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Abstract— Covert/side channel attacks based on electromag-
netic (EM) emanations are difficult to detect because they are
practiced wirelessly. Hence, quantifying information leakage is
crucial when designing secure hardware and software. To address
this problem, this paper establishes a connection between the sig-
nal energy available to an attacker in electromagnetic side/covert
channel and capacity of the covert/side channel. We first present a
mathematical relationship between electromagnetic side-channel
energy (ESE) of individual instructions and measured side-
channel signal power, assuming that all instructions have equal
execution time. Then, we use this measure to calculate the tran-
sition probabilities needed for estimating capacity. Furthermore,
we consider each instruction as a codeword and relate our model
to Shannon’s capacity. Finally, we provide practical examples
to demonstrate the severity of covert/side channel due to EM
emanations.

Index Terms— electromagnetic emanation security, electro-
magnetic information leakage, information security, security of
modern processors, side-channel attack, covert-channel attack,
channel capacity.

I. INTRODUCTION

Electronic circuits within computers create detectable EM
emanations [1], [2]. These emanations create a covert/side
channel, which is an unintended channel and not designed to
transfer information [3]. Information leakage in a covert/side
channel is caused by legitimate operations or shared resources
of a system and the security risks caused by these channels
have drawn attention for a long time [4]. For example, key-
boards and smart-cards emit EM emanations and pose security
risks [5], [1], [6]. The use of mobile computing devices
(such as laptops, smartphones and drones), in public areas
is growing, increasing the security risks caused by potential
exposure to malicious entities.

Side channel attacks, e.g. power analysis [7], [8], [9],
[10], [11], [13], temperature analysis [14], [15], caches-based
attacks [16], [17], [18], etc., generally require direct access to
their target which creates a detection risk. However, covert/-
side channel attacks based on EM emanations only require
physical proximity, decreasing the risk of detection and thus
making EM-based side/covert channel attacks very attractive
for motivated attackers. For example, it is shown in [2],
[19] that seemingly innocuous code, when executed, causes
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modulated EM emanations to be emitted from computers, and
the resulting information leakage can be severe even through
a wall.

Quantifying the capacity of such a covert/side channel
can provide basic insights about how severe the information
leakage through EM emanations can be. Also, this leakage can
provide knowledge about the current state of the device and
thus facilitate other attacks. Therefore, defining a metric which
quantifies the information leakage is crucial to assess the dan-
ger and systematic mitigation of the unintended information
flow.

Millen [20] was the first to propose a connection between
state-machine models of information flow and Shannon’s
channel capacity theory. Millen considered state machines as
an example of covert channel and obtained a channel capacity.
Wang [21] utilized a deletion-insertion channel model instead
of a synchronous model to estimate the channel capacity based
on the probabilities of insertion, deletion, substitutions and
transmission. Work in [22] explains the information flows
by the occurrences of k-grams which can be learned during
the system process, therefore, a codebook can be created to
maximize the received information from the covert channel
which also leads to maximization of the covert channel
capacity. These channel capacity definitions can reflect how
severe the information leakage can be. Therefore, based on
the significance of the information leakage, some precautions
can be taken to prevent eavesdropping activities of other
parties. For example, Suzuki et. al. in [23] proposes a jamming
technique for the unintentional emissions of video signals and
creates a device which regenerates the dot clock signal and
modulates the signals to display a fix pattern.

Although there are many papers discussing covert channel
capacity bounds based on synchronization and substitution
errors [21], [24], [26] and more recently papers discussing
bounds on the capacity of channels corrupted with synchro-
nization and substitution errors [27], [26], [28], none of them
provide answer to how much information is “transmitted” by
execution of particular sequence of instructions transmitted
through erroneous channel. Providing a connection between
the available signal energy and capacity of the covert/side
channel would allow us to anticipate the potential information
leakage of a program. For example, knowing how much
information each particular part of the code may leak would
help coders or system designers make their code more secure



in the presence of side/covert channel attacks.
To address this problem, we need to establish the rela-

tionship between software activity, observed emanations, and
side-channel capacity. The first attempt to quantify which
combinations of instructions have the greatest potential to
create side-channel vulnerabilities was reported in [29], where
a measurement technique is devised to quantify pairwise
electromagnetic side-channel energy (ESE), i.e. the fraction
of the overall EM-emanated energy that can aid the attacker
in discerning which of two possible instructions has been
executed. In this paper, we derive a mathematical relationship
between these pairwise electromagnetic side-channel energy
(ESE) values and the side-channel signal power and noise
produced by executing each instruction, assuming that all in-
structions have equal execution time. Then, we use these power
and noise values to calculate optimal transition probabilities
needed for estimating capacity. Furthermore, we consider each
instruction as a codeword and relate our model to Shannon’s
information theory [30]. Finally, we provide practical exam-
ples to demonstrate the severity of covert/side channels due to
EM emanations.

