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Deep Learning
Expectation vs Reality

Expectation vs Reality of Deep Learning
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Deep Learning

Expectation vs Reality
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LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they
are too different from the types of image used to train the network.

Stop

Even natural images
can fool a DNN,
because it might focus
on the picture’s colour,
texture or background
rather than picking out
the salient features a
human would
recognize.
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Deep Learning
Requirements and Challenges

Requirements: Deep Learning-enabled systems must predict correctly on novel data

L&
'

Novel data sources:

 Test distributions

« Anomalous data

« Qut-Of-Distribution data
» Adversarial data

» Corrupted data

* Noisy data
« New classes
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

»  Model Representation

A
Low Information N °0 - - e -
S e 0o » The first instance of training must occur with
o®s . ® less informative samples
) @
2 s o | * Ex:Forautonomous vehicles, less informative
E means
> - Highway scenarios
o :
« Parking
* No accidents
High Information
. _ * No aberrant events
Samples ®Class1 @ Class 2
O Dtrain == Boundary
Novel samples = Most Informative
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Deep Learning at Training
Overcoming Challenges at Training: Part 2

Subsequent training must not focus only on novel data

* The model performs well on the new

R [1}] ammsssess b 1 scenarios, while forgetting the old

s~ 80 Calastro?hnc ! *-;\ - scenarios

9 Forgetting | \ ] . )

8 60F \ —— MNIST { « Several techniques exist to overcome this

o \

g an} 1 | — FMNIST | trend

< [

E « However, they affect the overall performance
in large-scale settings

 ltis not always clear if and when to
incorporate novel scenarios in training

i - i i | J 5
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Deep Learning at Training
Overcoming Challenges at Training

Novel data packs a 1-2 punch!

Even if
available,
novel data
does not
easily fit into
either the
earlier or
later stages
of training

Novel data may not
be available during
training

———

o A - Deep Neural Networks
B = Novel data
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Deep Learning at Inference
Overcoming Challenges at Inference

We must handle novel data at Inference!!

Model Train At Inference

Novel data sources:

 Test distributions

« Anomalous data

« Qut-Of-Distribution data
» Adversarial data

« Corrupted data

* Noisy data

* New classes
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To discuss methodologies that promote robustness in neural networks at inference

« Part 1: Inference in Neural Networks

« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference

« Part 4: Intervenability at Inference

« Part 5: Conclusions and Future Directions
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Robust Neural Networks
Part I: Inference in Neural Networks
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

* Part 1: Inference in Neural Networks

* Neural Network Basics
Robustness in Deep Learning
Information at Inference
Challenges at Inference
Gradients at Inference

« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference

« Part 4: Intervenability at Inference

« Part 5: Conclusions and Future Directions
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Deep Learning
Overview

Low-Level - Mid-Level
Feature Feature

-

%

High-Level__._ Trainable
Feature Classifier

Ex. LeCun, 2015
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Deep Learning

Neurons
The underlying computation unit is the Neuron
N Artificial Neuron
e , PN e,
Artificial neurons consist of: a N\
» A single output TN Zeien N | L
4 M |t| |e in uts g %, summation activation
ultip ) P = output
. Inpyt \A{elghts g )
« A bias input S
 An activation function 7
. ‘3&\%\‘
: 5.._-‘.5-:";/
@) @ bias
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Neurons are stacked and densely connected to construct ANNs

S

Cat
output layer
hidden layers (optional)

Typically, a neuron is part of a network organized in layers:

* An input layer (Layer 0)

« An output layer (Layer K)

« Zero or more hidden (middle) layers (Layers 1...K — 1)
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

Cat

output layer

|| low-Level| |Mid-Level _ngh-[evel_. Trainable
Feature Feature Feature Classifier

Ex. LeCun, 2015

17 of 192 @lEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024] \SLIVEJS G]_" Georgia
SO Tech.




Deep Learning at Inference
What, Where, and When is Inference?

Ability of a system to predict correctly on novel data

Novel data sources:

 Test distributions
« Anomalous data
« Qut-Of-Distribution data
» Adversarial data

Cat

» Corrupted data

* Noisy data
« New classes

19 of 192 OIEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]




Neural networks are feed-forward systems; output layer logits are used for inference

Novel data sources: All required information is passed to last layer
Outputs from last layer are termed Logits

e Test distributions
« Anomalous data

e Qut-Of-Distribution data
« Adversarial data

Cat

%S

Required information is learned at training; leads to inductive
bias when encountering novel data at inference

» Corrupted data

hidden layers (optional)

* Noisy data
« New classes

e Georgia
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Deep Learning at Inference
What, Where, and When is Inference?

Inference occurs at: (i) Testing, and (ii) Deployment

Novel data sources: Cat,
Trained Model at Testing Cat,

 Test distributions Cat

« Anomalous data

» Qut-Of-Distribution data

» Adversarial data

- Corrupted data b

- Noisy data ﬁ Trained Model at Cat

- New classes N Deployment

21 of 192 OIEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Georgia
GI' Tech.




Deep Learning at Inference
Application: Classification

Given : One network, One image. Required: Class Prediction

Predicted
Class Probability
Network f(0) Dog 9%
Cat 89%
.l»: Horse
L b Bird

If x € y, the data is not
y = f(x) y = Logits
y =yargfm3;xi % y = Predicted Class nOVE|
p(P) =T(f(x)) p(y) = Probabilities
f(-) = Trained Network
x = Training data
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Deep Learning at Inference
Application: Robust Classification

Deep learning robustness: Correctly predict class even when data is novel

Predicted
Class Probability
Dog 39%
» Cat 53%
Horse
S Bird
X

- lfx" & x, the data is
y=f("+e¢€) y = Logits novel

y = argmax; 5} y = Predicted Class
p(P) = T(f(x' + €)) p(F) = Probabilities
f () = Trained Network
x = Training data
e = Noise
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Deep Learning at Inference
Application: Robust Classification

Deep learning robustness: Correctly predict class even when data is novel

Predicted
Class Probability
Dog 39%
Cat 93%
7 Horse
Bird

To achieve robustness at Inference, we need the following:

* Information provided by the novel data as a function of training distribution
« Methodology to extract information from novel data
+ Techniques that utilize the information from novel data

Why is this Challenging?
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

Toy visualizations generated using functions Real data visualizations generated using
(and thousands of generated data points) dimensionality reduction algorithms (Isomap)
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Challenges at Inference
Inference

However, at inference only the test data point is available, and the underlying structure of the
manifold is unknown

At Training

!’é;t At Inference

Te

3~

L(6) Trained network knowledge is L(®) .
N not easily accessible ‘

o T ~ 0,
0, ali &
At training, we have access to all
training data.
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Information at Inference
Fisher Information

Colloquially, Fisher Information is the “surprise” in a system that observes an event

Predicted
Class Probability

Dog
Cat
Horse
Bird
Fisher Information
[(6) =V J [(O]x)
= Var( Y X))
e 6 = Statistic of distribution
Likelihood function “ o, £(6 | x) = Likelihood function
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Information at Inference
Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes

H ' H H L J -
28 of 192 @lEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024] Q\QLNEEZ G]_" Georgia
- Ny ol Tech.



Information at Inference
Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

From before, 1(8) = Var (- 1(8]x))

Using variance decomposition, I1(8) reduces to:

o . @ ( S 1(0) = E[UyUZ] where

E[-] = Expectation
Uy = Vyl(6]x), Gradients w.r.t. the sample

Hence, gradients draw information from the

underlying distribution as learned by the

Likelihood function instead of loss manifold network weights!
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Information at Inference
Case Study: Gradients as Fisher Information in Explainability

Gradients infer information about the statistics of underlying manifolds

In this case, the image and its
prediction extracts nose, mouth
and jowl features.

Hence, gradients draw information from the
underlying distribution as learned by the
network weights!

