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Abstract— It has been shown that digital and/or analog char-
acteristics of electronic devices during executing programs can
create a side-channel which an attacker can exploit to extract
sensitive information such as cryptographic keys. When the
attacker modifies the software application to exfiltrate sensitive
information through a channel, this channel is called a covert
channel. In this paper, we model this covert channel as a
communication channel and derive upper and lower capacity
bounds. Because the covert channels are not designed to transmit
information, they are exposed not only to the errors created
by the transmission, but also by varying the execution time of
computer activities, and/or by insertions from other activities
such as interrupts, stalls, etc. Combining all of these effects, we
propose to model the covert channel as an insertion channel
where the transmitted sequence is a pulse amplitude modulated
signal with random pulse positions. Utilizing this model, we derive
capacity bounds of the covert channel with random insertion and
substitution due to the noise and jitter errors, and propose a
receiver design that can correctly detect the computer-activity-
created signals. To illustrate the severity of leakages, we perform
experiments with high clock speed devices at some distance.
Further, the theoretical derivations are compared to empirical
results, and show good agreement.

Index Terms— Covert/Side Channels Wireless Communica-
tions, Electromagnetic Information Leakage, Information Secu-
rity.

I. INTRODUCTION

Electronic devices may leak information through uninten-
tional side-channels which are the by-products of computing.
These side-channels can be created by exploiting the existing
shared resources inside a computer (e.g., cache, DRAM,
TLBs, etc.) and often called micro-architectural/digital side-
channels, or alternatively, can be caused by the physical
implementation of the system (e.g., electromagnetic, power,
sound, temperature, etc.), which are known as physical/analog
side-channels. Exploiting these side-channels, attackers can
design spy software to transmit sensitive data to the outside
world. This type of communication is referred to as a covert
channel [1] because legitimate software instructions or other
activities in a computer system are used to wirelessly transmit
secret messages.

This work has been supported, in part, by NSF grant 1563991 and DARPA
LADS contract FA8650-16-C-7620. The views and findings in this paper are
those of the authors and do not necessarily reflect the views of NSF and
DARPA.
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Covert channels can be used to communicate sensitive
data between two processes inside a processor - typically a
privileged process that has access to secret data but no/limited
access to the outside world and a non-privileged process with
no access to the data but connected to the outside world,
or alternatively, they can be used to “exfiltrate” data from
an air-gapped computer which is physically and logically
separated from public networks [2], [3], [4]. In both cases,
the secret data can be secretly transferred to the outside
world through a wireless channel which, in turn, breaks the
existing assumptions about the security of sensitive data inside
a system.

Covert channels are considered as a serious security
threat [5] since they can circumvent and break existing defense
mechanisms (e.g., memory isolation, partitioning, etc.) for
protecting secrets inside a computer. Fortunately, in most
side-channel attacks, e.g., power analysis [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], temperature analysis [16],
[17], caches-based [18], [19], [20], etc., the “listener” still
requires some degree of direct access to the system (to attach
probes, run a “receiver” process that measures cache activity,
etc.), with some (often significant) risk of detection. However,
covert channel attacks based on the system’s electromagnetic
(EM) emanations only require physical proximity, allowing
sufficiently motivated attackers to carry out numerous at-
tacks wirelessly and with little risk of detection [21], [22],
[23], [24], [25], [26]. Previous work [2], [25] confirms that
modulated EM emanations from different devices such as
laptops, FPGAs, etc. can be created by executing seemingly
innocuous code, and that thousands of bits per second can
be transmitted through an EM covert channel. For example,
imagine a company which stores sensitive data (e.g., design
IPs, client data, etc.), on a server that is well-protected, both
physically (e.g., by using guards, locks, etc.) and electronically
(e.g., by using intrusion detection, firewall, etc.). However,
exploiting covert channels, a rogue employee and/or a mal-
ware/worm can infiltrate the server and inject a trojan (i.e.,
a piece of software that can find sensitive information inside
the computer, e.g., list of clients), and then “transmits” this
data from the server through a side-channel (e.g., EM), hence
establishing a covert channel to exfiltrate the data. Leveraging
an EM-based covert channel, the attacker can then receive this
transmitted information several meters away (e.g., up to 80m
as we will show in this paper) using an antenna and a receiver
setup, while having no detectable footprint.

The detection probability of covert channels increases as
the communication time increases. Therefore, higher bit-rates
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can cause higher information leakages without raising any
suspicion. Hence, the severity of any covert channel can be
measured in terms of how fast it can transmit information.
In other words, the transmission rate indicates how much
information can be leaked in a limited amount of time.
Consequently, finding lower and upper bounds for leakage in
a given covert channel is a necessary step in securing systems.

Millen was the first to establish a connection between
Shannon’s information theory and information flow models
in computer systems [27] and calculated the capacity of
such a covert channel. However, the proposed model assumes
a synchronous channel which is not a realistic assumption
for wireless communication created via covert channels in
computers. Typically, wireless communication is a carefully
designed process that encompasses the coordinated design
of transmitter and receiver and usually, the transmitted and
received signals are well-synchronized. In contrast, covert
channels lack these characteristics. Moreover, contrary to
most communication systems, which are designed to avoid
symbol loss and/or insertion with little or no overhead, covert
channels are not designed to transfer information at all and
their transmission is often corrupted by insertion, deletion,
and erroneous transfer of bits. While there is a large number
of papers discussing bounds on the capacity of channels cor-
rupted with synchronization errors [28], [29], [30], [31], [32]
and more recently, papers discussing bounds on the capacity
of channels corrupted with synchronization and substitution
errors [33], [34], none of them provide bounds for the capacity
of the wireless covert channel which can be modeled as a cas-
caded insertion-substitution channel that suffers from random
pulse position shifts, and that insertions occur with different
probabilities for zero and one. To the best of our knowledge,
there is no work that connects wireless communication created
by computer activity with modulation/demodulation theory,
nor there are capacity bounds for such a channel.

In this paper, to accurately model EM-based covert channels
on electronic devices, we first study a covert wireless com-
munication model for EM emanations created by a computer
activity and provide a background on how this channel can
be created and how information can be sent and received. We
then mathematically model this system and introduce leakage
limits which utilize capacity bounds proposed in [34].