The organization of the paper is as follows: Section II
presents an overview of the method for measuring the ESE.
Section III introduces the relationship between ESE and side/-
covert channel capacity. Section IV illustrates usefulness of
the derived covert/side channel capacity. Finally, Section V
summarizes the contributions of this paper.

II. AN OVERVIEW OF THE METHOD FOR MEASURING
SIDE CHANNEL ENERGY

Data-dependent program activity, such as executing differ-
ent instructions depending on data values (e.g. in an if-then-
else statement), creates a covert/side channel through EM
emanations. Attackers can exploit these emanations to extract
sensitive information. A method to measure the electromag-
netic side-channel energy (ESE), i.e. energy emanated due to
the difference between two instructions has been proposed in
[29], [?]. Here, we provide just a brief overview.

In [29], [?], the authors produce controllable emanations
by choosing a repetition period Talt and by creating a test
program (microbenchmark) containing a for loop such that
the first half of the loop does many repetitions of activity
X1 and the second half does many repetitions of activity X2.
The microbenchmark in Figure 1 implements this idea by
executing ninst instances of instruction X1 (lines 2 through
7), followed by executing the same number of instances
of instruction X2 (lines 8 through 13), and this X1-then-
X2 alternation is repeated (line 1) for the duration of the
measurement. If we denote the duration of a single alternation
(one iteration of the outer loop) as Talt, it is important to
note that Talt is proportional to ninst, so a desired alternation
frequency (falt = 1/Talt) can be achieved by selecting
ninst appropriately. When running this microbenchmark, the
difference in hardware activity caused by X1 and X2 causes
EM emanations to differ between the first and second half of
each Talt alternation period. This, in turn, creates a signal at

frequency falt whose power is proportional to ESE(X1,X2),
i.e. to the difference in EM-emanated energy when X1 and
when X2 is executed.

1 while(1){
2 // Do some instances of the X1 instruction
3 for(i=0;i<n_inst;i++){
4 ptr1=(ptr1&˜mask1)|((ptr1+offset)&mask1);
5 // The X1-instruction, e.g. a load
6 value=*ptr1;
7 }
8 // Do some instances of the X2 instruction
9 for(i=0;i<n_inst;i++){

10 ptr2=(ptr2&˜mask2)|((ptr2+offset)&mask2);
11 // The X2-instruction, e.g. a store
12 *ptr2=value;
13 }}

Fig. 1. The X1/X2 alternation pseudo-code.

The instructions considered throughout the paper are given
in Fig. 2 which includes some levels of cache hierarchy, integer
arithmetic and the case with no instruction at all.

Instruction Description

LDM mov eax,[esi] Load from main memory
STM mov [esi],0xFFFFFFFF Store to main memory
LDL2 mov eax,[esi] Load from L2 cache
STL2 mov [esi],0xFFFFFFFF Store to L2 cache
LDL1 mov eax,[esi] Load from L1 cache
STL1 mov [esi],0xFFFFFFFF Store to L1 cache
ADD add eax,173 Add imm to reg
SUB sub eax,173 Sub imm from reg
MUL imul eax,173 Integer multiplication
NOI No instruction

Fig. 2. x86 instructions for our X1/X2 ESE measurements.
III. COVERT/SIDE CHANNEL LEAKAGE CAPACITY

To relate measured ESE of different instruction pairs with
covert/side channel capacity, we introduce the following as-
sumptions:

1) Each executed instruction represents a codeword and
information is transmitted as a sequence of these code-
words. This assumption is realistic because the pro-
gram’s code determines the possible sequences of in-
structions that can be executed by the processor.

2) All processor instructions have execution time TI. While
this may not be a realistic assumption, it significantly
simplifies derivations without loss of generality.

3) s1 (X1, t) and s2 (X2, t) are voltages measured across
some resistance R that correspond to execution of in-
structions X1 and X2, respectively.

4) The sequences s1 [X1, n] and s2 [X2, n] of length
Ns = Ts/TI are generated by sampling s1 (X1, t) and
s2 (X2, t) at frequency 1/TI. Ts is the time the program
spends in each loop.