Feature attribution via GradCAM
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Gradients at Inference
Local Information

Gradients provide local information around the vicinity of x, even if x is novel. This is
because x projects on the learned knowledge

|deal
| -
B ®) =
L®)
b > S a Vg L(0) provides local information up to a small
4T - .
g™ e distance a away from x
R o S i _~"oa
??h"\,«‘\ //‘/os
98 o4 03,‘u\>\-“‘\/ 08 61
90 01 0/ 1
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Gradients at Inference
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function L(9)

— Path 17
Which direction should we
==ap Path 2? oOptimize towards (knowing

X only the local information)?
3 ===  Path 3?
L(e)
b -, Negative of the gradient provides the descent
st | o2 direction towards the local minima, as measured
V' o9~ T g Ly _/./ 04
08" 067?“\'—\\ ‘:'1,/‘05 by L(B)
0.4 03"0\2»}\_‘;\/ 08 91
90 01 0/ 1
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Gradients at Inference
To Characterize the Novel Data at Inference

At Inference

.| Trained network knowledge is

L(O . :
( )‘ not easily accessible
X <
Counterfactual \\\\\/// 0,
and Contrastive % S Representation
Representations Traversal using
using Gradients Interventions
/
X
b
2
L(O).
’:??_\_\ //s/u’./;"

or os’?\ > ¢
o4 03’\’\\/0“ 9‘
02
01 gl

85
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Robust Neural Networks
Part 2: Explainability at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

 Part 1: Inference in Neural Networks

- Part 2: Explainability at Inference

» Visual Explanations
Gradient-based Explanations
GradCAM
Counterfactual CAM
ContrastCAM
« Case Study: Introspective Learning

« Part 3: Uncertainty at Inference
« Part 4: Intervenability at Inference
* Part 5: Conclusions and Future Directions
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1 Explanatory Paradigms in Neural
EXp|anatI0nS b Networks: Towards Relevant and
Visual EX |anati0nS ; Contextual Explanations

p SCAN ME

- Explanations are defined as a set of rationales used to understand the reasons behind a
decision

 |If the decision is based on visual characteristics within the data, the decision-making
reasons are visual explanations

Observed Observed Counterfactual Observed

Correfations Contrastive
" Q

\
A

What if Bullmastiff was notin [ Why Bullmastiff, rather than a

. een .
Bullmastiff Why Bullmastift® the image? Boxer?
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SCAN ME

> » |t is a Spoonbill Explainability
- — Pink and 5 :
° ~ s round body, e networ : ’
Z ky Why Spoonbill? —> %= stright Y taught me EXP|3|':' f ()’s
;4 "3‘6 baak - about spoonbills decision
@ % The network
go Why Spoonbi”, = Lack of S- does not know
9 ratherthana — © shaped about the Assess f(°)
= ! Flamingo? 3 neck | difference in
o ' legs
: Neck, beak,
X Wh|,‘y szonblll, — body, legs | trust the Garners |
D 4 RN sana are all network trustin f(-)
Fox? S different
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Gradient-based Explanations

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output; They
provide pixel-level importance scores

Vanilla Gradients Deconvolution Gradients  Guided Backpropagation

However, localization remains an issue

Input
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SCAN ME

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN
to assign importance values to each activation for a particular decision of interest.

A:‘; %Eﬁ_—’ﬁ e }Image Classification

y

Rectified Conv

Feature Maps global average pooling

7 s N
y c 1 E : 2 : dy“
TagK-specific Q. = — -
__________________ Network g 7 = £ 8Ai."j
‘ : . ¢ 3
i —— Gradients
: o ] S~
. Activations i gradients via backprop
«— C L c Ak
Backprop till conv LGrad—C AM — RelLU 8 kA
sl k
Grad-CAM (up-sampled to original image dimension) . ~—
linear combination
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations i
GradCAM SCAN ME
Grad-CAM generalizes to any task:

« Image classification
* Image captioning
 Visual question answering

* etc.

:l; . % - @ ﬂ L Image Classification
y

Rectified Conv

Feature Maps
fiiehchtl b (or)

TagRspecific A cat lying on Image Captioning
N rk the ground

1:»
>
o

A

--------------------

E «—— Gradients E
i ——> Activations !
Newomma s anmn s A (or)
) m— | a
G——J Is there a cat? 9 e Cailer Visual
Backprop Boasicn ANNILSTM = Question Answering
till conv b
Grad-CAM
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations

Explanatory Paradigms SCAN ME

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant
and contextual explanations

Observed Observed Counterfactual  Observed

Corrations Contrasive
L
\| % ‘

Why BuIImastiff’? What if Bullmastiff was not in | Why Bullmastiff, rather than a

Bullmastiff

the image? Boxer?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Counterfactual CAM: What if this region were absent in the image?

SCAN ME

In GradCAM, global average pool the negative of gradients to obtain a¢ for each kernel k

< _ﬁ E@ ; % By }Imago Classification

y

Rectified Conv

Feature Maps global average pooling
7 Y o N
A y ¢ . 1 By‘:
— TasK-specific &g = — E E =
.................. Network Z HAx.
e 2 k] ?: j .:..?
! <«—— Gradients ! ;
__________ T{mﬁons ‘: o 5“‘-"-_:|"‘;__| a]i gradients via backprop
«— c c Ak
Backprop till conv LGrad-C AM — RelLU (8% kA
oy° 2
What if Bullmastiff was not in 54k « ,
the image? k.

linear combination

Negating the gradients effectively removes these regions from analysis

. : : . \ ) .
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?

SCAN ME

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to
last conv layer

< ._.ﬁ E@ ; % i }Imago Classification

y

Rectified Conv
Feature Maps global average pooling

Al g & . & Z Z 8J(P,Q)
— TasK-specific O = —_ 2 T
Network 7z OAF.
R prmmmy i g i
! <«—— Gradients ! 4
__________ fmwahoi‘? i 5‘:‘-"-_’|'f-__| a}i gradients via backprop
«—) c § : c Ak
Backprop till conv LGrad-C AM — RBLU (8 kA
Why Bullmastiff, rather than a dAk o o
Boxer? i Vb' :
inear combination
Contrast-CAM

Backpropagating the loss highlights the differences between classes P and Q.

. , : . K J A
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM
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Input Contrastive Contrastive
Image Grad-CAM Contrast 1 Explanation 1 Contrast2 Explanation 2
™ g: :-ﬂ‘.‘- ! ; |

.J '. : —
."“ﬂ ' , B " .«I
7 o K =

.
=
—<

ImageNet dataset : ’ Grad-CAM : Why Why Spoonbill, rather | Representative Pig Why Spoonbill, rather [ Why not Spoonbill,
Sp oonblll Spoonbill? Flamin o image than Flamingo? imag e than Pig? with 100% confidence?

Why Bull Mastiff, Representative Blue )ay Why Bull Mastiff, Why not Bull Mastiff,
rather than Boxer image rather than Blue jay? [ with 100% confidence?

‘«;é" a1 /
CURE-TSR dataset Grad-CAM : Why No- Representative No- Why No-Left, rather Representative Stop Why No-Left, rather | Why not No-Left with
No-Left Image Left? Right image than No-Right? Sign than Stop? 100% confidence?

-—
-

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible,
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe?

Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
image than Audi A6? 100% confidence?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast2 Explanation 2

SCAN ME

Representative Why Spoonbill, rather || Why not Spoonbill,
Flamingo image than Flamm go? |ma e than Pig? with 100% confidence?
Why Bull Mastiff, Represntatlve Bluej ;ay Why Bull Mastiff,
: 'ra!her han Boxer image rather than Blue jay?
Representative N Representative Stop Why No-Left, rather | Why not No-Left with
No-Left Image Left? Right image than No- R| ht? Sign than Stop? 100% confidence?
ey
Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM
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SCAN ME

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast2 Explanation 2

Representative Why Spoonbill, rather ‘ Why Spoonbill, rather [ Why not Spoonbill,
Flamingo image than Flamingo? image than Pig? with 100% confidence?

Why Bull Mastiff, Representative Blue jay |  Why Bull Mastiff,

__rather than Boxer image rather than Blue jay?

i '.., =] "ﬁ; A S ~ *‘-‘-,.. /
CURE-TSR dataset : Grad-CAM : Why No- Representative No- Why No-Left, rather Representative Stop Why No-Left, rather | Why not No-Left with
No-Left Image Left? Right image than No-Right? Sign than Stop? 100% confidence?
=

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM  Contrast 1 Explanation 1 Contrast2 Explanation 2

SCAN ME

Human
Interpretable

Representative Why Spoonbill, rather | Rep entative Pig ’ Why Spoonbill, rather | Why not Spoonbill,
Flamingo image than Flamingo? | imag than Pig? with 100% confidence? Sam e as G rad =

Representative Blue jay | Why Bull Mastiff, Why not Bull Mastiff,
image rather than Blue jay? | with 100% confidence?

"\ 4 A .
CURE-TSR dataset : Grad-CAM : Why No- Representative _‘ Why No-Left, rather
No-Left Image Left? Right imag than No-Right?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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SCAN ME
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SCAN ME

Only traffic sign with a straight
> bottom-left edge — enough to
say Not STOP Sign’

BE EeRESN-HEE
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A Callback...

Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes
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Information at Inference
Case Study: Explainability

T 1s the set of all features learned by a trained network

Beak

Neck

Network f(0) Ilzegf,h
eathers
Water — Features T
AN Al Grass
Il b a3 Teeth

Why Spoonbill?