Similar to traditional wireless communications, some errors
in the covert channel occur due to variations in the propagation
environment. However, in addition to channel errors, the
software activity “transmitter” lacks precise synchronization,
causing jitter that reduces the signal’s effective bandwidth
and increases the noise level. Also, the “transmitter” gets
interrupted with other (system) activities, and the transmitted
signal may go through a channel obstructed by metal, plastic,
etc. To capture all effects of the observed behavior, we have
modeled the transmitted sequence as a pulse amplitude mod-
ulated (PAM) signal with randomly varying pulse positions.
From the model, we have derived the power spectral density
and the bit error rate (BER) of the transmitted signal with
only substitution errors. Finally, we derive capacity bounds of
the covert channel with random insertions and substitutions
due to noise and jitter errors. Both the model and capacity

limits are very useful tools for modeling and characterizing
the properties of the covert channels.

The organization of the paper is as follows: Section II
describes software-activity-created signals and the modulation
mechanisms, Section III describes the transmission model for
a covert channel caused by EM emanations of the processor,
Section IV explains reception model and BER for two case
studies, Section V derives lower and upper bounds of the
covert channel capacity, Section VI presents the experimental
results to validate the proposed framework, and Section VII
concludes this paper.

II. WIRELESS TRANSMISSION VIA COVERT CHANNELS

In this section, we first describe how carrier signals can
be created by software activities and then, describe a method
to generate modulated signals. To create a carrier, we use
repetitive variations in a software activity as described in
[25], [35], [36]. We choose T , the period (duration) of each
repetition, two types of activities (A and B), and write a small
software code (i.e., a microbenchmark) shown in Fig. 1 that in
each period does activity A in the first half and B in the second
half. The intuition behind this is that if activity A and activity
B result in non-identical EM fields around the processor (or
the system), repetition of this A-then-B pattern will create
oscillations (with period T ) in this EM field, i.e., it will result
in a “carrier” RF signal at frequency 1/T . The period T will be
selected to correspond to a specific frequency, e.g., to produce
a radio signal at 1 MHz, we should set T = 1µs. This carrier-
generation approach is illustrated in Fig. 2.

1 while(1){
2 // Do some instances of activity A
3 for(i=0;i<n_inst;i++){
4 ptr1=(ptr1&˜mask1);
5 // Activity A, e.g. a load
6 value=*ptr1;
7 }
8 // Do some instances of activity B
9 for(i=0;i<n_inst;i++){

10 ptr2=(ptr2&˜mask2);
11 // Activity B, e.g. a store
12 *ptr2=value;
13 }
14 }

Fig. 1. The A/B alternation pseudo-code [36].

Next, the symbols are amplitude modulated by inserting
intervals during which only activity B is performed in both
half-periods which means any carrier signal produced by the
differences between A and B should be absent when only B
is used, resulting in the simplest form of AM modulation (on-
off keying). This approach is illustrated in Fig. 3. Note that
other modulations (e.g., frequency modulation or even some
non-standard modulation) can just as easily be used to create
a truly covert transmission. Also note that the assumption here
is that the code for generating this software modulation and
creating a covert channel is already injected to the system
through advanced-persistent threat scenarios [37], or manually
entered/created on the target system by a trusted insider (e.g.,
a rogue employee). Moreover, the transmission code itself is
not responsible to find the sensitive data, but it is only a mean
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of communication for sending the sensitive data from trusted
inside to the outside world. The sensitive information (to this
transmitter code) is supplied by an injected/created malware
in the system (e.g., a worm that infiltrated to the system and
found some sensitive documents in the system). Note that both
of these assumptions are realistic and commonly used in the
existing literature.
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Fig. 2. Illustration of how microbenchmark induces emanations at a specific
radio frequency by alternating half-periods of A and B activity.

Even an idle computer system produces RF signals that,
after AM demodulation, result in clicking, whining, and other
sounds (this can be confirmed by placing an AM radio receiver
close to a computer). To confirm that the received communica-
tion sequence is indeed the transmitted message, we performed
two experiments. First, we modulated our transmitted signal
with the A5 note (880 Hz), and turned this tone on/off
to transmit Morse code for “All your data belong to us”
[25]. Second, we placed our microbenchmark code around
the keyboard driver, which allowed us to transmit keystrokes
wirelessly [38]. In both cases, we were able to correctly receive
and demodulate transmitted signals.

However, we observed that the timing of the instructions
was not perfectly synchronized. This issue confirmed that the
baseband pulses generated with on-off keying do not have
equal timing, and the created carrier is spread over several
kilohertz in contrast to traditional communications where the
carrier is well concentrated around a single frequency. This
lack of synchronization in the transmitter causes significant
jitter and has to be carefully modeled, as described in the
following sections.

III. TRANSMISSION MODEL FOR
SOFTWARE-ACTIVITY-CREATED SIGNALS

In this section, we propose a model for covert channel com-
munication systems. Before introducing the proposed model,
we briefly review the baseband PAM signal and corresponding
notations used in the rest of the paper.

The baseband PAM signal with a period of T can be written
as [39]

xp(t) =
∑
k

xkδ(t− kT ) ∗ p(t), (1)

where δ(•) is Dirac delta function, ∗ is the convolution
operator, xk = (xk, xk−1, xk−2, . . .) is the sequence of data
symbols that are chosen from a finite alphabet, and p(t) is a
shaping pulse. The power spectral density (PSD) of xp(t) can
be written as [39]

Sxp(f) =
|P (f)|2
T Sx(f), (2)
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Fig. 3. Illustration of how microbenchmark modulates the signal into the
carrier using on-off keying (bottom).

where P (f) is the Fourier transform of the shaping pulse,

Sx(f) =

∞∑
k=−∞

Rx[k]e−j2πfkT (3)

is PSD of the stationary sequence xk, and Rx[k] is the
autocorrelation function of sequence xk. Furthermore, if an
impulse function is used as the shaping pulse, the power
spectral density can be simply written as Sxp(f) = Sx(f)/T . 1
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Fig. 4. Illustration of two timing distributions of symbols for an EM covert
channel, one when memory activity is used and one with on-chip instructions
is used.

The baseband signal shown in (1) assumes perfect symbol
timing. However, the transmitted signals created by computer
software activities are exposed to synchronization problems
due to variations in symbol timing. As an example, Fig. 4
illustrates how the mean and the variance of the symbol
timing vary with software activities when a covert channel
is created based on emanated EM signals [25]. While the on-
chip activities have a more concentrated distribution with a
smaller variation, off-chip activities such as memory create
more variations in symbol timing.