5) The frequency content of s1 (X2, t) and s2 (X2, t) above
1/(2TI) is negligible (i.e. s1 (X1, t) and s2 (X2, t) have
bandwidth 1/(2TI)).

6) The discrete time electromagnetic side-channel energy
ESE (s1 [X1] , s2 [X2]) is defined as

ESE (s1 [X1] , s2 [X2]) ≡

TI

Ns−1∑
n=0

(s1 [X1, n]− s2 [X2, n])
2

R
.

(1)



7) If the only difference between s1 [X1] and s2 [X2] at
each iteration is that instruction X2 is executed instead
of instruction X1 at a single time sample ne, then we
define

ESE(X1, X2) ≡
ESE(s1 [X1] , s2 [X2])

ninst
=
TI

R
(xv1 − xv2)2 (2)

where xv1 = s1[X1, ne] and xv2 = s2[X2, ne].
A covert/side channel is modeled as a noisy communication

channel as shown in Fig. 3. In this figure, the transition
probability, pij = pXj |Xi

denotes the probability that instruc-
tion Xi is executed but the instruction Xj is detected. To
calculate the capacity of such a communication system, we
need to estimate transition probabilities which characterize the
probabilities of erroneous transmission. This can be done by
finding relationship between ESE and transition probabilities.
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Fig. 3. Noisy Channel Model for the Covert/Side Channel.

However, time domain ESE measurements from [29] are not
always readily available because they require time-consuming
and expensive experiments. Therefore, as the first step, we
derive a relationship between the power observed with the
spectrum analyzer at falt while running the X1/X2 alternation
microbenchmark and the needed ESE value as

ESE(X1, X2) =
(π
2

)2 P (falt) ·N
falt · ninst

(3)

where N is the number of samples taken during one iteration
of any inner-for-loop (Derivation of this equation is presented
in Appendix I). We note here that operands in the instructions
have minimal impact on ESE measurement values.

The above equation implies ESE(Xi, Xi) equals to zero
where i represents any instruction, however, experimental
results in [29] show that the measured ESE even between
two identical instructions is small but not zero. The reason
for that is that the side/covert channel operates in a noisy
environment and this measurement noise must be taken into
consideration when calculating ESE. From the experimental
results, we have observed that the noise power is dependent on
the instruction. Moreover, existence of this noise causes errors
in the covert/side channel communication system. To calculate
the noise power, we consider each signal sample to be the
sum of the instruction’s signal and noise, i.e. s1[X1, n] =
iv1 + ni[I1, n] such that iv1 = xv1 and n1[X1, n] ∼ N (0, σ2

X1
)

if n = N , and, iv1 = ov and n1[X1, n] ∼ N (0, σ2
O) if n 6= N

where N is the number of samples taken only one iteration
of one inner-for-loop. Analogous equations can be written for
s2[X2, n]. If we consider ESE(s1[X1], s2[X1]) and (1), we
can obtain the expression for ESE in the noisy channel as
follows:

ESE(s1[X1], s2[X1]) =

Ns−1∑
n=0

(s1 [X1, n]− s2 [X2, n])
2

R/TI

=

Ns−1∑
n=0

(iv1 + n1 [X1, n]− (iv1 + n2 [X1, n]))
2

R/TI

=

Ns−1∑
n=0

(n1 [X1, n]− n2 [X1, n])
2

R/TI
. (4)

Assuming that the noise terms are independent of each other
and Ns is large enough, we can write

ESE(s1[X1], s2[X1]) ≈ 2ninst((N − 1)σ2
O + σ2

X1
),(5)

where σ2
O is the average σ2 for instructions in the microbench-

mark except X1 and X2, i.e. for “other” instructions that are
always part of the micro-benchmark and are the same in both
half-periods of the alternation. If X1 is NOI (no instruction),
we have ESE(s1[NOI], s2[NOI]) = 2ninst(N − 1)σ2

O. There-
fore, we can find the variation around each instruction as

σ2
X1

=
ESE(s1[X1], s2[X1])− ESE(s1[NOI], s2[NOI])

2ninst
.

(6)
Intuitively, the noise that can be attributed to execution of X1

is equal to the difference between measured noise when the
microbenchmark has both the “other” instructions and X1 and
when only “other” instructions are present.