56 of 192 IEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024] _._\,E;;NOLNES:{;}, Georgia
. \\: N I_.-Jf' Jz’// Tech



Information at Inference
Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo

Beak
Neck
Legs
Feathers
Water
PP Grass
Teeth

Network £(9)

—

— Features T

Why Spoonbill, rather

than Flamingo?

e

b

All the requisite Information is stored within f(0)

Goal: To extract and utilize this information — Introspective Learning
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:} "NEURAL INFormaTion  INtrospective Learning: A Two-Stage

"-}- PROCESSINGSYSTEMS  Approach for Inference in Neural Networks

Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc Professor
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustness in Neural Networks
Why Robustness?

How would humans resolve this challenge? g

We Introspect!

 Why am | being shown this slide?

* Why images of muffins rather than
pastries?

« What if the dog was a bullmastiff?

Georgia
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Introspection
e m = e :
1 Visual Sensing i Reflection ;
| Sense pink feathers, | Why Spoonbill, rather than Flamingo? |

! straight beak x does not have an S-shaped neck

Spoonbill T Why Spoonbill, rather than Crane? I |
y x does not have white feathers : Spoonbill
: 1 7
- ' | Why Spoonbill, rather than Pig? |
I Feed-Forward I x's leg and neck shapes are ,
I Sensing P different :
- . |
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted
questions.

What are the possible targeted questions?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Introspection in Neural Networks

SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Observed Observed Counterfactual Observed
Correfations Contrastive

o &

A

. What if Bullmastiff was not in | Why Bullmastiff, rather than a
? ’
Why Bullmastiff* - s

Bullmastiff

What are the possible targeted questions?

Georgia
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form "Why
P, rather than Q? where P is a network prediction and Q is the
introspective class.

Technical Definition : Given a network f(x), a datum x, and the networks prediction
f(x) =y, introspection in f(-) is the measurement of change induced in the network
parameters
when a label Q is introduced as the label for x..
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

Why 5, rather than 0?

Why 5, rather than 1?

Why 5, rather than 2? Why 5, rather than 4?

Input Image x Why 5, rather than 5? Why 5, rather than 6?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

Informative sparse features
— |

[_ Why 5, rather than O?\\ Why 5, rather than 17 |

II : i B : ) w h | | \
. II! wi w w
i
| Why 5, ratherthan 2? | Why 5, rather than 4?7 |
l - - [
‘ ' = L a
Input Image x | | Why 5, rather than 57 \ Why 5, rather than 67 |
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

SCAN ME

For a well-trained network, the gradients are robust

Vi = Gradients w.r.t. weights

J = Loss function Yj
9 = Prediction Lemmal:Vw J(yr,9) = —Vwyr + Vwlog| 1 + 5 |-
VI
A
C /D (o0 ) o \\
0 1 0
0 0 0
0 0 0
0 0 0
| _ _ Any change in class requires change in
0 0 j relationship between y; and y
. S . 7 \ 7
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Deriving Gradient Features

SCAN ME

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features
Gradients « = = -
Weights, W, : :
e b ik . Normalized and vectorized
Yi=1 gradients are introspective
I \ features
X - :2:‘3:5( Vwl(3.y1) \
£6) Vector of all ones: A confounding label!
\ )
Y
fi-13(x)
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Introspection
Utilizing Gradient Features

Networks

Introspective Learning: A Two-stage
Approach for Inference in Neural

Introspective Features Introspective Network
Gradients =« = = — r
Weights, W, . XM
K
y = 1 b ‘s AN
l | L
|
: Ll M
X | Sensing wiow | | (1] [|T] %0
fO) i
I
I
‘ j ' ||
: —_ M vectorized
. X v and normalized
| f-{L 1}( ) 1 gradients

Introspectlve Features
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
When is Introspection Useful?

SCAN ME

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

Gaussnan Nonse Defocus Blur  Gaussian Blur Spatter

Saturate

S Diny
. H (‘hallcngc uauon Blur Lens
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SCAN ME

Calibration occurs when there is mismatch between a network’s confidence and its accuracy

70 of 192
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Larger the model, more misplaced is a network’s
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Introspection in Neural Networks
Generalization and Calibration results

|deal: Top-left
corner

Y-AXis:
Generalization

X-AXxis:
Calibration
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Introspective Learning: A Two-stage
Approach for Inference in Neural

Feed-Forward Networks ® ResNet-18 @ ResNet-34 @ ResNet-50
ResNet-34 @ ResNet-50

After Introspection

® ResNet-18
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Plug-in nature of Introspection

SCAN ME

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing
robustness techniques.

METHODS ACCURACY
RESNET-18 FEED-FORWARD 67.89%
INTROSPECTIVE 71.4% Introspectlon |S a plug-in
DENOISING FEED-FORWARD 65.02%
INTROSPECTIVE___ 68.86% approach that works on all
ADVERSARIAL TRAIN (27) FEED-FORWARD 68.02%
INTROSPECTIVE 70.86% netWO rkS and On any
SIMCLR (19) FEED-FORWARD 70.28% down Stream tas k |
INTROSPECTIVE 73.32%
AUGMENT NOISE (28) FEED-FORWARD 76.86%
INTROSPECTIVE 77.98%
AUGMIX (26) FEED-FORWARD 89.85%
INTROSPECTIVE 89.89%
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Plug-in nature of Introspection

SCAN ME

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active
Learning, and Image Quality Assessment!

§ . Table 2: Recognition accuracy of Active Learn-
Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image ing strategies.

Quality Estimators. Top 2 results in each row are highlighted.

Methods Architecture Original Testset Gaussian Noise
PSNR IW SR FSIMc Per CSV SUM Feed-Forward Introspective R:I8 R BRI RY
Database HA SSIM  SIM SIM MER UNIQUE UNIQUE By @ty odtood. 03 0338 O 0289
Outlier Ratio (OR, l) Introspective 0.365 0.359 0.258 0.255
MULTI 0013 0013 0.000 0016 0004 0.000 0.000 0.000 0.000 leall) OO G3n 3@ ea a3
TID13 0615 0701 0632 0.728 0.655 0.687 0.620 0.640 0.620 —— Feed-Forward 038 0369 0251 0253
Root Mean Sqm Error (RMSE, |) argin (2) Introspective 0381 0373 0265 0263
MULTI 11320 10.049 8686 10794 9.898 9.895 8212 9.258 7.943 BALD@Y) [P 0%E 03 e 62
TID13 0652 0688 0.619 0.687 0643 0.647 0.630 0.615 0.596 T TE % i on
Pearson Linear Correlation Coefficient (PLCC, 1) BADGE@3) | ospective 039 037 0265 0260
MULTI 0.801 0.847 0.888 0.821 0.852 0.852 0.901 0.872 0.908
-1 o1 0 -1 -1 -1 -1 -1 Table 3: Out-of-distribution Detection of exist-
K15 0851 0832 0866 0832 0855 0853 0.86l 0.869 0.877 ing techniques compared between feed-forward
1 o1 0 2 -1 -1 0 0 and introspective networks.
Spearman’s Rank Correlation Coefficient (SRCC, 1) T e e o=
MULTI 0.715 0.884 0867 0.867 0.818 0.849 0.884 0.867 0.887 Datasets  (95% at TPR) Error
-1 0 0 0 -1 -1 0 0 $ $ : L
0.847 0.778 0.807 0851 0854 0.846 0.856 0.860 0.865 Rl Rwaitoposie
TID13 | 1 1 & | 0 -1 0 0 Textures 58.74/19.66 1804749  88.56/97.79
MSP (25) SVHN 61.41/51.27 16.92/15.67 89.39/91.2
Kendall’s Rank Correlation Coefficient (KRCC) - Places365 58.04/54.43 17.01/15.07 89.39/91.3
0532 0702 0678 0677 0624 0655 0.698 0.679 0.702 e ole S
MULTI ) 0 0 0 1 0 0 0 Textures 523931 22.17/6.12 84.9191.9
. £y ODIN (26) SVHN 66.81/48.52 23.51/15.86 83.5291L.07
0666 0598 0641 0.667 0.678 0.654 0.667 0.667 0.677 Places365 42215187 1623/1571  91.06/90.95
TID13 0 1 : 0 0 0 0 0 LSUN-C 6.59/23.66 5.54/10.2 98.74/ 95.87
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Robust Neural Networks
Part 3: Uncertainty at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

 Part 1: Inference in Neural Networks
« Part 2: Explainability at Inference

« Part 3: Uncertainty at Inference
+ Uncertainty Definition
 Uncertainty Quantification
« Gradient-based Uncertainty
 Adversarial and Corruption Detection

