Ā ý , a datum ý, and the network’s predictionĀ ý = ොþ, introspection in Ā ⋅ is the measurement of change induced in the network 

parameters

when a label Ā is introduced as the label for ý..   

Contrastive Definition : Introspection answers questions of the form `Why 

P, rather than Q?’ where P is a network prediction and Q is the 
introspective class.   

Introspection
Introspection in Neural Networks

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

For a well-trained network, the gradients are sparse and informative

Introspection
Gradients as Features

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

For a well-trained network, the gradients are sparse and informative

Informative sparse features

Introspection
Gradients as Features

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

For a well-trained network, the gradients are robust

Introspection
Gradients as Features

Lemma1:

Any change in class requires change in 

relationship between þý and ොþ
1

0

0

0

0

0

.

.

.

.

0

1

0

0

0

0

.

.

.

.

0

0

0

0

0

1

.

.

.

.

…

þýොþ = Prediction

Ă = Loss function

ÿ� = Gradients w.r.t. weights

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Normalized and vectorized

gradients are introspective 

features

Vector of all ones: A confounding label!

Introspection
Deriving Gradient Features

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Introspective Features

Introspection
Utilizing Gradient Features

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

We define robustness as being generalizable and 

calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

Introspection provides robustness when the train and test distributions are different  

Introspection
When is Introspection Useful?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Calibration occurs when there is mismatch between a network9s confidence and its accuracy 

Calibration
A note on Calibration..

• Larger the model, more misplaced is a network9s 
confidence

• On ResNet, the gap between prediction accuracy 

and its corresponding confidence is significantly 

high

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Ideal: Top-left 

corner

Y-Axis: 

Generalization

X-Axis: 

Calibration

Introspection in Neural Networks
Generalization and Calibration results

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection is a plug-in 
approach that works on all 

networks and on any 

downstream task!

Introspection is a light-weight option to resolve robustness issues

Introspection in Neural Networks
Plug-in nature of Introspection

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active 
Learning, and Image Quality Assessment!

Introspection in Neural Networks
Plug-in nature of Introspection

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Robust Neural Networks 

Part 3: Uncertainty at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Uncertainty Definition

• Uncertainty Quantification

• Gradient-based Uncertainty

• Adversarial and Corruption Detection

• Part 4: Intervenability at Inference

• Part 5: Conclusions and Future Directions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Uncertainty is a model knowing that it does not know

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

Uncertainty
What is Uncertainty?

White and Gold

Or

Blue and Black?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Uncertainty is a model knowing that it does not know

A simple example: 

• When training data is available: Less uncertainty

• When training data is unavailable: More uncertainty

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

Uncertainty
What is Uncertainty?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Uncertainty is a model knowing that it does not know

Uncertainty
What is Uncertainty?

A slightly more complex example: 

• Data (Aleatoric) Uncertainty: When there is inherent 

noise in available data or in measurement of data

• Model (Epistemic) Uncertainty: When our chosen 

model (network) is incapable of modeling the data

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Uncertainty is a model knowing that it does not know

Uncertainty
What is Uncertainty?

Input Image Neural Network Output Uncertainty Heatmap

Kendall, Gal <What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision." NIPS 
2017

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Primary purpose of neural networks (ex: classification) and Uncertainty Quantification do not 
always go hand-in-hand!

Uncertainty
Challenge in Uncertainty Quantification

R. Benkert, M. Prabhushankar, and G. AlRegib, <Transitional Uncertainty with Layered Intermediate 
Predictions,= in International Conference on Machine Learning (ICML), Vienna, Austria, 2024 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Dog

All required information is passed to last layer

Maximal logit is the class
Required information is task 

dependent! A well-trained 

classification network ignores the 

attributes of the dog

Dog asking for belly rub = Angry 

dog!
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Primary purpose of neural networks (ex: classification) and Uncertainty Quantification do not 
always go hand-in-hand!

Uncertainty
Challenge in Uncertainty Quantification

R. Benkert, M. Prabhushankar, and G. AlRegib, <Transitional Uncertainty with Layered Intermediate 
Predictions,= in International Conference on Machine Learning (ICML), Vienna, Austria, 2024 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Dog

Cat
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[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive 
uncertainty estimation using deep ensembles." Advances in neural information processing systems 30 
(2017). 

Dog

Cat

Horse

Bird

Network �Ā(�)
Network �ā(�)

Network ��(�)
.

.

.

Dog

Cat

Horse

Bird

Dog

Cat

Horse

Bird

Via Ensembles1

Variation within outputs 

is the uncertainty. 

Commonly referred to 

as Prediction 
Uncertainty.