The next step is to calculate the transition probabilities from
ESE calculations. Please note that ESE can be viewed as a
metric that measures the Euclidean distance between alternated
instruction voltages. Here, we introduce our approach to obtain
these distances. Let us first consider an example of measured
ESE [29] shown in Fig. 4.

Assuming that the Euclidean space within which these
distances are measured is one-dimensional, i.e. that the EM
emanations caused by different instructions differ only in
magnitude, from Fig. 4 we can deduce that

* LDL1, STL1, ADD, MUL, and SUB have similar ESE
and we denote their value as G6 and observe that it is
positioned between STM and LDL1.

* Based on ESE table, “LDL2 and STL2”, and “LDM and
STM” need to be next to each other.

* Spacing between STL2 and STM is the largest.

Based on these observations, we can sort instructions as
“STM - LDM - G6 - LDL2 - STL2”. Let d = [d1 d2 d3 d4]
be a vector which stores the voltage differences between
neighboring instructions. To attain d, we propose the following



optimization problem:

minimize
d,ε

‖ε‖2

subject to

ESE(LDM,STM)− κd21 = ε1

ESE(LDM,G6)− κ(d1 + d2)
2 = ε2

...

ESE(LDL2,STL2)− κd25 = ε15.

(7)

where κ = TI/R. The solution of the optimization problem
for the example in Fig. 4 is d = [0.01 3.05 8.01 1.43]/κ.

LDM STM LDL2 STL2 LDL1 STL1 NOI ADD SUB MUL

LDM 20 32 88 112 82 82 87 84 84 85
STM 31 38 82 120 39 45 42 41 41 41
LDL2 93 82 2 4 82 83 86 86 85 84
STL2 115 121 4 3 104 107 111 111 108 108
LDL1 81 39 73 105 2 2 2 2 2 2
STL1 80 46 82 107 2 2 2 2 2 2
NOI 84 42 87 114 3 2 2 2 2 2
ADD 83 41 87 111 2 2 2 2 2 2
SUB 85 40 85 110 2 2 2 2 2 2
MUL 83 41 85 111 2 2 2 2 2 2

Fig. 4. ESE values (in zJ) for the Core 2 Duo laptop measured at 10 cm
and 80 kHz [29].

Now that we have the signal magnitude and noise distri-
bution that corresponds to each instruction, we can calculate
transition probabilities as follows:
→ Find decision boundaries as the middle points between

two consecutive instruction magnitudes.
→ For a given instruction X1, define the probability density

function of noise as N (xv1, σX2
1
).

→ Calculate the probability for each region to obtain tran-
sition probabilities. For example, if the distribution is
conditioned on X1 and the considered region belongs to
X2, it means we are calculating pX2|X1

.
Finally, from known transition probabilities, the capacity of

the channel can be obtained as [30]

maximize
P

∑
i,j

Pipij log

 pij∑
k

Pkpkj

 (8)

where P = [P1 P2 · · · PM ] are the probabilities that need to
be maximized and M is the number of codewords in the input
set. In other words, these are the occurrence probabilities of
each instruction that maximizes leakage through the system.

IV. COVERT/SIDE CHANNEL CAPACITY EVALUATION

In the previous section, we have introduced a method to
compute side/covert channel capacity from noisy measure-
ments of ESE. Here we note that the algorithm proposed in
Section III is general and can be applied to any computational
device with any set of instructions. In this section, we give
one example how to calculate the leakage capacity in (8).

To be able to calculate the leakage capacity, we first
calculate the transition probabilities by following the proce-
dure introduced in Section III. The transition probabilities
are given in Figure 5. Then, by solving the optimization

problem given in (8), the probability vector is found as P =
[0 0.212 0.3 0.244 0.244] and corresponding capacity as
1.405 Bits/Symbol.

STM LDM LDL1 LDL2 STL2
STM 0.5 0.14 0.312 0.045 0.003
LDM 0.5 0.195 0.296 0.009 0
LDL1 0 0.016 0.984 0 0
LDL2 0 0 0 0.844 0.156
STL2 0 0 0 0.156 0.844

Fig. 5. Transition probabilities based on the measurement given in Fig. 4

Here we make some observations about the result:
* The probability of STM is set to zero because it is very

close to LDM in terms of the Euclidean distance in
ESE domain and the noise power for STM execution is
high. These properties increase the uncertainty and error
probability of estimating STM.

* In Fig. 5, the highest value of diagonal elements belongs
to LDL1 because the noise power is smaller and the
distance of LDL1 to other instructions is large which de-
creases the error probability of its prediction. Therefore,
to increase the overall capacity, the optimization problem
puts more weight on it.

