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ABSTRACT

As one of the fundamental approaches for code optimization and performance analysis, profiling software activities
can provide information on the existence of malware, code execution problems, etc. In this paper, we propose
a methodology to profile a system with no overhead. The approach leverages electromagnetic (EM) emanations
while executing a program, and exploits its flow diagram by constructing a Markov model. The states of the
model are considered as the heavily executed blocks (called hot paths) of the program, and the transition between
any two states is possible only if there exists a branching operation which enables execution of corresponding
states without any intermediate state. To identify the state of the program, we utilize a supervised learning
method. To do so, we first collect signals for each state, extract features, and generate a dictionary. The
features are considered as the activated frequencies when the program is executed. The assumption here is that
there exists at least one unique frequency component that is only active for one unique state. Moreover, to
degrade the effect of interruptions and other signals emanated from other parts of the device, and to obtain
signals with high Signal-to-Noise Ratio (SNR), we average the output of Short-Time Fourier Transform (STFT).
After extracting features, we apply Principle Component Analysis (PCA) for dimension reduction which helps
monitoring systems in real time. Finally, we describe experimental setup and show results to demonstrate that
the proposed methodology can detect malware activity with high accuracy.
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1. INTRODUCTION

Program profiling is a technique used by developers to analyze the performance of a given system and improve
the performance by optimization procedures.1–4 The main objective of profiling is to diagnose the parts of a code
that are frequently executed. These heavily executed parts of the code are called hot paths or hot regions, and
they are generally comprised of loops, functions and code blocks that are called several times during program
execution. For optimization purposes, developers focus on these hot regions since the program spends most of
the time in these regions.5 Another useful application of profiling is malware detection.6,7 Since malware usually
changes the execution order of the program, monitoring the paths that are taken during program execution can
reveal information about the existence of malware.

Profiling is typically implemented using instrumentation,8–11 where a specific code is introduced before and/or
after the hot regions. These specific codes enable the profiler to know the execution order of the hot regions
as well as the time spent in each of them. However, insertion of these specific codes poses two significant
disadvantages: 1) instrumentation code is executed during the program execution and causes over-head, which is
especially problematic for Internet of things (IoT) devices with limited resources, and 2) insertion of the special
code causes major changes in the behavior of the program.12

Profiling can also be realized with an external monitoring system that does not require instrumentation.12–16

The main advantages of such systems are: 1) the profiling system does not use the resources of the monitored
system, and hence has zero-overhead, 2) the profiling system is seperate from the monitored system that results

* These two authors contributed to the paper similarly (author order does not reflect the extent of contribution).



in observer-effect-free monitoring, and 3) profiling system is physically isolated from the monitored system,
and this is especially useful for malware detection since the malware to be detected cannot interfere with the
profiling system. On the other hand, unlike instrumented profiling, an external monitoring system requires an
extra system that performs data acquisition and data processing.

The proposed profiling scheme in this work utilizes electromagnetic (EM) side channels. These channels
are unintentionally generated EM emanations that are by-products of the changes in the current flows and
transistor switches.17,18 Earlier research has shown that these emanations are correlated with the program
activity and can be leveraged to infer further information about the program.17–22 A large body of research in
EM side channels are focused on applications in cryptography.16,18,23,24 EM side channels are also used to track
program activity at different levels such as loops, code blocks, and instructions.13,16,25,26 Another application
is finding anomalies in software activity.12–16 In addition to the EM side-channels, other pysical side channels
such as acoustic emanations,27,28 power analysis,29–32 temperature changes,33,34etc. are also utilized for similar
purposes.

Most programs and embedded systems maintain periodic activities during their operations. In particular,
program spends most of the time in loops or functions that are called many times. These periodic operations
result in unintentional EM emanations whose spectrum contains peaks at corresponding frequencies. Spectral
Profiling shows12 these peaks occur at frequencies that are the inverse of the per-iteration time of the periodic
activities. In other words, if the per-iteration time of a periodic activity is T seconds, the corresponding spectrum
has a peak around the fundamental frequency f = 1/T Hertz. In addition to the fundamental frequency, peaks
at the harmonics of the fundamental frequency (2f, 3f, 4f, etc.) are also observed in the spectrum.