To deal with the pulse width variations and establish a
connection using conventional communication theories, we
assume the pulse width is fixed, but the center of the pulse
changes due to the non-synchronous nature of the channel.
Therefore, we propose to model the baseband signal as a
pulse amplitude modulated (PAM) signal with a random pulse
position. Then, the baseband received signal can be written as

yp(t) =
∑
k

xkp(t− kT −Tk), (4)

where Tk is a random shift associated with a particular pulse
for the transmitted symbol, xk, whose probability density
function (pdf) is denoted by fTk

(tk). As illustrated in Fig.
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3, the pulses are assumed to have a 50% duty cycle and the
neighboring pulses do not overlap. Here, we need to note
that although symbol timing varies as given in Fig. 4, our
model contains a pulse function whose width is fixed and
whose position is randomized. Also, the position of the pulse
is chosen as the mid-point of the actual pulse width. This can
be explained as follows: in traditional PAM modulation, pulse
duty cycles are assumed to be fixed and do not vary. However,
in a covert communication system, duty cycles generated by
software activities can vary from one execution to another.
Hence, to capture the variation in symbol timing in software
activities and link the covert communication with the existing
approaches, the transmitted signal is modeled as a PAM signal
with a fixed pulse duty cycle.
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Fig. 5. (a) PAM with sequence xk and (b) distribution of pulses perturbed
randomly in time and modulated in amplitude when the shaping pulse is a
square wave.

To ensure that neighboring pulses do not overlap, the
support set of fTk

(tk) is set to {tk ∈ [−T /4, T /4)}.
We also assume probability density functions,
{fTk

(•) |∀k ∈ {−∞,∞}}, are identical and independent
distributions (i.i.d.). As an example, Fig. 5 illustrates a typical
PAM signal with 50% duty cycle and its randomly shifted
version. We can observe that the time difference between
neighboring pulses can increase or decrease, which mimics
the variations in software activities and reflects the lack of
synchronization.

To simplify (4) further, we will assume that p(t) is an
impulse function, δ(t), and the modulated baseband signal can
be written as

y(t) =
∑
k

xkδ(t− kT −Tk). (5)

To evaluate the impact which the jitter introduces to the
system due to the variation in symbol timing, we need to find
PSD of baseband PAM signal with a random pulse position.
The following theorem provides PSD of the signal with a
random pulse position:

Theorem 1. Let Φ(f) be the Fourier transform of φ(τ) and

φ(τ) =

∫
fT(τ + t)fT(t)dt = fT(τ) ∗ fT(−τ), (6)

where the subscript k is removed to represent the random
position distribution of the kth pulse since all distributions

are assumed to be i.i.d. Then, PSD of the received signal,
y(t), in (5) can be written as

Sy(f) =
1

T Sx(f)Φ(f) +
Rx[0]

T (1− Φ(f)). (7)

Proof. Please see Appendix I.

Furthermore, for an arbitrary pulse shape, PSD of PAM
signal with a random pulse position becomes

Syp(f) =
|P (f)|2
T

(
Sx(f)Φ(f) +Rx[0]

(
1− Φ(f)

))
. (8)

This result shows that PAM with a random pulse position
is equivalent to passing the PAM signal through a filter with
power spectral density Φ(f), and having a jitter noise whose
power is redistributed as a continuous wideband noise. 1
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Fig. 6. Illustration of two distributions of pulse shift for an EM covert
channel, one when memory activity is used and one with on-chip instructions
is used.

The characteristics of the filter and the noise are completely
determined by the probability distribution of the pulse posi-
tions. By fitting the measured samples of symbol duration into
different probability distributions, we have found that the best
fit for the pulse position variations is a Gaussian distribution
with the mean µ and the standard deviation σ. Although fitting
Gaussian distribution for the pulse positions contradicts our
previous assumption that pulses can be only between −T /4
and T /4, we can still approximate the pulse positions with
a Gaussian random distribution by assuming that the tail
probability beyond −T /4 and T /4 is almost zero. Moreover,
for the tractability of the derivations, we will assume that the
means of these Gaussian distributions are equal. Fig. 6 plots
the shift distributions of these pulse positions. We can observe
that the pulse shift distributions are concentrated around zero.
Therefore, (6) can be specified further for the memory and
non-memory activities.

Given that Gaussian distribution has a Fourier transform

F {f(t)} = e−2πjfµe−2π2σ2f2

, (9)

where F {•} takes Fourier transform of its argument and
f(t) is any Gaussian distribution with mean µ and standard
deviation σ, we then combine (9) with (6) and obtain

Φ(f) = e−2π2f2(
√

2σ)2 . (10)
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Finally, inserting (10) into (7), we calculate PSD of PAM
signal with Gaussian distributed pulse positions as

Sy(f) =
1

T Sx(f)e−2π2f2(
√

2σ)2

+
Rx(0)

T

(
1− e−2π2f2(

√
2σ)2

)
= Sxt(f) + Snt(f), (11)

where Sxt(f) denotes the spectrum of the transmitted se-
quence and Snt(f) denotes the noise spectrum due to random
pulse position.

IV. QUANTIFYING THE INFORMATION LEAKAGE OF
COVERT CHANNEL SOFTWARE-ACTIVITY-CREATED

SIGNALS

Traditionally, the performance of a communication system
is evaluated by estimating symbol error rate or BER of the
system. The error probability of pulse amplitude modulated
signal (PAM) can be written as [39]

PPAM = Q

(√
Ps

2Pn

)
, (12)

where Q(·) function denotes the tail probability of the standard
normal distribution, Ps is the averaged transmitted power of
a symbol, and Pn is the averaged noise power.

For the proposed scenario, BER represents the severity of
the covert channel. Quantifying the information leakage in
terms of BER reveals how fast we can transmit the infor-
mation by establishing a reliable communication link using
the computer systems. To estimate BER, we need PSD of the
signal derived in (11). Then, we assume that the transmitted
signal, y(t), defined in (5) has been affected by the channel
noise, and that received signal can be written as

r(t) = y(t) + n(t), (13)

where n(t) denotes the white Gaussian noise with zero mean
and standard deviation, σn. We also assume that the noise and
the transmitted sequence are independent. By observing that a
communication system based on the covert channels described
in Section II typically occurs at low frequencies (∼ 1 MHz)
where the multi-path effect does not play a significant role,
it is reasonable to assume that the received signal is mostly
impacted by noise and that inter-symbol interference (ISI)
has almost negligible effect on the reliability of the covert
communication. Here, we assume that the noise component
contains both additive channel noise and all corruptive signals
due to other activities in the system. Then, utilizing (11), the
power spectral density of the received signal can be written as

Sr(f) = Sxt(f) + Snt(f) +N0/2, (14)

where N0/2 denotes the power spectral density of the additive
white noise.