Requires multiple 
trained models – not 
exactly an inferential 
method

Uncertainty
Uncertainty Quantification in Neural Networks

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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[1] Y Gal, Z Ghahramani, <Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep 
Learning=, ICML 2016

Uncertainty
Iterative Uncertainty Quantification

Via Monte-Carlo Dropout1: During inference repeated evaluations with the same input give 
different results

Final prediction is 

maximum of the mean 

of the outputs

Multiple forward passes with random dropout simulate Ā1 ⋅ , Ā2 ⋅ , Ā3 ⋅ & Ā�(⋅).

.

.

.

Ā Logits

Uncertainty

Score

Ā forward passes

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

āÿþ�Āāÿÿ�ý = Ā 1Āā=1� ÿāĀāÿ�ý Āþ� ý 2 1Āā=1� Ā ÿāĀāÿ�ý Āþ� ý
āÿÿÿþ�ýā��ÿ ā�þÿ�āýÿ�ý
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[1] Y Gal, Z Ghahramani, <Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep 
Learning=, ICML 2016

Uncertainty
Iterative Uncertainty Quantification

Via Monte-Carlo Dropout1: During inference repeated evaluations with the same input give 
different results

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Final prediction is 

maximum of the mean 

of the outputs

.

.

.

Ā Logits

Uncertainty

Score

Ā forward passes

Multiple forward passes with random dropout simulate Ā1 ⋅ , Ā2 ⋅ , Ā3 ⋅ & Ā�(⋅).
• Requires dropout percentage to be set at training. Different models may require different dropout 

percentages at inference
• For a well-trained model, dropout underestimate uncertainty
• For a high-error model, dropout overestimate uncertainty
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[1Van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020, November). Uncertainty estimation using a 
single deep deterministic neural network. In International conference on machine learning (pp. 9690-
9700). PMLR.

Dog

Cat

Horse

Bird

Network �Ā(�)
Distance to training/validation representation space is uncertainty

Uncertainty 

quantification using a 

single network and a 

single pass

�(�)
Calculate distance from some trained clusters

Does not require multiple networks or passes!

However, requires training data/validation set/addition 
models at inference

Uncertainty
Single Pass Uncertainty Quantification

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Principle: Gradients provide a 8distance measure9 between the learned representations space 
and its prediction (for discriminative tasks) or some new data (for generative tasks)

Gradients quantify the required  

movement of an unknown 

representation space that encompasses 

the test sample

Uncertainty
Gradients as Single pass Uncertainty Quantification

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

�(�|ý) ý
ý′

Does not require multiple networks or passes!

Does not require training data/validation set/addition 
models at inference!

However, what is � � ý at inference? 

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.
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Principle: Gradients provide an uncertainty measure between the learned representations 
space and novel data

Probing the Purview of Neural Networks 
via Gradient Analysis

However, what is �(�|ý) at inference? 

During training, þ(�|ý) is a loss function between 

predicted class and ground truth class. At 

inference, we do not have access to ground truth 

class

We backpropagate all contrast classes -�Ā, �ā &�� by backpropagating a confounding 
label – a vector of all ones!

ÿ = Predicted classĀ1 = Contrast class 1Ā2 = Contrast class 2

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Uncertainty in Neural Networks
Principle

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

�(�|ý) ý, ÿý′, Q1
ý′, Q2
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Probing the Purview of Neural Networks via 
Gradient Analysis

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor

Jinsol Lee,

PhD Candidate



92 of 192

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate 
to obtain the gradient features

Normalized and vectorized 

gradients (same as introspective 

features) 

Why vector of all 1s? The theory is 
presented in [1]

Probing the Purview of Neural Networks 
via Gradient Analysis

[1] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Uncertainty in Neural Networks
Deriving Gradient Features

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Step 2: Take L2 norm of all generated gradients

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

��ÿ �(�ÿ; ý, þý) āā ��� �(��; ý, þý) āā,             ,
Collection of squared L2 normþ�� . . .

MNIST: In-distribution, SUN: Out-of-Distribution

Uncertainty in Neural Networks
Utilizing Gradient Features

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Squared L2 distances for different parameter sets

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

MNIST: Circled in red. Significantly lower uncertainty compared to OOD datasets 

Gradient-based Uncertainty
Uncertainty in OOD Setting

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect 
adversarial, noisy, and OOD data

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Experimental Setup

Step 1: Train a deep network Ā(⋅) on 

some training distribution 
Step 2: Introduce challenging 

(adversarial, noisy, OOD) data 

Step 3: Derive gradient uncertainty on 

both trained and challenge data

Step 4: Train a classifier Ā(⋅) to detect
challenging from trained data

Step 5: At test time, data is passed 

through Ā(⋅) and then Ā(⋅) to obtain a 

Reliability classification

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Vulnerable DNNs in the real world

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference

Gradient-based Uncertainty
Uncertainty in Adversarial Setting

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



97 of 192

Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Uncertainty in Adversarial Setting

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

CIFAR-10-C

Same application as Anomaly Detection, except there is no need for an additional AE 
network!