As shown in FASE,35 EM emanations are generally amplitude-modulated on harmonics of periodic signals
such as operating clock signal, voltage regulators, etc. Among these periodic signals, we observe the strongest
modulation around the first harmonic of the clock frequency. As a matter of fact, when a periodic activity
with per-iteration time T and corresponding fundamental frequency f = 1/T gets modulated on operating clock
frequency, fc, the spectrum contains spikes at frequencies fc ± f, fc ± 2f, fc ± 3f , etc.

Based on these observations, EDDIE14 and SYNDROME15 propose malware detection frameworks by mo-
nitoring the spectrum of the operating devices and comparing them with malware-free spectrum. In particular,
EDDIE compares observed short-time spectrum (STS) with the training STSs and makes decisions based on
a statistical test. SYNDROME utilizes similar techniques and extends the applicability of the framework to a
variety of devices, particularly real-world medical devices. Both EDDIE and SYNDROME perform well with
high Signal-to-Noise Ratio (SNR) levels, however, they fail under low SNR conditions. Also, in these work, STSs
of observed signals are compared with training signals based on pre-determined frequencies that might result
in low accuracy when the clock frequency shifts. ZOP13 presents a zero-overhead profiling framework that uses
signature matching and reports accuracy as high as 95%, but the proposed framework is fairly complicated,
which makes implementation on computers with limited resources relatively difficult.

We propose a new monitoring model that is based on Markov Models. As mentioned earlier, during execution,
a program goes through hot paths such as loops and functions whose per-iteration time and spectrum vary. We
exploit these changes in the spectrum and use these hot paths as the Markov states of the proposed framework.
Possible transitions from these hot paths are assumed to be known apriori. This is a valid assumption since
training phase enables access to the source code. Hence, these hot paths and possible transitions can be extracted
through a deep-investigation of possible branching operations or by means of compile-time analysis. Once these
transitions are determined, training phase only requires a signal flow that contains single execution of each hot
path.

In training phase, we extract features by using Short-Time Fourier Transform (STFT), and identify important
frequencies. Next, we apply principal component analysis (PCA)36 on the training signals to generate a model
that significantly reduces data size by keeping distinctive features. This reduction in the data size is especially
important for real-time monitoring system with high sampling rates and it significantly simplifies the computation
complexity. After extracting the features, we monitor the program flow with a Markov Model whose parameters
are also trained during a training phase.



We test the proposed framework on a single-board Linux computer and an Android phone by using different
applications. The results indicate that the state of the program can be successfully determined for both devices
and all applications. Furthermore, any injection-based attack that is larger than the sensitivity of the trained
model can also be successfully detected.

The rest of this paper is organized as follows. Section 2 explains data size reduction and feature extraction
techniques, Section 3 describes the Markov Model-based monitoring system, Section 4 presents the experimental
setup and discusses the results, while Section 5 provides a summary and draws conclusions.

2. EXTRACTING FEATURES FOR MARKOV MODEL USING PCA

In this section, we describe how to extract features from raw recorded EM emanation signals. As mentioned
earlier, EM emanations are usually modulated on strong periodic signals that are present on the board. In
this context, raw recorded electromagnetic emanation signals refer to the EM side channel content around the
first harmonic of clock frequency. In other words, raw signals are the time domain recordings whose frequency
spectrum is centered around the operating clock frequency.

The feature extraction described in this section contains three main steps: 1) identifying major frequencies
and reducing the dimension of the data size based on the identified major frequencies, 2) applying PCA for
further data size reduction in an optimal manner, and 3) combining above-mentioned steps to extract features
to be used by the Markov-based monitoring model. These steps are explained in more detail as follows.

2.1 Primary Dimension Reduction by Identifying Important Frequencies

As mentioned earlier, during the execution of each hot region, the spectrum contains peaks at corresponding
fundamental frequencies. In addition to these frequencies, additional peaks occur at different frequencies due to
interrupts and external noise. Since these additional peaks do not reveal any further information about the hot
regions, they are undesired peaks and should be omitted. In this section, we explain our methodology to identify
the relevant frequencies and disregard the undesired ones. This identification serves as the primary step of input
data size reduction for the overall framework and is based on STFT averaging in.37 Before STFT averaging,
we divide the measured raw training signal, Θ, into smaller subsections, Θi, each of length IS samples. Setting
the number of non-overlapping samples between consecutive STFT operations as OS , the number of STFT
operations for each Θi is Ψ where