Obtaining PSD of the transmitted symbols facilitates the
calculation of BER. To utilize (12), we need to know the signal
and noise powers. Since our transmitted signal experiences
jitter due to the variations in the symbol position, we start by
calculating PSD of the jitter noise and the signal.

Corollary. Considering the variation in the symbol position,
PSD of the transmitted sequence for on-off keying (OOK) is
given as

Sy(f) =
Rx[0]

T
(
S̄xt(f) + S̄nt(f)

)
=

Rx[0]

T

((
1

2
+

1

2T
∑
m

δ(f −m/T )

)
Φ(f)︸ ︷︷ ︸

S̄xt(f)

+ (1− Φ(f))︸ ︷︷ ︸
S̄nt(f)

)
, (15)

where S̄xt(f) and S̄nt(f) are the normalized signal and jitter
noise powers.

Proof. Please see Appendix I-A.

Fig. 7 illustrates the behavior of the normalized signal and
noise power when T ≈ 15σ. 1
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Fig. 7. PSD of normalized signal and jitter noise due to random pulse
position when T ≈ 15σ.

Since the noise power due to jitter behaves like a white
noise when Φ(f) ≈ 0, at the receiver front-end, we employ a
low-pass filter whose bandwidth and magnitude are 1/2T and
1, respectively. The total signal power can be obtained as

Pst =
Rx[0]

T ·
∫ 1

2T

− 1
2T

S̄xt(f)df

=
Rx[0]

T ·
(

1

2T +

√
π

4T erf (πσ/T ) /(πσ/T )

)
, (16)

and total noise power due to jitter is equivalent to

Pnt =
Rx[0]

T ·
∫ 1

2T

− 1
2T

S̄nt(f)df

=
Rx[0]

T ·
(

1

T −
√
π

2T erf (πσ/T ) /(πσ/T )

)
, (17)

where erf(•) is the error function.
Having the power for both jitter noise and the received

signal, we can estimate BER by using (12) assuming we have
a channel without synchronization problems. However, this
is not the case for a software-activity-based covert channels
because synchronization can hurt the stealthy nature of these
covert channels. Fortunately, after filtering the received signal
at the receiver side, the jitter power becomes flat and behaves
like an extra power source for the channel noise. Therefore,
the receiver sees the channel noise with power N̂0/2 =
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N0/2 + T Pnt. With that approximation, we can treat our
communication system as a synchronized system with extra
channel noise power. Hence, BER for the system can be
approximated as

BER = Q

(√
Pxt/T
N̂0

)
. (18)

The effect of varying jitter noise on BER is given in Fig. 8
where SNRi is defined as

SNRi = Rx[0]/(N0/2). (19)

As the power of additive channel noise increases, the effect
of the lack of synchronization on the erroneous transfer of bits
becomes negligible. However, while the channel noise power
decreases, the impact of jitter noise can be observed explicitly.
In Section VI, we will demonstrate that assuming the jitter as
an another source for the channel additive noise is a proper
assumption to model the characteristics of BER of a covert
channel. 1
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Fig. 8. BER for the covert wireless communication system with varying
jitter noise power.

Finally, we investigate how the variation in the symbol
position corrupts the transmitted sequence. The signal to jitter
noise power ratio, SNRjitter, at the transmitter side, due to
random pulse positioning, can be written as

SNRjitter =
Pst
Pnt

=
1
2 +

√
π

4 erf (πσ/T ) /(πσ/T )

1−
√
π

2 erf (πσ/T ) /(πσ/T )
. (20)

Fig. 9 depicts how SNRjitter changes with respect to σ/T .
Since we assume 12σ ≤ T , we limit σ/T to be between 0 and
1/12 (due to the assumption that the distribution of the pulse
shift has non-zero probability in the region [−T /4, T /4) and
considering three-sigma rule). As expected, as the variation
in pulse position decreases, the distortion in the transmitted
signal, due to jitter noise, decreases. 1
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Fig. 9. SNRjitter vs. σ/T .

V. CAPACITY OF THE COVERT CHANNEL CREATED BY A
COMPUTER SOFTWARE ACTIVITY

The conventional method to assess the capacity of a com-
munication system over Gaussian channels is to employ
Shannon’s capacity definition [39]. However, in addition to

errors due to the Gaussian channel and pulse position, covert
communication channels are exposed to insertion errors due
to random software activities. We assume covert transmission
occurs continuously, and the insertions are due to processor op-
timization, stalls, cache misses, queues, etc. These activities in
a computer system can stall the covert channel communication
and produce unintended signals. The receiver interprets these
signals as ones or zeros, and these received bits are considered
as the inserted symbols of the covert wireless communication.
To model this covert channel, we assume binary discrete
memoryless channel for the random insertions, as illustrated
in Fig. 10. The channel parameters are (pi0, pi1, pe), where
pi0 denotes the probability that the random inserted symbol
is 0, pi1 denotes the probability that the random inserted
symbol is 1, and pe denotes the probability of substitution
error during transmission due to channel noise and jitter. To be
able to calculate pe, we follow the procedure given in Section
IV, where we assume the jitter behaves like another power
source for the additive channel noise. This model is a modified
version of the channel model used by Davey and MacKay [29],
where we additionally account for the fact that symbols for
zero and one do not have equal probabilities of insertion, and
the channel is noisy and jittery.

Input

jw
Input

1jw

Insert random 0

Insert random 1

Transmit

uncorrupted 
jw

Transmit

corrupted 
jw

0ip

1ip

)1)(1( 10 eii ppp 

eii ppp )1( 10 

Fig. 10. Binary discrete memoryless noisy, jittery, synchronization channel.

With the model and the parameters defined above, the
following theorem provides the upper and lower bounds of
the covert channels which exhibit an OOK structure:

Theorem 2. The covert channel capacity with probabilities
(pi0, pi1, pe) and (pi0 + pi1) < 0.5 is upper bounded by

C ≤ 1−Hb(pe), (21)

and lower bounded by

C ≥ max

(
0,

1−Hb(pe)−Hb(pi0 + pi1)

1− pi0 − pi1

)
, (22)

where Hb(•) is the entropy of a binary source.

Proof. Please see Appendix II.