CURE-TSR

Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Out-of-Distribution Detection

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis

MNIST

CIFAR10 TinyImageNetSVHN LSUN

Train set

Goal: To detect that these datasets are not part of training

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 
2024]
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Out-of-Distribution Detection

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 
Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks 
via Gradient Analysis

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 
2024]
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Counterfactual Gradients-based Quantification of 
Prediction Trust in Neural Networks 

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor
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Trust: An esoteric term that encompasses uncertainty, belief, and apriori probability

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

Trust
Definition

White and Gold

Or

Blue and Black?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Trust is application-

specific
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Trustworthiness Attributes: Applications in ML that satisfy the attributes of performance, 
reliability, human interaction, and aligned purpose 

Trust vs Trustworthiness
Trustworthiness attributes

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

• Explainability

• Out-of-distribution Detection

• Adversarial Detection

• Anomaly Detection

• Corruption Detection

• Differential Privacy

• Causal Analysis

• Open-set Recognition

• Noise Robustness

• Uncertainty Quantification

• Uncertainty Visualization

• …

More relevant 

during model 

testing

Relevant at Deployment:

Provide a specific 8trust score9 that 
objectively allows users to trust neural 

network predictions

GradTrust provides such a score!
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How much change is required within the data to predict a counterfactual class? Larger the 
required change, larger the trust 

GradTrust
Intuition for counterfactual gradients-based Trust

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Network �(�) Why Spoonbill?

Spoonbill

Why Spoonbill, rather 

than Flamingo?

Larger the required 

change, larger the 

trust placed in the 

prediction 8Spoonbill9

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.
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How do we measure required change? Quantify the variance of network parameters (of the 
last layer) when backpropagating counterfactual classes

GradTrust
Intuition for counterfactual gradients-based Trust

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

ÿÿ�þĀÿĂĀā = Ă�ÿ��Āýÿ āĀ ÿÿ�þ�ÿĀāĀ āĀ ÿÿÿþ�ýāÿþ �þ�ĀĀąÿ�Ā āĀ Ă�ÿ��Āýÿ āĀ ÿÿ�þ�ÿĀāĀ āĀ āāĂ 2 ý �āĂĀāÿÿĀ�ýāĂ�þ �þ�ĀĀÿĀ
• Top-k counterfactuals are based on predictions

• For image classification, top-k counterfactual classes are top-k predictions

• Gradients are obtained by backpropagating loss between the predicted class 

and itself in the numerator and between the predicted class and counterfactual 

classes in denominator
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How do we measure required change? Quantify the variance of network parameters when 
backpropagating counterfactual classes

GradTrust
Methodology

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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For ImageNet dataset (with 50,000 validation set 
images):

1. Run inference on all 50,000 images and obtain 
GradTrust along with comparison trust scores

• We compare against 8 other methods

2. For each TrustScore, order images in ascending order

3. For a given ý percentile, calculate the Accuracy and F1 
scores of all images above that percentile

4. Plot Area Under Accuracy Curve (AUAC) and Area Under 
F1 Curve (AUFC)

5. Repeat for multiple networks

• We perform analysis on 14 ImageNet trained Classification 
networks and 5 Video Classification networks

Evaluation
Methodology

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Evaluation
Quantitative Results for Image Classification

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

GradTrust is in Top 2 performing metrics in all but 1 network

• Negative Log Likelihood (NLL) works well on smaller networks with less accuracy while Margin classifier works better with high 
accuracy networks 

• GradTrust performs well on all networks
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Evaluation
Qualitative Results for Image Classification

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

• Results on ResNet-18. Each point is an image from ImageNet validation set
• Each image is plot based on its GradTrust on x-axis and Softmax Confidence on y-axis. Green color indicates image is correctly predicted 

while red color indicates incorrect prediction
• Several incorrect predictions exist having low GradTrust but high softmax confidence (top-left quadrant)
• In contrast, no incorrect predictions, with low Softmax confidence and High GradTrust (bottom-right quadrant)
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Evaluation
Qualitative Results for Image Classification

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

On AlexNet: Low GradTrust is due to co-occurring classes 

On MaxViT: Low GradTrust is due to ambiguity in class resolution
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Robust Neural Networks 

Part 4: Intervenability at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Definitions of Intervenability 

• Causality

• Privacy

• Interpretability

• Prompting

• Benchmarking

• Case study: Negative Interventions

• Mathematical frameworks to study intervenability

• Case Study: Intervenability in Interpretability

• Part 5: Conclusions and Future Directions
[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Assess: The amenability of neural network decisions to human interventions