Ψ = floor ((IS −F) /OS + 1) ,

and F is the FFT-size of the STFT window. These STFT operations are averaged and major frequency compo-
nents are determined with an adaptive threshold. Note that Ψ is the number of STFT instances to be averaged
and is determined by the length of Θi, or equivalently, IS . Therefore, the averaged spectrum mi for the ith

subsection is written as

mi[k] = 20 log10

{
1

Ψ

Ψ∑
n=1

∣∣Xi
n[k]

∣∣} , (1)

where k ∈ {0, 1, · · · ,F − 1}, and

Xi
n[k] =

F−1∑
ξ=0

Θi [ξ + (n− 1)OS ] exp (−j2πkξ/F) . (2)

Note that Equation 1 performs a log-transformation to reduce the skewness of the STFTs, Xi
n[k], in Equation

2. Furthermore, experiments show that the modulating clock frequency slightly varies during program execution
and this results in small shifts of the fundamental frequencies in the spectrum. To account for this shifting
phenomena, we downsample mi[k] with a max-pooling filter of length Nm. Consequenyly, the size of mi[k]
reduces by a factor of Nm and this process compensates for possible frequency shifts. Next, we obtain an
adaptive threshold ti[k] for mi[k] by means of moving filters and identify the major frequency peaks that fall
above this threshold. Figure 1 demonstrates a sample averaged spectrum and adaptive threshold for a sample
subsection where FFT-size is 4096 and downsampling factor Nm is 4. Note that any frequency index whose value



falls above the threshold qualifies as a major frequency for the given subsection. The spectrum averaging and
major frequency identification process is repeated for all subsection Θi’s and the history of major frequencies are
kept to generate Major Frequency Identifier model. Given an STFT operation of FFT-size F , Major Frequency
Identifier filters out the irrelevant frequencies and outputs a vector of size NMF . Note that NMF is dependent
on application and the history of major frequencies.

2.2 Secondary Dimension Reduction by PCA

This section descibes how data input size is further reduced in an optimal manner by PCA. During training, the
hot regions, or in other words, the states are known. Therefore, we can obtain a data matrix M that consists of
averaged spectra corresponding to each state. Let NS be the number of states that are present in the monitored
system, and NA be the number of averaged spectra that M should contain per each state. In a similar manner as
in Equation 1, we can extract NA averaged spectra for each state from NA different subsections of that state and
generate M by filling its columns with these averaged spectra. Note that M is a matrix of size F × (NA ×NS)
where F is the FFT-size. First NA columns of M contain averaged spectra for state 1, second NA columns
contain averaged spectra for state 2, and last NA columns contain averaged spectra for state NS . By using Major
Frequency Identifier described in Section 2.1, we identify the major frequency indices and decrease the size of
M to NMF × (NA ×NS) and denote the resulting matrix as A.

To reduce the dimension of A in a way that keeps the distinctive features among its columns as much as
possible, we propose to apply PCA.36 To do so, we first need to subtract the mean of the averaged spectra from
all columns of A and generate a new zero-mean matrix Ã whose columns are given by

ãn = an − µ, (3)

where an are the columns of A, and µ is the mean of the columns of A given by

µ =
1

NA ×NS

NA×NS∑
n=1

an. (4)

Note that Ã is also of size NMF × (NA ×NS). Typically, NMF < (NA ×NS) and Ã is full-rank, meaning that
rank of Ã, denoted by R, is equal to NMF . Therefore, by computing the singular value decomposition (SVD) of
Ã, we get Ã = UΣVT where

• U is a NMF ×R matrix whose columns un ∈ RNMF form an orthobasis for the range space of Ã,

• V is a (NA × NS) × R matrix whose columns vn ∈ R(NA×NS) form an orthobasis for the range space of
ÃT , and

Figure 1. Downsampled frequency spectrum for a sample subsection (mi and ti denote the sample averaged spectrum and
corresponding adaptive threshold, respectively.)



• Σ is a R×R diagonal matrix given by

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σR

 , (5)

where σr are the singular values of Ã ordered as σ1 ≥ σ2 ≥ · · · ≥ σR > 0.

To project Ã from a NMF -dimensional space to a lower dimensional space with dimension K, we define

• UK = [u1 u2 . . . uK ], a NMF ×K projection matrix whose columns uK,n ∈ RNMF are the first K columns
of U and form an basis for the K-dimensional subspace

• Σ−1
K , a diagonal K ×K normalization matrix that contains the inverse of the largest K singular values of

Ã in its diagonal entries as

Σ−1
K =


1
σ1

0 . . . 0

0 1
σ2

. . . 0
...