Fig. 11(a) shows achievable information rates for the covert
channel with various insertion probabilities. Here, we plot the
upper bound derived in (21) and lower bound in (22) for
several different insertion probabilities. We can observe that
unless pi0 = pi1 = pi = 0, the existence of insertions greatly
limits the transmission capabilities, and reliable communica-
tion is not possible without channel coding even when SNR
is high.
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Fig. 11. a) Upper and lower bounds of information rates for deliberate side channel with several probabilities of insertion for a synchronized channel, b)
Comparison of the lower bound of information rates for covert channel with no jitter and AWGN channel with insertions with the lower bound of information
rate derived in [33], c) Upper and lower bounds of information rates of the covert channel with different jitter variances when pi = 0.05.

Moreover, Fig. 11(b) compares the lower bound derived
in (22) with a prior method [33] for several insertion prob-
abilities. We observe that when the system is in the proper
SNR regime for a reliable communication, the proposed lower
bound is tighter than the one given in [33] for the capacity
of a channel with insertion and substitution. We compare our
results with work in [33] because it is the most similar channel
scenario to the covert channels analyzed in this paper and
their lower bound is shown to be tighter than all previously
reported lower bounds for this type of a channel. We need to
note that for Fig. 11(a) and Fig. 11(b), the jitter variance is set
to zero for a fair comparison of the proposed bounds with the
previous lower bound results because they are derived without
considering the channels with jitter. However, assuming no
jitter for a covert channel is not proper. Fig. 11(c) illustrates
the relation between achievable information rates and jitter
variance. Here, we assume the insertion probability is pi =
0.05. We can observe that the achievable information rate
increases with SNR and decreases with jitter variance. While
the existence of jitter limits the transmission capabilities, with
high enough SNR, reliable communication can be achieved.

VI. EXPERIMENTAL VALIDATION OF THE PROPOSED
MODEL

In this section, we first demonstrate the existence of physi-
cal/analog covert channels generated by EM emanations, and
then analyze this covert channel based on the proposed model,
and also justify the assumption that the received signal is a
PAM signal with insertions and substitutions for a variety of
devices, i.e., FPGA, IoTs, laptops.

1) Analysis of the Covert Channel: To create a covert
channel, we ran a microbenchmark (i.e., a spy application
to transmit the sensitive data outside of the device) shown
in Section II (also described in [35], [36]) on an Altera
NIOS-II (soft) processor using a commercial Terassic DE1
SoC board [40]. This board is equipped with an Altera/Intel
Cyclone-II FPGA chip and a variety of I/O protocols such as
VGA, Serial, etc., and represents a popular class of embedded
systems commonly used in the market. The application was
written in standard C language and was compiled using the
publicly available NIOS-II toolchain.

To receive the transmitted EM signals created by the spy
application inside the system, we placed a magnetic probe,
PBS-M [40], about 10 cm above the board so that it covers

(c)

(d)(b)

(a)

Fig. 12. The meausrement setup for devices: a) FPGA, b) FPGA, c)
OLinuXino, d) Laptops with distance.

the processor area as shown in Fig. 12(a). We intentionally
put the probe very close to the board to receive the EM signal
with the highest achievable SNR to avoid the limitations due
to low SNR. In the later sections, we will show how this
covert channel performs under more realistic scenarios where
the receiver is placed several meters away from the device.
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Fig. 13. The received baseband signal with period T = 1µs.

The EM signals were recorded using a spectrum analyzer
(Agilent MXA N9020A). We set the sampling rate to 10 MHz,
and set the spectrum analyzer’s center frequency to 50 MHz
(i.e., the clock frequency of the FPGA chip), and the span to
4 MHz (i.e., 2 MHz for each side-band) since the designed
microbenchmark creates periodic activities (i.e., A/B or A/A
alternations) at 1 MHz so the device can pick up spikes from
this periodic activity and its multiple harmonics.
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The received signal is shown in Fig. 13 when the activity
A and activity B of the microbenchmark are chosen as a load
from main memory and load from an L1 cache, respectively.
We can observe that the received signal has a shape of a PAM
signal whose pulse width fluctuates due to uncertainties in the
execution times of computer-software activities.

TABLE I
COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS IN TERMS

OF BER FOR NIOS PROCESSOR ON THE DE1 FPGA BOARD.

SNR (dB) Experimental BER Theoretical BER

1 6 0.096 0.0829
2 13 0.0013 0.0016
3 14 0.0008 0.0009
4 24 0 0

To compare the theoretical results with the experimental
results, we perform experiments with different activities and
bandwidth. The estimated SNRs and the corresponding ex-
perimental and theoretical results are given in Table I. The
activities and the corresponding bandwidth used for the experi-
ments can be listed as follows: 1) Addition-Multiplication with
4 MHz bandwidth, 2) Addition-Multiplication with 2 MHz
bandwidth, 3) Load from Main Memory-Load from L1 cache
with 4 MHz bandwidth, and 4) Load from Main Memory-
Load from L1 cache with 2 MHz bandwidth. The sampling
frequency for all these experiments is 10 MHz. We need to
note that we only provide these results because we do not
control SNR of the communication, therefore, generation of
a plot with various SNR values is hard and unreliable. These
results illustrate that proposed model is a realistic model for
covert channels and can be used as a simulation tool.

The second example illustrates the presence of jitter and
why our assumption that the jitter power can be added as an
extra power source of white noise to calculate the BER, i.e.,
why assumption in (18) is valid. The following discussion
considers the jitter distributions given in Fig 6. First, we
plot PSD of the information signal and jitter noise. Here, we
study the scenario without memory activity and the baseband
transmitted pulses are sent with period T = 1 µs. The standard
deviation of the jitter noise is calculated as σ = 5.91× 10−8.
The theoretical PSD of the transmitted signal and the jitter
noise are given in Fig. 14(a), and PSD of the filtered signal
at the receiver side is given in Fig. 14(b). We observe that
the jitter noise power dominates the transmitted signal for
higher frequencies. Filtering the received signal removes this
redundancy and helps to retrieve the information signal.

As the final step, to verify BER estimation given in (18)
based on PSD of the transmitted signal and jitter noise, we
design the following experiment: We create an impulse train
with period T and apply jitter noise by altering the location
of pulses based on the normal distribution with variance σ2.
Then, we disturb the signal further by adding white noise,
whose distribution can be given as N (0, N0/2). The received
signal is filtered with an ideal low pass filter on the receiver
side and sampled with frequency 1/T . Finally, the sampled
outputs are thresholded to estimate the transmitted inputs. The
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Fig. 14. PSD of a) the transmitted signal and b) its filtered version at the
receiver side for the symbol without memory activity.

results are shown in Fig. 15. Here, we plot the simulation and
theoretical BER results for the cases with and without memory
activity. The results assert that simulated results agree with
theoretically derived BER and verify the intuition that as the
jitter variance increases, BER also increases. 1
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Experimental BER with memory activity
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Fig. 15. Theoretical and experimental BER for the symbols with and without
memory activity.