« Part 4: Intervenability at Inference
e Part 5: Conclusions and Future Directions
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know
|

White and Gold

f{ Or
Blue and Black?
&
\
| 4
L £
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know

Prediction
20 1 — Predictive mean A Slmple example:
+ Taining data o . . .
15 4 Epistemic uncertainty « When training data is available: Less uncertainty
L8 « When training data is unavailable: More uncertainty
0.5 1
0.0 F
—.5
-1.0 1 o
_15‘ I I i I I I
1.3 -1.0 -0.5 0.0 05 10 15
X
78 of 192 @ IEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024] ;\(?LNE§£/ Gr Gng;lgia

o=\ J<D
e N S

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/



Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know

Data (Aleatoric) Uncertainty

Amplitude

Frequency without noise
Frequency with noise

Model (Epistemic) Uncertainty

Amplitude

—— Model without phase
—— Model with phase

A slightly more complex example:

- Data (Aleatoric) Uncertainty: When there is inherent
noise in available data or in measurement of data

« Model (Epistemic) Uncertainty: When our chosen
model (network) is incapable of modeling the data

\
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Uncertainty is a model knowing that it does not know

Input Image Neural Network Output Uncertainty Heatmap
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Uncertainty
Challenge in Uncertainty Quantification

Primary purpose of neural networks (ex: classification) and Uncertainty Quantification do not
always go hand-in-hand!

All required information is passed to last layer
Maximal logit is the class

Required information is task
dependent! A well-trained
classification network ignores the
attributes of the dog

Dog asking for belly rub = Angry
dog!

- = ,\\.. 5 L%h':
[ input fayer :
’
\ - hidden aywrs (optional]

output layer

. , : . \ ) .
81 of 192 @ IEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024] \\OLIVEIS,, Gr' Georgia
) R. Benkert, M. Prabhushankar, and G. AlRegib, “Transitional Uncertainty with Layered Intermediate \f\;‘m, ;;é,f’ ’ Tech.

Predictions,” in International Conference on Machine Learning (ICML), Vienna, Austria, 2024



Uncertainty
Challenge in Uncertainty Quantification

Primary purpose of neural networks (ex: classification) and Uncertainty Quantification do not
always go hand-in-hand!

Feature Preservation in

No P ti
o Preservation shies Ot

hqs

Performance Decline!
A 'ot (A}

23 o
A A ‘
{’6\} K
h; h;

A Dog
@ Cat
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Uncertainty
Uncertainty Quantification in Neural Networks

Via Ensembles’ ~Network £1(6) Dog
Y VY Cat
Horse
Bird
Dcog Variation within outputs
at is the uncertainty.
Horse - g
Bird Commonly referred to
as Prediction
Dog Uncertainty.
| Cat Requires multiple
Horse trained models — not
Bird exactly an inferential

method
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Uncertainty
lterative Uncertainty Quantification

Via Monte-Carlo Dropout': During inference repeated evaluations with the same input give
different results

Multiple forward passes with random dropout simulate f;(-), (), f3(*) ... fr ().

T T
1 1
Uepistemic =H TZ Softmax (th (x)) - Tz H (Softmax (th (x)))
| t=1 oL t=1 J
\ V y Y
UPredictive Ualeatoric

T forward passes

B T Logits
: i U N Final prediction is
e 3 - nger ainty maximum of the mean
. : . OIS of the outputs
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Uncertainty
lterative Uncertainty Quantification

Via Monte-Carlo Dropout': During inference repeated evaluations with the same input give
different results

Multiple forward passes with random dropout simulate f;(-), (), f3(-) ... fr ().

* Requires dropout percentage to be set at training. Different models may require different dropout
percentages at inference

* For a well-trained model, dropout underestimate uncertainty

« For a high-error model, dropout overestimate uncertainty

T forward passes
— T Logits

U ] Final prediction is
1 . ngertalnty maximum of the mean
. : . OIS of the outputs
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Uncertainty
Single Pass Uncertainty Quantification

Distance to training/validation representation space is uncertainty

‘ ~Network f1(0) Dog
. A 4 . Cat
- . -
%1 Horse
> e I Bird

e g

Uncertainty
quantification using a
single network and a
single pass

m /—» Calculate distance from some trained clusters

Does not require multiple networks or passes!

L(6)
However, requires training data/validation set/addition

models at inference
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Uncertainty
Gradients as Single pass Uncertainty Quantification

Principle: Gradients provide a ‘distance measure’ between the learned representations space
and its prediction (for discriminative tasks) or some new data (for generative tasks)

Gradients quantify the required
/ movement of an unknown

representation space that encompasses
- / the test sample

1(8]x), ] ~ Does not require multiple networks or passes!
T A /{D . .. . . .
e P . el Does not require training data/validation set/addition
RO el e Pl e W g models at inference!
04" o3 02>.\\/ 08 1
eo 0.1 o, 4
However, what is [(0|x) at inference?
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Uncertainty in Neural Networks
Principle

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Principle: Gradients provide an uncertainty measure between the learned representations

space and novel data
P = Predicted class

Q, = Contrast class 1
Q, = Contrast class 2 However, what is [(0|x) at inference?

® x',0Q,
During training, [(€]x) is a loss function between
predicted class and ground truth class. At
inference, we do not have access to ground truth
class

We backpropagate all contrast classes -
Q1, Q2 ... Qy by backpropagating a confounding

A //;;”f’ label — a vector of all ones!
Og\ua"?:y\g\ ’/Db
il fﬁ?ﬁ\{)\\/{ﬂ 8 91
eo ‘o o A
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Uncertainty in Neural Networks
Deriving Gradient Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate
to obtain the gradient features

Gradients =« = = - K \
i ok y Normalized and vectorized
yi=1 gradients (same as introspective
I features)
X -+ Sensing Vwl (3. y1)
Network
fo)
\
P Y ( Why vector of all 1s? The theory is
11X '
(L—1) - presented in [1]
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Uncertainty in Neural Networks
Utilizing Gradient Features

!
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SCAN ME

Step 2: Take L2 norm of all generated gradients

*

. Vo JB0; ¥, VeyJ(ON: ¥,
Vo
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Network Parameters

MNIST: In-distribution, SUN: Out-of-Distribution
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Gradient-based Uncertainty

Uncertainty in OOD Setting

17.5 [

15.0 -

WG E

3.0

— 7 ——
0.4
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0.3
4
3 I 0.2
2
0.1
1 o
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\Z/ 0.0

94 of 192 @IEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE

Access 11 (2023): 32716-32732.

Probing the Purview of Neural Networks
via Gradient Analysis

Datasets
B MNIST
B SVHN
B TinylmageNet
EEE LSUN
i CIFAR-10




Gradient-based Uncertainty
Experimental Setup

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Utilize this discrepancy in trained vs untrained data gradient L2 distance to detect
adversarial, noisy, and OOD data

- . . — - B Step 1: Train a deep network f(-) on
A5 " o 3.0 . 04 T some training distribution
15.0 — . .. T Step 2: Introduce challenging
g 4 g T (adversarial, noisy, OOD) data
- 20 Step 3: Derive gradient uncertainty on
o 10.0 3 6 .
= 15 both trained and challenge data
- 2 ’ Step 4: Train a classifier H(-) to detect
1.0 . .
5.0 challenging from trained data
5% : 2 05 Step 5: At test time, data is passed
= = - = through f(-) and then H(-) to obtain a
0.0 o 0 = 0 0.0 e - mgm ngn =
Reliability classification
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Gradient-based Uncertainty
Uncertainty in Adversarial Setting

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Vulnerable DNNs in the real world

+.007 x

“panda” noise “gibbon”

577% confidence 99.3% confidence

Goal: to examine the ability of trained DNNs to handle adversarial inputs during inference
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MODEL ATTACKS BASELINE LID M((V) MP) MFE) M(P+FE) OURS
FGSM 51.20 90.06 81.69 84.25 99.95 99.95 903.45

BIM 49.94 99.21 87.09 89.20 100.0 100.0 96.19

RN C&W 53.40 76.47 74.51 75.71 92.78 02.79 97.07
PGD 50.03 67.48 56.27 57.57 65.23 75.98 95.82

ITERLL 60.40 85.17 62.32 64.10 85.10 92.10 98.17

SEMANTIC 52.29 86.25 64.18 65.79 83.95 84.38 90.15

FGSM 52.76 08.23 86.88 87.24 99,98 99.97 06.83

BIM 49.67 100.0 89.19 89.17 100.0 100.0 96.85

C&W 54.53 80.58 75.77 76.16 90.83 90.76 97.05

DENSENET  pepy 49.87  83.01 70.39 66.52 86.94 83.61  96.77
ITERLL 55.43 83.16 70.17 66.61 83.20 77.84 98.53

SEMANTIC 53.54 81.41 62.16 62.15 67.98 67.29 89.55

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE

Access 11 (2023): 32716-32732.
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Same application as Anomaly Detection, except there is no need for an additional AE
network!