Intervenability
Through the Causal Glass

Causality

<Interventions in data are 

manipulations that are designed to 

test for causal factors=

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward 
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Assure: The amenability of neural network decisions to human interventions

Intervenability
Through the Privacy Glass

Hansen, M.: Top 10 mistakes in system design from a privacy perspective and privacy protection goals. In: 
Camenisch, J., Crispo, B., Fischer-Hübner, S., Leenes, R., Russello, G. (eds.) Privacy and Identity 
Management for Life. IFIP AICT, vol. 375, pp. 14–31. Springer, Heidelberg (2012)

Privacy

<Intervenability aims at the 

possibility for parties involved 

in any privacy-relevant data 

processing to interfere with the 

ongoing or planned data 

processing=

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



123 of 192

Interpret: The amenability of neural network decisions to human interventions

Intervenability
Through the Interpretability Glass

AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards 
relevant and contextual explanations." IEEE Signal Processing Magazine39.4 (2022): 59-72.

Interpret

<The post-hoc field of 

explainability, that previously 

only justified decisions, 

becomes active by being 

involved in the decision making 

process and providing limited, 

but relevant and contextual 

interventions=
[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



124 of 192

Actuate: The amenability of neural network decisions to human interventions

Intervenability
Through the Prompting Glass

Prompting

<The interaction between 

foundation models and users 

via the prompting interface 

introduces an element of 

uncertainty, as the precise 

response of these models to 

user prompts can be 

unpredictable.= 

Quesada, Jorge, et al. "PointPrompt: A Multi-modal Prompting Dataset for Segment Anything 
Model." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Verify: The amenability of neural network decisions to human interventions

Intervenability
Through the Benchmarking Glass

Benchmarking

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward 
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.

<... new benchmarks were proposed 

to specifically test generalization of 

classification and detection methods 

with respect to simple

algorithmically generated 

interventions like spatial shifts, 

blur, changes in brightness or 

contrast…=

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Goal: Given data and black-box model, infer if the data was part of the model9s training set

Case Study: Negative Interventions 
Repeated Interventions: Membership Inference Attacks (MIAs)

Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017 IEEE 
symposium on security and privacy (SP). IEEE, 2017.

• If data is part of Electronic Health Records, 
then privacy of patients can be leaked

• Train a binary classifier that takes in the 
target model outputs and classifies whether 
the initial data is part of the training set

• Prevention is seen as a robustness issue 
while training: regularization, adversarial 
training etc.

Attack model is the binary classifier

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Goal: Given a trained model, engineer imperceptible noise to 8confuse9 the neural network

Case Study: Negative Interventions 
Engineered Interventions: Adversarial Attacks

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial 
examples." arXiv preprint arXiv:1412.6572 (2014).

• Gradients (or some statistics of gradients) are used in several adversarial image generation 
techniques

• Prevention is seen as a robustness issue both during inference and training – adversarial 
training, image compression etc.

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Goal: Given a promptable model with no operational knowledge, users overprompt and use a 
8trial and error9 strategy

Case Study: Negative Interventions 
8Trial and Error9 Interventions: Visual Prompting

[1] Quesada, Jorge, et al. "PointPrompt: A Multi-modal Prompting Dataset for Segment Anything 
Model." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

• Annotators are asked to segment objects (classes) using Segment 
Anything Model (SAM) and point prompts

• After prompting, annotators are shown the Intersection Over Union 
and provided the opportunity to add/subtract their prompt points

• The general conclusion from [1] is that annotators overprompt and 
utilize strategies that lead to worse performance 

• Dataset: https://zenodo.org/records/10975868

• ~200,000 prompts on 6000 images 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

https://zenodo.org/records/10975868
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Definitions of Intervenability 

• Mathematical frameworks to study intervenability

• Causal analysis via interventions

• Dangers of incomplete interventions

• Case Study: Intervenability in Interpretability

• Part 5: Conclusions and Future Directions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



130 of 192

Intervenability Frameworks
Framework 1: Causal Assessment via Interventions

Pearl, Judea. "The do-calculus revisited." arXiv preprint arXiv:1210.4852 (2012).

3 Rules of Causal Inference

Deletion
Insertion

• Fix a causal feature (or a 

feature that is being tested for 

causality) in the data

Key Differences:

• There are no causal features; 
approximate using 

pixels/structures

• The underlying network is not a 
structured causal model

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Rule 2: Intervene on all other factors keeping the causal factor constant

Intervenability Frameworks
Framework 1: Causal Assessment via Interventions

Pearl, Judea. "The do-calculus revisited." arXiv preprint arXiv:1210.4852 (2012).