...
. . .

...
0 0 . . . 1

σK

 . (6)

Using the projection and normalization matrices, UK and Σ−1
K , we propose two projection schemes to obtain

the matrix A that is the projection of Ã onto K-dimensional subspace.

1. Non-Normalized Projection: A = UT
KÃ, where the dimensions corresponding to larger singular values

have larger impact because larger singular values correspond to larger variation.

2. Normalized Projection: A = Σ−1
K UT

KÃ, where contribution of each singular value is equalized so that
each dimension has the same weight.

The decision on which of these projection schemes should be chosen is based on the application. Also note that
if the largest K singular values have similar values, the normalized projection converges to its non-normalized
counterpart. In either case, A is a K × (NA ×NS) matrix. As a result of two-staged dimension reduction, the
dimension of a single averaged spectrum is reduced from F to K. Considering that typical values for F and K
are 4096 and less than 10, respectively, this is a significant data size reduction. Also, one should note that this
reduction is performed in an optimal way that keeps the distinctive features among different averaged spectra as
much as possible.

As a result of secondary data size reduction, we have learned the parameters for Subspace Projector (µ, Σ−1
K

and UK) as well as the Comparison Model (A and labels denoting the state of each column of A). One should
note that as much as computing the SVD of a matrix might be costly, this computation is only performed in the
training phase and only one time. Once the system is trained and the parameters are learned, during monitoring,
the projection is performed by means of basic matrix operations such as subtraction, multiplication, etc.

2.3 Feature Extraction for Markov Model

This section describes how aforementioned data size reduction models, Major Frequency Identifier and Subspace
Projector, are utilized to extract features for Markov model during monitoring phase. Similar to the training,
during monitoring, we swipe through the recorded raw signal, apply STFT operations and compute averaged
spectra as shown in Equation 1.

Each computed averaged spectrum, denoted by m ∈ RF , corresponds to one observation that represents the
current state of the program. To reduce the size of m and extract features for Markov model, we perform the
following procedure:



1. Obtain the major frequencies, α ∈ RNMF , from m by using Major Frequency Identifier.

2. Subtract µ (learned mean parameter) from α to obtain α̃ = α− µ.

3. Project α̃ onto K-dimensional subspace using Σ−1
K and UK to obtain α̂. One should remark that this

projection can be either

(a) Non-Normalized Projection: α̂ = UT
Kα̃, or,

(b) Normalized Projection: α̂ = Σ−1
K UT

Kα̃.

Note that the projection at this stage should be the same as the projection performed during the training
phase. After the projection, α̂ ∈ RK is a representation of the averaged spectrum, m, in K-dimensional
subspace.

4. Calculate the distance vector d ∈ RNA whose elements are the distances of the observation to corresponding
states. This distance is calculated by evaluating the `2-norm between α̂ and the columns of Comparison
Matrix (A). Since the labels (the states that columns of A belong to) are known, we average the evaluated
`2-norms for each state to obtain an average distance to each state, and fill in the corresponding elements
of d with the average distances.

Consequently, the extracted feature for a given observation is the distance vector d ∈ RNA . One straightfor-
ward approach to detect the current state is to pick the state with the minimum distance. During execution,
the program might exit the main state for short duration of time as a result of interrupts and inter-loop stages
that are not necessarily malware. If the observation is made during these short out-of-state stages, the minimum
distance might favor incorrect states that are not possible to transition to. In such a situation, selecting the
state with minimum distance from a single observation would alert malware even if the system is malware-free.
Therefore, this approach results in very high false positives (alerting malware when there is no malware). To
decrease the false positive rates and increase the accuracy of malware detection, in the next section, we propose
a Markov-based monitoring model that uses the distance vector d as its input.

3. MARKOV MODEL-BASED DETECTION AND MONITORING

This section presents the algorithm to monitor the program and detect malware based on a Markov model.
For ease of explanation, we first present the algorithm used for testing in Section 3.1, and in Section 3.2, we
present how the parameters are determined during thetraining phase. Note that in real implementation, these
are performed in reverse order, i.e., the parameters are learned in the training phase before testing starts.

