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1 Signal-to-Noise Ratio and Integration in Radar Signal 
Processing 
Signal-to-noise ratio (SNR) is a fundamental determinant of the quality of many 

radar signal processing operations. To cite some important examples [1]: 

• for a given probability of false alarm PFA, the probability of detection, PD, 
increases as SNR increases 

• measurement precision in range, angle, and Doppler frequency improves 
(standard deviation of measurement error decreases) as SNR increases 

• image contrast (dynamic range) in synthetic aperture radar (SAR) imaging 
increases as SNR increases. 

Many radar signal processing operations seek to increase SNR and thus radar 
performance by adding (“integrating”) multiple data samples together. Two major classes 
of integration are recognized: coherent and noncoherent. 

2 Coherent Integration Gain 
Coherent integration gain is the increase in SNR obtained by coherently integrating 

multiple measurements of a signal in additive noise [1]. The integration is considered 
“coherent” when it is performed on the complex data, so that both the amplitude and the 
phase of the data are utilized. Consider complex data x[n] comprised of a complex 
constant signal s[n] = Aejφ (independent of the index n) and additive zero complex white 
Gaussian noise w[n] of variance 2

wσ : 

 [ ] [ ] [ ] [ ]jx n s n w n Ae w nφ= + = +  (1) 

The SNR of a single sample of x, denoted χ1, is 
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Consider the sum of N such samples: 
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The sum z is still in the form of the sum of a signal component jNAe φ  and a noise 
component that is the sum of N noise samples. The power in the signal component is 
clearly (NA)2. The power in the noise component is 
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where we have relied on w[n] being a white random process. The SNR of z, 
cNχ , is 

 ( )2 2
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This increase in SNR by a factor of N due to coherent integration of N data samples is 
called the coherent integration gain, and is denoted here as Gc: 

 1

c

c
N

G χ
χ

=  (6) 

Obtaining this gain obviously depended on having the signal samples add in phase 
(sometimes called adding on a “voltage basis”) so that the signal component power 
increased by a factor of N2. In contrast, the power of the integrated noise increased only 
by a factor of N (a result sometimes called adding on a “power basis”). It should also be 
clear that the signal component can be generalized to be of the form Aexp(jφ[n]), thus 
allowing for a phase modulation, provided that the phase modulation is compensated 
during integration so that the signal components again add in phase: 
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Clearly, the phase sequence φ[n] must be known or estimated for compensation to be 
applied successfully. This generalization of coherent integration is the common thread 
underlying the processing gain achieved by any matched filtering technique, such as 
Doppler filtering, synthetic aperture radar (SAR) image formation, and space-time 
adaptive processing (STAP). 
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To compute the effect of coherent integration on detection performance, results for 
a single sample of signal in noise are used, with 

cNχ  replacing χ1 [1][2]. For example, if 

an SNR of 15 dB is required to achieve a specified PD and PFA with a single data sample, 
the same PD and PFA can be achieved by collecting and coherently integrating 2 samples 
having individual SNRs of 12 dB (a reduction by a factor of 2, equivalent to 3 dB), or 10 
samples with individual SNRs of 5 dB (a reduction by a factor of 10, equivalent to 10 
dB). 

3 Noncoherent Integration Gain 
In noncoherent integration, the summation is applied to a function of the magnitude 

of the complex data sample x[n], thus discarding the phase information before 
integration. Integration is typically performed on |x[n]|, |x[n]|2, or log(|x[n]|). These are 
commonly referred to respectively as linear, square-law, or log detected data. Assuming 
for example a linear detector, noncoherent integration consists of forming the sum 
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However, it is not possible to define a signal-to-noise ratio in the noncoherent case 
because znc cannot be decomposed into the sum of distinct signal-only and noise-only 
components as was done in Eq. (3). This is because the nonlinear transformations ⋅ , 2⋅ , 

and log ⋅  create cross-products of signal and noise components. Thus, it is not possible 

to directly compute an SNR after noncoherent integration, and in turn it is not possible to 
directly compute a noncoherent integration gain. 

However, a noncoherent integration gain Gnc can be defined indirectly by 
considering the single-sample SNR required to achieve a specified performance in some 
signal processing problem when noncoherently integrating multiple data samples, and 
comparing that to the SNR required to achieve the same performance when only a single 
sample is used. Denote the single-sample SNR needed to achieve a specified performance 
when N such samples are noncoherently integrated as 1,Nχ . Now consider the detection 

curves in Figure 1, adapted from [1]. These show the PD achieved as a function of SNR 
with a linear detector and noncoherent integration for a PFA of 10-8. Such curves define an 
implicit noncoherent integration gain. For instance, consider the single sample SNR 
required to achieve PD = 0.8 for N = 1 and again for N = 10. From the figure, it can be 
seen that the single-sample SNR required for N = 1 is χ1 = 14 dB, while for N = 10 the 
SNR required is reduced to 1,10χ  = 5.7 dB. The difference of 8.3 dB, a factor of about 

6.8, is the noncoherent integration gain Gnc. In general, 



Noncoherent Integration Gain Page 4 of 10 June 9, 2010 

 

 
Figure 1. Illustration of effect of noncoherent integration on single-sample 

SNR required. PFA = 10-8. 
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It is often stated that 0.5
ncG N N≈ = . This example shows that is not the case. 