Deletion
Insertion

• Keeping the causal factor 

constant from rule 1, change all 

available factors

Key Differences:

• There are no causal features; 
approximate using 

pixels/structures

• The underlying network is not a 
structured causal model

• Impossible to intervene on all 

pixels

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Rule 3: Insertion/Deletion of interventional actions

Intervenability Frameworks
Framework 1: Causal Assessment via Interventions

Pearl, Judea. "The do-calculus revisited." arXiv preprint arXiv:1210.4852 (2012).

Deletion
Insertion

• Once causal factors are 

determined, the interventions 

from rule 2 are reverted and the 

causal attribution is noted

Key Differences:

• There are no causal features; 
approximate using 

pixels/structures

• The underlying network is not a 
structured causal model

• Impossible to intervene on all 

pixels

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Intervenability Frameworks
Dangers of Incomplete Interventions: RISE Explanations

Petsiuk, Vitali, Abir Das, and Kate Saenko. "Rise: Randomized input sampling for explanation of 
black-box models." arXiv preprint arXiv:1806.07421 (2018).

Unknown interventions based on insertion/deletion can yield unexpected results

• RISE explainability 

technique creates 6000 
random masks for an 

image and passes it 

through a network

• The weighted sum of the 

mask and its probability 
score is the explanation

• Instead of causal deletion, 

RISE deletes randomly

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Intervenability Frameworks
Dangers of Incomplete Interventions: SHAPE Explanations

Chowdhury, Prithwijit, et al. "Are Objective Explanatory Evaluation metrics Trustworthy? An 
Adversarial Analysis." arXiv preprint arXiv:2406.07820 (2024).

Unknown interventions based on insertion/deletion can yield unexpected results

• SHAPE explanation is almost 

identical to RISE except:

• Weighted sum is NOT
between probability and 

mask but between 

change in probability 

score and inverse mask

• Results are human un-

interpretable

• However, existing objective 
evaluation metrics give 
better scores to SHAPE 
than RISE

Main change from RISE

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Accept that all interventions are impossible and calculate the uncertainty of 8residual9 
interventions

Intervenability Frameworks
Framework 2: Predictive Uncertainty in Interventions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Snout is not as 

highlighted as the jowls 

in explanation (not as 

important for decision)

However, snout is an important 

characteristic that is used to 

differentiate against other dogs. 

Hence, there is uncertainty on 

why this feature is not included 

in the attribution

M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability," Journal of Selected Topics in Signal Processing, submitted 
on Aug. 27, 2023.
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Part 4: Intervenability at Inference

• Definitions of Intervenability 

• Mathematical frameworks to study intervenability

• Case Study: Intervenability in Interpretability

• Motivating explanatory evaluation

• VOICE: Variance of Induced Contrastive Explanations

• Part 5: Conclusions and Future Directions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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VOICE: Variance of Contrastive Explanations for 
Quantifying Uncertainty in Interpretability

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor
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Explanatory techniques have predictive uncertainty

Why Bullmastiff? Uncertainty in answering 

Why Bullmastiff?

Predictive Uncertainty in Explanations

Case Study: Intervenability in Interpretability

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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Common evaluation technique is masking the image and checking for prediction correctness

Case Study: Intervenability in Interpretability
Explanation Evaluation via Masking

Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep 
convolutional networks." 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 
2018.

Sx1 Sx2
Trained Model Crane

Trained Model Spoonbill

Sx1
Sx2

If across N images, �(�|��ā) > �(�|��Ā), 
explanation technique 2 

is better than explanation 

technique 1

þ = PredictionSx = Explanation masked data E(Y|Sx) = Expectation of class given Sx

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Uncertainty due to variance in prediction when model is kept constant 

þ = PredictionĂ[þ] = Variance of prediction (Predictive Uncertainty)Sx = Subset of data (Some intervention)E(Y|Sx) = Expectation of class given a subsetV(Y|Sx) = Variance of class given all other residuals

ÿý1 ÿý2ý
Ă þ|ÿý = Ă � þ ÿý + �(Ă[þ|ÿý])

Case Study: Intervenability in Interpretability
Predictive Uncertainty

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.
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A 8good9 explanatory technique is evaluated to have zero ý[� þ|�ý ]

þ = PredictionĂ[þ] = Variance of prediction (Predictive Uncertainty)Sx = Subset of data (Some intervention)E(Y|Sx) = Expectation of class given a subsetV(Y|Sx) = Variance of class given all other residuals

ÿý1 ÿý2ý

zero

Case Study: Intervenability in Interpretability
Visual Explanations (partially) reduce Predictive Uncertainty

Ă þ|ÿý = Ă � þ ÿý + �(Ă[þ|ÿý])
Key Observation 1: Visual Explanations are 
evaluated to partially reduce the predictive 
uncertainty in a neural network

Network evaluations have nothing to do with human 

Explainability!