CIFAR-10-C CURE-TSR

Defocus Blur  Gaussian Blur Spatter

R - -

No Decolor-
Challenge  ization
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

g Method Mahalanobis [12] / Ours
& | Comuption | Levell  Level2  Level3  Leveld  Levels
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
& GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
E: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 9537/99.92 97.43/99.96
E Exposure 91.39/99.87 91.00/99.85 90.71/99.88 00.58/99.85 90.68/99.87
~ Snow 03.64/99.94 96.50/99.94 94.44/99.95 94.22/9995 95.25/99.92
Haze 05.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 00.43/99.83
Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81
LensBlur | 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44 /83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
E DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
%J Exposure 74.90/88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51 /95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor 48.37/62.36  60.55/81.30 71.73/89.93 87.29/9542 89.68/96.91

Challenge

99 of 192

< IEEE

[Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024]

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE

Access 11 (2023): 32716-32732.

SCAN ME

Gaussian Noise Defocus Blur  Gaussian Blur

AT

Spatter

Snow Saturate

Brightness

Fog
» L5

Y

U L)
0 N

R

No Decolor-
ization
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Gradient-based Uncertainty
Uncertainty in Detecting Challenging Conditions

g Method Mahalanobis [12] / Ours
& | Comuption | Levll  Level2  Level3  Leveld  Lewels
Noise 96.63/99.95 98.73/99.97 99.46/99.99 99.62/99.97 99.71/99.99
LensBlur 94.22/99.95 97.51/99.99 99.26/100.0 99.78/100.0 99.89/100.0
& GaussianBlur | 94.19/99.94 99.28/100.0 99.76/100.0 99.86/100.0 99.80/100.0
E: DirtyLens | 93.37/99.94 95.31/99.93 95.66/99.96 9537/99.92 97.43/99.96
E Exposure 91.39/99.87 91.00/99.85 90.71/99.88 00.58/99.85 90.68/99.87
~ Snow 03.64/99.94 96.50/99.94 94.44/99.95 94.22/9995 95.25/99.92
Haze 05.52/99.95 98.35/99.99 99.28/100.0 99.71/99.99 99.94/100.0
Decolor 93.51/99.96 93.55/99.96 90.30/99.82 89.86/99.75 90.43/99.83
Noise 25.46/50.20 47.54/63.87 47.32/81.20 66.19/91.16 83.14/94.81
LensBlur | 48.06/72.63 71.61/87.58 86.59/92.56 92.19/93.90 94.90/95.65
GaussianBlur | 66.44 /83.07 77.67/86.94 93.15/94.35 80.78/94.51 97.36/96.53
E DirtyLens | 29.78 /51.21 29.28/59.10 46.60/82.10 73.36/91.87 98.50/98.70
%J Exposure 7490 /88.13 99.96/96.78 99.99/99.26 100.0/99.80 100.0/99.90
N Snow 28.11/61.34 61.28/80.52 89.89/91.30 99.34/96.13 99.98/97.66
Haze 66.51 /95.83 97.86/99.50 100.0/99.95 100.0/99.87 100.0/99.88
Decolor 48.37/62.36 60.55/81.30 71.73/89.93 87.29/9542 89.68/96.91
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Gaussian Noise Defocus Blur  Gaussian Blur
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Probing the Purview of Neural Networks
via Gradient Analysis

Out-of-Distribution Detection

SCAN ME

A 4

Train set

A
.._\":“ 4 :

i BRfTe Y v MY
“’ h:.!‘-,' M;' | ﬂ k) ' '

CIFART0 TinylmageNet LSUN
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Out-of-Distribution Detection

via Gradient Analysis

SCAN ME

Dataset Distribution
m Out
SVHN

CIFAR-10  TinylmageNet

Detection Accuracy

AUROC

AUPR

Baseline [5] / ODIN [6] / Mahalanobis (V) [7] / Mahalanobis (P+FE) [7] / Ours

83.36/88.81/79.39/91.95/98.04
84.01/85.21/83.60/97.45/86.17

88.30/94.93/85.03/97.10/99.84
90.06/91.86 / 88.93/99.68 / 93.18

88.26/95.45/86.15/96.12/99.98
89.26/91.60 / 88.59 1 99.60 / 92.66

LSUN
CIFAR-10

87.34/ 88.42/85.02/98.60 / 98.37
79.98/80.12/74.10/ 88.84 / 97.90

92.79/94.48 /90.11 / 99.86 / 99.86
81.50/81.49/79.31/95.05/99.79

92.30/94.22/89.80/99.82 / 99.87
81.01/80.95/80.83/90.25/98.11

SVHN TinyImageNet

LSUN
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81.70/81.92/79.35/96.17/97.74
80.96/81.15/779.52/97.50/99.04

83.69 /8382 /83.85/99.23 /1 99.71
82.85/82.98/83.02/99.54/99.93
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Trust
Definition

Trust: An esoteric term that encompasses uncertainty, belief, and apriori probability
|

White and Gold

: Or
— _ ?
( ' Blue and Black"
? Trust is application-

&j == specific

L 4
L £
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Trust vs Trustworthiness
Trustworthiness attributes

Trustworthiness Attributes: Applications in ML that satisfy the attributes of performance,
reliability, human interaction, and aligned purpose

« Explainability

» Qut-of-distribution Detection
» Adversarial Detection

« Anomaly Detection

« Corruption Detection
 Differential Privacy

« Causal Analysis

* Open-set Recognition

* Noise Robustness

« Uncertainty Quantification
« Uncertainty Visualization

More relevant
= during model
testing

Relevant at Deployment:

Provide a specific ‘trust score’ that
objectively allows users to trust neural
network predictions

GradTrust provides such a score!
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GradTrust
Intuition for counterfactual gradients-based Trust

How much change is required within the data to predict a counterfactual class? Larger the
required change, larger the trust

Network £(8) Why SpanbiII?

I RS oo Wy

Larger the required
change, larger the
trust placed in the
prediction ‘Spoonbill’

Why Spoonbill, rather
than Flamingo?

\

\OLNES Gr Georgia
SN\w L7 Tech.

oD ’ .
Ol =0
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How do we measure required change? Quantify the variance of network parameters (of the
last layer) when backpropagating counterfactual classes

Variance of Gradients of Predicted Class

GradTrust =
raciTus Mean of Variance of Gradients of top — k Counterfactual Classes

« Top-k counterfactuals are based on predictions

« For image classification, top-k counterfactual classes are top-k predictions

« Gradients are obtained by backpropagating loss between the predicted class
and itself in the numerator and between the predicted class and counterfactual
classes in denominator

Georgia
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How do we measure required change? Quantify the variance of network parameters when
backpropagating counterfactual classes
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Gradients ; . g Top k counterfactuals : ||g||2
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Input Image | ,l =~ 1 Max M| Normalize [€= Mean
| ! y = f{L}(Z) | l
_ ! [1000 x 1] .
Z = f{L—l} (X) : : GradTrust
Step 1: Forward Pass ! Step 2: Obtain Counterfactual Gradients ' Step 3: GradTrust Computation
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For ImageNet dataset (with 50,000 validation set

images):

J )_ _ | ResNet-18, Accuracy 65.81%
1. Run inference on all 50,000 images and obtain e e

GradTrust along with comparison trust scores = eAdane. ALIC- e

«  We compare against 8 other methods R e e SN

] . . || f— Entropy, AUC = 73.49 . | _ ,,~-".
2. For each TrustScore, order images in ascending order X P == OO, K =8
(@ —— Purview, = 64.