3.1 Markov Model-based Monitoring Algorithm

A slightly simplified version of the algorithm to monitor the program is presented in Algorithm 1. The model
contains three parameters: 1) tS , an NA-dimensional vector containing minimum amount of time that program
needs spend in each state, 2) tL, threshold for announcing that the tested signal belongs to a cluster (i.e., state),
and 3) mg, maximum allowable glitch occurrence before announcing malware. A glitch refers to an observation
for which the predicted state is not an allowable state based on the previous states. There are several factors that
can cause a glitch: malware, interrupts, and inter-loop stages, etc. As mentioned earlier, announcing malware
after a single glitch results in high false positive rates. To compansate for that, we announce malware if mg

consecutive glitches occur. One should note that all of these parameters are pre-determined in training phase as
described in Section 3.2.

In addition to three aforementioned parameters, the model also takes a state transitions dictionary as an
input. This dictionary contains allowable transitions between states and possible exit states (allowable states
from which the Markov chain can be exited).

Profiling starts by obtaining the distance vector d for a given observation as described in Section 2. In the
beginning of a program, we monitor until the distance to the beginning state is below the threshold tL, once
this is satisfied, monitoring starts. As a design specification to reduce false positives, we prioritize staying in the



Algorithm 1: Profiling Procedure

Data: µ, UK , Σ−1
K , A

// tS: Vector containing minumum amount of time for execution of each state.

// tL: Threshold for announcing the tested signal belongs to a cluster.

// mg: Maximum time for glitch occurrence before announcing malware.

// dict: Dictionary that stores state transitions and exit states.

// d: Vector containing the distance values to each state.

not detected = 0
malware detected = # of states + 1
current = not detected
transitions = []
started = 0 // tracks whether the first state has occurred.

c state = 0 // state counter.

c glitch = 0 // glitch counter.

while true do
Apply the procedure in Section 2 to obtain the distance vector d.
if started then

if d[current] is smaller than tL then
c state += 1
c glitch = 0

else
if c state is larger than tS [current] then

candidates = find candidate states from dict based on current
best candidate = get the candidate with lowest d[candidates] value
if d[best candidate] is smaller than tL then

current = best candidate // state transition occurs.

c state = 0
c glitch = 0

else
c glitch += 1

end

else
c glitch += 1 // minimum time from state transition has not passed yet.

end

end

else
next = 1 // start state.

if d[next] is smaller than tL then
current = next
started = 1

end

end
Append current to transitions

if c glitch is larger than mg then
if isExitState(current ) then

Display message: ”Markov State Exited.”
current = 0

else
Display message: ”MALWARE DETECTED!”
current =malware detected

end
Set last mg elements of transitions to current
started = 0
current = not detected
c state = 0
c glitch = 0

end

end

Result: transitions



same state over transitioning to another state, in other words, the previous state is favored over the other states.
To realize that, we first check whether the distance to the previous state is less than tL, in which case the current
state is predicted as the previous state. Otherwise, we check whether the program has stayed in the current state
longer than the minimum time that needs to be passed before leaving that state (tS [current]) . If this minimum
time has not passed, transition is not possible, hence we note this observation as a glitch and the glitch counter
gets incremented. However, if the minimum time has passed, transition to another state is possible. In this case,
we use the dictionary to find the possible candidate states that can be transitioned to. Among these candidates,
the candidate with the minimum distance is selected as the best candidate. If the distance to best candidate is
less than tL, the current state is predicted as this best candidate state. Otherwise, the observation qualifies as a
glitch that increments the glitch counter.

Next, the predicted state is appended to the transitions array. Then, we check whether glitch counter is
larger than mg. If glitch counter is not larger than mg, we proceed to the next observation by calculating the
new distance vector d and following the same procedure. However, if the glitch counter is larger than mg, there
is either a malware or Markov chain is exited through an exit state. To determine that, we check the dictionary
to see if the current state is an exit state. Based on the this, we display a message that denotes the existence of
malware or the exit from the Markov State.

3.2 Learning Parameters for Markov Model

This section describes how the parameters tL , tS , and mg are determined in training phase. To determine these
parameters, we only need one path that contains a typical length of observations for each state. Let NO be the
total number of observations corresponding to the training signal, and di be the distance vector corresponding
to the ith observation where i ∈ {1, 2, . . . , NO}. The threshold tL is determined as

tL = µL + 2.5× σL, (7)

where

µL =
1

NO

NO∑
i=1

min(di), (8)

σL =

√√√√ 1

NO

NO∑
i=1

(min(di)− µL)
2
, (9)

and min(di) denotes the minimum element of the ith distance vector di.