Please note that not only PAM, but also frequency shift
keying (FSK) modulation scheme can be generated with
the microbenchmark. However, the detection of FSK signals
can be harder since the variations in execution time of the
microbenchmark will cause scrambling of different frequen-
cies and increase in BER. Therefore, more sophisticated
receiver designs and more complex mathematical derivations
are needed to achieve the same performance levels with the
PAM case.

2) Demonstration of the Analog Covert Channel on More
Complex Systems: In this section, we provide examples to
show the practicality of the EM covert channel on more
complex devices and more realistic distances.

We first study the impact of distance (i.e., the position of
the probe/antenna and the receiving signal’s SNR) on the bit-
error-rate (BER). To measure the EM signals, we used a panel
antenna [41]. We set the spectrum analyzer’s center frequency
to 2.3 GHz (i.e., the 46th harmonic of the FPGA’s clock
frequency, 50 MHz). This frequency is chosen to maximize
the antenna’s gain. We placed the board 50 cm and 1 m away
from the board. The setup is shown in Fig. 12(b).

Fig. 16 shows the signal received from these distances.
Please note that received signals preserve the square-wave-
structure like the signals in Fig. 13. These experiments confirm
that the proposed EM covert channel is not sensitive to the
position of the probe, and can be exploited from longer
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Fig. 16. The received signal at distance of a) 50 cm, b) 1 m.

To further study the possible range of an EM covert-channel
attack and investigate its possibility on other (more complex)
types of devices, we perform another experiment, this time
using an embedded single-board computer called OlinuX-
ino [42]. This board is equipped with a modern Cortex A8
ARM core with two levels of caches, 4 MB main memory, and
runs a Debian Linux operating system. OlinuXino represents
a popular class of single-board computers widely used in the
market to control a variety of critical and commercial tasks in
factory lines, hospitals, etc.
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Fig. 17. a) BER vs. distance, b) The received signal power vs. distance
where the noise level of the instrument sensitivity level is about -130dBm.

To receive the EM signals, we leveraged two different
antennas: a commercially available horn antenna [43], and a
high-gain custom-made disk-array based antenna [44]. Similar
to the FPGA, we use our microbenchmark (written in C
and compiled with Gnu-gcc tool) to establish the covert
channel. We use the same spectrum analyzer for recording
the signals with a center frequency set to 1 GHz (i.e., the
clock frequency of the ARM core), and span of 5 MHz, while
setting the microbenchmark to generate alternations at 2 MHz.
Please note that Fig. 12(c) shows our measurement setup and
demonstrates that communication is conducted in a realistic
indoor environment.

The results for BER and the signal power are given in Fig.
17. In Fig. 17(a), we plot the BER of measurements when the
distance is more than 45 m. For closer distances, the success
rate of the measurements is almost 100% (i.e., BER < 10−3).
As can be seen from this figure, the success rate (BER) linearly
decreases as the distance increases (as shown by the fitted
line). From the results we note that covert channel can achieve
more than 99.9% of success rate if the distance is less than 45

m and the signal level is at least 8 dB above the noise level
of the measuring device (i.e., -130 dBm in this experiment).

Finally, to show that this EM covert channel can be created
for complex computing systems such as laptops, we performed
experiments on four different laptops with different processors,
namely: AMD Turion X2 Ultra, Intel Core Duo T2600, Intel
I7 2620M, and Intel Core 2 Extreme X9650.

In all these measurements, we use the same experimental
setup given in [45] which utilizes a magnetic loop antenna
with a radius of 30 cm [46] as shown in Fig. 12(d). The
center frequency for the measurements is set to 1.024 MHz.
The results are shown in Table II. In this table, we provide the

TABLE II
EXPERIMENTAL RESULTS FOR COMPUTER SYSTEMS WITH DISTANCE.

Platform CPU Distance BER

AMD Turion 2.1 GHz 2.5 m 10−3

Intel Core DUO 2.16 GHz 0.81 m 10−3

Intel i7 2.7 GHz 1.75 m 10−3

Intel Core 2 3 GHz 1.17 m 10−3

maximum distances that we achieve a reliable communication
(i.e., BER ≈ 10−3) when the transmission rate for the covert
channel is 800 bits per second (bps). We observed that the
signal power leaked from different platforms shows variation
(depending on the packaging, board, etc.), and that affects the
range of the covert channel. Compared to the state-of-the-
art [3], [4], [47], our studied covert channel provides up to
5x higher data-rate and 5x lower bit-error-rate.

VII. CONCLUSIONS

A covert channel generated by program activities in a com-
puter system is described and modeled. These covert channels
experience jitter errors in addition to channel errors due to
noise. This is a result of the computer activity “transmitter”
which lacks precise synchronization. Also, the “transmitter”
gets interrupted by other (system) activities, and the trans-
mitted signal goes through a channel obstructed by metal,
plastic, etc. To capture all these effects, we have modeled
the transmitted sequence as a pulse amplitude modulated
(PAM) signal with random varying pulse position. From the
model, we have derived the power spectral density and the
bit error rate of the transmitted signal with insertion and
substitution errors. We have also derived capacity bounds of
these covert channels with insertion and substitution errors due
to interrupts, noise, and jitter. The theoretical derivations are
compared to empirical results and show good agreements.

APPENDIX I
PSD OF PAM SIGNAL WITH RANDOM PULSE POSITION

The PAM signal with random pulse position y(t) is given
by y(t) =

∑
k xkδ(t − kT − Tk). y(t) is an impulse train

whose amplitude is modulated by the sequence xk and the
impulse positions are randomly shifted by Tk. Furthermore,
the autocorrelation function and the power spectral density of
xk are denoted as Rx[k] and Sx(f) =

∑
k Rx[k]e−j2πfkT ,
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respectively. Here, we note that the signals xp(t) and y(t)
in (1) and (5) are cyclostationary random processes if the
amplitude modulating sequence xk and the random pulse
position variation Tk are stationary [48]. For a cyclostationary
random processes of period T , the average autocorrelation
function between 0 and T can be computed as [49]

Ry(τ) =
1

T

∫ T
0

Ry(t, τ)dt, (23)

where Ry(t, τ) = E

[
y(t), y(t − τ)

]
and E[·] denotes the

expectation. Here, Ry(t, τ) can be written as

E

[∑
i

∑
j

xixjδ(t− iT −Ti)δ(t− τ − jT −Tj)