3. For a given x percentile, calculate the Accuracy dnd F1 R e e

scores of all images above that-percentile i p
4. Plot Area Under Accuracy Curve (AUAC) and Area Under < e

F1 Curve (AUFC)

0.70 1

5. Repeat for multiple networks

- We perform analysis on 14 ImageNet trained Classification o —

networks and 5 Video Classification networks Percentile
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GradTrust is in Top 2 performing metrics in all but 1 network

AUAC / AUFC
Architecture Softmax Entropy NLL Margin [ '] ODIN[ '] MCD|[ '] GradNorm ['] Purview ['] GradTrust
AlexNet [ "] 72.86/68.43 65.02/62.14 83.21/79.37 79.04/73.3  79.22/75.89  54.2/51.59 58.85/55.28 50.14/48.92 92.09/89.5
MobileNet [ ] 77.91/7496  71.72/69.9 84.02/81.37 83.13/79.1  75.95/72.81 61.1/59.46 70.3/67.28 61.85/61.32 93.37/90.58
ResNet-18 [ ] 79.01/76.13  73.49/71.71 85.38/82.73 83.88/79.87 81.64/79.26 62.91/61.4 71.93/69.29 64.9/64.01 91.78/88.65
VGG-11 [ '] 79.95/77.02 74.33/72.52 90.55/88.42 84.85/80.77 85.08/83.33 63.19/61.62 73.16/70.06 65/63.84 91.79/89.18
ResNet-50 [ ] 81.63/79.69 77.47/76.32 89.23/86.47 85.7/82.83  84.13/82.21 66.35/65.37  77.37/75.64 71.68/71.01 92.24/90.09
ResNeXt-32 [ '] 81.56/79.97 78.11/77.15 89.83/87.37 85.16/82.81 82.77/80.43 66.9/66.09 78.61/77.28 74.06/73.05 91.55/89.18
WideResNet [ '] 82.25/80.79  78.96/78.1 90.84/88.42 85.76/83.57 84.5/82.26 67.72/66.89 78.62/77.5 74.55/73.85 91.36/89.12
Efficient-v2 [ '] 91.49/87.84 80.12/76.69 71.44/66.03 85.13/81.59 54.16/51.53  81.8/79.38 61.43/57.53 77.79/77.48 93.57/89.61
ConvNeXt-t [ °] 88.17/86.21 85.56/83.88 79.19/76.85 90.68/88.26 62.51/60.74 85.43/83.82  70.86/66.25 79.16/78.91 89.08/87.23
ResNeXt-64 [ '] 88.95/84.69 85.9/80.71  90.04/87.06 91/86.62 76.61/72.94  75.3/70.86 73.5/71.64 80.2/79.96 89.15/87.41
Swin-v2-t [ 7] 86.05/84.27 83.79/82.43 86.33/83.14 88.75/86.29 79.85/77.09 84.64/83.17 82.23/80.29 77.76/77.39 87.45/85.23
VIT-b-16 [ ] 85.97/84.38 84.5/82.9 82.94/80.3 88.67/86.5 62.74/61,03 84.33/82.81 78.53/74.6 78.02/77.73 87.77/85.85
Swin-b [ ] 86.18/84.49 84.77/83.14 79.18/75.52  88.5/86.21 68.07/64.59 84.69/83.17 83.09/81.52 80.71/80.45 88.44/86.51
MaxViT-t [ ] 84.08/82.66 79.23/78.21 80.6/78.85 85.84/84.02 47.6/46.27  80.07/79.08 70.35/68.12 80.99/80.7 90.19/88.48

* Negative Log Likelihood (NLL) works well on smaller networks with less accuracy while Margin classifier works better with high
accuracy networks
« GradTrust performs well on all networks
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Evaluation
Qualitative Results for Image Classification

Volcano

1.0 1
0.8 1
0.6 1

Picket Fence Horn

0.4 1 Limousine

Green: Correct Predictions
Red: Incorrect Predictions

oftmax Confidence

«—In contrast, no incorrect predictions, with low Softmax confidence and High GradTrust (bottom-right quadrant)
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On AlexNet: Low GradTrust is due to co-occurring classes
On MaxViT: Low GradTrust is due to ambiguity in class resolution

Mispredictions: High SoftMax Confidence, Low GradTrust

Spiral Backpack Postbag

Curly retriever Pill bottle Bottle cap Lighthouse
ERE L e !

Horn Stage Spaniel

B '

AlexNet |

Notebook computer Goblet Handrails Whiskey jug ~ Water jug

MaxViT-t

:-1
\ —’
;-
ey

118 of 192 @ IEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024] NOLIVES ) GF Georgia
: NX\\ fZ7 Tech




Robust Neural Networks
Part 4: Intervenability at Inference
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To discuss methodologies that promote robustness in neural networks at inference

Part 1: Inference in Neural Networks

Part 2: Explainability at Inference

Part 3: Uncertainty at Inference

Part 4: Intervenability at Inference
 Definitions of Intervenability
« Causality
» Privacy
* Interpretability
* Prompting
« Benchmarking
» Case study: Negative Interventions
« Mathematical frameworks to study intervenability
« Case Study: Intervenability in Interpretability

 Part 5: Conclusions and Future Directions
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: The amenability of neural network decisions to human interventions

“Interventions in data are
manipulations that are designed to
test for causal factors”™

OLIVES Geois

:f IEEE Schoélkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward _ L. Tech
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.



: The amenability of neural network decisions to human interventions

€6

ntervenability aims at the
possibility for parties involved
in any privacy-relevant data
processing to interfere with the
ongoing or planned data
processing”’

@lEEE OLIVES (" .y Georgia

Hansen, M.: Top 10 mistakes in system design from a privacy perspective and privacy protection goals. In: _ 4l  Tech
Camenisch, J., Crispo, B., Fischer-Hibner, S., Leenes, R., Russello, G. (eds.) Privacy and Identity
Management for Life. IFIP AICT, vol. 375, pp. 14-31. Springer, Heidelberg (2012)



: The amenability of neural network decisions to human interventions

“The post-hoc field of
explainability, that previously
only justified decisions,
becomes active by being
involved in the decision making
process and providing limited,
but relevant and contextual
interventions”

_OLIVES ey GeOrgia

AlRegib, Ghassan, and Mohit Prabhushankar. "Explanatory paradigms in neural networks: Towards _ -4l  Tech
relevant and contextual explanations." IEEE Signal Processing Magazine39.4 (2022): 59-72.
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: The amenability of neural network decisions to human interventions

“The interaction between
foundation models and users
via the prompting interface
introduces an element of
uncertainty, as the precise
response of these models to
user prompts can be
unpredictable.”

Prompting
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Quesada, Jorge, et al. "PointPrompt: A Multi-modal Prompting Dataset for Segment Anything \ =t Tech
Model." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.



: The amenability of neural network decisions to human interventions

“... new benchmarks were proposed
to specifically test generalization of

classification and detection methods

Benchmarking with respect to simple

algorithmically generated

interventions like spatial shifts,

blur, changes in brightness or
contrast...”

v
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Goal: Given data and black-box model, infer if the data was part of the model’s training set

_predict(data) [
' (data record, class label)

Target Model ] . .
 If data is part of Electronic Health Records,

label then privacy of patients can be leaked

« Train a binary classifier that takes in the
target model outputs and classifies whether

l prediction eLr : al
s hode | the initial data is part of the training set
data € training set ? « Prevention is seen as a robustness issue
training etc.
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Case Study: Negative Interventions
Engineered Interventions: Adversarial Attacks

Goal: Given a trained model, engineer imperceptible noise to ‘confuse’ the neural network

+.007 x

“panda” noise “gibbon”

577% confidence 99.3% confidence

- Gradients (or some statistics of gradients) are used in several adversarial image generation
techniques

* Prevention is seen as a robustness issue both during inference and training — adversarial
training, image compression etc.
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Goal: Given a promptable model with no operational knowledge, users overprompt and use a
‘trial and error’ strategy

- Annotators are asked to segment objects (classes) using Segment
Anything Model (SAM) and point prompts

= . After prompting, annotators are shown the Intersection Over Union
and provided the opportunity to add/subtract their prompt points

« The general conclusion from [1] is that annotators overprompt and
utilize strategies that lead to worse performance

« Dataset: https://zenodo.org/records/10975868

g — « ~200,000 prompts on 6000 images
% os
n
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https://zenodo.org/records/10975868

Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

« Part 1: Inference in Neural Networks
« Part 2: Explainability at Inference
« Part 3: Uncertainty at Inference

* Part 4: Intervenability at Inference
 Definitions of Intervenability
« Mathematical frameworks to study intervenability
« Causal analysis via interventions
« Dangers of incomplete interventions
« Case Study: Intervenability in Interpretability

 Part 5: Conclusions and Future Directions
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Intervenability Frameworks
Framework 1: Causal Assessment via Interventions

3 Rules of Causal Inference

Rule 1 (Insertion/deletion of observations):

P(y|do(x), z,w) = P(y|do(x), w)

« Fix a causal feature (or a
feature that is being tested for
causality) in the data

Insertion
Deletion

Key Differences:

« There are no causal features;
approximate using
pixels/structures

« The underlying network is not a
structured causal model

Georgia
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Intervenability Frameworks
Framework 1: Causal Assessment via Interventions

Rule 2: Intervene on all other factors keeping the causal factor constant

Rule 2 (Action/observation exchange):

P(y|do(z), do(z), w) = P(y|do(z), z, w)
« Keeping the causal factor

. constant from rule 1, change all
Insertion available factors

Deletion

Key Differences:

 There are no causal features;
approximate using
pixels/structures

* The underlying network is not a
structured causal model

« Impossible to intervene on all
pixels
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Intervenability Frameworks
Framework 1: Causal Assessment via Interventions

Rule 3: Insertion/Deletion of interventional actions

Rule 3 (Insertion/deletion of actions):

| f
PU) o))~ Pt ) SpeeSssiecos e

from rule 2 are reverted and the
Insertion causal attribution is noted

Deletion

Key Differences:

« There are no causal features;
approximate using
pixels/structures

« The underlying network is not a
structured causal model

« Impossible to intervene on all
pixels
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Unknown interventions based on insertion/deletion can yield unexpected results

* RISE explainability
technique creates 6000
random masks for an
image and passes it
through a network

* The weighted sum of the
mask and its probability
score is the explanation

0.09

Black Box

f

0.74

0.56

* |nstead of causal deletion,
Weighted sum RISE deletes randomly

Y
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Intervenability Frameworks
Dangers of Incomplete Interventions: SHAPE Explanations

Unknown interventions based on insertion/deletion can yield unexpected results

(M) (IO M) Main change from RISE

« SHAPE explanation is almost
identical to RISE except:
SHAPE Map * Weighted sum is NOT
‘ between probability and
mask but between
change in probability
score and inverse mask
» Results are human un-
- il | interpretable
nverse . . . .
 However, existing objective
evaluation metrics give
better scores to SHAPE
than RISE
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Intervenability Frameworks
Framework 2: Predictive Uncertainty in Interventions

Accept that all interventions are impossible and calculate the uncertainty of ‘residual’
interventions

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other dogs.
Hence, there is uncertainty on
why this feature is not included
in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)
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To discuss methodologies that promote robustness in neural networks at inference

« Part 1: Inference in Neural Networks
« Part 2: Explainability at Inference
« Part 3: Uncertainty at Inference

« Part 4: Intervenability at Inference
 Definitions of Intervenability
« Mathematical frameworks to study intervenability
« Case Study: Intervenability in Interpretability
» Motivating explanatory evaluation
« VOICE: Variance of Induced Contrastive Explanations

 Part 5: Conclusions and Future Directions
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ISEigE;rEm]l VOICE: Variance of Contrastive Explanations for

Processing Quantifying Uncertainty in Interpretability

Society
~— CELEERATING 75 YEARS

Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc Professor
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E’-ﬁ'ﬂ E] VOICE: Variance of Contrastive
Explanations for Quantifying Uncertainty

Case Study: Intervenability in Interpretability | :
Predictive Uncertainty in Explanations AN - In Interpretability

Explanatory techniques have predictive uncertainty

Explanation of Prediction Uncertainty of Explanation

Uncertainty in answering

Why Bullmastiff?
Why Bullmastiff?
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Common evaluation technique is masking the image and checking for prediction correctness

y = Prediction
Sy = Explanation masked data

E(Y|Sy) = Expectation of class given S,

It across N images,
ECY|Sx2) > E(Y|Sx1),
explanation technique 2

[ | Crane

IS better than explanation [ } Spoonbill
technique 1
OLIVES i
@ I E E E Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep ' SV S Gnglr'lgla

convolutional networks." 2018 IEEE winter conference on applications of computer vision (WACV). IEEE,
2018.
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SCAN ME

Uncertainty due to variance in prediction when model is kept constant

VIyISxl = VIEYIS)] + EV YISk

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
Sy = Subset of data (Some intervention)

E(Y|Sy) = Expectation of class given a subset
V(Y|S¢) = Variance of class given all other residuals
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SCAN ME

A ‘good’ explanatory technique is evaluated to have zero V[E(y|S,)]

VIyISxl = VIEYIS)] + EV YISk

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
Sy = Subset of data (Some intervention)

2610 E(Y|Sx) = Expectation of class given a subset
V(Y|Sx) = Variance of class given all other residuals

Key Observation 1: Visual Explanations are

_ o Network evaluations have nothing to do with human
evaluated to partially reduce the predictive

el Explainability!
uncertainty in a neural network
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[Eliexr
SCAN ME

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

VIyISxl = VIEYIS)] + EV YISk

y= Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
Sy = Subset of data (Some intervention)

E(Y|Sx) = Expectation of class given a subset
V(Y|Sx) = Variance of class given all other residuals

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation

did not attribute to the network’s decision
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Case Study: Intervenability in Interpretability iy Lol e S
Predictive Uncertainty in Explanations is the Residual EliiEses | In Interpretability

SCAN ME

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

The effect of a chosen Interventions can be measured
based on all the Interventions that were not chosen
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[Eliexr
SCAN ME

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other dogs.
Hence, there is uncertainty on
why this feature is not included
in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation
did not attribute to the network’s decision
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Case Study: Intervenability in Interpretability g | OICE variance of Contastive

I I 1 . - . . = = I bl
Predictive Uncertainty in Explanations is the Residual ANME imerpretEiiy

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other dogs.
Hence, there is uncertainty on
why this feature is not included
in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Not chosen features are intractable!
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Case Study: Intervenability in Interpretability g | OICE variance of Contastive

I I : N R g = A I bl
Quantifying Interventions in Explainability ANME in interpretability

Contrastive explanations are an intelligent way of obtaining other subsets

VIyISxl = VIEIS)] + EV YISk

J—
Make it finite by only considering the subsets that

changey Y, 1S,

YZ |Sx2
Y3 |Sx3
Y4 | Sx4
YS |SX5

— \ariance

YN | SXN

Georgia
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' (0.02 ) » Explanation = VOICE
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Step 1: Forward Pass Step 2: Induce Contrastive Explanations Step 3: Variance across explanations
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Case Study: Intervenability in Interpretability g | OICE variance of Contastive

I I : N R g = A I bl
Quantifying Interventions in Explainability ANME in interpretability

Uncertainty in Explainability can be used to analyze Explanatory methods and Networks

e |s GradCAM better than GradCAM++"?
* |s a SWIN transformer more reliable than VGG-16?

Need objective quantification of Intervention Residuals
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SCAN ME

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

i wy i y e mamea e masm | ODjECHVE Metric 1:
Intersection over
Union (loU)
between
explanation and
Uncertainty

Prediction Explanation

Explanation

Higher the loU, higher the
uncertainty in explanation (or

Speonr. S2»egh less trustworthy is the
' prediction)
Incorrect Predictions
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

Image GradCAM GradCAM++ Guided Backpropagation SmoothGrad O b . . M . 1 .
Explanationof Uncertainty of  Explanation of Uncertaintyof  Explanation of Uncertainty of  Explanation of  Uncertainty of J e Ct I V e et r I C "

Prediction Explanation Prediction Explanation Prediction Explanation Prediction

Intersection over
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or
less trustworthy is the

prediction)
Incorrect Predictions
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Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

i wy i y e mamea e masm | ODjECHVE Metric 1:
Intersection over
Union (loU)
between
explanation and
Uncertainty

Prediction Explanation

Prediction Explanation

Higher the loU, higher the
uncertainty in explanation (or
less trustworthy is the

prediction)
Incorrect Predictions
171 of 192 @ IEEE [Tutorial@MIPR'24] | [Ghassan AlRegib and Mohit Prabhushankar] | [Aug 9, 2024] NOLIVES ), Georgia
. M. Prabhushankar and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify ‘\\‘ ‘,J Gr Tech

o\ J =0

Uncertainty in Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP)
Special Series on Al in Signal & Data Science, May 23, 2024.



- . - (=] 7% (=] i :
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e . . . I = ix | in Interpretability
Quantifying Interventions in Explainability: SNR e

Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Correct Predictions Incorrect Predictions

Explanation of Prediction Uncertainty of Explanation | Explanation of Prediction Uncertainty of Explanation

Objective Metric 2:
Signal to Noise
Ratio of the
Uncertainty map

VGG-16

(a) (b) (c) (d)
5 s R | .
£ Higher the SNR of
G uncertainty, more is the
= dispersal (or less trustworthy
| = . . .
3 is the prediction)
(e) (f) (g) (h)
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The amenability of neural network decisions to human interventions

* Not choosing interventions causes
uncertainty in the chosen interventions

« Residuals must be analyzed
intelligently to ‘trust or not to trust’
predictions at inference

Challenges:
« Choosing the type of Intervention
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The amenability of neural network decisions to human interventions

: Causality
: Privacy
: Interpretability
: Prompting
: Benchmarking

OLIVES o

:f IEEE Schoélkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward _ L. Tech
causal representation learning. Proceedings of the IEEE, 109(5), 612-634.