* Although the entropy of LDM is high, its occurrence
probability is not zero since the probability of STM is
set to zero which increases the reliability of LDM.

Since a modern processor executes several billion instruc-
tions per second, the computed EM side/covert channel ca-
pacity of 1.405 bits per instruction implies that the attacker
might obtain several gigabytes of information per second.
Although this is an extremely high information leakage rate,
the rate actually achieved by practically demonstrated side
channel attacks on cryptographic implementations is much
lower. This apparent discrepancy is primarily caused by
different assumptions about how the program is designed
and different definitions of what constitutes information. Our
capacity derivations are for the worst-case scenario where the
program is specifically designed to leak information, whereas
cryptographic implementations are designed to have significant
resilience to side channel attacks. Furthermore, cryptographic
attacks only consider the rate of leakage for encryption keys,
whereas our capacity derivations account for any information
about program execution.

In terms of insight that we can offer to programmers and
hardware designers, our results indicate that most of the
potential information leakage is a result of using a very small
number of instructions that are much easier to correctly distin-
guish. For software designers, this means that a program’s use
of these instructions should not be dependent on sensitive data
values. For hardware designers, this means that reduction of
a hardware design’s overall vulnerability to EM side channel
attacks largely depends on addressing the EM side channel
signals produced by this very small subset of the processor’s
overall instruction set. Our method can be implemented for
defensive efforts on both covert and side channels, but in
different ways. For a covert channel, our method provides the
leakage capacity based on instruction frequencies. Therefore,



to avoid crafting abilities of covetous developers to maximize
the leakage, after obtaining the occurrence probabilities of
instructions in a code, potential leakage can be estimated and
protections can be implemented based on sensitivity of the
data. On the other hand, for side channels, derived capacity
provides insights about potentially vulnerable parts of a pro-
gram in terms of instruction execution. With that knowledge,
programmers can change instruction mix of a program by
preserving its operation to reduce information leakage. For ex-
ample, reducing the use of high-ESE instructions especially in
the part of the program where sensitive information executed
can be one of presumed countermeasures.

V. CONCLUSIONS

In this paper, we have derived a mathematical relationship
between electromagnetic side-channel energy (ESE) of indi-
vidual instructions and measured side-channel signal power,
assuming that all instructions have equal execution time. Then,
we used this measure to estimate the transition probabilities
needed for calculating capacity. Furthermore, we have consid-
ered each instruction as a codeword and have related our model
to Shannon’s noisy channel capacity. Finally, we have provided
practical examples to demonstrate the severity of covert/side
channel due to EM emanations.

APPENDIX I
THE RELATIONSHIP BETWEEN ESE AND SPECTRAL

POWER OF A MICROBENCHMARK

As discussed in Section II, we need to quantify the dif-
ference in energy available to an attacker between two time-
domain signals s1 (X1, t) and s2 (X2, t), which is referred to
as ESE. Throughout the derivation, we follow the assumptions
provided in Section II.

Under the assumption that the system is perfectly iso-
lated, we can consider signals generated by the ESE bench-
marks as a mixture of two periodic signals with period
N . For n = 0, ..., N − 1, the first signal is s1 [X1, n] =
[o0, o1, ..., oN−2, x

v
1]. Note that s1[X1, n+N ] = s1[X1, n] be-

cause s1[X1, n] is periodic. The second signal is s2[X2, n] =
[o0, o1, ..., oN−2, x

v
2]. We denote the single sampled voltage

at the time point where instruction X1 is active as xv1 , and
the sampled voltage at the time point where instruction X2

is active as xv2 . Similarly on represents the other instructions
in the benchmark necessary to make the benchmark practical
(e.g. to initialize the inner-for-loops).

To relate s1 [X1, n] and s2 [X2, n] to the benchmark behav-
ior, we define w[n] as

w[0 ≤ n < Nninst] = 1 (9)
w[Nninst ≤ n < 2Nninst] = 0, (10)

where w[n], s1 [X1, n], and s2 [X2, n] are periodic with period
2Nninst which allows us to take the discrete Fourier series of
these signals over 2Nninst samples. We refer to S1[X1, k],
S2[X2, k], and W [k] as the discrete Fourier series (DFS) of
s1 [X1, n], s2 [X2, n] and w[n] respectively, defined for 0 ≤
k < 2Nninst.