]
. (24)

It can be shown that Ry(t, τ) is also periodic in time with a
period T . Therefore, y(t) is a cyclostationary random process.
Using (23), we can rewrite the correlation function Ry(τ) as

=

T∫
0

E

[∑
i,j

xixjδ(t− iT −Ti)δ(t− τ − jT −Tj)

]
dt

T

=

∑
i,j

T∫
0

E

[
xixjδ(t− iT −Ti)δ(t− τ − jT −Tj)

]
dt

T

=

∑
i,j

T∫
0

E
[
xixj

]
E

[
δ(t− iT −Ti)δ(t− τ − jT −Tj)

]
dt

T (25)

where (25) follows the assumption that xk and Tk are inde-
pendent. Let λ = t− iT . So, (25) can be written as

∑
i,j

−(i−1)T∫
−iT

E
[
xixj

]
E

[
δ(λ−Ti)δ(λ− τ − (j − i)T −Tj)

]
dλ

T .

Letting j − i = m, we can rewrite the correlation function
as follows:

Ry(τ) =
1

T
∑
m

∑
i

−(i−1)T∫
−iT

(
E
[
xixi+m

]
×

E

[
δ(λ−Ti)δ(λ− τ −mT −Tm+i)

])
dλ.

(26)

Since xk is a stationary sequence, we can deduce E[xixj ] =
Rx[i− j]. Exploiting that {Tk, ∀k ∈ (−∞,∞)} are statisti-
cally identical and independent of each other, we can rewrite
(26) as

1

T
∑
m,i

−(i−1)T∫
−iT

Rx[m]E

[
δ(λ−T0)δ(λ− τ −mT −Tm)

]
dλ

=

∑
mRx[m]

∞∫
−∞

E

[
δ(λ−T0)δ(λ− τ −mT −Tm)

]
dλ

T .

Taking the integration inside the expectation operator,
Ry(τ) simplifies to

1

T
∑
m

Rx[m]E

[ ∫ ∞
−∞

δ(λ−T0)δ(λ− τ −mT −Tm)dλ

]
=

1

T
∑
m

Rx[m]E

[
δ(−τ −mT + T0 −Tm)

]
. (27)

Considering that the pulse positions Tk are independent
and identically distributed (i.i.d.), the autocorrelation function
Ry(τ) can be calculated as

E

[
Rx[0]δ(τ)

]
+
∑
m 6=0

Rx(m)E

[
δ(−τ −mT + T0 −Tm)

]
T

=

Rx(0)δ(τ) +
∑
m6=0

Rx(m)E
[
δ(−τ −mT + T0 −Tm)

]
T . (28)

To proceed further, let us introduce zm(τ) = E
[
δ(−τ−mT +

T0 −Tm)
]
. Therefore,

zm(τ) =

T /4+µ∫∫
−T /4+µ

δ(−τ −mT + t0 − tm)fT0
(t0)fTm

(tm)dt0dtm

=

∫ T /4+µ

−T /4+µ

fT0(τ +mT + tm)fTm(tm)dtm

(a)
=

∫ T /4+µ

−T /4+µ

fT(τ +mT + tm)fT(tm)dtm

(b)≈
∫ ∞
−∞

fT(τ +mT + tm)fT(tm)dtm

= fT(−τ +mT ) ∗ fT(τ)

= δ(τ −mT ) ∗ fT(−τ) ∗ fT(τ)

= δ(τ −mT ) ∗ φ(τ) (29)

where (a) follows all distributions {Ti|∀i ∈ {−∞,∞}} are
i.i.d., (b) is due to support set assumption of distribution
functions and ∗ denotes convolution. Plugging (29) into (28),
we can write Ry(τ) as

Rx(0)δ(τ) +
∑
m=0

Rx(m) (δ(τ −mT ) ∗ φ(τ))−Rx(0)φ(τ)

T
=(∑

m
Rx(m)δ(τ −mT )

)
∗ φ(τ)+Rx(0)

(
δ(τ)− φ(τ)

)
T . (30)

The PSD Sy(f) of the signal yp(t) is obtained by taking
the Fourier transform of the above result. Using these results,
we can write the spectrum of PAM signal with random pulse
position as

Sy(f) =
1

T Sx(f)Φ(f) +
Rx(0)

T (1− Φ(f)), (31)

where Φ(f) is the Fourier transform of φ(τ).
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A. PSD of “on-off” Keying (OOK) With Random Pulse Posi-
tion

The power spectrum of the PAM with random pulse position
has already been derived in (11). In this section, we specify the
equation in (11) for OOK modulation case. As the first step,
we need to calculate Sx(f) to investigate the effect of random
pulse position on the spectral power of the signal. We assume
the amplitude of a symbol is A when the symbol is “on” and
0 otherwise. Therefore, autocorrelation of these symbols can
be written as

Rx[m] =

{
A2/2 if m = 0,

A2/4 otherwise.
=

{
Rx[0] if m = 0,

Rx[0]/2 otherwise.

If we convert this discrete signal into continuous signal with
period T , we have

Rx(τ) =
∑
m

Rx[m]δ(τ −mT ). (32)

To obtain the power spectral density of the signal, Fourier
transform of Rx(τ) can be calculated as follows:

Sx(f) =

∞∫
−∞

∑
m

Rx[m]δ(τ −mT )e−j2πfτdτ

=
∑
m

Rx[m]e−j2πfmT

=
Rx[0]

2
+
Rx[0]

2

∑
m

e−j2πfmT

=
Rx[0]

2

(
1 +

1

T
∑
m

δ(f −m/T )

)
(33)

If we insert (33) into (5), the power spectrum Sy(f) can be
written as

Rx[0]

2T

1 +

∑
m

δ(f − n/T )

T

Φ(f) +
Rx(0)

T (1− Φ(f))

=
Rx[0]

T


1

2
+

∑
m

δ(f −m/T )

2T

Φ(f)

︸ ︷︷ ︸
S̄xt(f)

+ (1− Φ(f)︸ ︷︷ ︸
S̄nt(f)

 . (34)

Here, we need to note that since we assume that the random
shift position is in the interval

(
−T4 , T4

]
that has a Gaussian

distribution, we consider T & 12σ to ensure our interval
assumption holds with very high probability.