Specifically, for this example Gnc = 6.8 = 100.833. (Note that the coherent integration gain 
Gc = N1). When expressed in the form Nα, it is the case that 0.5 < α < 1 for noncoherent 
integration gain. Consequently, noncoherent integration is not as efficient as coherent 
integration in the sense that it takes a larger value of N to achieve a given integration gain 
than is required for coherent integration. We will return to integration efficiency in 
Section 7. 

4 Computing Noncoherent Integration Gain for Detection 
Because the detectors used to obtain noncoherent data are nonlinear operations, Gnc 

is not easily calculated directly. The most straightforward way to compute Gnc in the 
context of detection is to use results for calculation of detection performance for a given 
problem to calculate the single-sample SNR χ1 required when using N = 1 sample; repeat 
for N > 1 samples to get χ1,N; and then compute the ratio χ1/χ1,N of Eq. (9). 

Consider the common radar case of a nonfluctuating target in complex Gaussian 
noise, sometimes called the Marcum or Swerling 0 model. For a given PFA, single-sample 
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SNR χ1,N, number of samples noncoherently integrated N,  and a square-law detector, PD 
is found with the pair of equations [1][2]. 
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where I[·,·] is Pearson’s form of the incomplete gamma function and QM(·,·) is Marcum’s 
Q function [1]. Equation (10) is solved for the threshold T required to achieve the desired 
PFA; T is then used with N to solve Eq. (11) for the SNR χ1,N that gives the desired PD. 
The same process can be used for the other Swerling models by replacing Eq. (11) with 
the appropriate equation for each fluctuation model. (Equation (10) is unchanged.) These 
solutions must generally be obtained numerically. One set of MATLAB software for 
doing so is available at [3].  

5 Approximations to Noncoherent Integration Gain for 
Detection of Nonfluctuating Targets 
Albersheim’s equation is an empirical approximation to the nonfluctuating target 

detection problem, but for a linear detector [4][5]. The single-sample SNR is computed 
according to 
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Noncoherent integration gain is easily obtained by computing the single-sample SNR 
using Albersheim’s equation with different values of N. Because the SNR required to 
achieve a given detection performance with a linear vs. a square-law detector varies by 
only about 0.2 dB over a wide range of parameters [6], Albersheim’s equation is 
generally useful for both detector types. 

Peebles has presented the following empirical formula that gives noncoherent 
integration gain directly for the nonfluctuating target case and a square-law detector [6]: 
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Peebles states that this formula is accurate to within about 0.8 dB over a range of about 1 
to 100 for N, 0.5 to 0.999 for PD, and 10-10 to 10-2 for PFA. An approximation for the 
integration gain exponent can also be written directly from Eq. (13); it is 
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6 Comparison of Calculations of Noncoherent Integration Gain 
Figure 2 compares Gnc for the case of PFA = 10-8 and PD = 0.5. 0.8, or 0.95 as 

computed using the exact results of Eqs. (10) and (11) with Eq. (9); Albersheim’s 
equation (12) with (9); and Peebles’ approximation (13). Figure 3 repeats the same 
conditions but with PFA = 10-4. Clearly all three methods produce generally similar 
estimates of Gnc. It can also be seen that Gnc is only a weak function of PD and PFA, since 
the curves do not vary much with either of these. 

Estimates of Gnc based on Albersheim’s or Peebles’ equations are much easier to 
deal with because they involve simple, closed-form expressions, while computation of 
Marcum’s Q function QM(·,·) requires iterative procedures that may exhibit numerical 
problems for some parameters [7]. Figure 4 shows the difference in Gnc estimated using 
Albersheim’s or Peebles’ equations vs. that computed using the exact results of Eqs. (10) 
and (11) for PFA = 10-10 and three values of PD. This particular case provides some of the 
larger errors for likely values of PD and PFA. The errors remain well within the ±1 dB 
range for both approximations over a wide range of PD and PFA. 