The signal generated by the execution of the micro-
benchmark can be defined as

v[n] = w[n]s1[X1, n] + (1− w[n])s2[X2, n]. (11)

Observe that V [k] (the DFS of v[n]) is

V [k] =W [k] ∗ S1[X1, k] + (1−W [k]) ∗ S2[X2, k]

= S2[X2, k] +W [k] ∗ (S1[X1, k]− S2[X2, k]),
(12)

where ∗ denotes periodic convolution. If we consider V [1],
the first harmonic of the v[n] sequence is

V [1] = S2[X2, 1] +

2Nninst−1∑
m=0

W [1−m](S1[X1, 1]− S2[X2, 1])

2Nninst

=

N−1∑
l=0

W [1− 2ninstl](S1[X1, 2ninstl]− S2[X2, 2ninstl])

2Nninst
.

(13)
The second equation follows since S1[X1, k] and S2[X2, k]

are non-zero only for k = 2ninstl for l = 0, 1, ..., N − 1 as
show in [31]. Then, V [1] can be expanded as follows

V [1] =
W [1](S1[X1, 0]− S2[X2, 0])

2Nninst

+
W [1− 2ninst](S1[X1, 2ninst]− S2[X2, 2ninst])

2Nninst
+ . . .

(14)
The next few higher order odd harmonics can be similarly

expressed (note that W [k] = 0 for even k). Also, by noting
that W [k] is the kth harmonic coefficient of a square wave,
we can write [31]

|W [k]|
2Nninst

=
sin(πk/2)

2Nninst · sin(
πk

2Nninst
)

⇒ |W [k]|
2Nninst

≈ sin(πk/2)

πk
⇒ |W [1]|

2Nninst
=

1

π
. (15)

where the first approximation follows sin(x)/x→ 1 as x→ 0
(which is a valid assumption since ninst is assumed be large
enough). Moreover, since |W [1]| � |W [1 − ninst]|, we can
ignore higher order terms which leads to

π|V [1]| ≈ |S1[X1, 0]− S2[X2, 0]| . (16)

After simplifying the frequency component related to square
wave, we decompose s1[X1, n] = o[n] + sd1[n] where the
first N samples of o[n] = [o0, o1, ..., oN−2, 0] and the first
N samples of sd1[n] = [0, ..., 0, xv1]. We can decompose
s2[X2, n] similarly. By the linearity of the Fourier transform,
the difference between two instructions can be written as

S1[X1, k]− S2[X2, k] = Sd
1 [X1, k] +O[k]− (Sd

2 [X2, k] +O[k])

= Sd
1 [X1, k]− Sd

2 [X2, k].
(17)

The DFS coefficient Sd1 [X1, 0] is

Sd1 [X1, 0] =

2Nninst−1∑
n=0

sd1[n] = 2ninstx
v
1. (18)



Similarly, Sd2 [X2, 0] = 2ninstx
v
2 . Therefore

S1[X1, 0]− S2[X2, 0] = Sd1 [X1, 0]− Sd2 [X2, 0]

= 2ninst(x
v
1 − xv2).

(19)

Combining (16) and (19), we have

|xv1 − xv2| ≈
π|V [1]|
2ninst

. (20)

To relate time domain and frequency domain ESE calcula-
tions, we need an expression for the power observed with the
spectrum analyzer which is defined as [32]

P (falt) =
2

R

( |V [1]|
2Nninst

)2
, (21)

where 2Nninst is the number of samples in one period (Talt).
We also note that

ninstfalt = 1/(2NTI). (22)

Using (2), (20) and (21), we obtain the relationship between
ESE and P (falt) as follows:

ESE(X1, X2) ≈
TI

R
π2 |V [1]|2

(2ninst)2
=
π2N2TI

2

2

R

|V [1]|2

(2Nninst)2

=
π2N2TI

2
P (falt) =

(π
2

)2P (falt) ·N
falt · ninst

.

(23)

Intuitively, only one in N instructions in the microbenchmark is X1

or X2 instruction, so the recorded power is scaled by N to get the
power we would record if it could be possible to measure execution
of only one instruction at the time. This power is then divided by
the number of X1/X2 instances that occurs per second, yielding the
signal energy produced by a single X1/X2 instance. Overall, this
shows that our model ESE(X1, X2) = TI(x

v
1 − xv2)2/R is closely

approximated by our measured ESE. In other words, our hardware
measurements record P (falt), the power at falt (the fundamental
frequency of v[n]), and we convert to ESE(X1, X2) using the above
equation.
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