Training signal is collected from a malware-free program execution, therefore, we know that monitoring the
training signal should not alert malware. Motivated by this idea, in the training phase, we use an altered version
of Algoritm 1 to determine tS and mg with the following modifications:

1. mg and tS are initialized as infinty and unit vector (a NS×1 vector whose all elements are 1), respectively.
By setting mg to infinty, we ensure that the entire training signal is monitored without glitch counter
exceeding mg and alerting malware. Also, setting tS to unit vector makes transitions to allowable states
possible regardless of the time spent in the current state. These two assignments are valid for monitoring
a malware-free training signal.

2. A new empty vector hg (glitch history) is introduced, and the value of glitch counter is appended to hg
before every operation where glitch counter is reset to 0. Note that hg keeps track of the number of
consecutive glitches that occur during malware-free training signal, and it also represents the length of
glitches that occur due to interrupts and inter-loop stages.

After all observations of the training signal are evaluated by Algorithm 1, we obtain a vector hg of size Ng×1,
where Ng represents how many times the glitch counter was reset to 0. The elements of hg are given by hg,i for



i ∈ {1, 2, . . . , Ng}, i.e., hg = [hg,1 hg,2 ... hg,Ng
]T . By using hg, mg is determined as

mg = round

max(hg) + 3×

√√√√ 1

Ng

Ng∑
i=1

(hg,i − µg)2

 , (10)

where

µg =
1

Ng

Ng∑
i=1

hg,i, (11)

and max(hg) denotes the maximum element of hg.

Assuming that the training signal is a typical flow of the program, we use the times spent in each state of
the training signal to calculate tS . The altered version of Algorithm 1 outputs the corresponding states of the
observation stream. As a rule of thumb, we determine the minimum time that needs to be spend in each state as
5% of the time spent for the training signal for each corresponding state. Note that, this percentage might vary
for different programs and also different states of the same program. Therefore, the specific characteristics of
the program and different states should be taken into account in the training phase while designing a monitoring
system for a new program.

4. EXPERIMENTAL SETUP AND RESULTS

In this section, we present the experimental setup that is used to test the proposed monitoring framework and we
also present the experimental results. The experiments were conducted on two different devices: 1) OLuniXino
A13,38 a single-board Linux computer with a dual-issue, in-order ARM Cortex processor, and 2) Alcatel Ideal,39

an Android phone with 1.1 GHz Qualcomm Snapdragon 210 processor. To capture the EM emanations, we
place a custom-made near-field probe above the processor of these devices as shown in Figure 2. The data is
recorded by a spectrum analyzer (Keysight N9020A MXA40) with a sampling period of 260 nanoseconds and
3 MHz bandwidth. The reason behind using such an advanced device is the built-in features of the device
such as real-time signal display and calibrated measurements. However, any other measurement device such as
commercial software-defined radio receivers also provide similar results without a significant performance loss.

In our experiments, we use a program that is created using SAVAT17 as well as two applications (Basicmath
and Bitcount) from the MiBench41 suite. The state transition diagrams for these programs are given in Figure
3. Note that these programs consist of different number of states and different possible state transitions.

(a) OLinuXino A13.38 (b) Alcatel Ideal.39

Figure 2. Experimental setups for the measurements.



S1 S2 S3 S4

(a) The state transition diagram of SAVAT 17-based program.

M1 M2 M3 M4

(b) The state transition diagram for Basicmath from MiBench.41

C1 C2 C3 C4 C5 C6 C7

(c) The state transition diagram for Bitcount from MiBench.41

Figure 3. State Transition Diagram for Tested Programs

First, we train Markov Model-based monitoring systems for each of these programs, and then we monitor for
program profiling and malware detection. To provide the reader with rule-of-thumb choices for the parameters
that are mentioned in Sections 2 and 3, in Table 1, we list the parameter values that are used for training the
models. Also, in all models, the projections on lower dimensional subspaces are performed as non-normalized
projections.

Table 1. Parameter Values used for Training the Models in the Experiments.