Estimates of Gnc based on Albersheim’s or Peebles’ equations are much easier to 
deal with because they involve simple, closed-form expressions, while computation of 
Marcum’s Q function QM(·,·) requires iterative procedures that may exhibit numerical 
problems for some parameters [7]. Figure 4 shows the difference in Gnc estimated using 
Albersheim’s or Peebles’ equations vs. that computed using the exact results of Eqs. (10) 
and (11) for PFA = 10-10 and three values of PD. This particular case provides some of the 
larger errors for likely values of PD and PFA. The errors remain well within the ±1 dB 
range for both approximations over a wide range of PD and PFA. 
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(a) (b) (c) 

Figure 2. Noncoherent integration gain for PFA = 10-8 and three values of 
PD. (a) Exact result. (b) Computed using Albersheim’s equation. 

(c) Peebles’ approximation. 
 

   
(a) (b) (c) 

Figure 3. Noncoherent integration gain for PFA = 10-4 and three values of 
PD. (a) Exact result. (b) Computed using Albersheim’s equation. 

(c) Peebles’ approximation. 
 

7 Efficiency of Noncoherent Integration for Nonfluctuating 
Targets 
Because coherent integration would reach a factor of 10 dB for N = 10 and 20 dB 

for N = 100, it is also clear that Gnc for a nonfluctuating target is less efficient than 
coherent integration.1

 

 That is, if Gnc is expressed in the form Nα, then α < 1. (Recall that 
Gc = N, so α = 1 for coherent integration.) In the example given earlier, α = 0.833. 

                                                 
1 This is also true for noncoherent integration with fluctuating targets; we just don’t demonstrate it here. 
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(a) (b) 

Figure 4. Error in estimate of Gnc as compared to that calculated using 
Eqs. (10) and (11) for PFA = 10-10 and three values of PD. (a) Error in 

estimate using Albersheim’s Eq. (12). (b) Error using Peebles’ Eq. (13). 
 

The integration exponent α can be obtained from estimates of Gnc by the formula 
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Figure 5 illustrates the efficiency of noncoherent integration for one example, a 
nonfluctuating target with PD = 0.9 and PFA = 10-6. The exponent α exceeds 0.8 for small 
N, and falls to a little more than 0.7 for N = 100. However, over this range of N, α easily 
exceeds 0.5, corresponding to a N  factor. 
 

 
Figure 5. Noncoherent integration gain for a nonfluctuating target with 

PD = 0.9 and PFA = 10-6, computed using Albersheim’s equation. 
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In coherent integration, the integration factor is N independent of the SNR of the 
individual data samples. Figure 5 suggests that, as more samples are noncoherently 
integrated, the integration efficiency degrades. That is, α is relatively high for the first 
few samples integrated, but there are some diminishing returns as N is increased. At the 
same time, for a fixed PD and PFA, a larger value of N implies that the individual samples 
can start with a lower value of SNR, χ1,N. These observations suggest that noncoherent 
integration is more efficient when the single-sample SNR is high than when it is low. 

Figure 6 plots α vs. χ1,N to make this behavior explicit. When the single-sample 
SNR is high to begin with, very few samples need be integrated to achieve the desired 
detection performance, and the noncoherent integration efficiency is in the vicinity of 0.9. 
On the other hand, if the single-sample SNR is very low to begin with, noncoherent 
integration efficiency asymptotically approaches N  (α = 0.5). However, this occurs 
only for very extremely (and unrealistically) large numbers of samples integrated; the 
case of χ1,N = −30 dB and PFA = 10−6 in Figure 6, which gives α ≈ 0.57, corresponds to N 
≈ 36 million!2

 
 

 
Figure 6. Noncoherent integration gain vs. single-sample SNR χ1,N for 

nonfluctuating target with PD = 0.9 and PFA = 10-4, 10-6, and 10-8, 
computed using Albersheim’s equation. 

 

                                                 
2 These extreme cases should be considered with some caution. They were computed using Albersheim’s 
equation, but with parameters well out of the range over which the accuracy of Albersheim’s equation is 
guaranteed. The exact equations using Marcum’s Q function were not used because it is difficult to 
evaluate for such large N [7]. The trends shown above are believed to be correct, but the accuracy of the 
precise values is uncertain for single sample SNRs less than about -2 dB. 
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8 Approximations to Noncoherent Integration Gain for 
Detection of Fluctuating Targets 
Shnidman has given useful empirical approximations for calculating single-sample 

SNR given PD, PFA, and N for fluctuating targets [8]. These equations play the same role 
for fluctuating targets as does Albersheim’s equation for nonfluctuating targets. 
Consequently, the same strategy described above with Albersheim’s equation can be 
applied using Shnidman’s equation to estimate noncoherent integration gain for 
fluctuating targets. The results can be compared with more exact calculation using the 
equations from [1] or [2] with the software from [3] to estimate the accuracy of the 
procedure based on Shnidman’s equations. 
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