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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All other subsets 8not9 chosen by the explanatory technique contributes to uncertainty

þ = PredictionĂ[þ] = Variance of prediction (Predictive Uncertainty)Sx = Subset of data (Some intervention)E(Y|Sx) = Expectation of class given a subsetV(Y|Sx) = Variance of class given all other residuals

ÿý1 ÿý2ý
Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

Ă þ|ÿý = Ă � þ ÿý + �(Ă[þ|ÿý])
Key Observation 2: Uncertainty in Explainability occurs 
due to all combinations of features that the explanation 
did not attribute to the network9s decision

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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All other subsets 8not9 chosen by the explanatory technique contributes to uncertainty

þ = PredictionĂ[þ] = Variance of prediction (Predictive Uncertainty)Sx = Subset of data (Some intervention)E(Y|Sx) = Expectation of class given a subsetV(Y|Sx) = Variance of class given all other residuals

ÿý1 ÿý2ý
Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

Ă þ|ÿý = Ă � þ ÿý + �(Ă[þ|ÿý])
Key Observation 2: Uncertainty in Explainability occurs 
due to all combinations of features that the explanation 
did not attribute to the network9s decision

The effect of a chosen Interventions can be measured 
based on all the Interventions that were not chosen 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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All other subsets 8not9 chosen by the explanatory technique contributes to uncertainty

Snout is not as 

highlighted as the jowls 

in explanation (not as 

important for decision)

However, snout is an important 

characteristic that is used to 

differentiate against other dogs. 

Hence, there is uncertainty on 

why this feature is not included 

in the attribution

Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

Key Observation 2: Uncertainty in Explainability occurs 
due to all combinations of features that the explanation 
did not attribute to the network9s decision

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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All other subsets 8not9 chosen by the explanatory technique contributes to uncertainty

Snout is not as 

highlighted as the jowls 

in explanation (not as 

important for decision)

However, snout is an important 

characteristic that is used to 

differentiate against other dogs. 

Hence, there is uncertainty on 

why this feature is not included 

in the attribution

Not chosen features are intractable!

Case Study: Intervenability in Interpretability
Predictive Uncertainty in Explanations is the Residual

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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Contrastive explanations are an intelligent way of obtaining other subsets 

Make it finite by only considering the subsets that 

change y Y1|Sx1Y2|Sx2Y3|Sx3Y4|Sx4Y5|Sx5
.

.YN|Sx�
Variance

……..

ÿý1 ÿý2 ÿý�
Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability

Ă þ|ÿý = Ă � þ ÿý + �(Ă[þ|ÿý])

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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Variance in contrastive explanations provides uncertainty 

Uncertainty in Explainability
Quantifying Uncertainty in Explainability

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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Uncertainty in Explainability can be used to analyze Explanatory methods and Networks

• Is GradCAM better than GradCAM++?

• Is a SWIN transformer more reliable than VGG-16?

Need objective quantification of Intervention Residuals

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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On incorrect predictions, the overlap of explanations and uncertainty is higher 

Objective Metric 1: 

Intersection over 

Union (IoU) 

between 

explanation and 

Uncertainty

Higher the IoU, higher the 

uncertainty in explanation (or 

less trustworthy is the 

prediction)

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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On incorrect predictions, the overlap of explanations and uncertainty is higher 

Objective Metric 1: 

Intersection over 

Union (IoU) 

between 

explanation and 

Uncertainty

Higher the IoU, higher the 

uncertainty in explanation (or 

less trustworthy is the 

prediction)

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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On incorrect predictions, the overlap of explanations and uncertainty is higher 

Objective Metric 1: 

Intersection over 

Union (IoU) 

between 

explanation and 

Uncertainty

Higher the IoU, higher the 

uncertainty in explanation (or 

less trustworthy is the 

prediction)

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
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Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Objective Metric 2: 

Signal to Noise 

Ratio of the 

Uncertainty map

Higher the SNR of 

uncertainty, more is the 

dispersal (or less trustworthy 

is the prediction) 

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: SNR

M. Prabhushankar and G. AlRegib, =VOICE: Variance of Induced Contrastive Explanations to Quantify 
Uncertainty in Neural Network Interpretability,= Journal of Selected Topics in Signal Processing (J-STSP) 
Special Series on AI in Signal & Data Science, May 23, 2024.
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VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty
in Interpretability
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Case Study: Intervenability in Interpretability
Challenges in Intervenability

• Not choosing interventions causes 
uncertainty in the chosen interventions

• Residuals must be analyzed
intelligently to 8trust or not to trust9 
predictions at inference

• Gradients quantify residual uncertainty

The amenability of neural network decisions to human interventions

Challenges:

• Choosing the type of Intervention

• Residuals of Interventions: Uncertainty

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Intervenability
Through the Human Glass

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward 
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.