Intervenability in Benchmarking
Detection and Localization

CURE-TSD: Challenging Unreal and Real Environments for Traffic Signh Detection

Data Characteristics:
* 49 real and virtual sequences
« 300 frames in each sequence

12 different challenges including
decolorization, codec error, lens
blur etc.

« 5 progressively increasingly
levels in each challenge

e Goal: Detect and localize traffic

signs
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Intervenability in Benchmarking
Recognition

CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition

L&
'

Data Characteristics:

2 million real and virtual traffic
sign images

» 14 Traffic signs including common
signs like stop, no-right, no-left
etc. and uncommon signs like
goods-vehicles, priority lanes etc.

12 different challenges including
decolorization, codec error, lens
blur etc.

« 5 progressively increasingly
levels in each challenge
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Intervenability in Benchmarking
Recognition

ImageNet-C: ImageNet-Corruptions

Gaussian Noise
L L

Data Characteristics:
« 3.75 million images

15 different challenges including ; b«
decolorization, codec error, lens ~_Zoom Blur
blur etc. for testing :

+ 4 different challenges for
validation and training

« 5 progressively increasingly : .
levels in each challenge Brightness Contrast Elastic Pixelate | JPE

« Goal: Recognize 1000 classes
from ImageNet using pretrained
networks
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Intervenability in Benchmarking
Recognition

ImageNet-P: ImageNet-Perturbations

Brightness

Data Characteristics:

« 5 million images Architecture Perturbation Robustness

* 100 perturbations of 50000 110 1 SquesseNREll
images

« 10 frames of algorithmically 180 "
generated perturbations for each "\ ResNet-18 ResNet-50
image in ImageNet validation 90 AlexNet
testset VGG-19+BN

* 10 common perturbations 80 - VGG-11
including brightness, tilt, motion , | Yeo-13 ,
etc. 60 65 70 75

Architecture Accuracy (%)
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Intervenability in Benchmarking
Retrieval and Recognition

CURE-OR: Challenging Unreal and Real Environments for Object Recognition

Can
Data Characteristics: Bever::: -
1 million images ;::::
« 100 common household objects Drink
and 10000 images per object Cof;:;:::
» 5 backgrounds, 5 object Table 0.00
orientations, 5 devices, and 78 c;uc: zzz

challenging conditions

Aluminium 0.00
Outdoors 0.00
Text 0.00

« Goal: To recognize and retrieve
the same object across

Drawing 0.00

backgrounds, orientations, Sl
devices, and challenging Diagram 0.00
conditions Plan 000

Ice 0.00

Challenge Type: None
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PointPrompt: A Multi-modal Prompting Dataset for Segment Anything Model

- Annotators are asked to segment objects (classes) using Segment
Anything Model (SAM) and point prompts

= . After prompting, annotators are shown the Intersection Over Union
and provided the opportunity to add/subtract their prompt points

« The general conclusion from [1] is that annotators overprompt and
utilize strategies that lead to worse performance

« Dataset: https://zenodo.org/records/10975868

g — « ~200,000 prompts on 6000 images
% os
n
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Robust Neural Networks
Part 5: Conclusions and Future Directions
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Memes to Wrap it Up
Overcoming Challenges at Training

Novel data packs a 1-2 punch!

Even if
available,
novel data
does not
easily fit into
either the
earlier or
later stages
of training

Novel data may not
be available during
training

———

3 e —
AR RIS R i

A _ Deep Neural Networks
B = Novel data
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Memes to Wrap it Up
Robustness at Inference

TRAIN & TEST WERE DIFFERENT IIIS'I'IIIBIITIOHS

imgflip.com @scott.ai

Cannot depend on training to construct
robust models
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Memes to Wrap it Up
Robustness Research in the Inferential Stage of Neural Networks

Existing research on robustness focuses on data collection and optimization

Optimization %4 Inference

74
PN
AN
AN
NG

N

TN
A

£ RN
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Memes to Wrap it Up
Implicit Knowledge in Neural Networks

Trained Neural Networks have a wealth of implicit stored knowledge, waiting to be extracted
at inference

e e

. B Traditional Why P?

Why P, rather than Q?

s, A
). y !
ry

!
\
o What if?
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Explanatory Evaluation reduces Uncertainty

Uncertainty
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* Robustness under distributional shift in domains, environments, and adversaries are challenges for neural
networks

« Gradients at Inference provide a holistic solution to the above challenges

- Gradients can help traverse through a trained and unknown manifold
« They approximate Fisher Information on the projection
« They can be manipulated by providing contrast classes
« They can be used to construct localized contrastive manifolds
» They provide implicit knowledge about all classes, when only one data point is available at inference

« Gradients are useful in a number of Image Understanding applications
« Highlighting features of the current prediction as well as counterfactual data and contrastive classes
* Providing directional information in anomaly detection
« Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection
* Providing expectancy mismatch for human vision related applications
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Test Time Augmentation (TTA) Research
« Multiple augmentations of data are passed through the network at inference
« Research is in designing the best augmentations

Active Inference
 Utilize the knowledge in Neural Networks to ask it to ask us
* Neural networks ask for the best augmentation of the data point given that one data point at inference

Uncertainty in Explainability, Label Interpretation, and Trust quantification
» Uncertainty research has to expand beyond model and data uncertainty

* In some applications within medical and seismic communities, there is no agreed upon label for data.
Uncertainty in label interpretation is its own research

Test-time Interventions for Al alignment
* Human interventions at test time to alter the decision-making process is essential trustworthy Al
» Further research in intelligently involving experts in a non end-to-end framework is required
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Gradient representations for Robustness, 00D, Anomaly, Novelty, and Adversarial Detection

+ Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib "Intros;I)ective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in
Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

+ Gradients for adversarial, 00D, corruk)ﬂtion detection: J. Lee, M. Prabhushankar, and G. AI,Reg_lb, "Gradient-Based Adversarial and Out-of-Distribution Detection," in International
Conference on Machine [earnmg (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

* Gradients for Olgen set reco?nition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2027 IEEE International Conference on Image
Processing (ICIP). IEEE, 202T.

« GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection.
In European Conference on Computer Vision (pp. 206-226). Springer, Cham.

» Gradients for adversarial, 00D, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis,"
in IEEE Access, Mar. 21 2023.

» Gradients for NoveItE Detection: Kwon, G., Prabhushankar, M., Temel, D., & AIRe%ib G. (2020, October). Novelty detection through model-based characterization of neural
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

8
+ Gradient-based Image Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated
Gradients," in IEEE International Conference on Image Ibrocessmg (ICIP), Taipei, Taiwan, Sep. 2019:

Explainability in Neural Networks

« Explanatory paradigms: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. IEEE Signal
Processing'Magazine, 39(4), -72.

« Contrastive Explanations: Prabhushankar, M., Kwon, G, Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International
Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

* Explainabilty in Limited Label Settin%s: M. Prabhushankar, and G. AlRegib, "Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference
on Image Processing (ICIP), Sept. 2021.

. ExEIainabiIty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks,"
in Frontiers in Neuroscience, Perception Science, Volume 17, Feb. 09 2023.
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Self Supervised Learning

. Weak]y_ supervised Contrastive Learning; K. Kokilﬂ)ersaud S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023.

» Contrastive Learning for Fisheye Images: K. Kokilegersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye
Data," in Open Journal of Signals Processing, Apr. 23 2023.

+ Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejzo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in
OCT," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 76-19 202

+ Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation,"
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX,, Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction

» Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on
Intelligent Transportation Systems, submitted on Dec. 28 2022.

* Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image
Processing (ICIP), Abu'Dhabi, United Arab Emirates, Oct. 2020.

+ Human Image Quality Assessment: D. Temel, M. Prabhushankar and G. AlRegib, "UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no.
10, pp. 1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

* CURE-TSD:D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics,"
in IEEE Transactions on Intelligent Transportation Systems, Jul. 2019

*  CURE-TSR:D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR; Challenging Unreal and Real Environments for Traffic S;gn Recognition," in Advances in Neural
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 201

*  CURE-OR:D. Temel*, J. Lee* and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on Machine Learning
and Applications (ICMLA), Orfando, FL, De¢. 2018
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Active Learning

« Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A
Second Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 052023

» Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AIRe%ib, K. Singh, E. Corona and A.
Parchami, "FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

» Active Learning on 00D data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-
Distribution Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

« Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification,"
in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

« Gradient-based Uncertaintg: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020

« Gradient-based Visual Uncertainty: M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural
Network Interpretability," Journal of Selected Topics in Signal Processing, submitted on Aug. 27, 2023.

» Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With
Prediction Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

« Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurlPS
2022 Workshop on Human in the Loop Learning, Oct. 27 2022

» Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency
Detection," in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.
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