Parameter Chosen Value

Ψ 20
F 4096
OS 2048
Nm 4
NA 40
K 3

We present the results of the program profiling and malware detection capabilities of the proposed framework
in two sections: 1) program profiling of the malware-free SAVAT-based program and determining taken hot
paths, and 2) detecting malware that are injected into MiBench applications.

4.1 Program Profiling of Malware-free SAVAT-based Program

The SAVAT-based program whose state transition diagram is shown in Figure 3(a) is a proof-of-concept imple-
mentation of a program that has multiple transitions between different states. The main objective to test such
a system is to show the profiling capability of the proposed framework on programs with relatively complicated
state transitions.

The monitoring results are shown in Figure 4. One should note that the SAVAT-based program has 4 states,
and State 5 in the figures represents the idle state, where program is not in any of the hot regions. Figure 4 shows
that the proposed framework can successfully profile the given program with different transition possibilities and
determine the current state of the program at a given time.



(a) State transition when program execution follows the
path 1-2-3-4.

(b) State transition when program execution follows the
path 1-2-4.

(c) State transition when program execution follows the
path 1-2-4-1-2-3-4.

(d) State transition when program execution follows the
path 1-2-4-1-2-4.

Figure 4. State transitions for a program with the state diagram in Figure 3(a).

4.2 Detecting Malwares Injected into MiBench Applications

In this section, we provide the results of malware detection performance of the proposed framework using
MiBench applications. The tested malware in our experiments are injection-based attacks. Additional malicious
code segments can be injected inside or outside of the loops. Injections within the loops cause the per-iteration
time of the loops to increase, which results in a decreased fundamental frequency, and hence a change in the
spectrum. On the other hand, attacks outside the loop result in an increased inter-loop time. Note that injections
within the loops are generally easier to detect because they change the spectrum of the entire state, whereas
injections outside the loops only change the spectrum of the inter-loop state. Therefore, the minimum injection
size that can be detected is generally larger for outside loop injections. However, this is not a very restricting
limitation because attackers need to inject many instructions to inter-loop stages whereas only few instructions
injected inside loops can help them to achieve their goals. Note that the sensitivity of the malware detection
depends on the parameter mg, and injections that take less time than mg generally can not be detected.

Figure 5 and 6 represent predicted state transitions under different scenarios for Basicmath, and Bitcount,
respectively. Figures 5(a) and 6(a) show the state transitions when the monitored programs are malware-free.
Note that State 5 and State 8 represent the idle states for Basicmath, and Bitcount, respectively. The other
figures in Figure 5 and 6 presents the state transitions with three different types of malware. In all these scenarios,
the malware is successfully detected.

The results in Section 4.1 and 4.2 demonstrate that the proposed framework can both determine the current
state of the program for profiling, and detect injected malware.



(a) State transitions for the Basicmath program when it
is working properly.

(b) State transitions for the Basicmath program when it
has malware Type-1.

(c) State transitions for the Basicmath program when it
has malware Type-2.

(d) State transitions for the Basicmath program when it
has malware Type-3.

Figure 5. State transitions for the Basicmath program with the state diagram in Figure 3(b).

(a) State transitions for the Bitcount program when it is
working properly.

(b) State transitions for the Bitcount program when it
has malware Type-1.

(c) State transitions for the Bitcount program when it
has malware Type-2.

(d) State transitions for the Bitcount program when it
has malware Type-3.

Figure 6. State transitions for the Bitcount program with the state diagram in Figure 3(c).



5. CONCLUSIONS

Program profiling is a commonly used technique for analyzing and optimizing the performance of the code. This
paper presents a framework to externally profile systems and detect malware with zero-overhead by leveraging
EM side emanations from the system. Monitoring is based on a Markov-model whose states are the heavily
executed code sections, i.e., hot paths. Possible transitions between these states are assumed to be known
apriori. Markov-model makes the state predictions based on the features extracted by the proposed Feature
Extraction Procedure that consists of averaging Short-Time Fourier Transforms, identifying major frequencies,
applying principle component analysis and projecting on lower dimensional subspaces. The parameters for the
Markov-model and Feature Extraction Procedure are learned through a supervised learning that requires only one
execution of each state. To evaluate the performance of the proposed framework we test the monitoring model
on two different devices and three different programs and show that the proposed methodology can monitor the
current state of the programs and detect all malware activities within the sensitivity of the trained model.
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