• Assess: Causality

• Assure: Privacy

• Interpret: Interpretability

• Actuate: Prompting

• Verify: Benchmarking

The amenability of neural network decisions to human interventions

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Intervenability in Benchmarking
Detection and Localization

CURE-TSD: Challenging Unreal and Real Environments for Traffic Sign Detection

Data Characteristics:

• 49 real and virtual sequences

• 300 frames in each sequence

• 12 different challenges including 
decolorization, codec error, lens 
blur etc.

• 5 progressively increasingly 
levels in each challenge

• Goal: Detect and localize traffic 
signs

Temel, Dogancan, et al. "Cure-tsd: Challenging unreal and real environments for traffic sign detection." IEEE 

Transactions on Intelligent Transportation Systems (2017). 

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Intervenability in Benchmarking
Recognition

CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition

Data Characteristics:

• 2 million real and virtual traffic 
sign images

• 14 Traffic signs including common 
signs like stop, no-right, no-left 
etc. and uncommon signs like 
goods-vehicles, priority lanes etc.

• 12 different challenges including 
decolorization, codec error, lens 
blur etc.

• 5 progressively increasingly 
levels in each challenge

D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, <CURE-TSR: Challenging unreal and real environments for 

traffic sign recognition,= in Neural Information Processing Systems (NIPS) Workshop on Machine Learning for 

Intelligent Transportation Systems, Long Beach, U.S., December 2017, (*: equal contribution)

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Intervenability in Benchmarking
Recognition

ImageNet-C: ImageNet-Corruptions

Hendrycks, Dan, and Thomas Dietterich. "Benchmarking neural network robustness to common corruptions and 

perturbations." arXiv preprint arXiv:1903.12261 (2019).

Data Characteristics:

• 3.75 million images

• 15 different challenges including 
decolorization, codec error, lens 
blur etc. for testing

• 4 different challenges for 
validation and training

• 5 progressively increasingly 
levels in each challenge

• Goal: Recognize 1000 classes 
from ImageNet using pretrained
networks

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Intervenability in Benchmarking
Recognition

ImageNet-P: ImageNet-Perturbations 

Hendrycks, Dan, and Thomas Dietterich. "Benchmarking neural network robustness to common corruptions and 

perturbations." arXiv preprint arXiv:1903.12261 (2019).

Data Characteristics:

• 5 million images

• 100 perturbations of 50000 
images

• 10 frames of algorithmically 
generated perturbations for each 
image in ImageNet validation 
testset

• 10 common perturbations 
including brightness, tilt, motion 
etc.

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Intervenability in Benchmarking
Retrieval and Recognition

CURE-OR: Challenging Unreal and Real Environments for Object Recognition

Data Characteristics:

• 1 million images 

• 100 common household objects 
and 10000 images per object

• 5 backgrounds, 5 object 
orientations, 5 devices, and 78 
challenging conditions

• Goal: To recognize and retrieve 
the same object across 
backgrounds, orientations, 
devices, and challenging 
conditions

D. Temel*, J. Lee*, and G. AlRegib, <CURE-OR: Challenging unreal and real environments for object 

recognition,= IEEE International Conference on Machine Learning and Applications, Orlando, Florida, USA, 

December 2018, (*: equal contribution)
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Intervenability in Benchmarking
Prompting

PointPrompt: A Multi-modal Prompting Dataset for Segment Anything Model

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Quesada, Jorge, et al. "PointPrompt: A Multi-modal Prompting Dataset for Segment Anything 
Model." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

• Annotators are asked to segment objects (classes) using Segment 
Anything Model (SAM) and point prompts

• After prompting, annotators are shown the Intersection Over Union 
and provided the opportunity to add/subtract their prompt points

• The general conclusion from [1] is that annotators overprompt and 
utilize strategies that lead to worse performance 

• Dataset: https://zenodo.org/records/10975868

• ~200,000 prompts on 6000 images 

https://zenodo.org/records/10975868
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Robust Neural Networks 

Part 5: Conclusions and Future Directions
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Memes to Wrap it Up
Overcoming Challenges at Training

Novel data packs a 1-2 punch!