APPENDIX II
COVERT-CHANNEL CAPACITY DERIVATIONS

In this section, we provide the derivations for channel
capacity bounds of the covert channel communications. In
[50], it is shown that the capacity of a discrete memoryless
synchronization channel exists and is given by

C = sup
Ξ

lim
n→∞

1

n
· I(Wn;Y N̄n), (35)

where the supremum is taken over all stationary Markov chains
Ξ models of the input source, n is the number of input bits,
Wn and Y N̄n represent the input and observed sequence re-
spectively. Here, N̄ is the average number of received symbols
per transmitted symbol. The number of insertions between
consecutive input symbols are geometrically distributed and
the average number of insertions per input symbol is

(pi0 + pi1)(1− pi0 − pi1) + 2(pi0 + pi1)2(1− pi0 − pi1)

+3(pi0 + pi1)3(1− pi0 − pi1) + . . .

=
pi0 + pi1

1− pi0 − pi1
. (36)

Hence, the average number of output symbols per input
symbols is

N̄ =
1

1− pi0 − pi1
. (37)

In [34], [33], it is shown that channels with insertions and
substitutions can be decomposed into a cascade of two chan-
nels, channel with insertions and channel with substitutions as
shown in Fig. 18. Since both inputs and outputs of the covert
channel are assumed to be equiprobable, it follows that

H(Wn) = n, and H
(
Xn/(1−pi)

)
=

n

1− pi
, (38)

where n is the number of input bits, pi = pi0 + pi1, and
H(·) denotes the entropy. From (35), it follows that we need
to calculate mutual information I

(
Wn, Y

n
1−pi

)
between the

input sequence and output of the second cascaded channel.
This mutual information can be written as

I
(
Wn, Y

n
1−pi

)
= I

(
X

n
1−pi , Y

n
1−pi

)
−I
(
X

n
1−pi , Y

n
1−pi |Wn

)
.(39)

Random 

Insertion Channel
Noisy and Jittery 

Channel

nW 101 ii pp

n

X
 101 ii pp

n

Y


Fig. 18. Cascaded channels equivalent to the binary discrete memoryless
noisy, jittery, synchronization channel with n input symbols.

To find a lower bound for I
(
Wn, Y

n
1−pi

)
, we are required

to obtain an upper bound for I
(
X

n
1−pi , Y

n
1−pi |Wn

)
. There-

fore,

0 ≤ I
(
X

n
1−pi , Y

n
1−pi |Wn,

)
= H

(
X

n
1−pi |Wn

)
−H

(
X

n
1−pi |Wn, Y

n
1−pi

)
= H

(
X

n
1−pi

)
− I

(
Wn, X

n
1−pi

)
−H

(
X

n
1−pi |Wn, Y

n
1−pi

)
≤ H

(
X

n
1−pi

)
− I

(
Wn, X

n
1−pi

)
. (40)
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Combining (35), (39) and (40), C can be written as

sup
Ξ

lim
n→∞

1

n
· I(Wn;Y N̄n)

= sup
Ξ

lim
n→∞

1

n

(
I
(
X

n
1−pi , Y

n
1−pi

)
−I
(
X

n
1−pi , Y

n
1−pi |Wn

))

≥ sup
Ξ

lim
n→∞

1

n

(
I
(
X

n
1−pi , Y

n
1−pi

)
−H

(
X

n
1−pi

)
+I
(
Wn, X

n
1−pi

))
(41)

= sup
Ξ

lim
n→∞

1

n

(
n
I (X,Y )

1− pi
− n

1− pi
+ I

(
X

n
1−pi ,Wn

))
=
I (X,Y )

1− pi
− 1

1− pi
+ sup

Ξ
lim
n→∞

1

n

(
I
(
X

n
1−pi ,Wn

))
=
I (X,Y )

1− pi
− 1

1− pi
+ Ci(pi) (42)

where Ci(pi) is the channel capacity of insertion channel with
insertion probability pi and (41) follows the assumption that
the noisy substitution channel is a discrete memoryless channel
(DMC). To obtain a lower bound for the insertion channel, we
exploit the relation between deletion and insertion channels,
and previous results for the capacity lower bound of deletion
channels. In [34], the relation between deletion and insertion
channels is given as

Cd(pi) = (1− pi)Ci(pi) (43)

where Cd(pi) is the information rate of a deletion channel
with equiprobable iid inputs whose deletion probability equals
to insertion probability of the insertion channel. Morover, in
[51], the capacity lower bound for the deletion channel is given
as

Cd(pi) ≥ 1−Hb(pi) (44)

where Cd(pi) represents the actual channel capacity of the
deletion channel with deletion probability pi and Hb(•) de-
notes the binary entropy.

The equation given in (44) is valid for any deletion channel.
Therefore,

1−Hb(pi) ≤ Cd(pi) = (1− pi)Ci(pi)

⇒ Ci(pi) ≥
1−Hb(pi)

1− pi
. (45)

If we combine (42) and (45), we have

C ≥ I (X,Y )

1− pi
− 1

1− pi
+ Ci(pi)

≥ I (X,Y )

1− pi
− 1

1− pi
+

1−Hb(pi)

1− pi

=
1−Hb(pi)−Hb(pe)

1− pi
(46)

where the last equation follows the assumption that the noisy
channel is binary symmetric channel with substitution proba-
bility pe. By definition, mutual information could not be less
than zero, therefore, the lower bound can be written as

C ≥ max

(
0,

1−Hb(pi)−Hb(pe)

1− pi

)
. (47)

To prove the upper bound for the covert-channel capacity,
we consider a channel where the receiver is provided with the
positions of all insertions caused by the covert channel and
the sequence Zn = {z0, z1 · · · , zn} with

zk =

{
0 if the kth bit is inserted bit,
1 otherwise

(48)

which provides further information whether a bit is an infor-
mation bit or an inserted bit. Therefore,

I(Wn;Y N̄n) ≤ I(Wn;Y N̄n) + I(Wn;ZN̄n|Y N̄n)

= I(Wn;Y N̄n, ZN̄n)

= I(Wn; Ŷ n) (49)
= n(1−Hb(pe)) (50)

where Ŷ is the sequence obtained by removing the inserted
bits. The equation given in (49) can be explained as follows:
Knowing where the synchronization errors are located, the
receiver can discard the inserted symbols. The capacity of this
channel, therefore, is as large as the capacity of the channel
with no synchronization errors. Finally, combining again (35)
and (50), we can obtain the upper bound as

C = sup
Ξ

lim
n→∞

1

n
· I(Wn;Y N̄n)

≤ sup
Ξ

lim
n→∞

1

n
· I(Wn; Ŷ n)

= 1−Hb(pe) (51)

which concludes the proof.
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