Novel data may not 

be available during 

training

Even if 

available, 

novel data 

does not 

easily fit into 

either the 

earlier or 

later stages 

of training

A = Deep Neural Networks

B = Novel data

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Cannot depend on training to construct 
robust models

Memes to Wrap it Up

Robustness at Inference

Robustness

Deep Learning

Adversarial 
Images

Deep Learning

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Existing research on robustness focuses on data collection and optimization 

Memes to Wrap it Up

Robustness Research in the Inferential Stage of Neural Networks

Optimization

Data 
Collection

Inference

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Trained Neural Networks have a wealth of implicit stored knowledge, waiting to be extracted 
at inference

Memes to Wrap it Up

Implicit Knowledge in Neural Networks

Traditional Why P?
Why P, rather than Q?

What if?

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Explanatory Evaluation reduces Uncertainty

Memes to Wrap it Up

Explainability Research is Just Uncertainty Research

Explanation

Uncertainty

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Key Takeaways

Role of Gradients

• Robustness under distributional shift in domains, environments, and adversaries are challenges for neural 
networks

• Gradients at Inference provide a holistic solution to the above challenges

• Gradients can help traverse through a trained and unknown manifold

• They approximate Fisher Information on the projection

• They can be manipulated by providing contrast classes

• They can be used to construct localized contrastive manifolds

• They provide implicit knowledge about all classes, when only one data point is available at inference

• Gradients are useful in a number of Image Understanding applications

• Highlighting features of the current prediction as well as counterfactual data and contrastive classes

• Providing directional information in anomaly detection

• Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection

• Providing expectancy mismatch for human vision related applications

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]
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Future Directions

Research at Inference Stage

• Test Time Augmentation (TTA) Research

• Multiple augmentations of data are passed through the network at inference

• Research is in designing the best augmentations 

• Active Inference

• Utilize the knowledge in Neural Networks to ask it to ask us

• Neural networks ask for the best augmentation of the data point given that one data point at inference

• Uncertainty in Explainability, Label Interpretation, and Trust quantification

• Uncertainty research has to expand beyond model and data uncertainty

• In some applications within medical and seismic communities, there is no agreed upon label for data. 
Uncertainty in label interpretation is its own research

• Test-time Interventions for AI alignment

• Human interventions at test time to alter the decision-making process is essential trustworthy AI

• Further research in intelligently involving experts in a non end-to-end framework is required

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]



189 of 192

Gradient representations for Robustness, OOD, Anomaly, Novelty, and Adversarial Detection 

• Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in 
Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

• Gradients for adversarial, OOD, corruption detection: J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection," in International 
Conference on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

• Gradients for Open set recognition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2021 IEEE International Conference on Image 
Processing (ICIP). IEEE, 2021.

• GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection. 
In European Conference on Computer Vision (pp. 206-226). Springer, Cham.

• Gradients for adversarial, OOD, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis," 
in IEEE Access, Mar. 21 2023.

• Gradients for Novelty Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, October). Novelty detection through model-based characterization of neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

• Gradient-based Image Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated
Gradients," in IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

Explainability in Neural Networks

• Explanatory paradigms: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. IEEE Signal 
Processing Magazine, 39(4), 59-72.

• Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International 
Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

• Explainabilty in Limited Label Settings: M. Prabhushankar, and G. AlRegib, ”Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference 
on Image Processing (ICIP), Sept. 2021.

• Explainabilty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks," 
in Frontiers in Neuroscience, Perception Science, Volume 17, Feb. 09 2023.

References
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Self Supervised Learning

• Weakly supervised Contrastive Learning: K. Kokilepersaud, S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker 
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023. 

• Contrastive Learning for Fisheye Images: K. Kokilepersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye 
Data," in Open Journal of Signals Processing, Apr. 28 2023.

• Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in 
OCT," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation," 
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction 

• Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on 
Intelligent Transportation Systems, submitted on Dec. 28 2022.

• Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image 
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020.

• Human Image Quality Assessment: D. Temel, M. Prabhushankar and G. AlRegib, ”UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no. 
10, pp. 1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

• CURE-TSD: D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics,"
in IEEE Transactions on Intelligent Transportation Systems, Jul. 2019

• CURE-TSR: D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition," in Advances in Neural 
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 2017

• CURE-OR: D. Temel*, J. Lee*, and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on Machine Learning 
and Applications (ICMLA), Orlando, FL, Dec. 2018 
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Active Learning

• Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A 
Second Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 05 2023

• Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, K. Singh, E. Corona and A. 
Parchami, "FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

• Active Learning on OOD data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-
Distribution Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification," 
in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

• Gradient-based Uncertainty: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image 
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020

• Gradient-based Visual Uncertainty: M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural 
Network Interpretability," Journal of Selected Topics in Signal Processing, submitted on Aug. 27, 2023.

• Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With 
Prediction Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

• Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurIPS
2022 Workshop on Human in the Loop Learning, Oct. 27 2022

• Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency 
Detection," in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.
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